1
|
Li F, Liu X, Bai N, Li Y, Hou M, Hou Y, Liu Y, Wang X, He Q, Li J. Irisin attenuates liver fibrosis by regulating energy metabolism and HMGB1/β-catenin signaling in hepatic stellate cells. Eur J Pharmacol 2025; 998:177519. [PMID: 40101858 DOI: 10.1016/j.ejphar.2025.177519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix accumulation during chronic liver disease progression. Hepatic stellate cell (HSC) activation involves metabolic reprogramming, while both HMGB1 and β-catenin pathways have been implicated in HSC activation and liver fibrosis progression. Given irisin's established role in metabolic regulation and emerging evidence of its anti-fibrotic properties, we investigated its effects on HSC activation and liver fibrosis, focusing on potential metabolic regulation through the HMGB1/β-catenin pathway. Using both in vitro HSC-T6 cell culture and in vivo CCl4-induced rat liver fibrosis model, we analyzed irisin's impact on HSC metabolism and fibrosis progression. Our results demonstrated that irisin dose-dependently suppressed HSC-T6 cell viability and glycolytic metabolism, significantly reducing ATP levels, glucose consumption, and lactate production at concentrations of 80-100 nmol/L. Irisin treatment markedly inhibited HSC-T6 cell proliferation and migration while inducing cellular senescence, as evidenced by increased H3K9me3, γ-H2AX, P16, and P21 expression. Mechanistically, irisin systematically downregulated key glycolytic enzymes (HK2, PFK1, PKM2, LDHA) and modulated the HMGB1/β-catenin pathway by reducing both cytoplasmic HMGB1 expression and β-catenin nuclear translocation. In the CCl4-induced rat model, irisin treatment significantly ameliorated liver fibrosis, as evidenced by reduced collagen deposition and α-SMA expression, while improving liver function indicators and decreasing serum fibrosis markers (HA, PIIIP, HMGB1), showing therapeutic effects comparable to colchicine. These findings reveal irisin's anti-fibrotic effects through metabolic regulation and HMGB1/β-catenin pathway modulation, suggesting its potential as a therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Fang Li
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xin Liu
- Department of Gastrointestinal Endoscopy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Ning Bai
- Department of Gastrointestinal Endoscopy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Ying Li
- Department of Gastrointestinal Endoscopy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Minna Hou
- Department of Gastrointestinal Endoscopy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yali Hou
- Department of Gastrointestinal Endoscopy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yunting Liu
- Department of Gastrointestinal Endoscopy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xu Wang
- Department of Gastrointestinal Endoscopy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qi He
- Department of Gastrointestinal Endoscopy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Jing Li
- Department of Gastrointestinal Endoscopy, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
2
|
Matsuda T, Kaji K, Nishimura N, Asada S, Koizumi A, Tanaka M, Yorioka N, Tsuji Y, Kitagawa K, Sato S, Namisaki T, Akahane T, Yoshiji H. Cabozantinib prevents the progression of metabolic dysfunction-associated steatohepatitis by inhibiting the activation of hepatic stellate cell and macrophage and attenuating angiogenic activity. Heliyon 2024; 10:e38647. [PMID: 39398008 PMCID: PMC11470516 DOI: 10.1016/j.heliyon.2024.e38647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Cabozantinib, a multiple tyrosine kinase inhibitor targeting AXL, vascular endothelial growth factor receptor (VEGFR), and MET, is used clinically to treat certain cancers, including hepatocellular carcinoma. This study aimed to assess the impact of cabozantinib on liver fibrosis and hepatocarcinogenesis in a rat model of metabolic dysfunction-associated steatohepatitis (MASH). MASH-based liver fibrosis and hepatocarcinogenesis were induced in rats by feeding them a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for eight and 16 weeks, respectively. Cabozantinib (1 or 2 mg/kg, daily) was administered concurrently with the diet in the fibrosis model and after eight weeks in the carcinogenesis model. Treatment with cabozantinib significantly attenuated hepatic inflammation and fibrosis without affecting hepatocyte steatosis and ballooning in CDAHFD-fed rats. Cabozantinib-treated rats exhibited a marked reduction in α-smooth muscle actin+ activated hepatic stellate cell (HSC) expansion, CD68+ macrophage infiltration, and CD34+ pathological angiogenesis, along with reduced hepatic AXL, VEGF, and VEGFR2 expression. Consistently, cabozantinib downregulated the hepatic expression of profibrogenic markers (Acta2, Col1a1, Tgfb1), inflammatory cytokines (Tnfa, Il1b, Il6), and proangiogenic markers (Vegfa, Vwf, Ang2). In a cell-based assay of human activated HSCs, cabozantinib inhibited Akt activation induced by GAS6, a ligand of AXL, leading to reduced cell proliferation and profibrogenic activity. Cabozantinib also suppressed lipopolysaccharide-induced proinflammatory responses in human macrophages, VEGFA-induced collagen expression and proliferation in activated HSCs, and VEGFA-stimulated proliferation in vascular endothelial cells. Meanwhile, administration of cabozantinib did not affect Ki67+ hepatocyte proliferation or serum albumin levels, indicating no negative impact on regenerative capacity. Treatment with cabozantinib also reduced the placental glutathione transferase+ preneoplastic lesions in CDAHFD-fed rats. In conclusion, cabozantinib shows promise as a novel option for preventing MASH progression.
Collapse
Affiliation(s)
- Takuya Matsuda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Shohei Asada
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Aritoshi Koizumi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Misako Tanaka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
3
|
Du X, Jin M, Li R, Zhou F, Sun Y, Mo Q, Song S, Dong N, Duan S, Li M, Lu M, Zhang C, He H, Yang X, Tang C, Li Y. Mechanisms and targeted reversion/prevention of hepatic fibrosis caused by the non-hereditary toxicity of benzo(a)pyrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169496. [PMID: 38135085 DOI: 10.1016/j.scitotenv.2023.169496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
The effect of long term exposure to low concentrations of environmental pollutants on hepatic disorders is a major public health concern worldwide. Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants. In recent years, an increasing number of studies have focused on the deleterious effects of low concentrations of PAHs in the initiation or exacerbation of the progression of chronic liver disease. However, the underlying molecular mechanisms and effective intervention methods remain unclear. Here, we found that in hepatocytes, a low concentration of benzo(a)pyrene (B[a]P, an indicator of PAHs) chronic exposure continuously activated 14-3-3η via an epigenetic accumulation of DNA demethylation. As a "switch like" factor, 14-3-3η activated its downstream PI3K/Akt signal, which in turn promoted vascular endothelial growth factor (VEGF) production and secretion. As the characteristic fibrogenic paracrine factor regulated by B[a]P/14-3-3η, VEGF significantly induced the neovascularization and activation of hepatic stellate cells, leading to the development of hepatic fibrosis. Importantly, targeted 14-3-3η by using its specific inhibitor invented by our lab could prevent B[a]P-induced hepatic fibrosis, and could even reverse existent hepatic fibrosis caused by B[a]P. The present study not only revealed novel mechanisms, but also proposed an innovative approach for the targeted reversion/prevention of the harmful effects of exposure to PAHs on chronic liver disease.
Collapse
Affiliation(s)
- Xinru Du
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Jin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruzhi Li
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhou
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanze Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qinliang Mo
- The First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Sisi Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Dong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuoke Duan
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Maoxuan Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiwei He
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaojun Yang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Ili & Jiangsu Joint Institute of Health, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Xinjiang, China.
| | - Chengwu Tang
- The First Affiliated Hospital of Huzhou University, Huzhou, China.
| | - Yuan Li
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Ceci L, Gaudio E, Kennedy L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. Cell Mol Gastroenterol Hepatol 2024; 17:553-565. [PMID: 38216052 PMCID: PMC10883986 DOI: 10.1016/j.jcmgh.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Biliary fibrosis is seen in cholangiopathies, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In PBC and PSC, biliary fibrosis is associated with worse outcomes and histologic scores. Within the liver, both hepatic stellate cells (HSCs) and portal fibroblasts (PFs) contribute to biliary fibrosis, but their roles can differ. PFs reside near the bile ducts and may be the first responders to biliary damage, whereas HSCs may be recruited later and initiate bridging fibrosis. Indeed, different models of biliary fibrosis can activate PFs and HSCs to varying degrees. The portal niche can be composed of cholangiocytes, HSCs, PFs, endothelial cells, and various immune cells, and interactions between these cell types drive biliary fibrosis. In this review, we discuss the mechanisms of biliary fibrosis and the roles of PFs and HSCs in this process. We will also evaluate cellular interactions and mechanisms that contribute to biliary fibrosis in different models and highlight future perspectives and potential therapeutics.
Collapse
Affiliation(s)
- Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
5
|
Wu Y, Yin AH, Sun JT, Xu WH, Zhang CQ. Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells. World J Gastroenterol 2023; 29:4975-4990. [PMID: 37732000 PMCID: PMC10507507 DOI: 10.3748/wjg.v29.i33.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Liver fibrosis is the common pathological process associated with the occurrence and development of various chronic liver diseases. At present, there is still a lack of effective prevention and treatment methods in clinical practice. Hepatic stellate cell (HSC) plays a key role in liver fibrogenesis. In recent years, the study of liver fibrosis targeting HSC autophagy has become a hot spot in this research field. Angiotensin-converting enzyme 2 (ACE2) is a key negative regulator of renin-angiotensin system, and its specific molecular mechanism on autophagy and liver fibrosis needs to be further explored. AIM To investigate the effect of ACE2 on hepatic fibrosis in mice by regulating HSC autophagy through the Adenosine monophosphate activates protein kinases (AMPK)/mammalian target of rapamycin (mTOR) pathway. METHODS Overexpression of ACE2 in a mouse liver fibrosis model was induced by injection of liver-specific recombinant adeno-associated virus ACE2 vector (rAAV2/8-ACE2). The degree of liver fibrosis was assessed by histopathological staining and the biomarkers in mouse serum were measured by Luminex multifactor analysis. The number of apoptotic HSCs was assessed by terminal deoxynucleoitidyl transferase-mediated dUTP nick-end labeling (TUNEL) and immunofluorescence staining. Transmission electron microscopy was used to identify the changes in the number of HSC autophagosomes. The effect of ACE2 overexpression on autophagy-related proteins was evaluated by multicolor immunofluorescence staining. The expression of autophagy-related indicators and AMPK pathway-related proteins was measured by western blotting. RESULTS A mouse model of liver fibrosis was successfully established after 8 wk of intraperitoneal injection of carbon tetrachloride (CCl4). rAAV2/8-ACE2 administration reduced collagen deposition and alleviated the degree of liver fibrosis in mice. The serum levels of platelet-derived growth factor, angiopoietin-2, vascular endothelial growth factor and angiotensin II were decreased, while the levels of interleukin (IL)-10 and angiotensin- (1-7) were increased in the rAAV2/8-ACE2 group. In addition, the expression of alpha-smooth muscle actin, fibronectin, and CD31 was down-regulated in the rAAV2/8-ACE2 group. TUNEL and immunofluorescence staining showed that rAAV2/8-ACE2 injection increased HSC apoptosis. Moreover, rAAV2/8-ACE2 injection notably decreased the number of autophagosomes and the expression of autophagy-related proteins (LC3I, LC3II, Beclin-1), and affected the expression of AMPK pathway-related proteins (AMPK, p-AMPK, p-mTOR). CONCLUSION ACE2 overexpression can inhibit HSC activation and promote cell apoptosis by regulating HSC autophagy through the AMPK/mTOR pathway, thereby alleviating liver fibrosis and hepatic sinusoidal remodeling.
