1
|
Mao T, He P, Xu Z, Lai Y, Huang J, Yu Z, Li P, Gong X. Impacts of small-molecule STAT3 inhibitor SC-43 on toxicity, global proteomics and metabolomics of HepG2 cells. J Pharm Biomed Anal 2024; 242:116023. [PMID: 38395000 DOI: 10.1016/j.jpba.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE In this study, we aimed to investigate the cytotoxicity and potential mechanisms of SC-43 by analyzing the global proteomics and metabolomics of HepG2 cells exposed to SC-43. METHODS The effect of SC-43 on cell viability was evaluated through CCK-8 assay. Proteomics and metabolomics studies were performed on HepG2 cells exposed to SC-43, and the functions of differentially expressed proteins and metabolites were categorized. Drug affinity responsive target stability (DARTS) was utilized to identify the potential binding proteins of SC-43 in HepG2 cells. Finally, based on the KEGG pathway database, the co-regulatory mechanism of SC-43 on HepG2 cells was elucidated by conducting a joint pathway analysis on the differentially expressed proteins and metabolites using the MetaboAnalyst 5.0 platform. RESULTS Liver cell viability is significantly impaired by continuous exposure to high concentrations of SC-43. Forty-eight dysregulated proteins (27 upregulated, 21 downregulated) were identified by proteomics analysis, and 184 dysregulated metabolites (65 upregulated, 119 downregulated) were determined by metabolomics in HepG2 cells exposed to SC-43 exposure compared with the control. A joint pathway analysis of proteomics and metabolomics data using the MetaboAnalyst 5.0 platform supported the close correlation between SC-43 toxicity toward HepG2 and the disturbances in pyrimidine metabolism, ferroptosis, mismatch repair, and ABC transporters. Specifically, SC-43 significantly affected the expression of several proteins and metabolites correlated with the above-mentioned functional pathways, such as uridine 5'-monophosphate, uridine, 3'-CMP, glutathione, γ-Glutamylcysteine, TF, MSH2, RPA1, RFC3, TAP1, and glycerol. The differential proteins suggested by the joint analysis were further selected for ELISA validation. The data showed that the RPA1 and TAP1 protein levels significantly increased in HepG2 cells exposed to SC-43 compared to the control group. The results of ELISA and joint analysis were basically in agreement. Notably, DARTS and biochemical analysis indicated that SART3 might be a potential target for SC-43 toxicity in HepG2 cells. CONCLUSION In summary, prolonged exposure of liver cells to high concentrations of SC-43 can result in significant damage. Based on a multi-omics analysis, we identified proteins and metabolites associated with SC-43-induced hepatocellular injury and clarified the underlying mechanism, providing new insights into the toxic mechanism of SC-43.
Collapse
Affiliation(s)
- Ting Mao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Peikun He
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhichao Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Yingying Lai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Jinlian Huang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China.
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen 361001, China.
| |
Collapse
|
2
|
Metabolomic Characteristics of Liver and Cecum Contents in High-Fat-Diet-Induced Obese Mice Intervened with Lactobacillus plantarum FRT10. Foods 2022; 11:foods11162491. [PMID: 36010491 PMCID: PMC9407591 DOI: 10.3390/foods11162491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity has become a major social problem related to health and quality of life. Our previous work demonstrated that Lactobacillus plantarum FRT10 alleviated obesity in high-fat diet (HFD)-fed mice by alleviating gut dysbiosis. However, the underlying functions of FRT10 in regulating liver and cecum contents metabolism remain unknown. Liver and cecum contents metabonomics combined with pathway analysis based on ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) were performed to evaluate the alterations of metabolic profiles between obese control mice and obese mice in FRT10-treated groups. The orthogonal partial least squares discriminant analysis (OPLS-DA) score plots showed that there were significant differences in cecum contents and liver markers between experimental groups. In total, 26 potential biomarkers were identified in the liver and 15 in cecum contents that could explain the effect of FRT10 addition in HFD-fed mice. In addition, gut–liver axis analysis indicated that there was a strong correlation between cecum contents metabolites and hepatic metabolites. The mechanism of FRT10 against obesity might be related to the alterations in glycerophospholipid metabolism, primary bile acid biosynthesis, amino metabolism, and purine and pyrimidine metabolism. Studies on these metabolites could help us better understand the role of FRT10 in obesity induced by HFD.
Collapse
|
3
|
Hastings KL, Green MD, Gao B, Ganey PE, Roth RA, Burleson GR. Beyond Metabolism: Role of the Immune System in Hepatic Toxicity. Int J Toxicol 2021; 39:151-164. [PMID: 32174281 DOI: 10.1177/1091581819898399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is primarily thought of as a metabolic organ; however, the liver is also an important mediator of immunological functions. Key perspectives on this emerging topic were presented in a symposium at the 2018 annual meeting of the American College of Toxicology entitled "Beyond metabolism: Role of the immune system in hepatic toxicity." Viral hepatitis is an important disease of the liver for which insufficient preventive vaccines exist. Host immune responses inadequately clear these viruses and often potentiate immunological inflammation that damages the liver. In addition, the liver is a key innate immune organ against bacterial infection. Hepatocytes and immune cells cooperatively control systemic and local bacterial infections. Conversely, bacterial infection can activate multiple types of immune cells and pathways to cause hepatocyte damage and liver injury. Finally, the immune system and specifically cytokines and drugs can interact in idiosyncratic drug-induced liver injury. This rare disease can result in a disease spectrum that ranges from mild to acute liver failure. The immune system plays a role in this disease spectrum.
Collapse
Affiliation(s)
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIH, Bethesda, MD, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gary R Burleson
- BRT-Burleson Research Technologies, Inc, Morrisville, NC, USA
| |
Collapse
|
4
|
Wu Y, Wang Z, Zhang Y, Ruan L, Li A, Liu X. Microbiome in Healthy Women Between Two Districts With Different Air Quality Index. Front Microbiol 2020; 11:548618. [PMID: 33193129 PMCID: PMC7604314 DOI: 10.3389/fmicb.2020.548618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2020] [Indexed: 01/25/2023] Open
Abstract
Although the diversity and abundance of skin microbiome are mainly determined by intrinsic factors, including gender, age, anatomical site, and ethnicity, we question whether facial microbiome could be affected by long-term exposure to airborne pollution. Using 16S ribosomal RNA (rRNA) gene amplicon sequencing, we analyzed the facial bacterial microbiome of healthy and young Chinese women (25-35 years old) between two districts with different air quality indices (AQIs) in Zhejiang Province. The overall microbiome structure was obviously different between these two districts. It revealed an increase in both the abundance and diversity of facial bacterial microbiome in Hangzhou (HZ) with higher AQI compared with those in Yunhe (YH) with lower AQI. Linear discriminant analysis (LDA) and Lefse analysis identified a total of 45 genera showing significant overrepresentation in the HZ group. Furthermore, PICRUSt analysis showed that functional pathways associated with metabolism of saturated fatty acid were relatively more predominant in the HZ group, whereas those with DNA repair or mitochondrial DNA replication were more predominant in the YH group. Our present data can provide useful information for further researches on the composition and function of the skin microbiome related to air pollution factors as well as for the development of therapeutic agents targeting the microbes and their metabolites to resist damages of airborne pollutants.
