1
|
Lin CP, Frigerio I, Bol JGJM, Bouwman MMA, Wesseling AJ, Dahl MJ, Rozemuller AJM, van der Werf YD, Pouwels PJW, van de Berg WDJ, Jonkman LE. Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease. Transl Neurodegener 2024; 13:9. [PMID: 38336865 PMCID: PMC10854137 DOI: 10.1186/s40035-024-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC) noradrenergic system contributes to clinical symptoms in Alzheimer's disease (AD) and Parkinson's disease (PD). Diffusion magnetic resonance imaging (MRI) has the potential to evaluate the integrity of the LC noradrenergic system. The aim of the current study was to determine whether the diffusion MRI-measured integrity of the LC and its tracts are sensitive to noradrenergic degeneration in AD and PD. METHODS Post-mortem in situ T1-weighted and multi-shell diffusion MRI was performed for 9 AD, 14 PD, and 8 control brain donors. Fractional anisotropy (FA) and mean diffusivity were derived from the LC, and from tracts between the LC and the anterior cingulate cortex, the dorsolateral prefrontal cortex (DLPFC), the primary motor cortex (M1) or the hippocampus. Brain tissue sections of the LC and cortical regions were obtained and immunostained for dopamine-beta hydroxylase (DBH) to quantify noradrenergic cell density and fiber load. Group comparisons and correlations between outcome measures were performed using linear regression and partial correlations. RESULTS The AD and PD cases showed loss of LC noradrenergic cells and fibers. In the cortex, the AD cases showed increased DBH + immunoreactivity in the DLPFC compared to PD cases and controls, while PD cases showed reduced DBH + immunoreactivity in the M1 compared to controls. Higher FA within the LC was found for AD, which was correlated with loss of noradrenergic cells and fibers in the LC. Increased FA of the LC-DLPFC tract was correlated with LC noradrenergic fiber loss in the combined AD and control group, whereas the increased FA of the LC-M1 tract was correlated with LC noradrenergic neuronal loss in the combined PD and control group. The tract alterations were not correlated with cortical DBH + immunoreactivity. CONCLUSIONS In AD and PD, the diffusion MRI-detected alterations within the LC and its tracts to the DLPFC and the M1 were associated with local noradrenergic neuronal loss within the LC, rather than noradrenergic changes in the cortex.
Collapse
Affiliation(s)
- Chen-Pei Lin
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Irene Frigerio
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maud M A Bouwman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Alex J Wesseling
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Annemieke J M Rozemuller
- Amsterdam UMC, Department of Pathology, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kartik S, Pal R, Chaudhary MJ, Nath R, Kumar M, Binwal M, Bawankule DU. Neuroprotective role of chloroquine via modulation of autophagy and neuroinflammation in MPTP-induced Parkinson's disease. Inflammopharmacology 2023; 31:927-941. [PMID: 36715843 DOI: 10.1007/s10787-023-01141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is a neuro-motor ailment that strikes adults in their older life and results in both motor and non-motor impairments. In neuronal and glial cells, PD has recently been linked to a dysregulated autophagic system and cerebral inflammation. Chloroquine (CQ), an anti-malarial drug, has been demonstrated to suppress autophagy in a variety of diseases, including cerebral ischemia, Alzheimer's disease (AD), and Traumatic brain injury (TBI), while its involvement in PD is still unclear. BALB/c mice were randomly allocated to one of four groups: 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), CQ treatment with or without MPTP, or control. The CQ treatment group received CQ (intraperitoneally, 8 mg/kg body weight) after 1 h of MPTP induction on day 1, and it lasted for 7 days. CQ therapy preserves dopamine levels stable, inhibits tyrosine hydroxylase (TH) positive dopaminergic cell death, and lowers oxidative stress. CQ reduces the behavioural, motor, and cognitive deficits caused by MPTP after injury. Furthermore, CQ therapy slowed aberrant neuronal autophagy (microtubule-associated protein-1 light chain 3B; LC3B & Beclin1) and lowered expression levels of the inflammatory cytokines interleukin 1 (IL-1β) and tumour necrosis factor (TNF-α) in the mice brain. In addition, CQ's antioxidant and anti-inflammatory effects were also tested in MPTP-mediated cell death in PC12 cells, demonstrating that CQ has a neurorestorative impact by successfully rescuing MPTP-induced ROS generation and cell loss. Our findings show that CQ's can help to prevent dopaminergic degeneration and improve neurological function after MPTP intoxication by lowering the harmful effects of neuronal autophagy and cerebral inflammation.