Collapse
Affiliation(s)
- Ying Wu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Ai-Hong Yin
- Department of Gastroenterology, Shandong Second Provincial General Hospital, Jinan 250000, Shandong Province, China
| | - Jun-Tao Sun
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Wei-Hua Xu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Chun-Qing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| |
Collapse
|
6
|
Lurje I, Gaisa NT, Weiskirchen R, Tacke F. Mechanisms of organ fibrosis: Emerging concepts and implications for novel treatment strategies. Mol Aspects Med 2023; 92:101191. [PMID: 37236017 DOI: 10.1016/j.mam.2023.101191] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Fibrosis, or tissue scarring, develops as a pathological deviation from the physiological wound healing response and can occur in various organs such as the heart, lung, liver, kidney, skin, and bone marrow. Organ fibrosis significantly contributes to global morbidity and mortality. A broad spectrum of etiologies can cause fibrosis, including acute and chronic ischemia, hypertension, chronic viral infection (e.g., viral hepatitis), environmental exposure (e.g., pneumoconiosis, alcohol, nutrition, smoking) and genetic diseases (e.g., cystic fibrosis, alpha-1-antitrypsin deficiency). Common mechanisms across organs and disease etiologies involve a sustained injury to parenchymal cells that triggers a wound healing response, which becomes deregulated in the disease process. A transformation of resting fibroblasts into myofibroblasts with excessive extracellular matrix production constitutes the hallmark of disease, however, multiple other cell types such as immune cells, predominantly monocytes/macrophages, endothelial cells, and parenchymal cells form a complex network of profibrotic cellular crosstalk. Across organs, leading mediators include growth factors like transforming growth factor-β and platelet-derived growth factor, cytokines like interleukin-10, interleukin-13, interleukin-17, and danger-associated molecular patterns. More recently, insights into fibrosis regression and resolution of chronic conditions have deepened our understanding of beneficial, protective effects of immune cells, soluble mediators and intracellular signaling. Further in-depth insights into the mechanisms of fibrogenesis can provide the rationale for therapeutic interventions and the development of targeted antifibrotic agents. This review gives insight into shared responses and cellular mechanisms across organs and etiologies, aiming to paint a comprehensive picture of fibrotic diseases in both experimental settings and in human pathology.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Gillespie SL, Hanrahan TP, Rockey DC, Majumdar A, Hayes PC. Review article: controversies surrounding the use of carvedilol and other beta blockers in the management of portal hypertension and cirrhosis. Aliment Pharmacol Ther 2023; 57:454-463. [PMID: 36691947 DOI: 10.1111/apt.17380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Advanced chronic liver disease is an increasing cause of premature morbidity and mortality in the UK. Portal hypertension is the primary driver of decompensation, including the development of ascites, hepatic encephalopathy and variceal haemorrhage. Non-selective beta blockers (NSBB) reduce portal pressure and are well established in the prevention of variceal haemorrhage. Carvedilol, a newer NSBB, is more effective at reducing portal pressure due to additional α-adrenergic blockade and has additional anti-oxidant, anti-inflammatory and anti-fibrotic effects. AIM To summarise the available evidence on the use of beta blockers, specifically carvedilol, in cirrhosis, focussing on when and why to start METHODS: We performed a comprehensive literature search of PubMed for relevant publications. RESULTS International guidelines advise the use of NSBB in primary prophylaxis against variceal haemorrhage in those with high-risk varices, with substantial evidence of efficacy comparable with endoscopic band ligation (EBL). NSBB are also well established in secondary prophylaxis, in combination with EBL. More controversial is their use in patients without large varices, but with clinically significant portal hypertension. However, there is gathering evidence that NSBB, particularly carvedilol, reduce the risk of decompensation and improve survival. While caution is advised in patients with advanced cirrhosis and refractory ascites, recent evidence suggests that NSBB can continue to be used safely, and that premature discontinuation may be detrimental. CONCLUSIONS With increasing evidence of benefit independent of variceal bleeding, namely retardation of decompensation and improvement in survival, it is time to consider whether carvedilol should be offered to all patients with advanced chronic liver disease.
Collapse
Affiliation(s)
| | - Timothy P Hanrahan
- Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh, UK.,Department of Gastroenterology and Hepatology, Austin Health, Melbourne, Australia
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Avik Majumdar
- Department of Gastroenterology and Hepatology, Austin Health, Melbourne, Australia.,The University of Melbourne, Melbourne, Australia
| | - Peter C Hayes
- Centre for Liver and Digestive Disorders, Royal Infirmary of Edinburgh, Edinburgh, UK.,College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
TLR3 stimulation improves the migratory potency of adipose-derived mesenchymal stem cells through the stress response pathway in the melanoma mouse model. Mol Biol Rep 2023; 50:2293-2304. [PMID: 36575321 DOI: 10.1007/s11033-022-08111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are utilized as a carrier of anti-tumor agents in targeted anti-cancer therapy. Despite the improvements in this area, there are still some unsolved issues in determining the appropriate dose, method of administration and biodistribution of MSCs. The current study aimed to determine the influence of toll-like receptor 3 (TLR3) stimulation on the potential of MSCs migration to the neoplasm environment in the mouse melanoma model. METHODS AND RESULTS Adipose-derived MSCs (ADMSCs) were isolated from the GFP+ transgenic C57BL/6 mouse and treated with different doses (1 µg/ml and 10 µg/ml) of polyinosinic-polycytidylic acid, the related TLR3 agonist, at various time points (1 and 4 h). Following the treatment, the expression of targeted genes such as α4, α5, and β1 integrins and TGF-β and IL-10 anti-inflammatory cytokines was determined using real-time PCR. In vivo live imaging evaluated the migration index of the intraperitoneally (IP) injected treated ADMSCs in a lung tumor-bearing mouse (C57BL/6) melanoma model (n = 5). The presented findings demonstrated that TLR3 stimulation enhanced both migration of ADMSCs to the tumor area compared with control group (n = 5) and expression of α4, α5, and β1 integrins. It was also detected that the engagement of TLR3 resulted in the anti-inflammatory behavior of the cells, which might influence the directed movement of ADMSCs. CONCLUSION This research identified that TLR3 activation might improve the migration via the stimulation of stress response in the cells and depending on the agonist concentration and time exposure, this activated pathway drives the migratory behavior of MSCs.
Collapse
|
9
|
Kotlyarov S. Immune and metabolic cross-links in the pathogenesis of comorbid non-alcoholic fatty liver disease. World J Gastroenterol 2023; 29:597-615. [PMID: 36742172 PMCID: PMC9896611 DOI: 10.3748/wjg.v29.i4.597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a steady growth of interest in non-alcoholic fatty liver disease (NAFLD), which is associated with negative epidemiological data on the prevalence of the disease and its clinical significance. NAFLD is closely related to the metabolic syndrome and these relationships are the subject of active research. A growing body of evidence shows cross-linkages between metabolic abnormalities and the innate immune system in the development and progression of NAFLD. These links are bidirectional and largely still unclear, but a better understanding of them will improve the quality of diagnosis and management of patients. In addition, lipid metabolic disorders and the innate immune system link NAFLD with other diseases, such as atherosclerosis, which is of great clinical importance.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia
| |
Collapse
|
10
|
Mohammad Omar J, Hai Y, Jin S. Hypoxia-induced factor and its role in liver fibrosis. PeerJ 2022; 10:e14299. [PMID: 36523459 PMCID: PMC9745792 DOI: 10.7717/peerj.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis develops as a result of severe liver damage and is considered a major clinical concern throughout the world. Many factors are crucial for liver fibrosis progression. While advancements have been made to understand this disease, no effective pharmacological drug and treatment strategies have been established that can effectively prevent liver fibrosis or even could halt the fibrotic process. Most of those advances in curing liver fibrosis have been aimed towards mitigating the causes of fibrosis, including the development of potent antivirals to inhibit the hepatitis virus. It is not practicable for many individuals; however, a liver transplant becomes the only suitable alternative. A liver transplant is an expensive procedure. Thus, there is a significant need to identify potential targets of liver fibrosis and the development of such agents that can effectively treat or reverse liver fibrosis by targeting them. Researchers have identified hypoxia-inducible factors (HIFs) in the last 16 years as important transcription factors driving several facets of liver fibrosis, making them possible therapeutic targets. The latest knowledge on HIFs and their possible role in liver fibrosis, along with the cell-specific activities of such transcription factors that how they play role in liver fibrosis progression, is discussed in this review.