Collapse
Affiliation(s)
- Yinhua Wu
- Department of Dermatology, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou, China
| | - Zujin Wang
- Department of the Second General Surgeon, The Yunhe People’s Hospital, Yunhe, China
| | - Yu Zhang
- Department of Dermatology, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou, China
| | - Liming Ruan
- Department of Dermatology, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou, China
| | - Ang Li
- Physician Health Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Henan Gene Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Liu
- Department of Dermatology, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Jia Z, Zhao C, Wang M, Zhao X, Zhang W, Han T, Xia Q, Han Z, Lin R, Li X. Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome. Biomed Pharmacother 2020; 121:109558. [DOI: 10.1016/j.biopha.2019.109558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
|
6
|
Khanna S, Padhan P, Das S, Jaiswal KS, Tripathy A, Smita S, Tripathy SK, Raghav SK, Gupta B. A Simple Colorimetric Method for Naked-Eye Detection of Circulating Cell-Free DNA Using Unlabelled Gold Nanoparticles. ChemistrySelect 2018. [DOI: 10.1002/slct.201802671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shweta Khanna
- Disease Biology Laboratory; School of Biotechnology; Kalinga Institute of Industrial Technology (KIIT); Deemed to be University, Bhubaneswar, Odisha; 751024 India
| | - Prasanta Padhan
- Department of Rheumatology; Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha; India
| | - Sourav Das
- Chemical and Bioprocess Engineering Lab; School of Chemical Technology; Kalinga Institute of Industrial Technology (KIIT); Deemed to be University, Bhubaneswar, Odisha; 751024 India
| | - Kumar Sagar Jaiswal
- Disease Biology Laboratory; School of Biotechnology; Kalinga Institute of Industrial Technology (KIIT); Deemed to be University, Bhubaneswar, Odisha; 751024 India
| | - Archana Tripathy
- Disease Biology Laboratory; School of Biotechnology; Kalinga Institute of Industrial Technology (KIIT); Deemed to be University, Bhubaneswar, Odisha; 751024 India
| | - Shuchi Smita
- Laboratory of Immuno-Genomics and Systems Biology; Institute of Life Sciences, Bhubaneswar, Odisha; India
| | - Suraj K. Tripathy
- Chemical and Bioprocess Engineering Lab; School of Chemical Technology; Kalinga Institute of Industrial Technology (KIIT); Deemed to be University, Bhubaneswar, Odisha; 751024 India
| | - Sunil Kumar Raghav
- Laboratory of Immuno-Genomics and Systems Biology; Institute of Life Sciences, Bhubaneswar, Odisha; India
| | - Bhawna Gupta
- Disease Biology Laboratory; School of Biotechnology; Kalinga Institute of Industrial Technology (KIIT); Deemed to be University, Bhubaneswar, Odisha; 751024 India
| |
Collapse
|
7
|
Liang Q, Zeng J, Wu J, Qiao L, Chen Q, Chen D, Zhang Y. Nucleoside reverse transcriptase inhibitors induced hepatocellular mitochondrial DNA lesions and compensatory enhancement of mitochondrial function and DNA repair. Int J Antimicrob Agents 2017; 51:385-392. [PMID: 28843815 DOI: 10.1016/j.ijantimicag.2017.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/04/2023]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of combined antiretroviral therapy (cART) and are widely used in anti-human immunodeficiency virus (HIV) therapy. Long-term administration of NRTIs can result in mitochondrial dysfunction in certain HIV-1-infected patients. However, NRTI-associated liver mitochondrial toxicity is not well known. Herein, the liver autopsy of acquired immune deficiency syndrome (AIDS) patients and the liver tissues of mice with 12 months of NRTI exposure were used to identify NRTI-associated liver toxicity with immunofluorescence, quantitative real-time polymerase chain reaction (qPCR), Amplex red and horseradish peroxidase, and cloning and sequencing. Laser capture microdissection was used to capture hepatocytes from liver tissues. We observed DNA oxidative damage and mitochondrial DNA (mtDNA) loss in the livers of AIDS patients, and cART patients had higher DNA oxidative damage and lower DNA repair function in liver tissues than non-cART patients. We also observed liver oxidative damage, increased DNA repair and mtDNA loss in mice with exposure to four different NRTIs for 12 months, and hepatocytes had no more mtDNA loss than liver tissues. Although NRTIs could induce mitochondrial hydrogen peroxide production, increased mitochondrial oxygen consumption was found with a Clark-type electrode. The captured hepatocytes had greater diversity in their mtDNA D-loop, dehydrogenase subunit1 (ND1) and ND4 than the controls. Long-term NRTI exposure induced single nucleotide variation in hepatocellular mtDNA D-loop, ND1 and ND4. Our findings indicate that NRTIs can induce liver mtDNA lesions, but simultaneously enhance mitochondrial function and mtDNA repair.