Collapse
Affiliation(s)
- Shipra Kartik
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India
| | - Rishi Pal
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India.
| | - Manju J Chaudhary
- Department of Physiology, Government Medical College, Tirwa Road, Kannauj, UP, India
| | - Rajendra Nath
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, UP, 226003, India
| | - Madhu Kumar
- Department of Pathology, King George's Medical University, Lucknow, UP, 226003, India
| | - Monika Binwal
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP, 226015, India
| | - D U Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP, 226015, India
| |
Collapse
|
3
|
Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM. α-Synuclein in Parkinson's disease: causal or bystander? J Neural Transm (Vienna) 2019; 126:815-840. [PMID: 31240402 DOI: 10.1007/s00702-019-02025-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) comprises a spectrum of disorders with differing subtypes, the vast majority of which share Lewy bodies (LB) as a characteristic pathological hallmark. The process(es) underlying LB generation and its causal trigger molecules are not yet fully understood. α-Synuclein (α-syn) is a major component of LB and SNCA gene missense mutations or duplications/triplications are causal for rare hereditary forms of PD. As typical sporadic PD is associated with LB pathology, a factor of major importance is the study of the α-syn protein and its pathology. α-Syn pathology is, however, also evident in multiple system atrophy (MSA) and Lewy body disease (LBD), making it non-specific for PD. In addition, there is an overlap of these α-synucleinopathies with other protein-misfolding diseases. It has been proven that α-syn, phosphorylated tau protein (pτ), amyloid beta (Aβ) and other proteins show synergistic effects in the underlying pathogenic mechanisms. Multiple cell death mechanisms can induce pathological protein-cascades, but this can also be a reverse process. This holds true for the early phases of the disease process and especially for the progression of PD. In conclusion, while rare SNCA gene mutations are causal for a minority of familial PD patients, in sporadic PD (where common SNCA polymorphisms are the most consistent genetic risk factor across populations worldwide, accounting for 95% of PD patients) α-syn pathology is an important feature. Conversely, with regard to the etiopathogenesis of α-synucleinopathies PD, MSA and LBD, α-syn is rather a bystander contributing to multiple neurodegenerative processes, which overlap in their composition and individual strength. Therapeutic developments aiming to impact on α-syn pathology should take this fact into consideration.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany. .,Department of Psychiatry, University of South Denmark, Odense, Denmark.
| | - Daniela Berg
- Department of Neurology, UKHS, Christian-Albrechts-Universität, Campus Kiel, Kiel, Germany
| | - Nicolas Casadei
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Fubo Cheng
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Christian Dresel
- Department of Neurology, Center for Movement Disorders, Neuroimaging Center Mainz, Clinical Neurophysiology, Forschungszentrum Translationale Neurowissenschaften (FTN), Rhein-Main-Neuronetz, Mainz, Germany
| | | | - Rejko Krüger
- Clinical and Experimental Neuroscience, LCSB (Luxembourg Centre for Systems, Biomedicine), University of Luxembourg, Esch-sur-Alzette and Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.,National Center for Excellence in Research, Parkinson's disease (NCER-PD), Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Thomas Müller
- Department of Neurology, Alexianer St. Joseph Berlin-Weißensee, Berlin, Germany
| | - Heinz Reichmann
- Department of Neurology, University of Dresden, Dresden, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Sabrina Strobel
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Thilo van Eimeren
