1
|
Cao P, Gu J, Liu M, Wang Y, Chen M, Jiang Y, Wang X, Zhu S, Gao X, Li S. BRMS1L confers anticancer activity in non-small cell lung cancer by transcriptionally inducing a redox imbalance in the GPX2-ROS pathway. Transl Oncol 2024; 41:101870. [PMID: 38262108 PMCID: PMC10832508 DOI: 10.1016/j.tranon.2023.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Low expression levels of breast cancer metastasis suppressor 1 like (BRMS1L) have been associated with the growth of cancer cells. However, the mechanisms underlying the role of BRMS1L as an antitumour transcription factor in the progression of NSCLC have not been explored. Herein, we reveal that BRMS1L plays a key role as a tumour suppressor in inhibiting NSCLC proliferation and metastasis. Mechanistically, BRMS1L overexpression results in the downregulation of glutathione peroxidase 2 (GPX2) expression and consequently causes abnormal glutathione metabolism and increased levels of reactive oxygen species (ROS) in cells, inducing oxidative stress injury and apoptosis. Furthermore, overexpression of GPX2 enhances the growth advantage and oxidative stress repair conferred by knockdown of BRMS1L. Importantly, we show that low expression of BRMS1L in NSCLC cells causes relatively high levels of antioxidant accumulation to maintain cell redox balance and renders cancer cells more sensitive to treatment with piperlongumine as an ROS inducer both in vitro and in vivo. These findings offer new insights into the role of BRMS1L as a transcriptional repressor in NSCLC and suggest that the BRMS1L expression level may be a potential biomarker for predicting the therapeutic response to small molecule ROS inducers, providing new ideas for targeted therapy.
Collapse
Affiliation(s)
- Penglong Cao
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Juebin Gu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Mulin Liu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Yingxin Wang
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Mingying Chen
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Yizhu Jiang
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Xiaoyan Wang
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Siqi Zhu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Xue Gao
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Shijun Li
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China.
| |
Collapse
|
2
|
Gelman IH. Metastasis suppressor genes in clinical practice: are they druggable? Cancer Metastasis Rev 2023; 42:1169-1188. [PMID: 37749308 PMCID: PMC11629483 DOI: 10.1007/s10555-023-10135-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023]
Abstract
Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell-cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
3
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Pérez-Durán J, Luna A, Portilla A, Martínez P, Ceballos G, Ortíz-Flores MÁ, Solis-Paredes JM, Nájera N. (-)-Epicatechin Inhibits Metastatic-Associated Proliferation, Migration, and Invasion of Murine Breast Cancer Cells In Vitro. Molecules 2023; 28:6229. [PMID: 37687058 PMCID: PMC10488497 DOI: 10.3390/molecules28176229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Breast cancer, due to its high incidence and mortality, is a public health problem worldwide. Current chemotherapy uses non-specific cytotoxic drugs, which inhibit tumor growth but cause significant adverse effects. (-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids. It is widely distributed in the plant kingdom; it can be found in green tea, grapes, and cocoa. Several studies in animals and humans have shown that EC induces beneficial effects in the skeletal muscle and the cardiovascular system, reducing risk factors such as arterial hypertension, endothelial dysfunction, damage to skeletal muscle structure, and mitochondrial malfunction by promoting mitochondrial biogenesis, with no adverse effects reported. Recently, we reported that EC had an antitumor effect in a murine triple-negative mammary gland tumor model, decreasing tumoral size and volume and increasing survival by 44%. This work aimed to characterize the effects of flavanol EC on proliferation, migration, and metastasis markers of triple-negative murine breast (4T1) cancer cells in culture. We found proliferation diminished and Bax/Bcl2 ratio increased. When the migration of culture cells was evaluated, we observed a significant reduction in migration. Also, the relative expression of the genes associated with metastasis, Cdh1, Mtss1, Pten, Bmrs, Fat1, and Smad4, was increased. In conclusion, these results contribute to understanding molecular mechanisms activated by EC that can inhibit metastatic-associated proliferation, migration, and invasion of murine breast cancer cells.
Collapse
Affiliation(s)
- Javier Pérez-Durán
- Departamento de Investigación en Salud Reproductiva y Perinatal, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (J.P.-D.); (A.L.); (J.M.S.-P.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Aglaé Luna
- Departamento de Investigación en Salud Reproductiva y Perinatal, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (J.P.-D.); (A.L.); (J.M.S.-P.)
| | - Andrés Portilla
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Pamela Martínez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Guillermo Ceballos
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Miguel Ángel Ortíz-Flores
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| | - Juan Mario Solis-Paredes
- Departamento de Investigación en Salud Reproductiva y Perinatal, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico; (J.P.-D.); (A.L.); (J.M.S.-P.)
| | - Nayelli Nájera
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.P.); (P.M.); (G.C.); (M.Á.O.-F.)
| |
Collapse
|
5
|
Feldheim J, Kessler AF, Feldheim JJ, Schmitt D, Oster C, Lazaridis L, Glas M, Ernestus RI, Monoranu CM, Löhr M, Hagemann C. BRMS1 in Gliomas-An Expression Analysis. Cancers (Basel) 2023; 15:cancers15112907. [PMID: 37296870 DOI: 10.3390/cancers15112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The metastatic suppressor BRMS1 interacts with critical steps of the metastatic cascade in many cancer entities. As gliomas rarely metastasize, BRMS1 has mainly been neglected in glioma research. However, its interaction partners, such as NFκB, VEGF, or MMPs, are old acquaintances in neurooncology. The steps regulated by BRMS1, such as invasion, migration, and apoptosis, are commonly dysregulated in gliomas. Therefore, BRMS1 shows potential as a regulator of glioma behavior. By bioinformatic analysis, in addition to our cohort of 118 specimens, we determined BRMS1 mRNA and protein expression as well as its correlation with the clinical course in astrocytomas IDH mutant, CNS WHO grade 2/3, and glioblastoma IDH wild-type, CNS WHO grade 4. Interestingly, we found BRMS1 protein expression to be significantly decreased in the aforementioned gliomas, while BRMS1 mRNA appeared to be overexpressed throughout. This dysregulation was independent of patients' characteristics or survival. The protein and mRNA expression differences cannot be finally explained at this stage. However, they suggest a post-transcriptional dysregulation that has been previously described in other cancer entities. Our analyses present the first data on BRMS1 expression in gliomas that can provide a starting point for further investigations.
Collapse
Affiliation(s)
- Jonas Feldheim
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Almuth F Kessler
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Julia J Feldheim
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Department of Neurosurgery, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Dominik Schmitt
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Department of Nuclear Medicine, University of Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph Oster
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Lazaros Lazaridis
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Ralf-Ingo Ernestus
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Mario Löhr
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Babu D, Chintal R, Panigrahi M, Phanithi PB. Distinct expression and function of breast cancer metastasis suppressor 1 in mutant P53 glioblastoma. Cell Oncol (Dordr) 2022; 45:1451-1465. [PMID: 36284039 DOI: 10.1007/s13402-022-00729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Glioblastoma (GBM) is the most malignant subtype of astrocytic tumors with the worst prognosis in all its progressive forms. Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene that controls malignancy in multiple tumors. As yet, however, its clinical and functional significance in mutant P53 GBM remains inconclusive. Here, we attempted to study the importance of BRMS1 in mutant P53 GBM. METHODS BRMS1 expression was evaluated in 74 human astrocytoma tissues by qRT-PCR, Western blotting and immunohistochemistry. BRMS1 expression in the astrocytoma tissues was correlated with clinicopathological parameters, the P53 mutation status and BRMS1 downstream targets, and compared with TCGA and NCI-60 datasets. siRNA-mediated knockdown of BRMS1 was performed in selected GBM cell lines to evaluate the functional role of BRMS1. RESULTS Our study revealed an enhanced expression of BRMS1 in GBM which was associated with a poor patient survival, and this observation was corroborated by the TCGA dataset. We also found a positive correlation between BRMS1 expression and a mutant P53 status in GBM which was associated with a poor prognosis. In vitro BRMS1 silencing reduced the growth of mutant P53 GBM cells and repressed their colonization and migration/invasion by modulating EGFR-AKT/NF-κB signaling. Transcriptional profiling revealed a positive and negative correlation of uPA and ING4 expression with BRMS1 expression, respectively. CONCLUSION Our data indicate upregulation of BRMS1 in high grade astrocytomas which correlates positively with mutant P53 and a poor patient survival. Silencing of BRMS1 in mutant P53 GBM cell lines resulted in a reduced cellular growth and migration/invasion by suppressing the EGFR-AKT/NF-kB signaling pathway. BRMS1 may serve as a predictive biomarker and therapeutic target in mutant P53 GBM.