Collapse
Affiliation(s)
- Qi Liang
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China; Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province 637000, China
| | - Jing Zeng
- Department of Infectious Diseases, Capital Medical University affiliated Beijing You An Hospital, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Jian Wu
- Section of Physiology and Biochemistry of Sports, Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Luxin Qiao
- Department of Infectious Diseases, Capital Medical University affiliated Beijing You An Hospital, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Qinghai Chen
- Department of Clinical Laboratory, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Dexi Chen
- Department of Infectious Diseases, Capital Medical University affiliated Beijing You An Hospital, Beijing Institute of Hepatology, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Infectious Diseases, Capital Medical University affiliated Beijing You An Hospital, Beijing Institute of Hepatology, Beijing, 100069, China.
| |
Collapse
|
8
|
Park HM, Park KT, Park EC, Kim SI, Choi MS, Liu KH, Lee CH. Mass Spectrometry-Based Metabolomic and Lipidomic Analyses of the Effects of Dietary Platycodon grandiflorum on Liver and Serum of Obese Mice under a High-Fat Diet. Nutrients 2017; 9:nu9010071. [PMID: 28106735 PMCID: PMC5295115 DOI: 10.3390/nu9010071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/27/2016] [Accepted: 01/07/2017] [Indexed: 12/23/2022] Open
Abstract
We aimed to identify metabolites involved in the anti-obesity effects of Platycodon grandiflorum (PG) in high-fat diet (HFD)-fed mice using mass spectrometry (MS)-based metabolomic techniques. C57BL/6J mice were divided into four groups: normal diet (ND)-fed mice, HFD-fed mice, HFD with 1% PG extract-fed mice (HPGL), and HFD with 5% PG extract-fed mice (HPGH). After 8 weeks, the HFD group gained more weight than the ND group, while dietary 5% PG extract attenuated this change. The partial least squares discriminant analysis (PLS-DA) score plots showed a clear distinction between experimental groups in serum and liver markers. We also identified 10 and 32 metabolites in the serum and liver, respectively, as potential biomarkers that could explain the effect of high-dose PG added to HFD-fed mice, which were strongly involved in amino acid metabolism (glycine, serine, threonine, methionine, glutamate, phenylalanine, ornithine, lysine, and tyrosine), TCA cycle (fumarate and succinate), lipid metabolism (linoleic and oleic acid methyl esters, oleamide, and cholesterol), purine/pyrimidine metabolism (uracil and hypoxanthine), carbohydrate metabolism (maltose), and glycerophospholipid metabolism (phosphatidylcholines, phosphatidylethanolamines, lysophosphatidylcholines, and lysophosphatidylethanolamines). We suggest that further studies on these metabolites could help us gain a better understanding of both HFD-induced obesity and the effects of PG.
Collapse
Affiliation(s)
- Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Kab-Tae Park
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Edmond Changkyun Park
- Division of Life Science, Korea Basic Science Institute, Daejeon 34133, Korea.
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
| | - Seung Ii Kim
- Division of Life Science, Korea Basic Science Institute, Daejeon 34133, Korea.
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
| | - Myung Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Korea.
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
9
|
Li M, Foli Y, Liu Z, Wang G, Hu Y, Lu Q, Selvaraj S, Lam W, Paintsil E. High frequency of mitochondrial DNA mutations in HIV-infected treatment-experienced individuals. HIV Med 2016; 18:45-55. [PMID: 27328746 PMCID: PMC5132110 DOI: 10.1111/hiv.12390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2016] [Indexed: 01/11/2023]
Abstract
OBJECTIVES We recently observed a decrease in deoxyribonucleotide (dNTP) pools in HIV-infected individuals on antiretroviral therapy (ART). Alterations in dNTPs result in mutations in mitochondrial DNA (mtDNA) in cell culture and animal models. Therefore, we investigated whether ART is associated with mitochondrial genome sequence variation in peripheral blood mononuclear cells (PBMCs) of HIV-infected treatment-experienced individuals. METHODS In this substudy of a case-control study, 71 participants were included: 22 'cases', who were HIV-infected treatment-experienced patients with mitochondrial toxicity, 25 HIV-infected treatment-experienced patients without mitochondrial toxicity, and 24 HIV-uninfected controls. Total DNA was extracted from PBMCs and purified polymerase chain reaction (PCR) products were subjected to third-generation sequencing using the PacBio Single Molecule Real-Time (SMRT) sequencing technology. The sequences were aligned against the revised Cambridge reference sequence for human mitochondrial DNA (NC_012920.1) for detection of variants. RESULTS We identified a total of 123 novel variants, 39 of them in the coding region. HIV-infected treatment-experienced patients with and without toxicity had significantly higher average numbers of mitochondrial variants per participant than HIV-uninfected controls. We observed a higher burden of mtDNA large-scale deletions in HIV-infected treatment-experienced patients with toxicity compared with HIV-uninfected controls (P = 0.02). The frequency of mtDNA molecules containing a common deletion (mt.δ4977) was higher in HIV-infected treatment-experienced patients with toxicity compared with HIV-uninfected controls (P = 0.06). There was no statistically significant difference in mtDNA variants between HIV-infected treatment-experienced patients with and without toxicity. CONCLUSIONS The frequency of mtDNA variants (mutations and large-scale deletions) was higher in HIV-infected treatment-experienced patients with or without ART-induced toxicity than in uninfected controls.
Collapse
Affiliation(s)
- M Li
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Y Foli
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Z Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - G Wang
- Yale Center for Genome Analysis, Yale School of Medicine, West Haven, CT, USA
| | - Y Hu
- School of Public Health, Yale University, New Haven, CT, USA
| | - Q Lu
- School of Public Health, Yale University, New Haven, CT, USA
| | - S Selvaraj
- Department of Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - W Lam
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - E Paintsil
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.,School of Public Health, Yale University, New Haven, CT, USA.,Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Yasui K, Matsuyama N, Kuroishi A, Tani Y, Furuta RA, Hirayama F. Mitochondrial damage-associated molecular patterns as potential proinflammatory mediators in post-platelet transfusion adverse effects. Transfusion 2016; 56:1201-12. [PMID: 26920340 DOI: 10.1111/trf.13535] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/15/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Platelet concentrates (PCs) are the most common blood components eliciting nonhemolytic transfusion reactions (NHTRs), such as allergic transfusion reactions and febrile reactions. However, the precise mechanisms of NHTRs in PC transfusion remain largely unknown. Previous studies reported that mitochondria-derived damage-associated molecular patterns (DAMPs) could be important mediators of innate cell inflammation. Platelets (PLTs) represent a major reservoir of mitochondria in the blood circulation. The aim of this study was to determine the possible involvement of mitochondrial DAMPs in NHTRs. STUDY DESIGN AND METHODS The amount of mitochondrial DAMPs was determined as an index of total copy numbers of mitochondrial DNA (mtDNA), including mtDNA itself and free mitochondria, using quantitative real-time polymerase chain reaction. To examine whether neutrophils, monocytes, and basophils were activated by mitochondrial DAMPs in vitro, an in vitro whole blood cell culture assay was performed. RESULTS In blood components associated with NHTRs, the mean total mtDNA concentration was highest in PCs followed in order by fresh-frozen plasma and red blood cells. The amount of mtDNA in NHTR PCs was higher than that in control PCs without NHTRs. The mitochondrial DAMPs present in NHTR PCs was high enough to activate neutrophils, monocytes, and basophils, when costimulated with N-formyl-l-methionyl-l-leucyl-l-phenylalanine or HLA antibodies. CONCLUSION PLT-derived mitochondrial DAMPs are candidate risk factors for the onset of NHTRs.