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | | | - Jürgen Winkler
- Department Kopfkliniken, Molekulare Neurologie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Friederike Zunke
- Department of Biochemistry, Medical Faculty, University of Kiel, Kiel, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Kausar S, Wang F, Cui H. The Role of Mitochondria in Reactive Oxygen Species Generation and Its Implications for Neurodegenerative Diseases. Cells 2018; 7:cells7120274. [PMID: 30563029 PMCID: PMC6316843 DOI: 10.3390/cells7120274] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are dynamic cellular organelles that consistently migrate, fuse, and divide to modulate their number, size, and shape. In addition, they produce ATP, reactive oxygen species, and also have a biological role in antioxidant activities and Ca2+ buffering. Mitochondria are thought to play a crucial biological role in most neurodegenerative disorders. Neurons, being high-energy-demanding cells, are closely related to the maintenance, dynamics, and functions of mitochondria. Thus, impairment of mitochondrial activities is associated with neurodegenerative diseases, pointing to the significance of mitochondrial functions in normal cell physiology. In recent years, considerable progress has been made in our knowledge of mitochondrial functions, which has raised interest in defining the involvement of mitochondrial dysfunction in neurodegenerative diseases. Here, we summarize the existing knowledge of the mitochondrial function in reactive oxygen species generation and its involvement in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
5
|
Abstract
OBJECTIVE To evaluate the value of I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (I-FP-CIT) dopamine transporter single photon emission computed tomography (DAT-SPECT) to change management strategies of patients suspected of parkinsonism. METHOD This was an institutional review board-approved, retrospective study. DAT-SPECT scans ordered by movement disorder specialist and neurologists from 2011-2014 were reviewed. Clinical data and radiological reports of 173 patients suspected of parkinsonism were reviewed. The DAT-SPECT scan results were correlated with clinical assessment and treatment changes. RESULTS A total of 173 patients (104 male and 69 female subjects; age, 64.4 ± 12.6 years) suspected of parkinsonism were included. Median duration of symptoms was 36 months (range, 1-480 months). Scans were most often requested when there was diagnostic uncertainty in clinical features (59.6%, 103/173) or to differentiate one other disease from parkinsonism such as Parkinson disease (PD) versus essential tremor (23.7%, 41/173), PD versus drug-induced parkinsonism (8.7%, 15/173), or PD versus psychogenic (6.4%, 11/173) or vascular (1.7%, 3/173) disorders. Patients were classified, according to the DAT-SPECT scanning results, as those with abnormal DAT-SPECT findings (59%, 102/173) and those with normal DAT-SPECT findings (41%, 71/173). In patients with normal DAT-SPECT findings, follow-up management data were available in 76.1% (54/71). The management changed in 39.4% (28/54) after DAT scan with starting a new appropriate medications or supportive therapy in 4.2% (3/28), withholding inappropriate dopaminergic treatment in 11.3% (8/28), or continuing observation in 23.9% (17/28). In patients with abnormal DAT-SPECT findings, follow-up management data were available in 78.4% (80/102). There was change in management of 37.3% (38/80), a new PD treatment was started in 89.5% (34/38). The dose of medication was adjusted in 5.3% (2/38), although the original treatment was not changed. Parkinson disease treatment was stopped in 2.6% (1/38) and discontinued in 2.6% (1/38) based on clinical decision of neurologists despite abnormal DAT-SPECT findings. CONCLUSIONS DAT-SPECT findings impacted treatment decisions in 44.7% of patients suspected of Parkinsonism.