Collapse
Affiliation(s)
- Deepak Babu
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Room No: F-23/F-71, Hyderabad, Telangana State, 500 046, India
| | - Ramulu Chintal
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Room No: F-23/F-71, Hyderabad, Telangana State, 500 046, India
| | - Manas Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences, 500 003, Secunderabad, Telangana State, India
| | - Prakash Babu Phanithi
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Room No: F-23/F-71, Hyderabad, Telangana State, 500 046, India.
| |
Collapse
|
7
|
Liu Y, Chudgar N, Mastrogiacomo B, He D, Lankadasari MB, Bapat S, Jones GD, Sanchez-Vega F, Tan KS, Schultz N, Mukherjee S, Offit K, Bao Y, Bott MJ, Rekhtman N, Adusumilli PS, Li BT, Mayo MW, Jones DR. A germline SNP in BRMS1 predisposes patients with lung adenocarcinoma to metastasis and can be ameliorated by targeting c-fos. Sci Transl Med 2022; 14:eabo1050. [PMID: 36197962 PMCID: PMC9926934 DOI: 10.1126/scitranslmed.abo1050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
About 50% of patients with early-stage, surgically resected lung cancer will develop distant metastasis. There remains an unmet need to identify patients likely to develop recurrence and to design innovative therapies to decrease this risk. Two primary isoforms of BRMS1, v1 and v2, are present in humans. Using next-generation sequencing of BRMS1 on matched human noncancerous lung tissue and non-small cell lung cancer (NSCLC) specimens, we identified single-nucleotide polymorphism (SNP) rs1052566 that results in an A273V mutation of BRMS1v2. This SNP is homozygous (BRMS1v2A273V/A273V) in 8% of the population and correlates with aggressive biology in lung adenocarcinoma (LUAD). Mechanistically, we show that BRMS1v2 A273V abolishes the metastasis suppressor function of BRMS1v2 and promotes robust cell invasion and metastases by activation of c-fos-mediated gene-specific transcriptional regulation. BRMS1v2 A273V increases cell invasion in vitro and increases metastases in both tail-vein injection xenografts and LUAD patient-derived organoid (PDO) intracardiac injection metastasis in vivo models. Moreover, we show that BRMS1v2 A273V fails to interact with nuclear Src, thereby activating intratumoral c-fos in vitro. Higher c-fos results in up-regulation of CEACAM6, which drives metastases in vitro and in vivo. Using both xenograft and PDO metastasis models, we repurposed T5224 for treatment, a c-fos pharmacologic inhibitor investigated in clinical trials for arthritis, and observed suppression of metastases in BRMS1v2A273V/A273V LUAD in mice. Collectively, we elucidate the mechanism of BRMS1v2A273V/A273V-induced metastases and offer a putative therapeutic strategy for patients with LUAD who have this germline alteration.
Collapse
Affiliation(s)
- Yuan Liu
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Neel Chudgar
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Brooke Mastrogiacomo
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center; New York, NY USA
| | - Di He
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Manendra B. Lankadasari
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Samhita Bapat
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Gregory D. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | | | - Kay See Tan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center; New York, NY USA
| | - Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yongde Bao
- Department of Microbiology, University of Virginia; Charlottesville, VA 22908, USA
| | - Matthew J. Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center; New York, NY USA
| | - Natasha Rekhtman
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Department of Pathology, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Bob T. Li
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Department of Medicine, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Marty W. Mayo
- Department of Biochemistry & Molecular Genetics, University of Virginia; Charlottesville, VA 22908, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA,Corresponding Author: David R. Jones, MD, Professor & Chief, Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 7, New York, NY 10065 USA Phone: 212-639-6428; Fax: 232-639-6686;
| |
Collapse
|
8
|
Farokhimanesh S, Forouzandeh Moghadam M, Ebrahimi M, Hashemi ZS. Metastasis Inhibition by Cell Type Specific Expression of BRMS1 Gene under The Regulation of miR200 Family Response Elements. CELL JOURNAL 2021; 23:225-237. [PMID: 34096224 PMCID: PMC8181311 DOI: 10.22074/cellj.2021.6988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/03/2019] [Indexed: 11/23/2022]
Abstract
Objective Specific expression of therapeutic genes in cancer therapy has been per used for many years. One of the
innovative strategies that have recently been introduced is employing miRNA response elements (MREs) of microRNAs
(whose expression are reduced or inhibited in cancerous cells) into the 3´UTR of the therapeutic genes for their specific
expression. Accordingly, MREs of anti-metastatic miRNA family have been used in 3´UTR of the metastasis suppressor
gene in the corresponding cells to evaluate the level of metastatic behavior. Material and Methods In this experimental study, 3´UTR of the ZEB1 gene with 592 bp length, encompassing multiple
MREs of miR-141, miR-429, miR-200b and miR-200c, was employed to replace BRMS1 3´UTR. The obtained vector
was then assessed in the context of MCF-10A, MDA-MB231 and MCF-7 cells. Results It was shown that the employed MREs are able to up-regulate BRMS expression in the metastatic MDA-
MB231 cells (almost 3.5-fold increase), while it was significantly reduced within tumorigenic/non-metastatic MCF-7
cells. Specific expression of BRMS1 in metastatic cells led to a significant reduction in their migratory and invasive
characteristics (about 65% and 55%, respectively). Two-tailed student’s t test was utilized for statistical analysis. Conclusion It was demonstrated that a chimeric vector containing BRMS1 which is regulated by miR-200 family
response element may represent a promising therapeutic tool. This is due to the capability of the chimeric vector for
cell type-specific expression of anti-metastatic genes with lowest side-effects. It consequently prohibits the invasive
characteristics of metastatic cells.
Collapse
Affiliation(s)
- Samila Farokhimanesh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Biotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Sadat Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Epigenetic Regulation in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983575 DOI: 10.1007/978-981-32-9620-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Aberrant epigenetic alteration has been associated with development of various cancers, including breast cancer. Since epigenetic modifications such as DNA methylation and histone modification are reversible, epigenetic enzymes, including histone modifying enzymes and DNA methyltransferases, emerge as attractive targets for cancer therapy. Although epi-drugs targeting histone deacetylation or DNA methylation have received FDA approval for cancer therapy, a very modest anti-tumor activity has been observed with monotherapy in clinical studies of breast cancer. To improve efficacy of epi-drugs in breast cancer, combination of epi-drugs with other therapies currently has been investigated. Additionally, basic researches to elucidate molecular causes of cancer should be extensively and intensively conducted in order to find novel epigenetic druggable targets. In this chapter, we summarize how epigenetic regulation affects the development of breast cancer and how to control cancer phenotype by modulating abnormal epigenetic modifications, and then suggest future research directions in epigenetics for breast cancer treatment.
Collapse
|
10
|
Abstract
Despite high mortality rates, molecular understanding of metastasis remains limited. It can be regulated by both pro- and anti-metastasis genes. The metastasis suppressor, breast cancer metastasis suppressor 1 (BRMS1), has been positively correlated with patient outcomes, but molecular functions are still being characterized. BRMS1 has been implicated in focal adhesion kinase (FAK), epidermal growth factor receptor (EGFR), and NF-κB signaling pathways. We review evidence that BRMS1 regulates these vast signaling pathways through chromatin remodeling as a member of mSin3 histone deacetylase complexes.