Collapse
Affiliation(s)
- Kazuta Yasui
- Japanese Red Cross Kinki Block Blood Center, Ibaraki-City, Osaka, Japan
| | - Nobuki Matsuyama
- Japanese Red Cross Kinki Block Blood Center, Ibaraki-City, Osaka, Japan
| | - Ayumu Kuroishi
- Japanese Red Cross Kinki Block Blood Center, Ibaraki-City, Osaka, Japan
| | - Yoshihiko Tani
- Japanese Red Cross Kinki Block Blood Center, Ibaraki-City, Osaka, Japan
| | - Rika A Furuta
- Japanese Red Cross Kinki Block Blood Center, Ibaraki-City, Osaka, Japan
| | - Fumiya Hirayama
- Japanese Red Cross Kinki Block Blood Center, Ibaraki-City, Osaka, Japan
| |
Collapse
|
11
|
Mohanty P, Gupta A, Bhatnagar S. Modeling of Plasmodium falciparum Telomerase Reverse Transcriptase Ternary Complex: Repurposing of Nucleoside Analog Inhibitors. Assay Drug Dev Technol 2015; 13:628-37. [PMID: 26690766 DOI: 10.1089/adt.2015.29013.pmodrrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Plasmodium falciparum telomerase reverse transcriptase (PfTERT) is a ribonucleoprotein that assists the maintenance of the telomeric ends of chromosomes by reverse transcription of its own RNA subunit. It represents an attractive therapeutic target for eradication of the plasmodial parasite at the asexual liver stage. Automated modeling using MUSTER and knowledge-based techniques were used to obtain a three-dimensional model of the active site of reverse transcriptase domain of PfTERT, which is responsible for catalyzing the addition of incoming dNTPs to the growing DNA strand in presence of divalent magnesium ions. Further, the ternary complex of the active site of PfTERT bound to a DNA-RNA duplex was also modeled using Haddock server and represents the functional form of the enzyme. Initially, established nucleoside analog inhibitors of PfTERT, AZTTP, and ddGTP were docked in the modeled binding site of the PfTERT ternary complex using AutoDock v4.2. Subsequently, docking studies were carried out with 14 approved nucleoside analog inhibitors. Docking studies predicted that floxuridine, gemcitabine, stavudine, and vidarabine have high affinity for the PfTERT ternary complex. Further analysis on the basis of known side effects led us to propose repositioning of vidarabine as a suitable drug candidate for inhibition of PfTERT.
Collapse
Affiliation(s)
- Pallavi Mohanty
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , Dwarka, New Delhi, India
| | - Akanksha Gupta
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology , Dwarka, New Delhi, India
| |
Collapse
|
12
|
Nagiah S, Phulukdaree A, Chuturgoon A. Mitochondrial and Oxidative Stress Response in HepG2 Cells Following Acute and Prolonged Exposure to Antiretroviral Drugs. J Cell Biochem 2015; 116:1939-46. [DOI: 10.1002/jcb.25149] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/27/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Savania Nagiah
- Discipline of Medical Biochemistry; School of Laboratory Medicine and Medical Sciences; College of Health Sciences; University of KwaZulu Natal; Durban South Africa
| | - Alisa Phulukdaree
- Department of Physiology; Faculty of Health Science; University of Pretoria; Pretoria South Africa
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry; School of Laboratory Medicine and Medical Sciences; College of Health Sciences; University of KwaZulu Natal; Durban South Africa
| |
Collapse
|
13
|
Pery E, Sheehy A, Miranda Nebane N, Misra V, Mankowski MK, Rasmussen L, Lucile White E, Ptak RG, Gabuzda D. Redoxal, an inhibitor of de novo pyrimidine biosynthesis, augments APOBEC3G antiviral activity against human immunodeficiency virus type 1. Virology 2015; 484:276-287. [PMID: 26141568 DOI: 10.1016/j.virol.2015.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022]
Abstract
APOBEC3G (A3G) is a cytidine deaminase that restricts HIV-1 replication by inducing G-to-A hypermutation in viral DNA; deamination-independent mechanisms are also implicated. HIV-1 Vif protein counteracts A3G by inducing its proteasomal degradation. Thus, the Vif-A3G axis is a potential therapeutic target. To identify compounds that inhibit Vif:A3G interaction, a 307,520 compound library was tested in a TR-FRET screen. Two identified compounds, redoxal and lomofungin, inhibited HIV-1 replication in peripheral blood mononuclear cells. Lomofungin activity was linked to A3G, but not pursued further due to cytotoxicity. Redoxal displayed A3G-dependent restriction, inhibiting viral replication by stabilizing A3G protein levels and increasing A3G in virions. A3G-independent activity was also detected. Treatment with uridine or orotate, intermediates of pyrimidine synthesis, diminished redoxal-induced stabilization of A3G and antiviral activity. These results identify redoxal as an inhibitor of HIV-1 replication and suggest its ability to inhibit pyrimidine biosynthesis suppresses viral replication by augmenting A3G antiviral activity.