Collapse
|
6
|
Xu S, Yang X, Qian Y, Xiao Q. Parkinson's disease-related DJ-1 modulates the expression of uncoupling protein 4 against oxidative stress. J Neurochem 2018; 145:312-322. [PMID: 29315581 DOI: 10.1111/jnc.14297] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Shaoqing Xu
- Department of Neurology & Collaborative Innovation Center for Brain Science; Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Xiaodong Yang
- Department of Neurology & Collaborative Innovation Center for Brain Science; Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Yiwei Qian
- Department of Neurology & Collaborative Innovation Center for Brain Science; Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine; Shanghai China
| | - Qin Xiao
- Department of Neurology & Collaborative Innovation Center for Brain Science; Ruijin Hospital affiliated to Shanghai JiaoTong University School of Medicine; Shanghai China
| |
Collapse
|
7
|
Presence of Androgen Receptor Variant in Neuronal Lipid Rafts. eNeuro 2017; 4:eN-NWR-0109-17. [PMID: 28856243 PMCID: PMC5575139 DOI: 10.1523/eneuro.0109-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Fast, nongenomic androgen actions have been described in various cell types, including neurons. However, the receptor mediating this cell membrane–initiated rapid signaling remains unknown. This study found a putative androgen receptor splice variant in a dopaminergic N27 cell line and in several brain regions (substantia nigra pars compacta, entorhinal cortex, and hippocampus) from gonadally intact and gonadectomized (young and middle-aged) male rats. This putative splice variant protein has a molecular weight of 45 kDa and lacks an N-terminal domain, indicating it is homologous to the human AR45 splice variant. Interestingly, AR45 was highly expressed in all brain regions examined. In dopaminergic neurons, AR45 is localized to plasma membrane lipid rafts, a microdomain involved in cellular signaling. Further, AR45 protein interacts with membrane-associated G proteins Gαq and Gαo. Neither age nor hormone levels altered AR45 expression in dopaminergic neurons. These results provide the first evidence of AR45 protein expression in the brain, specifically plasma membrane lipid rafts. AR45 presence in lipid rafts indicates that it may function as a membrane androgen receptor to mediate fast, nongenomic androgen actions.
Collapse
|
8
|
Lázaro DF, Pavlou MAS, Outeiro TF. Cellular models as tools for the study of the role of alpha-synuclein in Parkinson's disease. Exp Neurol 2017; 298:162-171. [PMID: 28526239 DOI: 10.1016/j.expneurol.2017.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/01/2017] [Accepted: 05/13/2017] [Indexed: 01/07/2023]
Abstract
Neurodegenerative diseases are highly debilitating conditions characterised primarily by progressive neuronal loss and impairment of the nervous system. Parkinson's disease (PD) is one of the most common of these disorders, affecting 1-2% of the population above the age of 65. Although the underlying mechanisms of PD have been extensively studied, we still lack a full understanding of the molecular underpinnings of the disease. Thus, the in vitro and in vivo models currently used are able to only partially recapitulate the typical phenotypes of the disease. Here, we review various cell culture models currently used to study the molecular basis of PD, with a focus on alpha-synuclein-associated molecular pathologies. We also discuss how different cell models may constitute powerful tools for high-throughput screening of molecules capable of modulating alpha-synuclein toxicity.
Collapse
Affiliation(s)
- Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maria Angeliki S Pavlou
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany.
| |
Collapse
|
9
|
The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease: A Mini Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8590578. [PMID: 28116038 PMCID: PMC5223034 DOI: 10.1155/2016/8590578] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases affect not only the life quality of aging populations, but also their life spans. All forms of neurodegenerative diseases have a massive impact on the elderly. The major threat of these brain diseases includes progressive loss of memory, Alzheimer's disease (AD), impairments in the movement, Parkinson's disease (PD), and the inability to walk, talk, and think, Huntington's disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to treat the symptoms of these neurodegenerative diseases. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases using suitable animal models. This short review focuses the role of oxidative stress in the pathogenesis of AD, PD, and HD and the protective efficacy of natural products against these diseases.
Collapse
|
10
|
Holmes S, Singh M, Su C, Cunningham RL. Effects of Oxidative Stress and Testosterone on Pro-Inflammatory Signaling in a Female Rat Dopaminergic Neuronal Cell Line. Endocrinology 2016; 157:2824-35. [PMID: 27167771 PMCID: PMC4929547 DOI: 10.1210/en.2015-1738] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder, is associated with oxidative stress and neuroinflammation. These pathological markers can contribute to the loss of dopamine neurons in the midbrain. Interestingly, men have a 2-fold increased incidence for Parkinson's disease than women. Although the mechanisms underlying this sex difference remain elusive, we propose that the primary male sex hormone, testosterone, is involved. Our previous studies show that testosterone, through a putative membrane androgen receptor, can increase oxidative stress-induced neurotoxicity in dopamine neurons. Based on these results, this study examines the role of nuclear factor κ B (NF-κB), cyclooxygenase-2 (COX2), and apoptosis in the deleterious effects of androgens in an oxidative stress environment. We hypothesize, under oxidative stress environment, testosterone via a putative membrane androgen receptor will exacerbate oxidative stress-induced NF-κB/COX2 signaling in N27 dopaminergic neurons, leading to apoptosis. Our data show that testosterone increased the expression of COX2 and apoptosis in dopamine neurons. Inhibiting the NF-κB and COX2 pathway with CAPE and ibuprofen, respectively, blocked testosterone's negative effects on cell viability, indicating that NF-κB/COX2 cascade plays a role in the negative interaction between testosterone and oxidative stress on neuroinflammation. These data further support the role of testosterone mediating the loss of dopamine neurons under oxidative stress conditions, which may be a key mechanism contributing to the increased incidence of Parkinson's disease in men compared with women.