Collapse
Affiliation(s)
- Jan Mohammad Omar
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical, Harbin, Heilongjiang, China
| | - Yang Hai
- College of International Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Lei J, Li Q, Xu H, Luo M, Liu Z, Xiang D, Chen P. Anlotinib improves bile duct ligature‐induced liver fibrosis in rats via antiangiogenesis regulated by VEGFR2/mTOR pathway. Drug Dev Res 2022; 84:143-155. [PMID: 36464837 DOI: 10.1002/ddr.22019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022]
Abstract
Cholestasis is a main clinical feature of biliary atresia (BA), which leads to liver fibrosis (LF). The focus of BA treatment is preventing and slowing the progress of LF. This study reports the improvement effect of anlotinib on common bile duct ligature (BDL)-induced LF in young rats. The BDL young rats were treated with anlotinib and the serum levels of aspartate aminotransferase, alanine aminotransferase, albumin, and total bilirubin were determined. Histological staining was performed and pathological changes in liver tissue were observed. The expression levels of α-SMA, collagen I, CD31, TGF-β1, phospho-VEGFR2, phospho-4E/BP1, and phospho-S6K1 were determined. The results showed that anlotinib significantly improved the liver function and histopathological injury of BDL rats, inhibited the deposition of collagen and hepatocyte apoptosis, and downregulated the protein expression of α-SMA and collagen I. Furthermore, anlotinib treatment significantly inhibited microvascular formation in the liver and downregulated the expression level of phospho-VEGFR2, thereby suggesting that the antifibrosis effect of anlotinib may be achieved by antiangiogenesis. In addition, anlotinib downregulated the expression of phospho-S6K1 and upregulated the expression of phospho-4E/BP1, two downstream proteins of the mammalian target of rapamycin (mTOR) pathway. MHY1485, an agonist of mTOR, significantly reversed the inhibitory effect of anlotinib on angiogenesis and LF but did not influence the effect of anlotinib on the downregulation of phospho-VEGFR2 expression. Together, the above-mentioned results suggest that the effect of anlotinib on BDL-induced LF involves at least antiangiogenesis regulated by the VEGFR2/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jun Lei
- Department of General Surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Qing Li
- Rehabilitation Center Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Hongyan Xu
- Department of Pathology Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Ming Luo
- Department of General Surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Zhiwen Liu
- Department of neonatal surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Deng Xiang
- Department of General Surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| | - Peiqun Chen
- Department of General Surgery Jiangxi Provincial Children's Hospital Nanchang Jiangxi P.R. China
| |
Collapse
|
12
|
Evolving a novel red-emitting two-photon dye with optically tunable amino group for monitoring the degree of hypoxia during liver fibrosis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Nasiri-Ansari N, Androutsakos T, Flessa CM, Kyrou I, Siasos G, Randeva HS, Kassi E, Papavassiliou AG. Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells 2022; 11:2511. [PMID: 36010588 PMCID: PMC9407007 DOI: 10.3390/cells11162511] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. It is strongly associated with obesity, type 2 diabetes (T2DM), and other metabolic syndrome features. Reflecting the underlying pathogenesis and the cardiometabolic disorders associated with NAFLD, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has recently been proposed. Indeed, over the past few years, growing evidence supports a strong correlation between NAFLD and increased cardiovascular disease (CVD) risk, independent of the presence of diabetes, hypertension, and obesity. This implies that NAFLD may also be directly involved in the pathogenesis of CVD. Notably, liver sinusoidal endothelial cell (LSEC) dysfunction appears to be implicated in the progression of NAFLD via numerous mechanisms, including the regulation of the inflammatory process, hepatic stellate activation, augmented vascular resistance, and the distortion of microcirculation, resulting in the progression of NAFLD. Vice versa, the liver secretes inflammatory molecules that are considered pro-atherogenic and may contribute to vascular endothelial dysfunction, resulting in atherosclerosis and CVD. In this review, we provide current evidence supporting the role of endothelial cell dysfunction in the pathogenesis of NAFLD and NAFLD-associated atherosclerosis. Endothelial cells could thus represent a "golden target" for the development of new treatment strategies for NAFLD and its comorbid CVD.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Gerasimos Siasos
- Third Department of Cardiology, ‘Sotiria’ Thoracic Diseases General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Naheda A, Aqeel S, Khan K, Khan W, Khan T. Immunohistopathological changes in the placenta of malaria-infected women in unstable transmission setting of Aligarh. Placenta 2022; 127:52-61. [PMID: 35970103 DOI: 10.1016/j.placenta.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Pregnant women are more susceptible to malaria due to a combination of physiological and immunological changes. The infection may even affect the growth and survival of the foetus, which mainly occur when parasite enters the placenta. The sequestration of infected erythrocytes may trigger the host response, leading to placental inflammation and altered development, affecting the structure and nutrient transport of placenta. These factors collectively impair placental functions and affect foetal growth. METHODS Pregnant women with peripheral parasitaemia for P. falciparum and P. vivax (20 each) were included in the present study, along with 15 age-matched uninfected healthy pregnant women. Placentae were analysed for the presence of local parasitaemia along with pathological lesions caused due to the parasite. Immunohistochemical staining for CD20, CD45 and CD68 cells was performed for examining the specific leucocytes in the intervillous space of the placenta. RESULTS Of the 20 individuals with P. falciparum, only seven placentae showed parasitaemia, whereas individuals with P. vivax showed no placental infection. The pathological changes observed in the P. falciparum-infected placenta include syncytial knotting, excess fibrinoid deposition, syncytiotrophoblast necrosis, syncytial rupture, thickening of trophoblast basement membrane and increased collagen deposition. Immunohistochemical staining showed a significant increase in B cells (CD20), leucocytes (CD45) and monocytes and macrophages (CD68) in the P. falciparum-infected placenta (p < 0.0001). DISCUSSION The result implies that P. falciparum is responsible for pathological alterations in placenta, affecting the nutrient transport across placenta and foetal growth. The immune cells also migrate to the placenta and accumulate in the intervillous space to show humoral and cell-mediated immunity against the parasite.
Collapse
Affiliation(s)
- Ansari Naheda
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Sana Aqeel
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Khadija Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Wajihullah Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tamkin Khan
- Department of Obstetrics & Gynaecology, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
15
|
Hepatic Myofibroblasts: A Heterogeneous and Redox-Modulated Cell Population in Liver Fibrogenesis. Antioxidants (Basel) 2022; 11:antiox11071278. [PMID: 35883770 PMCID: PMC9311931 DOI: 10.3390/antiox11071278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/19/2022] Open
Abstract
During chronic liver disease (CLD) progression, hepatic myofibroblasts (MFs) represent a unique cellular phenotype that plays a critical role in driving liver fibrogenesis and then fibrosis. Although they could originate from different cell types, MFs exhibit a rather common pattern of pro-fibrogenic phenotypic responses, which are mostly elicited or sustained both by oxidative stress and reactive oxygen species (ROS) and several mediators (including growth factors, cytokines, chemokines, and others) that often operate through the up-regulation of the intracellular generation of ROS. In the present review, we will offer an overview of the role of MFs in the fibrogenic progression of CLD from different etiologies by focusing our attention on the direct or indirect role of ROS and, more generally, oxidative stress in regulating MF-related phenotypic responses. Moreover, this review has the purpose of illustrating the real complexity of the ROS modulation during CLD progression. The reader will have to keep in mind that a number of issues are able to affect the behavior of the cells involved: a) the different concentrations of reactive species, b) the intrinsic state of the target cells, as well as c) the presence of different growth factors, cytokines, and other mediators in the extracellular microenvironment or of other cellular sources of ROS.
Collapse
|
16
|
Garbuzenko DV. Pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis. World J Clin Cases 2022; 10:3662-3676. [PMID: 35647163 PMCID: PMC9100727 DOI: 10.12998/wjcc.v10.i12.3662] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a complex pathological process controlled by a variety of cells, mediators and signaling pathways. Hepatic stellate cells play a central role in the development of liver fibrosis. In chronic liver disease, hepatic stellate cells undergo dramatic phenotypic activation and acquire fibrogenic properties. This review focuses on the pathophysiological mechanisms of hepatic stellate cells activation in liver fibrosis. They enter the cell cycle under the influence of various triggers. The "Initiation" phase of hepatic stellate cells activation overlaps and continues with the "Perpetuation" phase, which is characterized by a pronounced inflammatory and fibrogenic reaction. This is followed by a resolution phase if the injury subsides. Knowledge of these pathophysiological mechanisms paved the way for drugs aimed at preventing the development and progression of liver fibrosis. In this respect, impairments in intracellular signaling, epigenetic changes and cellular stress response can be the targets of therapy where the goal is to deactivate hepatic stellate cells. Potential antifibrotic therapy may focus on inducing hepatic stellate cells to return to an inactive state through cellular aging, apoptosis, and/or clearance by immune cells, and serve as potential antifibrotic therapy. It is especially important to prevent the formation of liver cirrhosis since the only radical approach to its treatment is liver transplantation which can be performed in only a limited number of countries.
Collapse
|
17
|
Lebedeva EI, Babenka AS, Hastemir P, Shchastniy AT, Zinovkin DA, Pranjol MZI. FN14 mRNA Expression Correlates with an Increased Number of Veins during Angiogenesis in the Process of Liver Fibrosis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:274-284. [PMID: 37727640 PMCID: PMC10506679 DOI: 10.22088/ijmcm.bums.11.4.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 09/21/2023]
Abstract
In this study, we hypothesize that angiogenesis of special hepatic vessels such as sinusoid capillaries or veins is closely associated with increasing production of connective tissue in fibrogenesis. Thirty-six male Wistar rats were induced with hepatitis and cirrhosis of the liver using thioacetamide. The number of sinusoidal capillaries, veins, arteries and the area of connective tissue were counted and determined. Immunohistochemical study was performed on paraffin sections using monoclonal mouse anti-CD31. mRNA expression was determined using qPCR. We found a statistically significant reduction in the number of sinusoidal capillaries (p<0.0001) and an increase in the number of interlobular veins (p<0.0001) in the fibrosis and cirrhosis groups compared to the control group. There are no differences in the number of interlobular arteries (p=0.282) in the three groups. In our analysis, we found that the expression (mRNA) of Fn14 correlated with the number of veins in liver fibrosis (r=0.44, p=0.008). Our data shows that modulation of veins angiogenesis during fibrosis in chronic liver diseases may play an important role in increasing pathological changes of the liver.
Collapse
Affiliation(s)
- Elena I. Lebedeva
- Department of Histology, Vitebsk State Medical University. Vitebsk, Belarus.
| | - Andrei S. Babenka
- Department of Bioorganic Chemistry. Belarussian State Medical University, Minsk, Belarus.
| | - Pelin Hastemir
- School of Life Sciences, University of Sussex, Brighton, UK.
| | | | - Dmitry A. Zinovkin
- Department of Pathology, Gomel State Medical University, Gomel, Belarus.
| | | |
Collapse
|
18
|
Holzner LMW, Murray AJ. Hypoxia-Inducible Factors as Key Players in the Pathogenesis of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. Front Med (Lausanne) 2021; 8:753268. [PMID: 34692739 PMCID: PMC8526542 DOI: 10.3389/fmed.2021.753268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) are a major public health concern with high and increasing global prevalence, and a significant disease burden owing to its progression to more severe forms of liver disease and the associated risk of cardiovascular disease. Treatment options, however, remain scarce, and a better understanding of the pathological and physiological processes involved could enable the development of new therapeutic strategies. One process implicated in the pathology of NAFLD and NASH is cellular oxygen sensing, coordinated largely by the hypoxia-inducible factor (HIF) family of transcription factors. Activation of HIFs has been demonstrated in patients and mouse models of NAFLD and NASH and studies of activation and inhibition of HIFs using pharmacological and genetic tools point toward important roles for these transcription factors in modulating central aspects of the disease. HIFs appear to act in several cell types in the liver to worsen steatosis, inflammation, and fibrosis, but may nevertheless improve insulin sensitivity. Moreover, in liver and other tissues, HIF activation alters mitochondrial respiratory function and metabolism, having an impact on energetic and redox homeostasis. This article aims to provide an overview of current understanding of the roles of HIFs in NAFLD, highlighting areas where further research is needed.