Collapse
Affiliation(s)
- Erez Pery
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, United States; Department of Pathology, Harvard Medical School, Boston, MA 02115, United States
| | - Ann Sheehy
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, United States
| | - N Miranda Nebane
- Southern Research Institute High Throughput Screening Center, Birmingham, AL 35205, United States
| | - Vikas Misra
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, United States
| | - Marie K Mankowski
- Southern Research Institute, Department of Infectious Disease Research, Frederick, MD 21701, United States
| | - Lynn Rasmussen
- Southern Research Institute High Throughput Screening Center, Birmingham, AL 35205, United States
| | - E Lucile White
- Southern Research Institute High Throughput Screening Center, Birmingham, AL 35205, United States
| | - Roger G Ptak
- Southern Research Institute, Department of Infectious Disease Research, Frederick, MD 21701, United States
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA 02115, United States; Department of Neurology (Microbiology), Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
14
|
Walker UA, Lebrecht D, Reichard W, Kirschner J, Bissé E, Iversen L, Venhoff AC, Venhoff N. Zidovudine induces visceral mitochondrial toxicity and intra-abdominal fat gain in a rodent model of lipodystrophy. Antivir Ther 2014; 19:783-92. [PMID: 24584039 DOI: 10.3851/imp2758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The use of zidovudine is associated with a loss of subcutaneous adipose tissue (SAT). We assessed if zidovudine treatment also affects visceral adipose tissue (VAT) and if uridine supplementation abrogates the adverse effects of zidovudine on VAT. METHODS Rats were fed zidovudine for 21 weeks with or without simultaneous uridine supplementation. Control animals did not receive zidovudine, or were treated with uridine alone. Changes in SAT and VAT were monitored by magnetic resonance imaging. Adipose tissue was examined for structural and molecular signs of mitochondrial toxicity. RESULTS Zidovudine induced lipoatrophy in SAT and fat hypertrophy in VAT. Compared with controls zidovudine-exposed VAT adipocytes had increased diameters, microvesicular steatosis and enlarged mitochondria with disrupted crystal architecture on electron microscopy. VAT adipocyte mitochondrial DNA (mtDNA) copy numbers were diminished, as were mtDNA-encoded respiratory chain proteins. The 'common' mtDNA deletion was detected in high frequencies in zidovudine treated animals, but not in the controls. Although mtDNA depletion was more profound in SAT compared with VAT, the 'common' deletion tended to be more frequent in the VAT than in the SAT. Uridine coadministration abrogated all effects of zidovudine on VAT and SAT pathology. CONCLUSIONS Zidovudine induces a gain of intra-abdominal fat in association with quantitative and qualitative alterations of the mitochondrial genome and impaired expression of mtDNA-encoded respiratory chain components, indicating that zidovudine may contribute to abdominal fat hypertrophy in HIV-infected patients. In this rodent model, uridine supplementation abrogates both SAT and VAT pathology induced by zidovudine.
Collapse
Affiliation(s)
- Ulrich A Walker
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Seeland S, Török M, Kettiger H, Treiber A, Hafner M, Huwyler J. A cell-based, multiparametric sensor approach characterises drug-induced cytotoxicity in human liver HepG2 cells. Toxicol In Vitro 2013; 27:1109-20. [DOI: 10.1016/j.tiv.2013.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/30/2012] [Accepted: 02/06/2013] [Indexed: 01/23/2023]
|
16
|
Le TT, Ziemba A, Urasaki Y, Hayes E, Brotman S, Pizzorno G. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation. J Lipid Res 2013; 54:1044-57. [PMID: 23355744 DOI: 10.1194/jlr.m034249] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report in this study an intrinsic link between pyrimidine metabolism and liver lipid accumulation utilizing a uridine phosphorylase 1 transgenic mouse model UPase1-TG. Hepatic microvesicular steatosis is induced by disruption of uridine homeostasis through transgenic overexpression of UPase1, an enzyme of the pyrimidine catabolism and salvage pathway. Microvesicular steatosis is also induced by the inhibition of dihydroorotate dehydrogenase (DHODH), an enzyme of the de novo pyrimidine biosynthesis pathway. Interestingly, uridine supplementation completely suppresses microvesicular steatosis in both scenarios. The effective concentration (EC(50)) for uridine to suppress microvesicular steatosis is approximately 20 µM in primary hepatocytes of UPase1-TG mice. We find that uridine does not have any effect on in vitro DHODH enzymatic activity. On the other hand, uridine supplementation alters the liver NAD(+)/NADH and NADP(+)/NADPH ratios and the acetylation profile of metabolic, oxidation-reduction, and antioxidation enzymes. Protein acetylation is emerging as a key regulatory mechanism for cellular metabolism. Therefore, we propose that uridine suppresses fatty liver by modulating the liver protein acetylation profile. Our findings reveal a novel link between uridine homeostasis, pyrimidine metabolism, and liver lipid metabolism.
Collapse
Affiliation(s)
- Thuc T Le
- Desert Research Institute, Las Vegas, NV 89135, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Setzer B, Walker UA. Antiretroviral nucleoside analogues suppress antibody synthesis in human B-lymphocytes. Antivir Ther 2012; 17:729-35. [PMID: 22414568 DOI: 10.3851/imp2086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND Some antiretroviral nucleoside reverse transcriptase inhibitors (NRTI) impair mitochondrial polymerase-γ and T-cell proliferation, possibly by pyrimidine depletion. We aimed to analyse NRTI effects on the content of mitochondrial DNA (mtDNA) and B-cells, and on their proliferation and antibody synthesis. METHODS Peripheral blood B-lymphocytes from six healthy individuals were stimulated in vitro with interleukin-4 and Staphylococcus aureus superantigen in the presence or absence of NRTI in concentrations equivalent to, or fivefold exceeding, human peak plasma levels. We also tested the effects of uridine, a pyrimidine precursor, which has antagonized NRTI toxicities in other models. RESULTS During 9 days of culture, B-lymphocyte proliferation and vitality were not affected by NRTI. Didanosine and stavudine, but not zidovudine, dose-dependently induced mtDNA depletion. All three NRTI significantly and dose-dependently impaired the synthesis of all immunoglobulin classes. The lymphocytotoxic effects of the thymidine analogues zidovudine and stavudine on B-lymphocytes were antagonized by the addition of uridine. CONCLUSIONS Didanosine, stavudine and zidovudine induce mitochondrial toxicity in human B-lymphocytes and impair the immunoglobulin synthesis in vitro, warranting further studies on their in vivo effects.
Collapse
Affiliation(s)
- Bernhard Setzer
- Department of Rheumatology and Clinical Immunology, Medizinische Universitätsklinik, Freiburg, Germany
| | | |
Collapse
|
18
|
Leung GPH. Iatrogenic mitochondriopathies: a recent lesson from nucleoside/nucleotide reverse transcriptase inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:347-69. [PMID: 22399431 DOI: 10.1007/978-94-007-2869-1_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) has revolutionized the treatment of infection by human immunodeficiency virus (HIV) and hepatitis-B virus. NRTIs can suppress viral replication in the long-term, but possess significant toxicity that can seriously compromise treatment effectiveness. The major toxicity of NRTIs is mitochondrial toxicity. This manifests as serious side effects such as myopathy, peripheral neuropathy and lactic acidosis. In general, it is believed that the mitochondrial pathogenesis is closely related to the effect of NRTIs on mitochondrial DNA polymerase-γ. Depletion and mutation of mitochondrial DNA during chronic NRTI therapy may lead to cellular respiratory dysfunction and release of reactive oxidative species, resulting in cellular damage. It is now apparent that the etiology is far more complex than originally thought. It appears to involve multiple mechanisms as well as host factors such as HIV per se, inborn mitochondrial mutation, and sex. Management of mitochondrial toxicity during NRTI therapy remains a challenge. Interruption of NRTI therapy and substitution of the causative agents with alternative better-tolerated NRTIs represents the mainstay of management for mitochondrial toxicity and its clinical manifestations. A range of pharmacological approaches has been proposed as treatments and prophylaxes.