Collapse
Affiliation(s)
- Shaletha Holmes
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Meharvan Singh
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Chang Su
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas 76107
| | - Rebecca L Cunningham
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, Texas 76107
| |
Collapse
|
11
|
Enrichment of single neurons and defined brain regions from human brain tissue samples for subsequent proteome analysis. J Neural Transm (Vienna) 2015; 122:993-1005. [PMID: 26123835 DOI: 10.1007/s00702-015-1414-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/11/2015] [Indexed: 12/11/2022]
Abstract
Brain function in normal aging and neurological diseases has long been a subject of interest. With current technology, it is possible to go beyond descriptive analyses to characterize brain cell populations at the molecular level. However, the brain comprises over 100 billion highly specialized cells, and it is a challenge to discriminate different cell groups for analyses. Isolating intact neurons is not feasible with traditional methods, such as tissue homogenization techniques. The advent of laser microdissection techniques promises to overcome previous limitations in the isolation of specific cells. Here, we provide a detailed protocol for isolating and analyzing neurons from postmortem human brain tissue samples. We describe a workflow for successfully freezing, sectioning and staining tissue for laser microdissection. This protocol was validated by mass spectrometric analysis. Isolated neurons can also be employed for western blotting or PCR. This protocol will enable further examinations of brain cell-specific molecular pathways and aid in elucidating distinct brain functions.
Collapse
|
12
|
Posimo JM, Weilnau JN, Gleixner AM, Broeren MT, Weiland NL, Brodsky JL, Wipf P, Leak RK. Heat shock protein defenses in the neocortex and allocortex of the telencephalon. Neurobiol Aging 2015; 36:1924-37. [PMID: 25771395 DOI: 10.1016/j.neurobiolaging.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 11/18/2022]
Abstract
The telencephalic allocortex develops protein inclusions before the neocortex in many age-related proteinopathies. One major defense mechanism against proteinopathic stress is the heat shock protein (Hsp) network. We therefore contrasted Hsp defenses in stressed primary neocortical and allocortical cells. Neocortical neurons were more resistant to the proteasome inhibitor MG132 than neurons from 3 allocortical subregions: entorhinal cortex, piriform cortex, and hippocampus. However, allocortical neurons exhibited higher MG132-induced increases in Hsp70 and heat shock cognate 70 (Hsc70). MG132-treated allocortical neurons also exhibited greater levels of protein ubiquitination. Inhibition of Hsp70/Hsc70 activity synergistically exacerbated MG132 toxicity in allocortical neurons more than neocortical neurons, suggesting that the allocortex is more reliant on these Hsp defenses. In contrast, astrocytes harvested from the neocortex or allocortex did not differ in their response to Hsp70/Hsc70 inhibition. Consistent with the idea that chaperones are maximally engaged in allocortical neurons, an increase in Hsp70/Hsc70 activity was protective only in neocortical neurons. Finally, the levels of select Hsps were altered in the neocortex and allocortex in vivo with aging.