Collapse
Affiliation(s)
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Gabbia D, Carpi S, Sarcognato S, Cannella L, Colognesi M, Scaffidi M, Polini B, Digiacomo M, Esposito Salsano J, Manera C, Macchia M, Nieri P, Carrara M, Russo FP, Guido M, De Martin S. The Extra Virgin Olive Oil Polyphenol Oleocanthal Exerts Antifibrotic Effects in the Liver. Front Nutr 2021; 8:715183. [PMID: 34671630 PMCID: PMC8521071 DOI: 10.3389/fnut.2021.715183] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis, which is the outcome of wound-healing response to chronic liver damage, represents an unmet clinical need. This study evaluated the anti-fibrotic and anti-inflammatory effects of the polyphenol oleocanthal (OC) extracted from extra virgin olive oil (EVOO) by an in vitro/in vivo approach. The hepatic cell lines LX2 and HepG2 were used as in vitro models. The mRNA expression of pro-fibrogenic markers, namely alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 chain (COL1A1), a panel of metalloproteinases (MMP1, MMP2, MMP3, MMP7, MMP9) and vascular endothelial growth factor A (VEGFA) as well as the pro-oxidant genes NADPH oxidases (NOXs) 1 and 4 were evaluated in TGF-β activated LX2 cells by qRT-PCR. α-SMA and COL1A1 protein expression was assessed by immunofluorescence coupled to confocal microscopy. VEGFA release from LX2 was measured by ELISA. We also evaluated the amount of reactive oxygen species (ROS) produced by H2O2 activated- HepG2 cells. In vivo, OC was administered daily by oral gavage to Balb/C mice with CCl4-induced liver fibrosis. In this model, we measured the mRNA hepatic expression of the three pro-inflammatory interleukins (IL) IL6, IL17, IL23, chemokines such as C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 12 (CXCL12), and selected miRNAs (miR-181-5p, miR-221-3p, miR-29b-3p and miR-101b-3p) by qRT-PCR. We demonstrated that OC significantly downregulated the gene/protein expression of α-SMA, COL1A1, MMP2, MMP3, MMP7 and VEGF as well as the oxidative enzymes NOX1 and 4 in TGFβ1-activated LX2 cells, and reduced the production of ROS by HepG2. In vivo OC, beside causing a significant reduction of fibrosis at histological assessment, counteracted the CCl4-induced upregulation of pro-fibrotic and inflammatory genes. Moreover, OC upregulated the anti-fibrotic miRNAs (miR-29b-3p and miR-101b-3p) reduced in fibrotic mice, while downregulated the pro-fibrotic miRNAs (miR-221-3p and miR-181-5p), which were dramatically upregulated in fibrotic mice. In conclusion, OC exerts a promising antifibrotic effect via a combined reduction of oxidative stress and inflammation involving putative miRNAs, which in turn reduces hepatic stellate cells activation and liver fibrosis.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | | | - Luana Cannella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Michela Scaffidi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Jasmine Esposito Salsano
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Doctoral School in Life Sciences, University of Siena, Siena, Italy
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Pisa, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Maria Guido
- Department of Medicine, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Hypoxia, Hypoxia-Inducible Factors and Liver Fibrosis. Cells 2021; 10:cells10071764. [PMID: 34359934 PMCID: PMC8305108 DOI: 10.3390/cells10071764] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a potentially reversible pathophysiological event, leading to excess deposition of extracellular matrix (ECM) components and taking place as the net result of liver fibrogenesis, a dynamic and highly integrated process occurring during chronic liver injury of any etiology. Liver fibrogenesis and fibrosis, together with chronic inflammatory response, are primarily involved in the progression of chronic liver diseases (CLD). As is well known, a major role in fibrogenesis and fibrosis is played by activated myofibroblasts (MFs), as well as by macrophages and other hepatic cell populations involved in CLD progression. In the present review, we will focus the attention on the emerging pathogenic role of hypoxia, hypoxia-inducible factors (HIFs) and related mediators in the fibrogenic progression of CLD.
Collapse
|
21
|
Cai J, Hu M, Chen Z, Ling Z. The roles and mechanisms of hypoxia in liver fibrosis. J Transl Med 2021; 19:186. [PMID: 33933107 PMCID: PMC8088569 DOI: 10.1186/s12967-021-02854-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis occurs in response to any etiology of chronic liver injury. Lack of appropriate clinical intervention will lead to liver cirrhosis or hepatocellular carcinoma (HCC), seriously affecting the quality of life of patients, but the current clinical treatments of liver fibrosis have not been developed yet. Recent studies have shown that hypoxia is a key factor promoting the progression of liver fibrosis. Hypoxia can cause liver fibrosis. Liver fibrosis can, in turn, profoundly further deepen the degree of hypoxia. Therefore, exploring the role of hypoxia in liver fibrosis will help to further understand the process of liver fibrosis, and provide the theoretical basis for its diagnosis and treatment, which is of great significance to avoid further deterioration of liver diseases and protect the life and health of patients. This review highlights the recent advances in cellular and molecular mechanisms of hypoxia in developments of liver fibrosis.
Collapse
Affiliation(s)
- Jingyao Cai
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| | - Zhiyang Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Zeng Ling
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|
22
|
Li H. Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Rev Gastroenterol Hepatol 2021; 15:217-233. [PMID: 33131349 DOI: 10.1080/17474124.2021.1842732] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Persistent inflammation and hypoxia are strong stimulus for pathological angiogenesis and vascular remodeling, and are also the most important elements resulting in liver fibrosis. Sustained inflammatory process stimulates fibrosis to the end-point of cirrhosis and sinusoidal portal hypertension is an important feature of cirrhosis. Neovascularization plays a pivotal role in collateral circulation formation of portal vein, mesenteric congestion, and high perfusion. Imbalance of hepatic artery and portal vein blood flow leads to the increase of hepatic artery inflow, which is beneficial to the formation of nodules. Angiogenesis contributes to progression from liver fibrosis to cirrhosis and hepatocellular carcinoma (HCC) and anti-angiogenesis therapy can improve liver fibrosis, reduce portal pressure, and prolong overall survival of patients with HCC. Areas covers: This paper will try to address the difference of the morphological characteristics and mechanisms of neovascularization in the process from liver fibrosis to cirrhosis and HCC and further compare the different efficacy of anti-angiogenesis therapy in these three stages. Expert opinion: More in-depth understanding of the role of angiogenesis factors and the relationship between angiogenesis and other aspects of the pathogenesis and transformation may be the key to enabling future progress in the treatment of patients with liver fibrosis, cirrhosis, and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu, Sichuan Province, P. R. China
| |
Collapse
|
23
|
Sun J, Shi L, Xiao T, Xue J, Li J, Wang P, Wu L, Dai X, Ni X, Liu Q. microRNA-21, via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through aberrant cross-talk of hepatocytes and hepatic stellate cells. CHEMOSPHERE 2021; 266:129177. [PMID: 33310519 DOI: 10.1016/j.chemosphere.2020.129177] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Long-term exposure to arsenic, a widely distributed environmental toxicant, may result in damage to various organs, including the liver. Mice exposed chronically to arsenite developed hepatic damage, inflammation, and fibrosis, as well as increased levels of microRNA-21 (miR-21) and hypoxia-inducible factor (HIF)-1α. The levels of miR-21 and HIF-1α were also enhanced in primary hepatocytes and L-02 cells exposed to arsenite. The culture media from these cells induced the activation of hepatic stellate cells (HSCs), as demonstrated by up-regulation of the protein levels of α-smooth muscle actin (α-SMA) and collagen1A2 (COL1A2) and by increased activity in gel contractility assays. For L-02 cells, knockdown of miR-21 blocked the arsenite-induced up-regulation of HIF-1α and vascular endothelial growth factor (VEGF), which prevented the activation of LX-2 cells induced by medium from arsenite-exposed L-02 cells. However, these effects were reversed by down-regulation of von Hippel Lindau protein (pVHL). In arsenite-treated L-02 cells, miR-21 knockdown elevated the levels of ubiquitination and accelerated the degradation of HIF-1α via pVHL. In the livers of miR-21-/- mice exposed chronically to arsenite, there were less hepatic damage, lower fibrosis, lower levels of HIF-1α and VEGF, and higher levels of pVHL than for wild-type mice. In summary, we propose that miR-21, acting via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through mediating aberrant cross-talk of hepatocytes and HSCs. The findings provide evidence relating to the pathogenesis of hepatic fibrosis induced by exposure to arsenic.
Collapse
Affiliation(s)
- Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, 213003, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Novo E, Bocca C, Foglia B, Protopapa F, Maggiora M, Parola M, Cannito S. Liver fibrogenesis: un update on established and emerging basic concepts. Arch Biochem Biophys 2020; 689:108445. [PMID: 32524998 DOI: 10.1016/j.abb.2020.108445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Liver fibrogenesis is defined as a dynamic and highly integrated process occurring during chronic injury to liver parenchyma that can result in excess deposition of extracellular matrix (ECM) components (i.e., liver fibrosis). Liver fibrogenesis, together with chronic inflammatory response, is then primarily involved in the progression of chronic liver diseases (CLD) irrespective of the specific etiology. In the present review we will first offer a synthetic and updated overview of major basic concepts in relation to the role of myofibroblasts (MFs), macrophages and other hepatic cell populations involved in CLD to then offer an overview of established and emerging issues and mechanisms that have been proposed to favor and/or promote CLD progression. A special focus will be dedicated to selected issues that include emerging features in the field of cholangiopathies, the emerging role of genetic and epigenetic factors as well as of hypoxia, hypoxia-inducible factors (HIFs) and related mediators.
Collapse
Affiliation(s)
- Erica Novo
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Claudia Bocca
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Beatrice Foglia
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Francesca Protopapa
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Marina Maggiora
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| | - Maurizio Parola
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy.
| | - Stefania Cannito
- University of Torino, Dept. Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, Corso Raffaello 30, 10125, Torino, Italy
| |
Collapse
|
25
|
Shi JW, Lai ZZ, Yang HL, Yang SL, Wang CJ, Ao D, Ruan LY, Shen HH, Zhou WJ, Mei J, Fu Q, Li MQ. Collagen at the maternal-fetal interface in human pregnancy. Int J Biol Sci 2020; 16:2220-2234. [PMID: 32549767 PMCID: PMC7294936 DOI: 10.7150/ijbs.45586] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
The survival and development of a semi-allogenic fetus during pregnancy require special immune tolerance microenvironment at the maternal fetal interface. During the establishment of a successful pregnancy, the endometrium undergoes a series of changes, and the extracellular matrix (ECM) breaks down and remodels. Collagen is one of the most abundant ECM. Emerging evidence has shown that collagen and its fragment are expressed at the maternal fetal interface. The regulation of expression of collagen is quite complex, and this process involves a multitude of factors. Collagen exerts a critical role during the successful pregnancy. In addition, the abnormal expressions of collagen and its fragments are associated with certain pathological states associated with pregnancy, including recurrent miscarriage, diabetes mellitus with pregnancy, preeclampsia and so on. In this review, the expression and potential roles of collagen under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Zhen-Zhen Lai
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Shao-Liang Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Cheng-Jie Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Deng Ao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Lu-Yu Ruan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical College, Yantai, 264003, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
26
|
Zadorozhna M, Di Gioia S, Conese M, Mangieri D. Neovascularization is a key feature of liver fibrosis progression: anti-angiogenesis as an innovative way of liver fibrosis treatment. Mol Biol Rep 2020; 47:2279-2288. [PMID: 32040707 DOI: 10.1007/s11033-020-05290-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis affects over 100 million people in the world; it represents a multifactorial, fibro-inflammatory disorder characterized by exacerbated production of extracellular matrix with consequent aberration of hepatic tissue. The aetiology of this disease is very complex and seems to involve a broad spectrum of factors including the lifestyle, environment factors, genes and epigenetic changes. More evidences indicate that angiogenesis, a process consisting in the formation of new blood vessels from pre-existing vessels, plays a crucial role in the progression of liver fibrosis. Central to the pathogenesis of liver fibrosis is the hepatic stellate cells (HSCs) which represent a crossroad among inflammation, fibrosis and angiogenesis. Quiescent HSCs can be stimulated by a host of growth factors, pro-inflammatory mediators produced by damaged resident liver cell types, as well as by hypoxia, contributing to neoangiogenesis, which in turn can be a bridge between acute and chronic inflammation. As matter of fact, studies demonstrated that neutralization of vascular endothelial growth factor as well as other proangiogenic agents can attenuate the progression of liver fibrosis. With this review, our intent is to discuss the cause and the role of angiogenesis in liver fibrosis focusing on the current knowledge about the impact of anti-angiogenetic therapies in this pathology.