Collapse
Affiliation(s)
- George P H Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Role of pyrimidine depletion in the mitochondrial cardiotoxicity of nucleoside analogue reverse transcriptase inhibitors. J Acquir Immune Defic Syndr 2011; 55:550-7. [PMID: 20827217 DOI: 10.1097/qai.0b013e3181f25946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Long-term antiretroviral treatment with nucleoside analogue reverse transcriptase inhibitors (NRTI) may result in a cardiomyopathy due to mitochondrial DNA (mtDNA) depletion. An intact mitochondrial function is required for the synthesis of intramyocardial pyrimidine nucleotides, which in turn are building blocks of mtDNA. We investigated if NRTI-related cardiomyopathy can be prevented with pyrimidine precursors. METHODS Mice were fed with zidovudine or zalcitabine with or without simultaneous Mitocnol, a dietary supplement with high uridine bioavailability. Myocardia were examined after 9 weeks. RESULTS Both NRTI induced a cardiomyopathy with mitochondrial enlargement, a disrupted cristal architecture on electron microscopy and diminished myocardial mtDNA copy numbers. The myocardial mtDNA-encoded cytochrome c-oxidase I subunit was impaired more profoundly than the nucleus-encoded cytochrome c-oxidase IV subunit. The myocardial formation of reactive oxygen species and mtDNA mutations was enhanced in zidovudine and zalcitabine treated animals. Mitocnol attenuated or normalized all myocardial pathology when given with both NRTI, but by itself had no intrinsic effects and no apparent adverse effects. CONCLUSIONS Zidovudine and zalcitabine induce a mitochondrial cardiomyopathy, which is antagonized with uridine supplementation, implicating pyrimidine pool depletion in its pathogenesis. Pyrimidine pool replenishment may be exploited clinically because uridine is well tolerated.
Collapse
|
20
|
McComsey GA, O'Riordan M, Choi J, Libutti D, Rowe D, Storer N, Harrill D, Gerschenson M. Mitochondrial function, inflammation, fat and bone in HIV lipoatrophy: randomized study of uridine supplementation or switch to tenofovir. Antivir Ther 2011; 17:347-53. [PMID: 22293126 DOI: 10.3851/imp1928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Lipoatrophy modestly improves when the thymidine analogue nucleoside reverse transcriptase inhibitor (tNRTI) is removed. In vitro, uridine (NucleomaxX(®); Pharma Nord, Vojens, Denmark) reversed tNRTI mitochondrial toxicity. METHODS All patients had lipoatrophy on a tNRTI-containing regimen with HIV RNA<400 copies/ml. A randomized 48-week study switched patients from tNRTI to tenofovir (TDF) or added uridine (continuing tNRTI). End points were changes in limb fat (DEXA), subcutaneous abdominal fat mitochondrial DNA (mtDNA) and mitochondrial RNA (mtRNA), inflammation markers (soluble tumour necrosis factor receptors, high-sensitivity C reactive protein [hsCRP], interleukin-6 [IL-6], soluble vascular cell adhesion molecule 1), bone mineral density (BMD) of the hip and spine, HIV-1 RNA, CD4(+) T-cells and fasting metabolic parameters. RESULTS Fifty patients were enrolled (n=24 TDF switch; n=26 uridine); median age 48 years; 54% white; 86% male; limb fat 4,494 g. Baseline characteristics were similar between groups. In the NucleomaxX(®) arm, mtRNA increased (all P<0.001), hsCRP and IL-6 increased (both P=0.02), whereas fat mtDNA decreased without changes in limb fat. In the TDF-switch arm, fat mtDNA and inflammation markers did not change; however, significant increases in mtRNAs (P<0.001), limb fat (409 g; IQR -59-1,155) and CD4(+) T-cell count (P=0.03), and decreases in total and hip BMD (median -3.3%; IQR -5.1-0; P=0.005) were observed. Between-group changes were significant for fat mtDNA, hsCRP, IL-6, limb fat and hip BMD. No correlation was found between changes in limb fat and those of fat mtRNA, inflammation markers or protease inhibitor duration. CONCLUSIONS In HIV lipoatrophy, NucleomaxX(®) improved mtRNA, but worsened inflammation markers and fat mtDNA without changes in limb fat. Switching from a tNRTI to TDF for 48 weeks increased limb fat and fat mtRNA. Large decreases in total and hip BMD were seen after TDF switch.
ClinicalTrials.gov identifier: NCT00119379.
Collapse
Affiliation(s)
- Grace A McComsey
- University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pessayre D, Fromenty B, Berson A, Robin MA, Lettéron P, Moreau R, Mansouri A. Central role of mitochondria in drug-induced liver injury. Drug Metab Rev 2011; 44:34-87. [PMID: 21892896 DOI: 10.3109/03602532.2011.604086] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A frequent mechanism for drug-induced liver injury (DILI) is the formation of reactive metabolites that trigger hepatitis through direct toxicity or immune reactions. Both events cause mitochondrial membrane disruption. Genetic or acquired factors predispose to metabolite-mediated hepatitis by increasing the formation of the reactive metabolite, decreasing its detoxification, or by the presence of critical human leukocyte antigen molecule(s). In other instances, the parent drug itself triggers mitochondrial membrane disruption or inhibits mitochondrial function through different mechanisms. Drugs can sequester coenzyme A or can inhibit mitochondrial β-oxidation enzymes, the transfer of electrons along the respiratory chain, or adenosine triphosphate (ATP) synthase. Drugs can also destroy mitochondrial DNA, inhibit its replication, decrease mitochondrial transcripts, or hamper mitochondrial protein synthesis. Quite often, a single drug has many different effects on mitochondrial function. A severe impairment of oxidative phosphorylation decreases hepatic ATP, leading to cell dysfunction or necrosis; it can also secondarily inhibit ß-oxidation, thus causing steatosis, and can also inhibit pyruvate catabolism, leading to lactic acidosis. A severe impairment of β-oxidation can cause a fatty liver; further, decreased gluconeogenesis and increased utilization of glucose to compensate for the inability to oxidize fatty acids, together with the mitochondrial toxicity of accumulated free fatty acids and lipid peroxidation products, may impair energy production, possibly leading to coma and death. Susceptibility to parent drug-mediated mitochondrial dysfunction can be increased by factors impairing the removal of the toxic parent compound or by the presence of other medical condition(s) impairing mitochondrial function. New drug molecules should be screened for possible mitochondrial effects.