Collapse
Affiliation(s)
- Jessica M Posimo
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Justin N Weilnau
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Amanda M Gleixner
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Matthew T Broeren
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Nicole L Weiland
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Biophysical groundwork as a hinge to unravel the biology of α-synuclein aggregation and toxicity. Q Rev Biophys 2014; 47:1-48. [PMID: 24443929 DOI: 10.1017/s0033583513000097] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Alpha-synuclein (aS) and its aggregation properties are central in the development and spread of Parkinson's disease. Point mutations and multiplications of the SNCA gene encoding aS cause autosomal dominant forms of the disorder. Moreover, protein inclusions found in the surviving neurons of parkinsonian brains consist mainly of a fibrillar form of aS. Aggregates of aS, which form a transient, complex and heterogeneous ensemble, participate in a wide variety of toxic mechanisms that may be amplified by aS spreading among neighbouring neurons. Recently, significant effort has been directed into the study of the aS aggregation process and the impact of aS aggregates on neuron survival. In this review, we present state-of-the-art biophysical studies on the aS aggregation process in vitro and in cellular models. We comprehensively review the new insights generated by the recent biophysical investigations, which could provide a solid basis from which to design future biomedical studies. The diverse cellular models of aS toxicity and their potential use in the biophysical investigation are also discussed.
Collapse
|
14
|
Zabel C, Andreew A, Mao L, Hartl D. Protein expression overlap: more important than which proteins change in expression? Expert Rev Proteomics 2014; 5:187-205. [DOI: 10.1586/14789450.5.2.187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway. J Mol Neurosci 2014; 53:537-45. [PMID: 24395092 DOI: 10.1007/s12031-013-0219-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
Pinocembrin (PB), the most abundant flavonoid in propolis, has been proven to have neuroprotective property against neurotoxicity in vivo and in vitro. Our recent study demonstrated the neuroprotective effect of PB against Aβ25-35-induced SH-SY5Y neurotoxicity. However, the mechanism as how PB can induce neuroprotection is not known. In the present study, we demonstrate here that PB abrogates the effects of the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) which mimics Parkinson's disease (PD) with elevation of intracellular reactive oxygen species (ROS) level and apoptotic death. We found that pretreatment of SH-SY5Y cells with PB significantly reduced the MPP(+)-induced loss of cell viability, the generation of intracellular ROS, apoptotic rate, and the cleavage of caspase-3. PB strikingly inhibited MPP(+)-induced mitochondrial dysfunctions, including lowered membrane potential, decreased Bcl-2/Bax ratio, and the release of cytochrome c. Overall, these results suggest that PB is intimately involved in inhibiting MPP(+)-induced loss of mitochondrial function and induction of apoptosis that contributes toward neuronal survival. These data indicated that PB might provide a valuable therapeutic strategy for the treatment of PD.
Collapse
|
16
|
Pienaar IS, Harrison IF, Elson JL, Bury A, Woll P, Simon AK, Dexter DT. An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson's disease. Brain Struct Funct 2013; 220:479-500. [PMID: 24292256 DOI: 10.1007/s00429-013-0669-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
A rostral brainstem structure, the pedunculopontine nucleus (PPN), is severely affected by Parkinson's disease (PD) pathology and is regarded a promising target for therapeutic deep-brain stimulation (DBS). However, understanding the PPN's role in PD and assessing the potential of DBS are hampered by the lack of a suitable model of PPN degeneration. Rats were rendered Parkinsonian through a unilateral substantia nigra pars compacta (SNpc) stereotaxic injection of the proteasome inhibitor Lactacystin, to investigate whether the lesion's pathological effects spread to impact the integrity of PPN cholinergic neurons which are affected in PD. At 5 weeks post-surgery, stereological analysis revealed that the lesion caused a 48 % loss of dopaminergic SNpc neurons and a 61 % loss of PPN cholinergic neurons, accompanied by substantial somatic hypotrophy in the remaining cholinergic neurons. Magnetic resonance imaging revealed T2 signal hyper-/hypointensity in the PPN of the injected hemisphere, respectively at weeks 3 and 5 post-lesion. Moreover, isolated PPN cholinergic neurons revealed no significant alterations in key autophagy mRNA levels, suggesting that autophagy-related mechanisms fail to protect the PPN against Lactacystin-induced cellular changes. Hence, the current results suggest that the Lactacystin PD model offers a suitable model for investigating the role of the PPN in PD.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Division of Brain Sciences, Department of Medicine, Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, W12 ONN, UK,