Collapse
|
11
|
Guereño M, Delgado Pastore M, Lugones AC, Cercato M, Todaro L, Urtreger A, Peters MG. Glypican-3 (GPC3) inhibits metastasis development promoting dormancy in breast cancer cells by p38 MAPK pathway activation. Eur J Cell Biol 2020; 99:151096. [DOI: 10.1016/j.ejcb.2020.151096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
|
12
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
13
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 DOI: 10.1186/s12943019-1124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 05/26/2023] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
14
|
Song Y, Xu Y, Pan C, Yan L, Wang ZW, Zhu X. The emerging role of SPOP protein in tumorigenesis and cancer therapy. Mol Cancer 2020; 19:2. [PMID: 31901237 PMCID: PMC6942384 DOI: 10.1186/s12943-019-1124-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The nuclear speckle-type pox virus and zinc finger (POZ) protein (SPOP), a representative substrate-recognition subunit of the cullin-RING E3 ligase, has been characterized to play a dual role in tumorigenesis and cancer progression. Numerous studies have determined that SPOP suppresses tumorigenesis in a variety of human malignancies such as prostate, lung, colon, gastric, and liver cancers. However, several studies revealed that SPOP exhibited oncogenic function in kidney cancer, suggesting that SPOP could exert its biological function in a cancer type-specific manner. The role of SPOP in thyroid, cervical, ovarian, bone and neurologic cancers has yet to be determined. In this review article, we describe the structure and regulation of SPOP in human cancer. Moreover, we highlight the critical role of SPOP in tumorigenesis based on three major categories: physiological evidence (animal models), pathological evidence (human cancer specimens) and biochemical evidence (downstream ubiquitin substrates). Furthermore, we note that SPOP could be a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Chunyu Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Linzhi Yan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Zhi-wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
15
|
Kolb AD, Shupp AB, Mukhopadhyay D, Marini FC, Bussard KM. Osteoblasts are "educated" by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment. Breast Cancer Res 2019; 21:31. [PMID: 30813947 PMCID: PMC6391840 DOI: 10.1186/s13058-019-1117-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION In a cancer-free environment in the adult, the skeleton continuously undergoes remodeling. Bone-resorbing osteoclasts excavate erosion cavities, and bone-depositing osteoblasts synthesize osteoid matrix that forms new bone, with no net bone gain or loss. When metastatic breast cancer cells invade the bone, this balance is disrupted. Patients with bone metastatic breast cancer frequently suffer from osteolytic bone lesions that elicit severe bone pain and fractures. Bisphosphonate treatments are not curative. Under ideal circumstances, osteoblasts would synthesize new matrix to fill in erosion cavities caused by osteoclasts, but this is not what occurs. Our prior evidence demonstrated that osteoblasts are diverted from laying down bone matrix to producing cytokines that facilitate breast cancer cell maintenance in late-stage disease. Here, we have new evidence to suggest that there are subpopulations of osteoblasts in the tumor niche as evidenced by their protein marker expression that have distinct roles in tumor progression in the bone. METHODS Tumor-bearing tibia of mice was interrogated by immunofluorescent staining for the presence of osteoblasts and alterations in niche protein expression. De-identified tissue from patients with bone metastatic breast cancer was analyzed for osteoblast subpopulations via multi-plex immunofluorescent staining. Effects of breast cancer cells on osteoblasts were recapitulated in vitro by osteoblast exposure to breast cancer-conditioned medium. Triple-negative and estrogen receptor-positive breast cancer proliferation, cell cycle, and p21 expression were assessed upon contact with "educated" osteoblasts. RESULTS A subpopulation of osteoblasts was identified in the bone tumor microenvironment in vivo of both humans and mice with bone metastatic breast cancer that express RUNX2/OCN/OPN but is negative for IL-6 and alpha-smooth muscle actin. These tumor "educated" osteoblasts (EOs) have altered properties compared to "uneducated" osteoblasts and suppress both triple-negative and estrogen receptor-positive breast cancer cell proliferation and increase cancer cell p21 expression. EO effects on breast cancer proliferation were mediated by NOV and decorin. Importantly, the presence of EO cells in the tibia of mice bearing tumors led to increased amounts of alkaline phosphatase and suppressed the expression of inflammatory cytokines in vivo. CONCLUSIONS Our work reveals that there is a subpopulation of osteoblasts in the bone tumor microenvironment that demonstrate a functional role in retarding breast cancer cell growth.
Collapse
Affiliation(s)
- Alexus D. Kolb
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Alison B. Shupp
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Dimpi Mukhopadhyay
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| | - Frank C. Marini
- Comprehensive Cancer Center Wake Forest University and Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC USA
| | - Karen M. Bussard
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
16
|
Qiu R, Shi H, Wang S, Leng S, Liu R, Zheng Y, Huang W, Zeng Y, Gao J, Zhang K, Hou Y, Feng D, Yang Y. BRMS1 coordinates with LSD1 and suppresses breast cancer cell metastasis. Am J Cancer Res 2018; 8:2030-2045. [PMID: 30416854 PMCID: PMC6220148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 06/09/2023] Open
Abstract
Breast carcinoma metastasis suppressor gene 1 (BRMS1) encodes an inhibitor of metastasis and is reported in many types of tumor metastasis. However, the mechanism of BRMS1-mediated inhibition of breast cancer metastasis at the transcriptional level remains elusive. Here, we identified using affinity purification and mass spectrometry (MS) that BRMS1 is an integral component of the LSD1/CoREST corepressor complex. Analysis of the BRMS1/LSD1 complex using high-throughput RNA deep sequencing (RNA-seq) identified a cohort of target genes such as VIM, INSIG2, KLK11, MRPL33, COL5A2, OLFML3 and SLC1A1, some of which are metastasis-related. Our results have showed that BRMS1 together with LSD1 are required for inhibition of breast cancer cell migration and invasion. Collectively, these findings demonstrate that BRMS1 executes transcriptional suppression of breast cancer metastasis by associating with the LSD1 and thus can be targeted for breast cancer therapy.
Collapse
Affiliation(s)
- Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Hang Shi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Shuang Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Ruiqiong Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Yu Zheng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Wei Huang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Jie Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Tianjin 300070, China
| |
Collapse
|
17
|
Cao P, Zhao S, Sun Z, Jiang N, Shang Y, Wang Y, Gu J, Li S. BRMS1L suppresses ovarian cancer metastasis via inhibition of the β-catenin-wnt pathway. Exp Cell Res 2018; 371:214-221. [PMID: 30118697 DOI: 10.1016/j.yexcr.2018.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 01/19/2023]
Abstract
A low level of breast cancer metastasis suppressor 1-like (BRMS1L) has been implicated in tumour metastasis involving breast cancer and other cancers. It remains unclear whether BRMS1L is involved in epithelial ovarian cancer (EOC) metastasis and what the molecular mechanism of BRMS1L is in suppressing EOC metastasis. In this study, we examined the mRNA expression and protein level of BRMS1L by screening EOC patients. Our results show that BRMS1L expression is downregulated in EOC patients compared to that in normal people and negatively correlated to pathological stages of EOC. We further explored examining epithelial to mesenchymal transition (EMT) as the molecular mechanism of BRMS1L in cancer cell metastasis. The overexpression of BRMS1L inhibits EOC cell migration and invasion, and this inhibition is correlated to the inactivation of EMT and Wnt/β-catenin signalling in vitro. Knockdown of BRMS1L by shRNA promotes EOC metastasis, enhances EMT process and activates Wnt/β-catenin signalling. These results suggest that BRMS1L plays a critical role in the suppression of ovarian cancer metastasis, and BRMS1L can be considered as a prognostic biomarker and potential therapeutic target for EOC patients.
Collapse
Affiliation(s)
- Penglong Cao
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuai Zhao
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhigang Sun
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Nan Jiang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuhong Shang
- Department of Gynecology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yingxin Wang
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Juebin Gu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shijun Li
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
18
|
Qiao X, Zhou Y, Xie W, Wang Y, Zhang Y, Tian T, Dou J, Yang X, Shen S, Hu J, Qiao S, Wu Y. Scinderin is a novel transcriptional target of BRMS1 involved in regulation of hepatocellular carcinoma cell apoptosis. Am J Cancer Res 2018; 8:1008-1018. [PMID: 30034938 PMCID: PMC6048394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023] Open
Abstract
Tumor metastasis suppressor factor BRMS1 can regulate the metastasis of breast cancer and other tumors. Here we report scinderin (SCIN) as a novel transcriptional target of BRMS1. SCIN protein belongs to the cytoskeletal gelsolin protein superfamily and its involvement in tumorigenesis remains largely illusive. An inverse correlation between the expression levels of BRMS1 and SCIN was observed in hepatocellular carcinoma (HCC) cells and tissues. On the molecular level, BRMS1 binds to SCIN promoter and exerts a suppressive role in regulating SCIN transcription. FACS analysis and caspase 9 immunoblot reveal that knockdown of SCIN expression can sensitize HCC cells to chemotherapeutic drugs, leading to suppression of tumor growth in vivo. Consistently, overexpression of SCIN protects cells from apoptotic death, contributing to increased xenografted HCC cell growth. In summary, our study reveals SCIN as a functional apoptosis regulator as well as a novel target of BRMS1 during HCC tumorigenesis. Inhibition of SCIN might bring a potential cancer therapy approach.