Collapse
Affiliation(s)
- Mariia Zadorozhna
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Domenica Mangieri
- Department of Medical and Surgical Sciences, University of Foggia, Via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
27
|
Foglia B, Sutti S, Pedicini D, Cannito S, Bocca C, Maggiora M, Bevacqua MR, Rosso C, Bugianesi E, Albano E, Novo E, Parola M. MicroRNA-Based Combinatorial Cancer Therapy: Effects of MicroRNAs on the Efficacy of Anti-Cancer Therapies. Cells 2019; 9:29. [PMID: 31861937 PMCID: PMC7017087 DOI: 10.3390/cells9010028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
The susceptibility of cancer cells to different types of treatments can be restricted by intrinsic and acquired therapeutic resistance, leading to the failure of cancer regression and remission. To overcome this problem, a combination therapy has been proposed as a fundamental strategy to improve therapeutic responses; however, resistance is still unavoidable. MicroRNA (miRNAs) are associated with cancer therapeutic resistance. The modulation of dysregulated miRNA levels through miRNA-based therapy comprising a replacement or inhibition approach has been proposed to sensitize cancer cells to other anti-cancer therapies. The combination of miRNA-based therapy with other anti-cancer therapies (miRNA-based combinatorial cancer therapy) is attractive, due to the ability of miRNAs to target multiple genes associated with the signaling pathways controlling therapeutic resistance. In this article, we present an overview of recent findings on the role of therapeutic resistance-related miRNAs in different types of cancer. We review the feasibility of utilizing dysregulated miRNAs in cancer cells and extracellular vesicles as potential candidates for miRNA-based combinatorial cancer therapy. We also discuss innate properties of miRNAs that need to be considered for more effective combinatorial cancer therapy.
Collapse
Affiliation(s)
- Beatrice Foglia
- Department Clinical and Biological Science, Unit of Experimental Medicine and Clinical Pathology, University of Torino, 10125 Torino, Italy; (B.F.); (S.C.); (C.B.); (M.M.); (M.R.B.); (E.N.)
| | - Salvatore Sutti
- Department of Health Science, University of East Piedmont, 28100 Novara, Italy; (S.S.); (E.A.)
| | - Dario Pedicini
- IRCC, Istituto per la Ricerca e la Cura del Cancro, Candiolo, 10060 Torino, Italy;
| | - Stefania Cannito
- Department Clinical and Biological Science, Unit of Experimental Medicine and Clinical Pathology, University of Torino, 10125 Torino, Italy; (B.F.); (S.C.); (C.B.); (M.M.); (M.R.B.); (E.N.)
| | - Claudia Bocca
- Department Clinical and Biological Science, Unit of Experimental Medicine and Clinical Pathology, University of Torino, 10125 Torino, Italy; (B.F.); (S.C.); (C.B.); (M.M.); (M.R.B.); (E.N.)
| | - Marina Maggiora
- Department Clinical and Biological Science, Unit of Experimental Medicine and Clinical Pathology, University of Torino, 10125 Torino, Italy; (B.F.); (S.C.); (C.B.); (M.M.); (M.R.B.); (E.N.)
| | - Maria Rosaria Bevacqua
- Department Clinical and Biological Science, Unit of Experimental Medicine and Clinical Pathology, University of Torino, 10125 Torino, Italy; (B.F.); (S.C.); (C.B.); (M.M.); (M.R.B.); (E.N.)
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology, Department of Medical Science, University of Torino, 10154 Torino, Italy; (C.R.); (E.B.)
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Science, University of Torino, 10154 Torino, Italy; (C.R.); (E.B.)
| | - Emanuele Albano
- Department of Health Science, University of East Piedmont, 28100 Novara, Italy; (S.S.); (E.A.)
| | - Erica Novo
- Department Clinical and Biological Science, Unit of Experimental Medicine and Clinical Pathology, University of Torino, 10125 Torino, Italy; (B.F.); (S.C.); (C.B.); (M.M.); (M.R.B.); (E.N.)
| | - Maurizio Parola
- Department Clinical and Biological Science, Unit of Experimental Medicine and Clinical Pathology, University of Torino, 10125 Torino, Italy; (B.F.); (S.C.); (C.B.); (M.M.); (M.R.B.); (E.N.)
| |
Collapse
|
28
|
Fuzhenghuayu Decoction ameliorates hepatic fibrosis by attenuating experimental sinusoidal capillarization and liver angiogenesis. Sci Rep 2019; 9:18719. [PMID: 31822697 PMCID: PMC6904731 DOI: 10.1038/s41598-019-54663-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Fuzhenghuayu (FZHY) is a compound extracted from natural plants. Its anti-fibrotic effect has been confirmed in experimental and clinical studies. However, precise effects and underlying mechanisms of FZHY in liver angiogenesis largely remain understood. In this study, we investigated the effects of FZHY on sinusoidal capillarization and angiogenesis with mice challenged for Carbon tetrachloride (CCl4) and dimethylnitrosamine (DMN), in vitro human hepatic sinusoidal endothelial cells (HHSEC) and Human Umbilical Vein Endothelial Cell (HUVEC) 3D fibrin gel model. Besides its anti-fibrotic effect, FZHY ameliorated CCl4 and DMN-induced sinusoidal capillarization, angiogenesis and expression of angiogenesis-associated factors, i.e. CD31, VEGF, VEGF receptor II, phosphor-ERK and HIF-1α. Consistent with the findings based on animal models, inhibitory effects of FZHY on capillarization and angiogenesis were further confirmed in HHSEC and the HUVEC 3D fibrin gel model, respectively. These data suggest that FZHY ameliorates not only liver fibrosis but also vessel remodeling in experimental models. Therefore, FZHY might be a potentially useful drug to treat liver cirrhosis in clinical practice.
Collapse
|
29
|
Milenkovic U, Ilg MM, Cellek S, Albersen M. Pathophysiology and Future Therapeutic Perspectives for Resolving Fibrosis in Peyronie’s Disease. Sex Med Rev 2019; 7:679-689. [DOI: 10.1016/j.sxmr.2019.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
|
30
|
Gentilini A, Caligiuri A, Raggi C, Rombouts K, Pinzani M, Lori G, Correnti M, Invernizzi P, Rovida E, Navari N, Di Matteo S, Alvaro D, Banales JM, Rodrigues P, Raschioni C, Donadon M, Di Tommaso L, Marra F. CXCR7 contributes to the aggressive phenotype of cholangiocarcinoma cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2246-2256. [PMID: 31059778 DOI: 10.1016/j.bbadis.2019.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
Abstract
Development of cholangiocarcinoma (CCA) is dependent on a cross-talk with stromal cells, which release different chemokines including CXCL12, that interacts with two different receptors, CXCR4 and CXCR7. The aim of the present study was to investigate the role of CXCR7 in CCA cells. CXCR7 is overexpressed by different CCA cell lines and in human CCA specimens. Knock-down of CXCR7 in HuCCT-1 cells reduced migration, invasion, and CXCL12-induced adhesion to collagen I. Survival of CCA was also reduced in CXCR7-silenced cells. The ability of CXCL12 to induce cell migration and survival was also blocked by CCX733, a CXCR7 antagonist. Similar effects of CXCR7 activation were observed in CCLP-1 cells and in primary iCCA cells. Enrichment of tumor stem-like cells by a 3D culture system resulted in increased CXCR7 expression compared to cells grown in monolayers, and genetic knockdown of CXCR7 robustly reduced sphere formation both in HuCCT-1 and in CCLP-1 cells. In HuCCT-1 cells CXCR7 was found to interact with β-arrestin 2, which was necessary to mediate CXCL12-induced migration, but not survival. In conclusion, CXCR7 is widely expressed in CCA, and contributes to the aggressive phenotype of CCA cells, inducing cell migration, invasion, adhesion, survival, growth and stem cell-like features. Cell migration induced by CXCR7 requires interaction with β-arrestin 2.
Collapse
Affiliation(s)
- Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Center for Autoimmune Liver Diseases IRCCS Istituto Clinico Humanitas, Rozzano, MI, Italy.
| | - Krista Rombouts
- University College London (UCL), Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.
| | - Massimo Pinzani
- University College London (UCL), Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Margherita Correnti
- Center for Autoimmune Liver Diseases IRCCS Istituto Clinico Humanitas, Rozzano, MI, Italy.
| | | | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Italy.
| | - Nadia Navari
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| | - Sabina Di Matteo
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, CIBERehd, Ikerbasque, San Sebastian, Spain.
| | - Pedro Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, CIBERehd, Ikerbasque, San Sebastian, Spain.
| | - Carlotta Raschioni
- Oncology Experimental Therapeutics, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Matteo Donadon
- Department of Pathology, IRCCS Humanitas Clinical Institute, Rozzano, MI, Italy.
| | - Luca Di Tommaso
- Pathology Unit, Humanitas Clinical and Research Center, Rozzano, MI, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, MI, Italy.