| | | | | | | | | | | | | |
Collapse
|
17
|
Li L, Wang X, Fei X, Xia L, Qin Z, Liang Z. Parkinson's disease involves autophagy and abnormal distribution of cathepsin L. Neurosci Lett 2011; 489:62-7. [DOI: 10.1016/j.neulet.2010.11.068] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/15/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|
18
|
Double K, Reyes S, Werry E, Halliday G. Selective cell death in neurodegeneration: Why are some neurons spared in vulnerable regions? Prog Neurobiol 2010; 92:316-29. [DOI: 10.1016/j.pneurobio.2010.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 05/05/2010] [Accepted: 06/03/2010] [Indexed: 12/11/2022]
|
19
|
Eerola J, Kananen L, Manninen K, Hellström O, Tienari PJ, Hovatta I. No evidence for shorter leukocyte telomere length in Parkinson's disease patients. J Gerontol A Biol Sci Med Sci 2010; 65:1181-4. [PMID: 20639300 DOI: 10.1093/gerona/glq125] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomeres constitute the protective ends of chromosomes. They become shorter after each cell division, and therefore, telomere length is considered as an indicator of cellular aging. Interestingly, both inflammation and oxidative stress, which play a role in the etiology of Parkinson's disease (PD), may accelerate telomere shortening. Furthermore, it has been suggested that leukocyte telomere shortening may be accelerated in PD. To replicate the earlier findings, we analyzed telomere length of peripheral blood leukocytes in a sample of 131 PD patients (aged 66.8 ± 9.7 years) and 115 controls (aged 65.4 ± 9.8 years) from Finland. As expected, age associated significantly with telomere length (p = .01). However, telomere length did not differ significantly between PD patients and controls (p = .54). Furthermore, extremely short telomeres were not more frequent in PD patients than in controls, as suggested in an earlier study. Our results do not support the concept of accelerated leukocyte telomere shortening in PD.
Collapse
Affiliation(s)
- Johanna Eerola
- Research Program of Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, FIN-00290 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
20
|
Sadasivan S, Zhang Z, Larner SF, Liu MC, Zheng W, Kobeissy FH, Hayes RL, Wang KKW. Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype. BMC Neurosci 2010; 11:21. [PMID: 20167092 PMCID: PMC2836363 DOI: 10.1186/1471-2202-11-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/18/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Autophagy, an intracellular response to stress, is characterized by double membrane cytosolic vesicles called autophagosomes. Prolonged autophagy is known to result in autophagic (Type II) cell death. This study examined the potential role of an autophagic response in cultured cerebellar granule neurons challenged with excitotoxin N-methyl-D-aspartate (NMDA). RESULTS NMDA exposure induced light chain-3 (LC-3)-immunopositive and monodansylcadaverine (MDC) fluorescent dye-labeled autophagosome formation in both cell bodies and neurites as early as 3 hours post-treatment. Elevated levels of Beclin-1 and the autophagosome-targeting LC3-II were also observed following NMDA exposure. Prolonged exposure of the cultures to NMDA (8-24 h) generated MDC-, LC3-positive autophagosomal bodies, concomitant with the neurodegenerative phase of NMDA challenge. Lysosomal inhibition studies also suggest that NMDA-treatment diverted the autophagosome-associated LC3-II from the normal lysosomal degradation pathway. Autophagy inhibitor 3-methyladenine significantly reduced NMDA-induced LC3-II/LC3-I ratio increase, accumulation of autophagosomes, and suppressed NMDA-mediated neuronal death. ATG7 siRNA studies also showed neuroprotective effects following NMDA treatment. CONCLUSIONS Collectively, this study shows that autophagy machinery is robustly induced in cultured neurons subjected to prolonged exposure to excitotoxin, while autophagosome clearance by lysosomal pathway might be impaired. Our data further show that prolonged autophagy contributes to cell death in NMDA-mediated excitotoxicity.