Collapse
Affiliation(s)
- Xiaojing Qiao
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yiren Zhou
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Wenjuan Xie
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yi Wang
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yicheng Zhang
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Tian Tian
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
- Centre for Discovery Brain Sciences, University of EdinburghEdinburgh, EH89XD, Scotland
| | - Jianming Dou
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Xi Yang
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Suqin Shen
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Jianwei Hu
- Endoscopy Center and Department of General Surgery, Zhongshan Hospital of Fudan UniversityShanghai 200032, P. R. China
| | - Shouyi Qiao
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| | - Yanhua Wu
- School of Life Sciences, Fudan UniversityShanghai 200433, P. R. China
| |
Collapse
|
19
|
Hao J, Jin X, Shi Y, Zhang H. miR-93-5p enhance lacrimal gland adenoid cystic carcinoma cell tumorigenesis by targeting BRMS1L. Cancer Cell Int 2018; 18:72. [PMID: 29760585 PMCID: PMC5944175 DOI: 10.1186/s12935-018-0552-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background Lacrimal adenoid cystic carcinoma (LACC) is one of the most common malignancies that affects lacrimal gland. MicroRNAs are known to play a crucial role as oncogenes or tumor suppressors. Specifically, miR-93 has been reported to play a crucial role in colorectal, breast, pancreatic, lung cancer and hepatocellular carcinoma. However, the role of miR-93 in LACC and the potential molecular mechanisms involved remain unknown. Therefore, we took the challenge to determine the involvement of miR-93 in the LACC by targeting BRMS1L. Method A total of 5 adenoid cystic carcinoma (ACC) of lacrimal gland patient tissues and their plasma were examined. Three normal lacrimal glands and three normal serums were collected as a control group. After surgical resection, the specimens were preserved in liquid nitrogen and stored at − 80 °C until RNA extraction. Afterwards, LACC cells with miR-93-5p overexpression were subjected to qRT-PCR and western blot for epithelial–mesenchymal transition (EMT) markers levels. Ability of LACC cell migration, invasion, proliferation and apoptosis was examined by wounded healing, transwell, CCK-8 and apoptosis assays. Afterwards, TargetScan was used to predict putative targets of miR-93-5p. Then, the examination was performed whether miR-93-5p targets BRMS1L by the use of luciferase reporter assays and western blotting. Finally, immunohistochemical staining was sone and all the images were taken using a microscope (Nikon, Tokyo). Results Our results showed that miR-93 was overexpressed in tissues and plasma of LACC patients compared to healthy controls. MiR-93 downregulated E-cadherin expression while increasing N-cadherin expression and significantly inhibited luciferase activity. Furthermore, western blotting results confirmed that miR-93-5p could inhibit BRMS1L expression. The BRMS1L staining in LACC tissues was weaker than in normal controls. In addition, miR-93-5p revealed a reverse correlation with the expression of BRMS1L. In addition, significant upregulation of E-cadherin and downregulation of N-cadherin were found when LACC cells were transfected with BRMS1L. Finally, miR-93-5p significantly enhanced TOP/FOP luciferase activity. Upregulation of BRMS1L reduced TOP/FOP luciferase activity while further overexpression of miR-93-5p could not rescue Wnt signaling activity. Conclusions Our findings report that miR-93 promotes LACC cell migration, invasion, and proliferation via targeting downregulation of BRMS1L through regulation of Wnt signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12935-018-0552-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Hao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 194 Xuefu Road, Harbin, 150001 Heilongjiang China
| | - Xin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 194 Xuefu Road, Harbin, 150001 Heilongjiang China
| | - Yan Shi
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 194 Xuefu Road, Harbin, 150001 Heilongjiang China
| | - Hong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 194 Xuefu Road, Harbin, 150001 Heilongjiang China
| |
Collapse
|
20
|
Hao S, Ha L, Cheng G, Wan Y, Xia Y, Sosnoski DM, Mastro AM, Zheng SY. A Spontaneous 3D Bone-On-a-Chip for Bone Metastasis Study of Breast Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702787. [PMID: 29399951 DOI: 10.1002/smll.201702787] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/27/2017] [Indexed: 05/10/2023]
Abstract
Bone metastasis occurs at ≈70% frequency in metastatic breast cancer. The mechanisms used by tumors to hijack the skeleton, promote bone metastases, and confer therapeutic resistance are poorly understood. This has led to the development of various bone models to investigate the interactions between cancer cells and host bone marrow cells and related physiological changes. However, it is challenging to perform bone studies due to the difficulty in periodic sampling. Herein, a bone-on-a-chip (BC) is reported for spontaneous growth of a 3D, mineralized, collagenous bone tissue. Mature osteoblastic tissue of up to 85 µm thickness containing heavily mineralized collagen fibers naturally formed in 720 h without the aid of differentiation agents. Moreover, co-culture of metastatic breast cancer cells is examined with osteoblastic tissues. The new bone-on-a-chip design not only increases experimental throughput by miniaturization, but also maximizes the chances of cancer cell interaction with bone matrix of a concentrated surface area and facilitates easy, frequent observation. As a result, unique hallmarks of breast cancer bone colonization, previously confirmed only in vivo, are observed. The spontaneous 3D BC keeps the promise as a physiologically relevant model for the in vitro study of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Sijie Hao
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Laura Ha
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gong Cheng
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuan Wan
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yiqiu Xia
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donna M Sosnoski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrea M Mastro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Micro & Nano Integrated Biosystem (MINIBio) Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
- Penn State Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
21
|
Abstract
Metastasis is a complex process and a major contributor of death in cancer patients. Metastasis suppressor genes are identified by their ability to inhibit metastasis at a secondary site without affecting the growth of primary tumor. In this review, we have conducted a survey of the metastasis suppressor literature to identify common downstream pathways. The metastasis suppressor genes mechanistically target MAPK, G-protein-coupled receptor, cell adhesion, cytoskeletal, transcriptional regulatory, and metastasis susceptibility pathways. The majority of the metastasis suppressor genes are functionally multifactorial, inhibiting metastasis at multiple points in the cascade, and many operate in a context-dependent fashion. A greater understanding of common pathways/molecules targeted by metastasis suppressor could improve metastasis treatment strategies.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
22
|
Khan I, Steeg PS. Metastasis suppressors: functional pathways. J Transl Med 2018; 98:198-210. [PMID: 28967874 PMCID: PMC6545599 DOI: 10.1038/labinvest.2017.104] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a complex process and a major contributor of death in cancer patients. Metastasis suppressor genes are identified by their ability to inhibit metastasis at a secondary site without affecting the growth of primary tumor. In this review, we have conducted a survey of the metastasis suppressor literature to identify common downstream pathways. The metastasis suppressor genes mechanistically target MAPK, G-protein-coupled receptor, cell adhesion, cytoskeletal, transcriptional regulatory, and metastasis susceptibility pathways. The majority of the metastasis suppressor genes are functionally multifactorial, inhibiting metastasis at multiple points in the cascade, and many operate in a context-dependent fashion. A greater understanding of common pathways/molecules targeted by metastasis suppressor could improve metastasis treatment strategies.
Collapse
|
23
|
Zheng T, Wang A, Hu D, Wang Y. Molecular mechanisms of breast cancer metastasis by gene expression profile analysis. Mol Med Rep 2017; 16:4671-4677. [PMID: 28791367 PMCID: PMC5647040 DOI: 10.3892/mmr.2017.7157] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/18/2017] [Indexed: 01/08/2023] Open
Abstract
Metastasis is the main cause of breast cancer‑related mortalities. The present study aimed to uncover the relevant molecular mechanisms of breast cancer metastasis and to explore potential biomarkers that may be used for prognosis. Expression profile microarray data GSE8977, which contained 22 stroma samples (15 were from normal breast and 7 were from invasive ductal carcinoma tumor samples), were obtained from the Gene Expression Omnibus database. Following data preprocessing, differentially expressed genes (DEGs) were selected based on analyses conducted using the linear models for microarray analysis package from R and Bioconductor software. The resulting data were used in subsequent function and pathway enrichment analyses, as well as protein‑protein interaction (PPI) network and subnetwork analyses. Transcription factors (TFs) and tumor‑associated genes were also identified among the DEGs. A total of 234 DEGs were identified, which were enriched in immune response, cell differentiation and cell adhesion‑related functions and pathways. Downregulated DEGs included TFs, such as the proto‑oncogene SPI1, pre‑B‑cell leukemia homeobox 3 (PBX3) and lymphoid enhancer‑binding factor 1 (LEF1), as well as tumor suppressors (TSs), such as capping actin protein, gelsolin like (CAPG) and tumor protein p53‑inducible nuclear protein 1 (TP53INP1). Upregulated DEGs also included TFs and tumor suppressors, consisting of transcription factor 7‑like 2 (TCF7L2) and pleiomorphic adenoma gene‑like 1 (PLAGL1). DEGs that were identified at the hub nodes in the PPI network and the subnetwork were epidermal growth factor receptor (EGFR) and spleen‑associated tyrosine kinase (SYK), respectively. Several genes crucial in the metastasis of breast cancer were identified, which may serve as potential biomarkers, many of which were associated with cell adhesion, proliferation or immune response, and may influence breast cancer metastasis by regulating these function or pathways.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Aijun Wang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dongyan Hu
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yonggang Wang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
24
|
Antitumoral effects of γCdcPLI, a PLA 2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 breast cancer cell. Sci Rep 2017; 7:7077. [PMID: 28765552 PMCID: PMC5539153 DOI: 10.1038/s41598-017-07082-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022] Open
Abstract
Phospholipases A2(PLA2s) overexpression is closely associated with the malignant potential of breast cancers. Here, we showed for the first the antitumoral effects of γCdcPLI, a PLA2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 cell. Firstly, γCdcPLI was more cytotoxic to MDA-MB-231 breast cancer cells than other cell lines (MCF-7, HeLa, PC3 and A549) and did not affect the viability of non-tumorigenic breast cell (MCF 10A). In addition, γCdcPLI induced modulation of important mediators of apoptosis pathways such as p53, MAPK-ERK, BIRC5 and MDM2. γCdcPLI decreased MDA-MB-231 adhesion, migration and invasion. Interestingly, the γCdcPLI also inhibited the adhesion and migration of endothelial cells and blocked angiogenesis by inhibiting tube formation by HUVECs in vitro and sprouting elongation on aortic ring assay ex vivo. Furthermore, γCdcPLI reduced the production of vascular endothelial growth factor (VEGF). γCdcPLI was also able to decrease PGE2 levels in MDA-MB-231 and inhibited gene and protein expression of the PI3K/Akt pathway. In conclusion, γCdcPLI showed in vitro antitumoral, antimestatatic and anti-angiogenic potential effects and could be an attractive approach for futures studies in cancer therapy.