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Italy.
| |
Collapse
|
31
|
Positive Effects of Ger-Gen-Chyn-Lian-Tang on Cholestatic Liver Fibrosis in Bile Duct Ligation-Challenged Mice. Int J Mol Sci 2019; 20:ijms20174181. [PMID: 31455001 PMCID: PMC6747316 DOI: 10.3390/ijms20174181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to investigate whether Ger-Gen-Chyn-Lian-Tang (GGCLT) suppresses oxidative stress, inflammation, and angiogenesis during experimental liver fibrosis through the hypoxia-inducible factor-1α (HIF-1α)-mediated pathway. Male C57BL/6 mice were randomly assigned to a sham-control or bile duct ligation (BDL) group with or without treatment with GGCLT at 30, 100, and 300 mg/kg. Plasma alanine aminotransferase (ALT) levels were analyzed using a diagnostic kit. Liver histopathology and hepatic status parameters were measured. Compared to control mice, the BDL mice exhibited an enlargement in liver HIF-1α levels, which was suppressed by 100 and 300 mg/kg GGCLT treatments (control: BDL: BDL + GGCLT-100: BDL + GGCLT-300 = 0.95 ± 0.07: 1.95 ± 0.12: 1.43 ± 0.05: 1.12 ± 0.10 fold; p < 0.05). GGCLT restrained the induction of hepatic hydroxyproline and malondialdehyde levels in the mice challenged with BDL, further increasing the hepatic glutathione levels. Furthermore, in response to increased hepatic inflammation and fibrogenesis, significant levels of ALT, nuclear factor kappa B, transforming growth factor-β, α-smooth muscle actin, matrix metalloproteinase-2 (MMP-2), MMP-9, and procollagen-III were found in BDL mice, which were attenuated with GGCLT. In addition, GGCLT reduced the induction of angiogenesis in the liver after BDL by inhibiting vascular endothelial growth factor (VEGF) and VEGF receptors 1 and 2. In conclusion, the anti-liver fibrosis effect of GGCLT, which suppresses hepatic oxidative stress and angiogenesis, may be dependent on an HIF-1α-mediated pathway.
Collapse
|
32
|
Fabris L, Fiorotto R, Spirli C, Cadamuro M, Mariotti V, Perugorria MJ, Banales JM, Strazzabosco M. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 2019; 16:497-511. [PMID: 31165788 PMCID: PMC6661007 DOI: 10.1038/s41575-019-0156-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile duct epithelial cells, also known as cholangiocytes, regulate the composition of bile and its flow. Acquired, congenital and genetic dysfunctions in these cells give rise to a set of diverse and complex diseases, often of unknown aetiology, called cholangiopathies. New knowledge has been steadily acquired about genetic and congenital cholangiopathies, and this has led to a better understanding of the mechanisms of acquired cholangiopathies. This Review focuses on findings from studies on Alagille syndrome, polycystic liver diseases, fibropolycystic liver diseases (Caroli disease and congenital hepatic fibrosis) and cystic fibrosis-related liver disease. In particular, knowledge on the role of Notch signalling in biliary repair and tubulogenesis has been advanced by work on Alagille syndrome, and investigations in polycystic liver diseases have highlighted the role of primary cilia in biliary pathophysiology and the concept of biliary angiogenic signalling and its role in cyst growth and biliary repair. In fibropolycystic liver disease, research has shown that loss of fibrocystin generates a signalling cascade that increases β-catenin signalling, activates the NOD-, LRR- and pyrin domain-containing 3 inflammasome, and promotes production of IL-1β and other chemokines that attract macrophages and orchestrate the process of pericystic and portal fibrosis, which are the main mechanisms of progression in cholangiopathies. In cystic fibrosis-related liver disease, lack of cystic fibrosis transmembrane conductance regulator increases the sensitivity of epithelial Toll-like receptor 4 that sustains the secretion of nuclear factor-κB-dependent cytokines and peribiliary inflammation in response to gut-derived products, providing a model for primary sclerosing cholangitis. These signalling mechanisms may be targeted therapeutically and they offer a possibility for the development of novel treatments for acquired cholangiopathies.
Collapse
Affiliation(s)
- Luca Fabris
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Romina Fiorotto
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Carlo Spirli
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | | | - Valeria Mariotti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA.
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
33
|
Wu Y, Li Z, Xiu AY, Meng DX, Wang SN, Zhang CQ. Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2667-2676. [PMID: 31534314 PMCID: PMC6681906 DOI: 10.2147/dddt.s210797] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/30/2019] [Indexed: 12/24/2022]
Abstract
Aim To investigate the effect of carvedilol on liver fibrosis and hepatic sinusoidal capillarization in mice with carbon tetrachloride (CCl4)-induced fibrosis. Methods A liver fibrosis mouse model was induced by intraperitoneal CCl4 injection for 8 weeks. The mice were divided into five experimental groups: the normal group, the oil group, the CCl4 group, the CCl4+carvedilol (5 mg/kg/d) group, and the CCl4+carvedilol (10 mg/kg/d) group. The extent of liver fibrosis was evaluated by histopathological staining, and the changes in fenestrations of hepatic sinus endothelial cells were observed by scanning electron microscope (SEM). The expression of α-smooth muscle actin (α-SMA) and vascular endothelial markers was detected by immunohistochemistry and Western blot assays. The effect of carvedilol on cell apoptosis was studied via Terminal deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling (TUNEL) assay, and the serum levels of matrix metalloproteinase-8 (MMP-8), vascular endothelial growth factor (VEGF), and angiopoietin-2 were detected through a Luminex assay. Results Liver fibrosis in CCl4-treated mice was attenuated by reduced accumulation of collagen and the reaction of inflammation with carvedilol treatment. Carvedilol reduced the activation of hepatic stellate cells (HSCs) and increased the number of apoptotic cells. The expression of α-SMA, CD31, CD34 and VWF (von Willebrand factor) was significantly decreased after carvedilol treatment. In addition, the number of fenestrae in the hepatic sinusoid showed notable differences between the groups, and the serum levels of MMP-8, VEGF and angiopoietin-2 were increased in the mice with liver fibrosis and reduced by carvedilol treatment. Conclusion The study demonstrated that carvedilol could prevent further development of liver fibrosis and hepatic sinusoidal capillarization in mice with CCl4-induced fibrosis.
Collapse
Affiliation(s)
- Ying Wu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Zhen Li
- Department of Health Digestion, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Ai-Yuan Xiu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Dong-Xiao Meng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Si-Ning Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Chun-Qing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
34
|
Hettiarachchi GK, Katneni UK, Hunt RC, Kames JM, Athey JC, Bar H, Sauna ZE, McGill JR, Ibla JC, Kimchi-Sarfaty C. Translational and transcriptional responses in human primary hepatocytes under hypoxia. Am J Physiol Gastrointest Liver Physiol 2019; 316:G720-G734. [PMID: 30920299 PMCID: PMC6620582 DOI: 10.1152/ajpgi.00331.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The liver is the primary source of a large number of plasma proteins and plays a critical role in multiple biological processes. Inadequate oxygen supply characterizing various clinical settings such as liver transplantation exposes the liver to hypoxic conditions. Studies assessing hypoxia-induced global translational changes in liver are lacking. Here, we employed a recently developed ribosome-profiling technique to assess global translational responses of human primary hepatocytes exposed to acute hypoxic stress (1% O2) for the short term. In parallel, transcriptome profiling was performed to assess mRNA expression changes. We found that translational responses appeared earlier and were predominant over transcriptional responses. A significant decrease in translational efficiency of several ribosome genes indicated translational inhibition of new ribosome protein synthesis in hypoxia. Pathway enrichment analysis highlighted altered translational regulation of MAPK signaling, drug metabolism, oxidative phosphorylation, and nonalcoholic fatty liver disease pathways. Gene Ontology enrichment analysis revealed terms related to translation, metabolism, angiogenesis, apoptosis, and response to stress. Transcriptional induction of genes encoding heat shock proteins was observed within 30 min of hypoxia. Induction of genes encoding stress response mediators, metabolism regulators, and proangiogenic proteins was observed at 240 min. Despite the liver being the primary source of coagulation proteins and the implicated role of hypoxia in thrombosis, limited differences were observed in genes encoding coagulation-associated proteins. Overall, our study demonstrates the predominance of translational regulation over transcription and highlights differentially regulated pathways or biological processes in short-term hypoxic stress responses of human primary hepatocytes. NEW & NOTEWORTHY The novelty of this study lies in applying parallel ribosome- and transcriptome-profiling analyses to human primary hepatocytes in hypoxia. To our knowledge, this is the first study to assess global translational responses using ribosome profiling in hypoxic hepatocytes. Our results demonstrate the predominance of translational responses over transcriptional responses in early hepatic hypoxic stress responses. Furthermore, our study reveals multiple pathways and specific genes showing altered regulation in hypoxic hepatocytes.
Collapse
Affiliation(s)
- Gaya K. Hettiarachchi
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Upendra K. Katneni
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Ryan C. Hunt
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Jacob M. Kames
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - John C. Athey
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Haim Bar
- 2Department of Statistics, University of Connecticut, Storrs, Connecticut
| | - Zuben E. Sauna
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Joseph R. McGill
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| | - Juan C. Ibla
- 3Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chava Kimchi-Sarfaty
- 1Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
35
|
LOXL2-A New Target in Antifibrogenic Therapy? Int J Mol Sci 2019; 20:ijms20071634. [PMID: 30986934 PMCID: PMC6480111 DOI: 10.3390/ijms20071634] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
The concept of liver fibrosis and cirrhosis being static and therefore irreversible is outdated. Indeed, both human and animal studies have shown that fibrogenesis is a dynamic and potentially reversible process that can be modulated either by stopping its progression and/or by promoting its resolution. Therefore, the study of the molecular mechanisms involved in the pathogenesis of liver fibrosis is critical for the development of future antifibrotic therapies. The fibrogenesis process, common to all forms of liver injury, is characterized by the increased deposition of extracellular matrix components (EMCs), including collagen, proteoglycans, and glycoproteins (laminin and fibronectin 2). These changes in the composition of the extracellular matrix components alter their interaction with cell adhesion molecules, influencing the modulation of cell functions (growth, migration, and gene expression). Hepatic stellate cells and Kupffer cells (liver macrophages) are the key fibrogenic effectors. The antifibrogenic mechanism starts with the activation of Ly6Chigh macrophages, which can differentiate into macrophages with antifibrogenic action. The research of biochemical changes affecting fibrosis irreversibility has identified lysyl oxidase-like 2 (LOXL2), an enzyme that promotes the network of collagen fibers of the extracellular matrix. LOXL2 inhibition can decrease cell numbers, proliferation, colony formations, and cell growth, and it can induce cell cycle arrest and increase apoptosis. The development of a new humanized IgG4 monoclonal antibody against LOXL2 could open the window of a new antifibrogenic treatment. The current therapeutic target in patients with liver cirrhosis should focus (after the eradication of the causal agent) on the development of new antifibrogenic drugs. The development of these drugs must meet three premises: Patient safety, in non-cirrhotic phases, down-staging or at least stabilization and slowing the progression to cirrhosis must be achieved; whereas in the cirrhotic stage, the objective should be to reduce fibrosis and portal pressure.