Collapse
Affiliation(s)
- Dominique Pessayre
- INSERM, U, Centre de Recherche Bichat Beaujon CRB, Faculté de Médecine Xavier-Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Weinberg ME, Roman MC, Jacob P, Wen M, Cheung P, Walker UA, Mulligan K, Schambelan M. Enhanced uridine bioavailability following administration of a triacetyluridine-rich nutritional supplement. PLoS One 2011; 6:e14709. [PMID: 21379380 PMCID: PMC3040752 DOI: 10.1371/journal.pone.0014709] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022] Open
Abstract
Background Uridine is a therapy for hereditary orotic aciduria and is being investigated in other disorders caused by mitochondrial dysfunction, including toxicities resulting from treatment with nucleoside reverse transcriptase inhibitors in HIV. Historically, the use of uridine as a therapeutic agent has been limited by poor bioavailability. A food supplement containing nucleosides, NucleomaxX®, has been reported to raise plasma uridine to supraphysiologic levels. Methodology/Principal Findings Single- and multi-dose PK studies following NucleomaxX® were compared to single-dose PK studies of equimolar doses of pure uridine in healthy human volunteers. Product analysis documented that more than 90% of the nucleoside component of NucleomaxX® is in the form of triacetyluridine (TAU). Single and repeated dosing with NucleomaxX® resulted in peak plasma uridine concentrations 1–2 hours later of 150.9±39.3 µM and 161.4±31.5 µM, respectively, levels known to ameliorate mitochondrial toxicity in vitro. Cmax and AUC were four-fold higher after a single dose of NucleomaxX® than after uridine. No adverse effects of either treatment were observed. Conclusions/Significance NucleomaxX®, containing predominantly TAU, has significantly greater bioavailability than pure uridine in human subjects and may be useful in the management of mitochondrial toxicity.
Collapse
Affiliation(s)
- Melissa E Weinberg
- University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Domingo P, Torres-Torronteras J, Pomar V, Giralt M, Domingo JC, Gutierrez MDM, Gallego-Escuredo JM, Mateo MG, Cano-Soldado P, Fernandez I, Pastor-Anglada M, Vidal F, Villarroya F, Andreu A, Marti R. Uridine metabolism in HIV-1-infected patients: effect of infection, of antiretroviral therapy and of HIV-1/ART-associated lipodystrophy syndrome. PLoS One 2010; 5:e13896. [PMID: 21085568 PMCID: PMC2981524 DOI: 10.1371/journal.pone.0013896] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/15/2010] [Indexed: 01/14/2023] Open
Abstract
Background Uridine has been advocated for the treatment of HIV-1/HAART-associated lipodystrophy (HALS), although its metabolism in HIV-1-infected patients is poorly understood. Methods Plasma uridine concentrations were measured in 35 controls and 221 HIV-1-infected patients and fat uridine in 15 controls and 19 patients. The diagnosis of HALS was performed following the criteria of the Lipodystrophy Severity Grading Scale. Uridine was measured by a binary gradient-elution HPLC method. Analysis of genes encoding uridine metabolizing enzymes in fat was performed with TaqMan RT-PCR. Results Median plasma uridine concentrations for HIV-1-infected patients were 3.80 µmol/l (interquartile range: 1.60), and for controls 4.60 µmol/l (IQR: 1.8) (P = 0.0009). In fat, they were of 6.0 (3.67), and 2.8 (4.65) nmol/mg of protein, respectively (P = 0.0118). Patients with a mixed HALS form had a median plasma uridine level of 4.0 (IC95%: 3.40–4.80) whereas in those with isolated lipoatrophy it was 3.25 (2.55–4.15) µmol/l/l (P = 0.0066). The expression of uridine cytidine kinase and uridine phosphorylase genes was significantly decreased in all groups of patients with respect to controls. A higher expression of the mRNAs for concentrative nucleoside transporters was found in HIV-1-infected patients with respect to healthy controls. Conclusions HIV-1 infection is associated with a decrease in plasma uridine and a shift of uridine to the adipose tissue compartment. Antiretroviral therapy was not associated with plasma uridine concentrations, but pure lipoatrophic HALS was associated with significantly lower plasma uridine concentrations.
Collapse
Affiliation(s)
- Pere Domingo
- Infectious Diseases Unit, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
BACKGROUND Lipoatrophy is prevalent on thymidine nucleoside reverse transcriptase inhibitors (tNRTIs). A pilot trial showed that uridine (NucleomaxX) increased limb fat. METHODS A5229 was a multicenter trial in which HIV-infected individuals with lipoatrophy on tNRTI regimens were randomized to NucleomaxX or placebo. Primary endpoint was change in limb fat from baseline to week 48. The study was powered to detect 400-g difference between arms at week 48. A stratified Wilcoxon rank-sum test was used to assess between-arm differences. RESULTS The 165 participants were 91% men, 62% white; median age 49 years, CD4 cell count 506 cells/μl, and limb fat 3037 g; 81% had HIV-1 RNA 50 copies/ml or less; 76% were on zidovudine (ZDV). Baseline characteristics were similar between groups. Only 59% completed 48 weeks of treatment; however, only three participants (one on uridine) discontinued due to toxicity (diarrhea). In intent to treat, there was no difference for changes in limb fat between treatments at week 24 or week 48. On as-treated analysis, uridine resulted in an increase in %limb fat vs. placebo (3.4 vs. -0.8%, P = 0.01) at week 24 but not at week 48 (1.8 vs. 3.8%, P = 0.93). Similar results were seen when limiting the analysis to patients with at least 80% adherence. The results were not related to severity of lipoatrophy or type of tNRTI. No changes were found in facial anthropometrics, fasting lipids, trunk fat, CD4 cell count, or HIV RNA. CONCLUSIONS We found a modest transient improvement in limb fat after 24 weeks of uridine. The lack of sustained efficacy at week 48 was not due to changes in adherence or reduction in sample size. Uridine was well tolerated and did not impair virologic control.