Collapse
Affiliation(s)
- Shankar Sadasivan
- Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute of the University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Oh SH, Lim SC. Endoplasmic reticulum stress-mediated autophagy/apoptosis induced by capsaicin (8-methyl-N-vanillyl-6-nonenamide) and dihydrocapsaicin is regulated by the extent of c-Jun NH2-terminal kinase/extracellular signal-regulated kinase activation in WI38 lung epithelial fibroblast cells. J Pharmacol Exp Ther 2009; 329:112-122. [PMID: 19139269 DOI: 10.1124/jpet.108.144113] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress causes cell survival or death, which is dependent on the type of cell and stimulus. Capsaicin (8-methyl-N-vanillyl-6-nonenamide) and its analog, dihydrocapsaicin (DHC), induced caspase-3-independent/-dependent signaling pathways in WI38 lung epithelial fibroblast cells. Here, we describe the molecular mechanisms induced by both chemicals. Exposure to capsaicin or DHC caused induction of p53, p21, and G(0)/G(1) arrest. DHC induced massive cellular vacuolization by dilation of the ER and mitochondria. Classic ER stress inducers elicited the unfolded protein response (UPR) and up-regulation of microtubule-associated protein 1 light chain-3 (LC3) II. DHC induced ER stress by the action of heavy chain-binding protein, IRE1, Chop, eukaryotic initiation factor 2alpha, and caspase-4 and, to a lesser level, by capsaicin treatment. DHC treatment induced autophagy that was blocked by 3-methyladenine (3MA) and accumulated by bafilomycin A1. Blocking of DHC-induced autophagy by 3MA enhanced apoptotic cell death that was completely inhibited by treatment of cells with benzyl-oxcarbonyl-Val-Ala-Asp-fluoromethyl ketone. Knockdown of Ire1 down-regulated the DHC-induced Chop and LC3II and enhanced caspase-3 activation. DHC induced rapid and high-sustained c-Jun NH(2)-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK) activation, but capsaicin induced transient activation of JNK/ERK. The JNK inhibitor SP600125 down-regulated the expression of IRE1, Chop, and LC3II induced by DHC, thapsigargin, and MG132 [N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal]. Pharmacological blockade or knockdown of ERK down-regulated LC3II. Capsaicin and DHC induced Akt phosphorylation, and the phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride], induced autophagy via ERK activation. Our results indicate that the differential responses of capsaicin and DHC for cell protection are caused by the extent of the UPR and autophagy that are both regulated by the level of JNK and ERK activation.
Collapse
Affiliation(s)
- Seon-Hee Oh
- Research Center for Resistant Cells, College of Medicine, Chosun University, Dong-gu, Gwangu 501-759, Korea
| | | |
Collapse
|
22
|
Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener 2009; 4:9. [PMID: 19193223 PMCID: PMC2646729 DOI: 10.1186/1750-1326-4-9] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/04/2009] [Indexed: 11/16/2022] Open
Abstract
α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Building 35, Room 1A116, MSC 3707, 35 Convent Drive, Bethesda, MD 20982-3707, USA.
| |
Collapse
|
23
|
Bogaerts V, Theuns J, van Broeckhoven C. Genetic findings in Parkinson's disease and translation into treatment: a leading role for mitochondria? GENES, BRAIN, AND BEHAVIOR 2008; 7:129-51. [PMID: 17680806 PMCID: PMC2268956 DOI: 10.1111/j.1601-183x.2007.00342.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/06/2007] [Accepted: 06/25/2007] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder and in most patients its aetiology remains unknown. Molecular genetic studies in familial forms of the disease identified key proteins involved in PD pathogenesis, and support a major role for mitochondrial dysfunction, which is also of significant importance to the common sporadic forms of PD. While current treatments temporarily alleviate symptoms, they do not halt disease progression. Drugs that target the underlying pathways to PD pathogenesis, including mitochondrial dysfunction, therefore hold great promise for neuroprotection in PD. Here we summarize how the proteins identified through genetic research (alpha-synuclein, parkin, PINK1, DJ-1, LRRK2 and HTRA2) fit into and add to our current understanding of the role of mitochondrial dysfunction in PD. We highlight how these genetic findings provided us with suitable animal models and critically review how the gained insights will contribute to better therapies for PD.
Collapse
Affiliation(s)
- V Bogaerts
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - J Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| | - C van Broeckhoven
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIBAntwerpen, Belgium
- Laboratory of Neurogenetics, Institute Born-BungeAntwerpen, Belgium
- University of AntwerpAntwerpen, Belgium
| |
Collapse
|
24
|
Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 2008; 131:1969-78. [DOI: 10.1093/brain/awm318] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|