Collapse
|
36
|
Integrative omics analysis identifies macrophage migration inhibitory factor signaling pathways underlying human hepatic fibrogenesis and fibrosis. JOURNAL OF BIO-X RESEARCH 2019; 2:16-24. [PMID: 32953199 PMCID: PMC7500331 DOI: 10.1097/jbr.0000000000000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genetic basis underlying liver fibrosis remains largely unknown. We conducted a study to identify genetic alleles and underlying pathways associated with hepatic fibrogenesis and fibrosis at the genome-wide level in 121 human livers. By accepting a liberal significance level of P<1e-4, we identified 73 and 71 candidate loci respectively affecting the variability in alpha-smooth muscle actin (α-SMA) levels (fibrogenesis) and total collagen content (fibrosis). The top genetic loci associated with the two markers were BAZA1 and NOL10 for α-SMA expression and FAM46A for total collagen content (P<1e-6). We further investigated the relationship between the candidate loci and the nearby gene transcription levels (cis-expression quantitative trait loci) in the same liver samples. We found that 44 candidate loci for α-SMA expression and 44 for total collagen content were also associated with the transcription of the nearby genes (P<0.05). Pathway analyses of these genes indicated that macrophage migration inhibitory factor (MIF) related pathway is significantly associated with fibrogenesis and fibrosis, though different genes were enriched for each marker. The association between the single nucleotide polymorphisms, MIF and α-SMA showed that decreased MIF expression is correlated with increased α-SMA expression, suggesting that variations in MIF locus might affect the susceptibility of fibrogenesis through controlling MIF gene expression. In summary, our study identified candidate alleles and pathways underlying both fibrogenesis and fibrosis in human livers. Our bioinformatics analyses suggested MIF pathway as a strong candidate involved in liver fibrosis, thus further investigation for the role of the MIF pathway in liver fibrosis is warranted. The study was reviewed and approved by the Institutional Review Board (IRB) of Wayne State University (approval No. 201842) on May 17, 2018.
Collapse
|
37
|
Lee KC, Hsu WF, Hsieh YC, Chan CC, Yang YY, Huang YH, Hou MC, Lin HC. Dabigatran Reduces Liver Fibrosis in Thioacetamide-Injured Rats. Dig Dis Sci 2019; 64:102-112. [PMID: 30288660 DOI: 10.1007/s10620-018-5311-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liver fibrosis can progress to cirrhosis, hepatocellular carcinoma, or liver failure. Unfortunately, the antifibrotic agents are limited. Thrombin activates hepatic stellate cells (HSCs). Therefore, we investigated the effects of a direct thrombin inhibitor, dabigatran, on liver fibrosis. METHODS Adult male Sprague-Dawley rats were injected intraperitoneally with thioacetamide (TAA, 200 mg/kg twice per week) for 8 or 12 weeks to induce liver fibrosis. The injured rats were assigned an oral gavage of dabigatran etexilate (30 mg/kg/day) or vehicle in the last 4 weeks of TAA administration. Rats receiving an injection of normal saline and subsequent oral gavage of dabigatran etexilate or vehicle served as controls. RESULTS In the 8-week TAA-injured rats, dabigatran ameliorated fibrosis, fibrin deposition, and phosphorylated ERK1/2 in liver, without altering the transcript expression of thrombin receptor protease-activated receptor-1. In vitro, dabigatran inhibited thrombin-induced HSC activation. Furthermore, dabigatran reduced intrahepatic angiogenesis and portal hypertension in TAA-injured rats. Similarly, in the 12-week TAA-injured rats, a 4-week treatment with dabigatran reduced liver fibrosis and portal hypertension. CONCLUSIONS By inhibiting thrombin action, dabigatran reduced liver fibrosis and intrahepatic angiogenesis. Dabigatran may be a promising therapeutic agent for treatment of liver fibrosis.
Collapse
Affiliation(s)
- Kuei-Chuan Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, #201, Section 2, Shih-Pai Road, Taipei 112, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Fan Hsu
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Cheng Hsieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, #201, Section 2, Shih-Pai Road, Taipei 112, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Che-Chang Chan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, #201, Section 2, Shih-Pai Road, Taipei 112, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Ying Yang
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, #201, Section 2, Shih-Pai Road, Taipei 112, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, #201, Section 2, Shih-Pai Road, Taipei 112, Taiwan.,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, #201, Section 2, Shih-Pai Road, Taipei 112, Taiwan. .,Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
38
|
Loeuillard E, El Mourabit H, Lei L, Lemoinne S, Housset C, Cadoret A. Endoplasmic reticulum stress induces inverse regulations of major functions in portal myofibroblasts during liver fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3688-3696. [DOI: 10.1016/j.bbadis.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
|
39
|
Milenkovic U, Albersen M, Castiglione F. The mechanisms and potential of stem cell therapy for penile fibrosis. Nat Rev Urol 2018; 16:79-97. [DOI: 10.1038/s41585-018-0109-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Liu X, Huang K, Niu Z, Mei D, Zhang B. Protective effect of isochlorogenic acid B on liver fibrosis in non-alcoholic steatohepatitis of mice. Basic Clin Pharmacol Toxicol 2018; 124:144-153. [PMID: 30180301 DOI: 10.1111/bcpt.13122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023]
Abstract
Liver fibrosis is a common symptom of non-alcoholic steatohepatitis (NASH) and a worldwide clinical issue. The miR-122/HIF-1α signalling pathway is believed to play an important role in the genesis of progressive fibrosis. Isochlorogenic acid B (ICAB), naturally isolated from Laggera alata, is verified to have antioxidative and hepatoprotective properties. The aim of this study was to investigate the effect of ICAB on liver fibrosis in NASH and its potential protective mechanisms. NASH was induced in a mouse model with a methionine- and choline-deficient (MCD) diet for 4 weeks, and ICAB was orally administered every day at three doses (5, 10 and 20 mg/kg). Pathological results indicated that ICAB significantly improved the pathological lesions of liver fibrosis. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hepatic hydroxyproline (Hyp), cholesterol (CHO) and triglyceride (TG) were also significantly decreased by ICAB. In addition, ICAB inhibited hepatic stellate cells (HSCs) activation and the expressions of hepatic genes involved in liver fibrosis including LOX, TGF-β1, MCP-1, COL1α1 and TIMP-1. ICAB also attenuated liver oxidative stress through Nrf2 signalling pathway. What is more, the decreased levels of miR-122 and over-expression of hepatic HIF-1α could be reversed by ICAB treatment. These results simultaneously confirmed that ICAB had a significant protective effect on fibrosis in NASH by inhibiting oxidative stress via Nrf2 and suppressing multiple profibrogenic factors through miR-122/HIF-1α signalling pathway.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Huang
- Drug Clinical Trial Institution, Wuxi People' Hospital, Nanjing Medical University, Wuxi, China
| | - Ziran Niu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Mei
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Hu Y, Hu D, Yu H, Xu W, Fu R. Hypoxia‑inducible factor 1α and ROCK1 regulate proliferation and collagen synthesis in hepatic stellate cells under hypoxia. Mol Med Rep 2018; 18:3997-4003. [PMID: 30132575 DOI: 10.3892/mmr.2018.9397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/27/2018] [Indexed: 11/06/2022] Open
Abstract
Hypoxia serves a critical role in the pathogenesis of liver fibrosis. Hypoxia‑inducible factor 1α (HIF1‑α) is induced when cells are exposed to low O2 concentrations. Recently, it has been suggested that Rho‑associated coiled‑coil‑forming kinase 1 (ROCK1) may be an important HIF1‑α regulator. In the present study, it was analyzed whether crosstalk between HIF1‑α and ROCK1 regulates cell proliferation and collagen synthesis in hepatic stellate cells (HSCs) under hypoxic conditions. For this purpose, a rat hepatic HSC line (HSC‑T6) was cultured under hypoxic or normoxic conditions, and HIF1‑α and ROCK1 expression was measured at different time points. Additionally, HSC‑T6 cells were transfected with HIF1‑α small interfering RNA (siHIF1‑α), and measured protein expression and mRNA transcript levels of α‑smooth muscle actin, collagen 1A1 and ROCK1. Collagen 3A1 secretion was also measured by ELISA. Cell proliferation was assessed by the MTT assay under these hypoxic conditions. The results indicated that a specific ROCK inhibitor, Y‑27632, increased HIF1‑α and ROCK1 expression over time in HSC‑T6 cells in response to hypoxia. In addition, knockdown of HIF1‑α inhibited HSC‑T6 proliferation, suppressed collagen 1A1 expression, decreased collagen 3A1 secretion and attenuated ROCK1 expression. Notably, ROCK1 inhibition caused HSC‑T6 quiescence, suppressed collagen secretion and downregulated HIF1‑α expression. Collectively, these findings indicated that the interplay between HIF1‑α and ROCK1 may be a critical factor that regulates cell proliferation and collagen synthesis in rat HSCs under hypoxia.
Collapse
Affiliation(s)
- Yibing Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Danping Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Huanhuan Yu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Wangwang Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| | - Rongquan Fu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, P.R. China
| |
Collapse
|
42
|
Angiogenesis and Hepatic Fibrosis: Western and Chinese Medicine Therapies on the Road. Chin J Integr Med 2018; 24:713-720. [DOI: 10.1007/s11655-018-3007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2016] [Indexed: 02/07/2023]
|
43
|
Ebrahimi H, Naderian M, Sohrabpour AA. New Concepts on Reversibility and Targeting of Liver Fibrosis; A Review Article. Middle East J Dig Dis 2018; 10:133-148. [PMID: 30186577 PMCID: PMC6119836 DOI: 10.15171/mejdd.2018.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
Currently, liver fibrosis and its complications are regarded as critical health problems.