Collapse
|
25
|
Chimonidou M, Strati A, Malamos N, Kouneli S, Georgoulias V, Lianidou E. Direct comparison study of DNA methylation markers in EpCAM-positive circulating tumour cells, corresponding circulating tumour DNA, and paired primary tumours in breast cancer. Oncotarget 2017; 8:72054-72068. [PMID: 29069768 PMCID: PMC5641111 DOI: 10.18632/oncotarget.18679] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/29/2017] [Indexed: 01/06/2023] Open
Abstract
Circulating Tumour Cells (CTCs) and circulating tumour DNA (ctDNA) represent a non-invasive liquid biopsy approach for the follow-up and therapy management of cancer patients. We evaluated whether DNA methylation status in CTCs and ctDNA is comparable and whether it reflects the status of primary tumours. We compared the methylation status of three genes, SOX17, CST6 and BRMS1 in primary tumours, corresponding CTCs and ctDNA in 153 breast cancer patients and healthy individuals, by using real time methylation specific PCR. We report a clear association between the EpCAM-positive CTC-fraction and ctDNA for SOX17 promoter methylation both for patients with early (P = 0.001) and metastatic breast cancer (P = 0.046) but not for CST6 and BRMS1. In early breast cancer, SOX17 promoter methylation in the EpCAM-positive CTC-fraction was associated with CK-19 mRNA expression (P = 0.006) and worse overall survival (OS) (P = 0.044). In the metastatic setting SOX17 promoter methylation in ctDNA was highly correlated with CK-19 (P = 0.04) and worse OS (Ρ = 0.016). SOX17 methylation status in CTCs and ctDNA was comparable and was associated with CK-19 expression but was not reflecting the status of primary tumours in breast cancer. DNA methylation analysis of SOX17 in CTCs and matched ctDNA provides significant prognostic value.
Collapse
Affiliation(s)
- Maria Chimonidou
- Analysis of Circulating Tumour Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumour Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Nikos Malamos
- Department of Pathology, Oncology Unit, Helena Venizelou Hospital, Athens, Greece
| | - Sophia Kouneli
- Department of Pathology, Oncology Unit, Helena Venizelou Hospital, Athens, Greece
| | - Vassilis Georgoulias
- Laboratory of Tumour Cell Biology, Medical School, University of Crete, Heraklion, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumour Cells Laboratory, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| |
Collapse
|
26
|
Bizjak M, Malavašič P, Dolinar K, Pohar J, Pirkmajer S, Pavlin M. Combined treatment with Metformin and 2-deoxy glucose induces detachment of viable MDA-MB-231 breast cancer cells in vitro. Sci Rep 2017; 7:1761. [PMID: 28496098 PMCID: PMC5431940 DOI: 10.1038/s41598-017-01801-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
Triple naegative breast cancer has an increased rate of distant metastasis and consequently poor prognosis. To metastasize, breast cancer cells must detach from the main tumour mass and resist anoikis, a programmed cell death induced by lack of cell-extracellular matrix communication. Although cancer cells must detach to metastasize in vivo, the viability of floating cancer cells in vitro is rarely investigated. Here we show that co-treatment of anoikis-resistant MDA-MB-231 cells with metformin and 2-deoxy-D-glucose (2-DG) increased the percentage of floating cells, of which about 95% were viable. Floating cells resumed their proliferation once they were reseeded in the pharmacological compound-free medium. Similar effects on detachment were observed on anoikis-prone MCF-7 cells. Co-treatment of MDA-MB-231 cells with metformin and 2-DG induced a strong activation of AMP-activated protein kinase (AMPK), which was reduced by AMPK inhibitor compound C that prevented detachment of MDA-MB-231 cells. However, direct AMPK activators A-769662 and AICAR did not have any major effect on the percentage of floating MDA-MB-231 cells, indicating that AMPK activation is necessary but not sufficient for triggering detachment of cancer cells. Our results demonstrate that separate analysis of floating and attached cancer cells might be important for evaluation of anti-cancer agents.
Collapse
Affiliation(s)
- Maruša Bizjak
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Malavašič
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.,Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jelka Pohar
- Department of Synthetic Biology and Immunology, National institute of Chemistry, Ljubljana, Slovenia.,Centre of Excellence EN-FIST, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia. .,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
27
|
Mechanisms governing metastatic dormancy in breast cancer. Semin Cancer Biol 2017; 44:72-82. [PMID: 28344165 DOI: 10.1016/j.semcancer.2017.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Breast cancer is a systemic disease characterized by early dissemination of tumor cells to distant organs. In this foreign environment, tumor cells may stay in a dormant state as single cells or as micrometastases for many years before growing out into a macrometastatic lesion. As metastasis is the primary cause for breast cancer-related death, it is important to understand the mechanisms underlying the maintenance of dormancy and dormancy escape to find druggable targets to eradicate metastatic tumor cells. Metastatic dormancy is regulated by complex interactions between tumor cells and the local microenvironment. In addition, cancer-directed immunity and systemic instigation play a crucial role.
Collapse
|
28
|
Zhang L, Zeng M, Fu BM. Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows. Am J Physiol Heart Circ Physiol 2016; 310:H1735-47. [PMID: 27059076 DOI: 10.1152/ajpheart.00109.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/06/2016] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) at different concentrations may promote or inhibit tumor growth and metastasis under various conditions. To test the hypothesis that tumor cells prefer to adhere to the locations with a higher endothelial NO production in intact microvessels under physiological flows and to further test that inhibiting NO production decreases tumor cell adhesion, we used intravital fluorescence microscopy to measure NO production and tumor cell adhesion in postcapillary venules of rat mesentery under normal and reduced flow conditions, and in the presence of an endothelial nitric oxide synthase (eNOS) inhibitor, N(G)-monomethyl-l-arginine (l-NMMA). Rats (SD, 250-300 g) were anesthetized. A midline incision (∼2 inch) was made in the abdominal wall, and the mesentery was taken out from the abdominal cavity and spread over a coverslip for the measurement. An individual postcapillary venule (35-50 μm) was first loaded with 4,5-diaminofluorescein diacetate (DAF-2 DA), a fluorescent indictor for NO. Then the DAF-2 intensity was measured for 30 min under a normal or reduced flow velocity, with and without perfusion with MDA-MB-231 breast cancer cells, and in the presence of l-NMMA. We found that tumor cells prefer to adhere to the microvessel locations with a higher NO production such as curved portions. Inhibition of eNOS by l-NMMA attenuated the flow-induced NO production and reduced tumor cell adhesion. We also found that l-NMMA treatment for ∼40 min reduced microvessel permeability to albumin. Our results suggest that inhibition of eNOS is a good approach to preventing tumor cell adhesion to intact microvessels under physiological flows.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Min Zeng
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| |
Collapse
|
29
|
Yang Z, Liu F, Yang ZL. BRMS1 and HPA as Progression, Clinical Biological Behaviors, and Poor Prognosis–related Biomarkers for Gallbladder Adenocarcinoma. Appl Immunohistochem Mol Morphol 2016. [DOI: 10.1097/pai.0000000000000183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Lianidou ES. Gene expression profiling and DNA methylation analyses of CTCs. Mol Oncol 2016; 10:431-42. [PMID: 26880168 DOI: 10.1016/j.molonc.2016.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 01/26/2023] Open
Abstract
A variety of molecular assays have been developed for CTCs detection and molecular characterization. Molecular assays are based on the nucleic acid analysis in CTCs and are based on total RNA isolation and subsequent mRNA quantification of specific genes, or isolation of genomic DNA that can be for DNA methylation studies and mutation analysis. This review is mainly focused on gene expression and methylation studies in CTCs in various types of cancer.