Collapse
|
25
|
Abstract
Mitochondrial dysfunction is a major mechanism of liver injury. A parent drug or its reactive metabolite can trigger outer mitochondrial membrane permeabilization or rupture due to mitochondrial permeability transition. The latter can severely deplete ATP and cause liver cell necrosis, or it can instead lead to apoptosis by releasing cytochrome c, which activates caspases in the cytosol. Necrosis and apoptosis can trigger cytolytic hepatitis resulting in lethal fulminant hepatitis in some patients. Other drugs severely inhibit mitochondrial function and trigger extensive microvesicular steatosis, hypoglycaemia, coma, and death. Milder and more prolonged forms of drug-induced mitochondrial dysfunction can also cause macrovacuolar steatosis. Although this is a benign liver lesion in the short-term, it can progress to steatohepatitis and then to cirrhosis. Patient susceptibility to drug-induced mitochondrial dysfunction and liver injury can sometimes be explained by genetic or acquired variations in drug metabolism and/or elimination that increase the concentration of the toxic species (parent drug or metabolite). Susceptibility may also be increased by the presence of another condition, which also impairs mitochondrial function, such as an inborn mitochondrial cytopathy, beta-oxidation defect, certain viral infections, pregnancy, or the obesity-associated metabolic syndrome. Liver injury due to mitochondrial dysfunction can have important consequences for pharmaceutical companies. It has led to the interruption of clinical trials, the recall of several drugs after marketing, or the introduction of severe black box warnings by drug agencies. Pharmaceutical companies should systematically investigate mitochondrial effects during lead selection or preclinical safety studies.
Collapse
|
26
|
Giraldo N, Amariles P, Gutiérrez F, Monsalve M, Faus M. Aproximación para establecer y evaluar la relevancia clínica de las interacciones medicamentosas en pacientes infectados con virus de la inmunodeficiencia humana: actualización 2009. FARMACIA HOSPITALARIA 2010; 34:90-3. [DOI: 10.1016/j.farma.2009.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/28/2009] [Accepted: 08/07/2009] [Indexed: 10/19/2022] Open
|
27
|
Venhoff N, Lebrecht D, Deveaud C, Beauvoit B, Bonnet J, Müller K, Kirschner J, Venhoff AC, Walker UA. Oral uridine supplementation antagonizes the peripheral neuropathy and encephalopathy induced by antiretroviral nucleoside analogues. AIDS 2010; 24:345-52. [PMID: 20032772 DOI: 10.1097/qad.0b013e328335cdea] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Peripheral neuropathy and central nervous system neurodegeneration may result from the mitochondrial toxicity of some antiretroviral nucleoside analogues. We investigated whether this neuropathology may be antagonized by uridine supplementation in vivo. DESIGN Because of the obvious difficulties in obtaining human neural tissues, the mitochondrial neurotoxicity of the nucleoside analogues was studied in mice. METHODS BALB/C mice (7 weeks of age) were fed for 9 weeks with zalcitabine (13 mg/kg per day) or zidovudine (100 mg/kg per day) with or without mitocnol (340 mg/kg per day), a dietary supplement with high uridine bioavailability. Hippocampal and sciatic nerve mitochondria were analyzed. RESULTS Zalcitabine and to a lesser extent zidovudine induced a significant peripheral neuropathy and encephalopathy with disrupted mitochondrial ultrastructure, depleted mitochondrial DNA, reduced levels of cytochrome c oxidase activity and diminished expression of mitochondrial DNA-encoded cytochrome c oxidase subunit I. Mitocnol had no intrinsic effects but attenuated or fully normalized all measured disorder of the peripheral and central nervous system. CONCLUSION Zidovudine and zalcitabine induce a mitochondrial disorder in the peripheral and central nervous system, both of which are antagonized by uridine supplementation.
Collapse
|
28
|
Han D, Shinohara M, Ybanez MD, Saberi B, Kaplowitz N. Signal transduction pathways involved in drug-induced liver injury. Handb Exp Pharmacol 2010:267-310. [PMID: 20020266 DOI: 10.1007/978-3-642-00663-0_10] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocyte death following drug intake is the critical event in the clinical manifestation of drug-induced liver injury (DILI). Traditionally, hepatocyte death caused by drugs had been attributed to overwhelming oxidative stress and mitochondria dysfunction caused by reactive metabolites formed during drug metabolism. However, recent studies have also shown that signal transduction pathways activated/inhibited during oxidative stress play a key role in DILI. In acetaminophen (APAP)-induced liver injury, hepatocyte death requires the sustained activation of c-Jun kinase (JNK), a kinase important in mediating apoptotic and necrotic death. Inhibition of JNK using chemical inhibitors or knocking down JNK can prevent hepatocyte death even in the presence of extensive glutathione (GSH) depletion, covalent binding, and oxidative stress. Once activated, JNK translocates to mitochondria, to induce mitochondria permeability transition and trigger hepatocyte death. Mitochondria are central targets where prodeath kinases such as JNK, prosurvival death proteins such as bcl-xl, and oxidative damage converge to determine hepatocyte survival. The importance of mitochondria in DILI is also observed in the Mn-SOD heterozygous (+/-) model, where mice with less mitochondrial Mn-SOD are sensitized to liver injury caused by certain drugs. An extensive body of research is accumulating suggesting a central role of mitochondria in DILI. Drugs can also cause redox changes that inhibit important prosurvival pathways such as NF-kappaB. The inhibition of NF-kappaB by subtoxic doses of APAP sensitizes hepatocyte to the cytotoxic actions of tumor necrosis factor (TNF). Many drugs will induce liver injury if simultaneously treated with LPS, which promotes inflammation and cytokine release. Drugs may be sensitizing hepatocytes to the cytotoxic effects of cytokines such as TNF, or vice versa. Overall many signaling pathways are important in regulating DILI, and represent potential therapeutic targets to reduce liver injury caused by drugs.
Collapse
Affiliation(s)
- Derick Han
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, 2011 Zonal Ave, HMR 101, Los Angeles, CA 90089-9121, USA.
| | | | | | | | | |
Collapse
|
29
|
David S, Hamilton JP. Drug-induced Liver Injury. US GASTROENTEROLOGY & HEPATOLOGY REVIEW 2010; 6:73-80. [PMID: 21874146 PMCID: PMC3160634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Drug-induced liver injury (DILI) is common and nearly all classes of medications can cause liver disease. Most cases of DILI are benign, and improve after drug withdrawal. It is important to recognize and remove the offending agent as quickly as possible to prevent the progression to chronic liver disease and/or acute liver failure. There are no definite risk factors for DILI, but pre-existing liver disease and genetic susceptibility may predispose certain individuals. Although most patients have clinical symptoms that are identical to other liver diseases, some patients may present with symptoms of systemic hypersensitivity. Treatment of drug and herbal-induced liver injury consists of rapid drug discontinuation and supportive care targeted to alleviate unwanted symptoms.
Collapse
Affiliation(s)
- Stefan David
- Research Fellow, Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine
| | - James P Hamilton
- Assistant Professor of Medicine, Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine
| |
Collapse
|