With the studies showing the reversible nature of liver fibrogenesis, scientists have focused
on understanding the underlying mechanism of this condition in order to develop new
therapeutic strategies. Although hepatic stellate cells are known as the primary cells
responsible for liver fibrogenesis, studies have shown contributing roles for other cells,
pathways, and molecules in the development of fibrosis depending on the etiology of
liver fibrosis. Hence, interventions could be directed in the proper way for each type of
liver diseases to better address this complication. There are two main approaches in clinical
reversion of liver fibrosis; eliminating the underlying insult and targeting the fibrosis
process, which have variable clinical importance in the treatment of this disease. In this
review, we present recent concepts in molecular pathways of liver fibrosis reversibility
and their clinical implications.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Naderian
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Sohrabpour
- Associate Professor, The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Mogroside IVE attenuates experimental liver fibrosis in mice and inhibits HSC activation through downregulating TLR4-mediated pathways. Int Immunopharmacol 2018; 55:183-192. [DOI: 10.1016/j.intimp.2017.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022]
|
45
|
Ni Y, Li JM, Liu MK, Zhang TT, Wang DP, Zhou WH, Hu LZ, Lv WL. Pathological process of liver sinusoidal endothelial cells in liver diseases. World J Gastroenterol 2017; 23:7666-7677. [PMID: 29209108 PMCID: PMC5703927 DOI: 10.3748/wjg.v23.i43.7666] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis develops from liver fibrosis and is the severe pathological stage of all chronic liver injury. Cirrhosis caused by hepatitis B virus and hepatitis C virus infection is especially common. Liver fibrosis and cirrhosis involve excess production of extracellular matrix, which is closely related to liver sinusoidal endothelial cells (LSECs). Damaged LSECs can synthesize transforming growth factor-beta and platelet-derived growth factor, which activate hepatic stellate cells and facilitate the synthesis of extracellular matrix. Herein, we highlight the angiogenic cytokines of LSECs related to liver fibrosis and cirrhosis at different stages and focus on the formation and development of liver fibrosis and cirrhosis. Inhibition of LSEC angiogenesis and antiangiogenic therapy are described in detail. Targeting LSECs has high therapeutic potential for liver diseases. Further understanding of the mechanism of action will provide stronger evidence for the development of anti-LSEC drugs and new directions for diagnosis and treatment of liver diseases.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Cytokines/metabolism
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/virology
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Hepacivirus/pathogenicity
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Hepatic Stellate Cells/virology
- Hepatitis B virus/pathogenicity
- Hepatitis, Viral, Human/diagnosis
- Hepatitis, Viral, Human/drug therapy
- Hepatitis, Viral, Human/pathology
- Hepatitis, Viral, Human/virology
- Humans
- Liver/blood supply
- Liver/cytology
- Liver/pathology
- Liver/virology
- Liver Cirrhosis/diagnosis
- Liver Cirrhosis/drug therapy
- Liver Cirrhosis/pathology
- Liver Cirrhosis/virology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/pathology
Collapse
Affiliation(s)
- Yao Ni
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Juan-Mei Li
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ming-Kun Liu
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ting-Ting Zhang
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Dong-Ping Wang
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wen-Hui Zhou
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ling-Zi Hu
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wen-Liang Lv
- Department of Infection, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
46
|
Bae M, Park YK, Lee JY. Food components with antifibrotic activity and implications in prevention of liver disease. J Nutr Biochem 2017; 55:1-11. [PMID: 29268106 DOI: 10.1016/j.jnutbio.2017.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/18/2017] [Accepted: 11/11/2017] [Indexed: 12/26/2022]
Abstract
Increasing prevalence of nonalcoholic fatty liver disease (NAFLD) in parallel with the obesity epidemic has been a major public health concern. NAFLD is the most common chronic liver disease in the United States, ranging from fatty liver to steatohepatitis, fibrosis and cirrhosis in the liver. In response to chronic liver injury, fibrogenesis in the liver occurs as a protective response; however, prolonged and dysregulated fibrogenesis can lead to liver fibrosis, which can further progress to cirrhosis and eventually hepatocellular carcinoma. Interplay of hepatocytes, macrophages and hepatic stellate cells (HSCs) in the hepatic inflammatory and oxidative milieu is critical for the development of NAFLD. In particular, HSCs play a major role in the production of extracellular matrix proteins. Studies have demonstrated that bioactive food components and natural products, including astaxanthin, curcumin, blueberry, silymarin, coffee, vitamin C, vitamin E, vitamin D, resveratrol, quercetin and epigallocatechin-3-gallate, have antifibrotic effects in the liver. This review summarizes current knowledge of the mechanistic insight into the antifibrotic actions of the aforementioned bioactive food components.
Collapse
Affiliation(s)
- Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
47
|
Davies T, Wythe S, O'Beirne J, Martin D, Gilbert-Kawai E. Review article: the role of the microcirculation in liver cirrhosis. Aliment Pharmacol Ther 2017; 46:825-835. [PMID: 29023881 DOI: 10.1111/apt.14279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/11/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intrahepatic microvascular derangements and microcirculatory dysfunction are key in the development of liver cirrhosis and its associated complications. While much has been documented relating to cirrhosis and the dysfunction of the microcirculation in the liver parenchyma, far less is known about the state of the extrahepatic microcirculation and the role this may have in the pathogenesis of multiple organ failure in end stage liver cirrhosis. AIM To provide an update on the role of the microcirculation in the pathophysiology of cirrhosis and its associated complications and briefly discuss some of the imaging techniques which may be used to directly investigate the microcirculation. METHODS A Medline literature search was conducted using the following search terms: 'cirrhosis', 'microcirculation', 'circulation', 'systemic', 'inflammation', 'peripheral', 'hepatorenal' and 'hepatopulmonary'. RESULTS Significant heterogeneous microvascular alterations exist in patients with cirrhosis. Data suggest that the systemic inflammation, associated with advanced cirrhosis, induces microcirculatory dysregulation and contributes to haemodynamic derangement. The resultant vasoconstriction and hypoperfusion in the systemic extrahepatic microvasculature, is likely to be instrumental in the pathophysiology of organ failure in decompensated cirrhosis, however the mechanistic action of vasoactive agents used to correct the circulatory disturbance of advanced cirrhosis is poorly understood. CONCLUSIONS Further research into the role of the microcirculation in patients with liver cirrhosis, will improve physicians understanding of the pathophysiology of cirrhosis, and may provide a platform for real time evaluation of an individual's microcirculatory response to vasoactive mediators, thus guiding their therapy.
Collapse
Affiliation(s)
- T Davies
- Intensive Care Department, Royal Free Hospital, London, UK.,UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, University College London Centre for Altitude Space and Extreme Environment Medicine, London, UK
| | - S Wythe
- Intensive Care Department, Royal Free Hospital, London, UK.,UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, University College London Centre for Altitude Space and Extreme Environment Medicine, London, UK
| | - J O'Beirne
- Department of Hepatology, Nambour General Hospital, Sunshine Coast Hospital and Health Service, Nambour, Qld, Australia
| | - D Martin
- Intensive Care Department, Royal Free Hospital, London, UK.,UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, University College London Centre for Altitude Space and Extreme Environment Medicine, London, UK
| | - E Gilbert-Kawai
- Intensive Care Department, Royal Free Hospital, London, UK.,UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, University College London Centre for Altitude Space and Extreme Environment Medicine, London, UK
| |
Collapse
|
48
|
Cannito S, Novo E, Parola M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv Drug Deliv Rev 2017; 121:57-84. [PMID: 28578015 DOI: 10.1016/j.addr.2017.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
Myofibroblasts (MFs) play a critical role in the progression of chronic inflammatory and fibroproliferative diseases in different tissues/organs, whatever the etiology. Fibrosis is preceded and sustained by persistent injury and inflammatory response in a profibrogenic scenario involving mutual interactions, operated by several mediators and pathways, of MFs and related precursor cells with innate immunity cells and virtually any cell type in a defined tissue. These interactions, mediators and related signaling pathways are critical in initiating and perpetuating the differentiation of precursor cells into MFs that in different tissues share peculiar traits and phenotypic responses, including the ability to proliferate, produce ECM components, migrate and contribute to the modulation of inflammatory response and tissue angiogenesis. Literature studies related to liver, lung and kidney fibrosis have outlined a number of MF-related core regulatory fibrogenic signaling pathways conserved across these different organs and potentially targetable in order to develop effective antifibrotic therapeutic strategies.
Collapse
|
49
|
Benedicto A, Romayor I, Arteta B. Role of liver ICAM-1 in metastasis. Oncol Lett 2017; 14:3883-3892. [PMID: 28943897 DOI: 10.3892/ol.2017.6700] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intercellular adhesion molecule (ICAM)-1, is a transmembrane glycoprotein of the immunoglobulin (Ig)-like superfamily, consisting of five extracellular Ig-like domains, a transmembrane domain and a short cytoplasmic tail. ICAM-1 is expressed in various cell types, including endothelial cells and leukocytes, and is involved in several physiological processes. Furthermore, it has additionally been reported to be expressed in various cancer cells, including melanoma, colorectal cancer and lymphoma. The majority of studies to date have focused on the expression of the ICAM-1 on the surface of tumor cells, without research into ICAM-1 expression at sites of metastasis. Cancer cells frequently metastasize to the liver, due to its unique physiology and specialized liver sinusoid capillary network. Liver sinusoidal endothelial cells constitutively express ICAM-1, which is upregulated under inflammatory conditions. Furthermore, liver ICAM-1 may be important during the development of liver metastasis. Therefore, it is necessary to improve the understanding of the mechanisms mediated by this adhesion molecule in order to develop host-directed anticancer therapies.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| |
Collapse
|
50
|
Garg M, Kaur S, Banik A, Kumar V, Rastogi A, Sarin SK, Mukhopadhyay A, Trehanpati N. Bone marrow endothelial progenitor cells activate hepatic stellate cells and aggravate carbon tetrachloride induced liver fibrosis in mice via paracrine factors. Cell Prolif 2017; 50:e12355. [PMID: 28682508 PMCID: PMC6529081 DOI: 10.1111/cpr.12355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Bone marrow derived endothelial progenitor cells (BM-EPCs) are increased in chronic liver disease (CLD). Their role in hepatic fibrosis and regeneration remains an area of intense studies. We investigated the migration and secretory functions of BM-EPCs in fibrotic mice liver. MATERIALS AND METHODS Bone marrow cells from C57BL6-GFP mice were transplanted into the femur of irradiated C57BL6 mice, followed by CCl4 doses for 8 weeks, to develop hepatic fibrosis (n = 36). Transplanted C57BL6 mice without CCl4 treatment were used as controls. EPCs were analyzed in BM, blood and liver by flow cytometry and immunofluorescence. VEGF and TGF-β were analysed in the hepatic stellate cells (HSCs) and BM-EPCs co-cultures using ELISAs. RESULTS There was a significant migration of EPCs from BM to blood and to the liver (P ≤ 0.01). Percentage of GFP+ CD31+ EPCs and collagen proportionate area was substantially increased in the liver at 4th week of CCl4 dosage compared to the controls (19.8% vs 1.9%, P ≤ 0.05). Levels of VEGF (533.6 pg/ml) and TGF-β (327.44 pg/ml) also increased significantly, when HSCs were treated with the EPC conditioned medium, as compared to controls (25.66 pg/ml and 5.87 pg/ml, respectively; P ≤ 0.001). CONCLUSIONS Present findings suggest that BM-EPCs migrate to the liver during CCl4-induced liver injury and contribute to fibrosis.
Collapse
Affiliation(s)
- Manali Garg
- Institute of Liver and Biliary SciencesDepartment of Molecular and Cellular MedicineNew DelhiIndia
| | - Savneet Kaur
- Gautam Buddha UniversityGreater NoidaUttar PradeshIndia
| | - Arpita Banik
- Institute of Liver and Biliary SciencesDepartment of Molecular and Cellular MedicineNew DelhiIndia
| | | | - Archana Rastogi
- Institute of Liver and Biliary SciencesDepartment of PathologyNew DelhiIndia
| | - Shiv K. Sarin
- Institute of Liver and Biliary SciencesDepartment of HepatologyNew DelhiIndia
| | | | - Nirupma Trehanpati
- Institute of Liver and Biliary SciencesDepartment of Molecular and Cellular MedicineNew DelhiIndia
| |
Collapse
|