Collapse
Affiliation(s)
- Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, 15771, Greece.
| |
Collapse
|
31
|
Welch D, Manton C, Hurst D. Breast Cancer Metastasis Suppressor 1 (BRMS1): Robust Biological and Pathological Data, But Still Enigmatic Mechanism of Action. Adv Cancer Res 2016; 132:111-37. [PMID: 27613131 DOI: 10.1016/bs.acr.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis requires coordinated expression of multiple genetic cassettes, often via epigenetic regulation of gene transcription. BRMS1 blocks metastasis, but not orthotopic tumor growth in multiple tumor types, presumably via SIN3 chromatin remodeling complexes. Although there is an abundance of strong data supporting BRMS1 as a metastasis suppressor, the mechanistic data directly connecting molecular pathways with inhibition of particular steps in metastasis are not well defined. In this review, the data for BRMS1-mediated metastasis suppression in multiple tumor types are discussed along with the steps in metastasis that are inhibited.
Collapse
|
32
|
Kodura MA, Souchelnytskyi S. Breast carcinoma metastasis suppressor gene 1 (BRMS1): update on its role as the suppressor of cancer metastases. Cancer Metastasis Rev 2015; 34:611-8. [DOI: 10.1007/s10555-015-9583-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Xiao L, Chen Q, Wu Y, Qi X, Zhou A. Simultaneous topographic and recognition imaging of epidermal growth factor receptor (EGFR) on single human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1988-95. [PMID: 26002322 DOI: 10.1016/j.bbamem.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in signaling pathway of the development of breast cancer cells. Since EGFR overexpresses in most breast cancer cells, it is regarded as a biomarker molecule of breast cancer cells. Here we demonstrated a new AFM technique-topography and recognition (TREC) imaging-to simultaneously obtain highly sensitive and specific molecular recognition images and high-resolution topographic images of EGFR on single breast cancer cells.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA
| | - Qian Chen
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA
| | - Yangzhe Wu
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA
| | - Xiaojun Qi
- Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan , UT 84322-4105, USA.
| |
Collapse
|
34
|
Xing WJ, Liao XH, Wang N, Zhao DW, Zheng L, Zheng DL, Dong J, Zhang TC. MRTF-A and STAT3 promote MDA-MB-231 cell migration via hypermethylating BRSM1. IUBMB Life 2015; 67:202-17. [PMID: 25854163 DOI: 10.1002/iub.1362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 11/05/2022]
Abstract
Breast cancer is the leading cause of cancer death in women worldwide which is closely related to metastasis. But the exact molecular mechanism of metastasis is still not fully understood. We now report that both MRTF-A and STAT3 play important roles in migration of MDA-MB-231 breast cancer cells. Moreover, MRTF-A and STAT3 synergistically increased MDA-MB-231 cell migration by promoting the expression of migration markers urokinase-type plasminogen activator (uPA) and osteopontin (OPN) and inhibiting the expression of breast cancer metastasis suppressor 1 (BRMS1). Luciferase reporter assays demonstrated that MRTF-A and STAT3 do not affect transcription of the BRMS1 promoter. Instead, we identified a newly molecular mechanism by which MRTF-A and STAT3 synergistically controlled MDA-MB-231 cell migration by recruiting DNMT1 to hypermethylate the promoter of BRMS1 and thus affect the expression of BRMS1. Interestingly, physical interaction between MRTF-A and STAT3 synergistically promotes the transactivity of DNMT1 by binding to the GAS element within the DNMT1 promoter. Our data thus provide important and novel insights into the roles of MRTF-A and STAT3 in regulating MDA-MB-231 cell migration.
Collapse
Affiliation(s)
- Wen-Jing Xing
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Dormancy and growth of metastatic breast cancer cells in a bone-like microenvironment. Clin Exp Metastasis 2015; 32:335-44. [PMID: 25749879 DOI: 10.1007/s10585-015-9710-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/28/2015] [Indexed: 12/19/2022]
Abstract
Breast cancer can reoccur, often as bone metastasis, many years if not decades after the primary tumor has been treated. The factors that stimulate dormant metastases to grow are not known, but bone metastases are often associated with skeletal trauma. We used a dormancy model of MDA-MB-231BRMS1, a metastasis-suppressed human breast cancer cell line, co-cultured with MC3T3-E1 osteoblasts in a long term, three dimensional culture system to test the hypothesis that bone remodeling cytokines could stimulate dormant cells to grow. The cancer cells attached to the matrix produced by MC3T3-E1 osteoblasts but grew slowly or not at all until the addition of bone remodeling cytokines, TNFα and IL-β. Stimulation of cell proliferation by these cytokines was suppressed with indomethacin, an inhibitor of cyclooxygenase and of prostaglandin production, or a prostaglandin E2 (PGE2) receptor antagonist. Addition of PGE2 directly to the cultures also stimulated cell proliferation. MCF-7, non-metastatic breast cancer cells, remained dormant when co-cultured with normal human osteoblast and fibroblast growth factor. Similar to the MDA-MB-231BRMS1 cells, MCF-7 proliferation increased in response to TNFα and IL-β. These findings suggest that changes in the bone microenvironment due to inflammatory cytokines associated with bone repair or excess turnover may trigger the occurrence of latent bone metastasis.
Collapse
|
36
|
BRMS1L suppresses breast cancer metastasis by inducing epigenetic silence of FZD10. Nat Commun 2014; 5:5406. [PMID: 25406648 DOI: 10.1038/ncomms6406] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
BRMS1L (breast cancer metastasis suppressor 1 like, BRMS1-like) is a component of Sin3A-histone deacetylase (HDAC) co-repressor complex that suppresses target gene transcription. Here we show that reduced BRMS1L in breast cancer tissues is associated with metastasis and poor patient survival. Functionally, BRMS1L inhibits breast cancer cells migration and invasion by inhibiting epithelial-mesenchymal transition. These effects are mediated by epigenetic silencing of FZD10, a receptor for Wnt signalling, through HDAC1 recruitment and histone H3K9 deacetylation at the promoter. Consequently, BRMS1L-induced FZD10 silencing inhibits aberrant activation of WNT3-FZD10-β-catenin signalling. Furthermore, BRMS1L is a target of miR-106b and miR-106b upregulation leads to BRMS1L reduction in breast cancer cells. RNA interference-mediated silencing of BRMS1L expression promotes metastasis of breast cancer xenografts in immunocompromised mice, whereas ectopic BRMS1L expression inhibits metastasis. Therefore, BRMS1L provides an epigenetic regulation of Wnt signalling in breast cancer cells and acts as a breast cancer metastasis suppressor.
Collapse
|
37
|
Marino N, Collins JW, Shen C, Caplen NJ, Merchant AS, Gökmen-Polar Y, Goswami CP, Hoshino T, Qian Y, Sledge GW, Steeg PS. Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor genes in breast cancer cell lines. Clin Exp Metastasis 2014; 31:771-86. [PMID: 25086928 DOI: 10.1007/s10585-014-9667-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/04/2014] [Indexed: 12/30/2022]
Abstract
Metastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. Genes have been identified with expression patterns inverse to a single MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of multiple MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA, or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs. Five genes were selected for further analysis: PDE5A, UGT1A, IL11RA, DNM3 and OAS1. After stable downregulation of each candidate gene in the aggressive human breast cancer cell line MDA-MB-231T, in vitro motility was significantly inhibited. Two stable clones downregulating PDE5A (phosphodiesterase 5A), an enzyme involved in the regulation of cGMP-specific signaling, exhibited no difference in cell proliferation, but reduced motility by 47 and 66 % compared to the empty vector-expressing cells (p = 0.01 and p = 0.005). In an experimental metastasis assay, two shPDE5A-MDA-MB-231T clones produced 47-62 % fewer lung metastases than shRNA-scramble expressing cells (p = 0.045 and p = 0.009 respectively). This study demonstrates that previously unrecognized genes are inversely related to the expression of multiple MSGs, contribute to aspects of metastasis, and may stand as novel therapeutic targets.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Building 37/Room 1126, 37 Convent Drive, Bethesda, MD, 20892, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Microenvironmental Influences on Metastasis Suppressor Expression and Function during a Metastatic Cell's Journey. CANCER MICROENVIRONMENT 2014; 7:117-31. [PMID: 24938990 DOI: 10.1007/s12307-014-0148-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/08/2014] [Indexed: 12/21/2022]
Abstract
Metastasis is the process of primary tumor cells breaking away and colonizing distant secondary sites. In order for a tumor cell growing in one microenvironment to travel to, and flourish in, a secondary environment, it must survive a series of events termed the metastatic cascade. Before departing the primary tumor, cells acquire genetic and epigenetic changes that endow them with properties not usually associated with related normal differentiated cells. Those cells also induce a subset of bone marrow-derived stem cells to mobilize and establish pre-metastatic niches [1]. Many tumor cells undergo epithelial-to-mesenchymal transition (EMT), where they transiently acquire morphologic changes, reduced requirements for cell-cell contact and become more invasive [2]. Invasive tumor cells eventually enter the circulatory (hematogenous) or lymphatic systems or travel across body cavities. In transit, tumor cells must resist anoikis, survive sheer forces and evade detection by the immune system. For blood-borne metastases, surviving cells then arrest or adhere to endothelial linings before either proliferating or extravasating. Eventually, tumor cells complete the process by proliferating to form a macroscopic mass [3].Up to 90 % of all cancer related morbidity and mortality can be attributed to metastasis. Surgery manages to ablate most primary tumors, especially when combined with chemotherapy and radiation. But if cells have disseminated, survival rates drop precipitously. While multiple parameters of the primary tumor are predictive of local or distant relapse, biopsies remain an imperfect science. The introduction of molecular and other biomarkers [4, 5] continue to improve the accuracy of prognosis. However, the invasive procedure introduces new complications for the patient. Likewise, the heterogeneity of any tumor population [3, 6, 7] means that sampling error (i.e., since it is impractical to examine the entire tumor) necessitates further improvements.In the case of breast cancer, for example, women diagnosed with stage I diseases (i.e., no evidence of invasion through a basement membrane) still have a ~30 % likelihood of developing distant metastases [8]. Many physicians and patients opt for additional chemotherapy in order to "mop up" cells that have disseminated and have the potential to grow into macroscopic metastases. This means that ~ 70 % of patients receive unnecessary therapy, which has undesirable side effects. Therefore, improving prognostic capability is highly desirable.Recent advances allow profiling of primary tumor DNA sequences and gene expression patterns to define a so-called metastatic signature [9-11], which can be predictive of patient outcome. However, the genetic changes that a tumor cell must undergo to survive the initial events of the metastatic cascade and colonize a second location belie a plasticity that may not be adequately captured in a sampling of heterogeneous tumors. In order to tailor or personalize patient treatments, a more accurate assessment of the genetic profile in the metastases is needed. Biopsy of each individual metastasis is not practical, safe, nor particularly cost-effective. In recent years, there has been a resurrection of the notion to do a 'liquid biopsy,' which essentially involves sampling of circulating tumor cells (CTC) and/or cell free nucleic acids (cfDNA, including microRNA (miRNA)) present in blood and lymph [12-16].The rationale for liquid biopsy is that tumors shed cells and/or genetic fragments into the circulation, theoretically making the blood representative of not only the primary tumor but also distant metastases. Logically, one would predict that the proportion of CTC and/or cfDNA would be proportionate to the likelihood of developing metastases [14]. While a linear relationship does not exist, the information within CTC or cfDNA is beginning to show great promise for enabling a global snapshot of the disease. However, the CTC and cfDNA are present at extremely low levels. Nonetheless, newer technologies capture enough material to enrich and sequence the patient's DNA or quantification of some biomarkers.Among the biomarkers showing great promise are metastasis suppressors which, by definition, block a tumor cell's ability to complete the metastatic process without prohibiting primary tumor growth [17]. Since the discovery of the first metastasis suppressor, Nm23, more than 30 have been functionally characterized. They function at various stages of the metastatic cascade, but their mechanisms of action, for the most part, remain ill-defined. Deciphering the molecular interactions of functional metastasis suppressors may provide insights for targeted therapies when these regulators cease to function and result in metastatic disease.In this brief review, we summarize what is known about the various metastasis suppressors and their functions at individual steps of the metastatic cascade (Table 1). Some of the subdivisions are rather arbitrary in nature, since many metastasis suppressors affect more than one step in the metastatic cascade. Nonetheless what emerges is a realization that metastasis suppressors are intimately associated with the microenvironments in which cancer cells find themselves [18].
Collapse
|
39
|
Tang Y, Cheng Y, Martinka M, Ong CJ, Li G. Prognostic significance of KAI1/CD82 in human melanoma and its role in cell migration and invasion through the regulation of ING4. Carcinogenesis 2013; 35:86-95. [PMID: 24130172 DOI: 10.1093/carcin/bgt346] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
KAI1/CD82 is a member of the transmembrane 4 superfamily, which was first identified as a metastasis suppressor for prostate cancer. The expression of KAI1 was found to be reduced in many types of cancers, including prostate, breast, ovarian, cervical and endometrial cancer. However, the role of KAI1 in melanoma pathogenesis is not known. In this study, we investigated the expression level of KAI1 in a large set of melanocytic lesions at different stages. We found that the expression of KAI1 is significantly decreased during melanoma progression. In fact, KAI1 expression is drastically reduced in primary melanoma compared with dysplastic nevi (P = 1.8×10(-4)) and further reduced in metastatic melanoma compared with primary melanoma (P = 9.4 × 10(-15)). Furthermore, decreased KAI1 staining is strongly correlated with a worse 5 year and 10 year patient survival. Multivariate Cox regression analysis showed that KAI1 is also an independent prognostic factor for both 5 year and 10 year survival. Moreover, we found that overexpression of KAI1 significantly inhibited melanoma cell migration through suppression of Rho-associated kinase-mediated formation of stress fiber. Our data also suggested that overexpression of KAI1 significantly inhibited melanoma cell invasion by reducing the activity of metalloproteinase-2. In addition, we found that suppression of melanoma cell migration by KAI1 is mediated by another tumor-suppressor protein called inhibitor of growth 4 through the regulation of p65. Taken together, our data suggest that KAI1 may be used as a promising prognostic marker and a possible therapeutic target for human melanoma.
Collapse
Affiliation(s)
- Yun Tang
- Department of Dermatology and Skin Science
| | | | | | | | | |
Collapse
|
40
|
Hallett MA, Dalal P, Sweatman TW, Pourmotabbed T. The distribution, clearance, and safety of an anti-MMP-9 DNAzyme in normal and MMTV-PyMT transgenic mice. Nucleic Acid Ther 2013; 23:379-88. [PMID: 24083396 DOI: 10.1089/nat.2012.0348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Catalytic oligonucleotides, known as DNAzymes, are a new class of nucleic acid-based gene therapy that have recently been used in preclinical animal studies to treat various cancers. In this study the systemic distribution, pharmacokinetics, and safety of intravenously administered anti-MMP (matrix metalloproteinase)-9 DNAzyme (AM9D) were determined in healthy FVB and in MMTV-polyoma virus middle T (PyMT) transgenic mice bearing mammary tumors. MMP-9 is known to be involved in tumor cell development, angiogenesis, invasion, and metastasis. Sulfur-35 ((35)S) labeled ([(35)S]-AM9D) administered intravenously, without the use of carrier molecules, to healthy and mammary tumor bearing MMTV-PyMT transgenic mice distributed to all major organs. The order of percentages of [(35)S]-AM9D accumulation in different organs of healthy and MMTV-PyMT mice were blood>liver>kidney>lung>spleen>heart and mammary tumor>blood≈liver>kidney>spleen>lung>heart, respectively. The amount of AM9D accumulated in mammary tumors 2 hours post injection was 0.6% and 0.2% higher than in either blood or liver, respectively, and its rate of initial clearance from mammary tissue was at least 50% slower than the other organs. Approximately 43% of the delivered dosage of [(35)S]-AM9D was cleared from the system via feces and urine over a period of 72 hours. No evidence of acute or chronic cytotoxicity, local or widespread, associated with AM9D treatment (up to 75 mg AM9D /kg of body weight) was observed in the organs examined. These data suggest that DNAzyme in general and AM9D in particular can be used systemically as a therapeutic agent to treat patients with breast cancer or other metastatic and surgically inaccessible tumors.
Collapse
Affiliation(s)
- Miranda A Hallett
- 1 Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center , Memphis Tennessee
| | | | | | | |
Collapse
|
41
|
Khotskaya YB, Beck BH, Hurst DR, Han Z, Xia W, Hung MC, Welch DR. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol Carcinog 2013; 53:1011-26. [PMID: 24000122 DOI: 10.1002/mc.22068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/22/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
Abstract
Metastatic dissemination is a multi-step process that depends on cancer cells' ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it decreases survival in circulation, increases susceptibility to anoikis, and reduces capacity to colonize secondary organs. In this report, BRMS1 expression is shown to not significantly alter expression levels of integrin monomers, while time-lapse and confocal microscopy revealed that BRMS1-expressing cells exhibited reduced activation of both β1 integrin and focal adhesion kinase, and decreased localization of these molecules to sites of focal adhesions. Short-term plating of BRMS1-expressing cells onto collagen or fibronectin markedly decreased cytoskeletal reorganization and formation of cellular adhesion projections. Under 3D culture conditions, BRMS1-expressing cells remained rounded and failed to reorganize their cytoskeleton and form invasive colonies. Taken together, BRMS1-expressing breast cancer cells are greatly attenuated in their ability to respond to microenvironment changes. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yekaterina B Khotskaya
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
42
|
Wells A, Griffith L, Wells JZ, Taylor DP. The dormancy dilemma: quiescence versus balanced proliferation. Cancer Res 2013; 73:3811-6. [PMID: 23794703 DOI: 10.1158/0008-5472.can-13-0356] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Metastatic dissemination with subsequent clinical outgrowth leads to the greatest part of morbidity and mortality from most solid tumors. Even more daunting is that many of these metastatic deposits silently lie undetected, recurring years to decades after primary tumor extirpation by surgery or radiation (termed metastatic dormancy). As primary tumors are frequently curable, a critical focus now turns to preventing the lethal emergence from metastatic dormancy. Current carcinoma treatments include adjuvant therapy intended to kill the cryptic metastatic tumor cells. Because such standard therapies mainly kill cycling cells, this approach carries an implicit assumption that metastatic cells are in the mitogenic cycle. Thus, the pivotal question arises as to whether clinically occult micrometastases survive in a state of balanced proliferation and death, or whether these cells undergo at least long periods of quiescence marked by cell-cycle arrest. The treatment implications are thus obvious--if the carcinoma cells are cycling then therapies should target cycling cells, whereas if cells are quiescent then therapies should either maintain dormancy or be toxic to dormant cells. Because this distinction is paramount to rational therapeutic development and administration, we investigated whether quiescence or balanced proliferation is the most likely etiology underlying metastatic dormancy. We recently published a computer simulation study that determined that balanced proliferation is not the likely driving force and that quiescence most likely participates in metastatic dormancy. As such, a greater emphasis on developing diagnostics and therapeutics for quiescent carcinomas is needed.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
43
|
Lianidou ES, Markou A, Strati A. Molecular characterization of circulating tumor cells in breast cancer: challenges and promises for individualized cancer treatment. Cancer Metastasis Rev 2013; 31:663-71. [PMID: 22692478 DOI: 10.1007/s10555-012-9366-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood testing using Circulating Tumor Cells (CTCs) has emerged as one of the hottest fields in cancer diagnosis. Research on CTCs present nowadays a challenge, as these cells are well defined targets for understanding tumour biology and improving cancer treatment. The presence of tumor cells in patient's bone marrow or peripheral blood is an early indicator of metastasis and may signal tumor spread sooner than clinical symptoms appear and imaging results confirm a poor prognosis. CTC enumeration can serve as a "liquid biopsy" and an early marker to assess response to systemic therapy. Definition of biomarkers based on comprehensive characterization of CTCs has a strong potential to be translated to individualized targeted treatments and spare breast cancer patients unnecessary and ineffective therapies but also to reduce the costs for the health system and to downsize the extent and length of clinical studies. In this review, we briefly summarize recent studies on the molecular characterization of circulating tumor cells in breast cancer and discuss challenges and promises of CTCs for individualized cancer treatment.
Collapse
Affiliation(s)
- Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
| | | | | |
Collapse
|
44
|
Metastasis suppression by BRMS1 associated with SIN3 chromatin remodeling complexes. Cancer Metastasis Rev 2013; 31:641-51. [PMID: 22678236 DOI: 10.1007/s10555-012-9363-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epigenetic regulation of gene transcription by histone modification and chromatin remodeling has been linked to many biological and pathological events including cancer metastasis. Breast cancer metastasis suppressor 1 (BRMS1) interacts with SIN3 chromatin remodeling complexes, and, upon forced expression in metastatic cells, a nearly complete suppression of metastasis is noted without preventing primary tumor growth. The data for BRMS1-mediated metastasis suppression and SIN3 interaction are clear; however, connecting the inhibition directly to the association of BRMS1 with SIN3 complexes is currently not well defined. Considering the recent advancements in developing epigenetic drugs for cancer therapy, an improved understanding of how the interactions between BRMS1 and SIN3 regulate the process of metastasis should lead to novel therapies specifically targeting the most deadly aspect of tumor progression. In this article, the data for BRMS1-mediated metastasis suppression are reviewed with a focus on how the SIN3 chromatin remodeling complexes may be functionally involved.
Collapse
|
45
|
Roberts MR, Hong CC, Edge SB, Yao S, Bshara W, Higgins MJ, Freudenheim JL, Ambrosone CB. Case-only analyses of the associations between polymorphisms in the metastasis-modifying genes BRMS1 and SIPA1 and breast tumor characteristics, lymph node metastasis, and survival. Breast Cancer Res Treat 2013; 139:873-85. [PMID: 23771732 DOI: 10.1007/s10549-013-2601-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Lymph node metastases and tumor characteristics predict breast cancer prognosis but correlate imperfectly with likelihood of metastatic relapse. Discovery of genetic polymorphisms affecting metastasis may improve identification of patients requiring aggressive adjuvant therapy to prevent recurrence. We investigated associations between several variants in the BRMS1 and SIPA1 metastasis-modifying genes and lymph node metastases, tumor subtype and grade, recurrence, disease-free survival, and overall survival. This cross-sectional and prospective prognostic analysis included 859 patients who received surgery for incident breast cancer at Roswell Park Cancer Institute, participated in the DataBank and BioRepository shared resource, and had DNA, clinical, and pathology data available for analysis. Genotyping for BRMS1 (rs11537993, rs3116068, and rs1052566) and SIPA1 (rs75894763, rs746429, rs3741378, and rs2306364) polymorphisms was performed using Sequenom(®) iPLEX Gold and Taqman(®) real-time PCR assays. Logistic and Cox proportional hazards regressions were used to estimate odds ratios (OR) and hazard ratios (HR), respectively. BRMS1 rs1052566 heterozygous individuals were more likely to have node-positive tumors (OR = 1.58, 95 % CI 1.13-2.23), although there was no dose-response relationship, and those with at least one variant allele were less likely to have the luminal B subtype (AG + AA: OR = 0.59, 95 % CI 0.36-0.98). BRMS1 rs3116068 was associated with increased likelihood of having the luminal B and the HER2-enriched tumor subtype (P trend = 0.03). Two SIPA1 SNPs, rs746429 and rs2306364, were associated with decreased risk of triple-negative tumors (P trend = 0.04 and 0.07, respectively). Presence of 8 or more risk alleles was associated with an increased likelihood of having a node-positive tumor (OR = 2.14, 95 % CI 1.18-3.36, P trend = 0.002). There were no significant associations with survival. Polymorphisms in metastasis-associated genes may be related to tumor characteristics and lymph node metastasis, but not survival. Future evaluation of metastasis-modifying gene variants is necessary to better understand the biology of metastasis.
Collapse
Affiliation(s)
- Michelle R Roberts
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu J, Wang Y, Qiao X, Saiyin H, Zhao S, Qiao S, Wu Y. Cloning and characterization of a novel human BRMS1 transcript variant in hepatocellular carcinoma cells. Cancer Lett 2013; 337:266-75. [PMID: 23643861 DOI: 10.1016/j.canlet.2013.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is able to suppress tumor metastasis without affecting primary tumor growth in various cancers. Here, we report a novel transcript variant of human BRMS1, termed BRMS1.vh. BRMS1.vh is identical to the major BRMS1 variant (BRMS1.v1) except for missing base pairs 683-775, encoding a 215-amino acid protein lacking a functional nuclear localization sequence. Expression of BRMS1.vh in hepatocellular carcinoma (HCC) cells suppressed NF-κB signaling pathway, sensitized cells to apoptotic stimuli, leading to suppressed tumor growth. Taken together, our results suggest a potential role for BRMS1.vh in regulating cell apoptosis and tumor growth in HCC.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Castillo-Pichardo L, Dharmawardhane SF. Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer 2013; 64:1058-69. [PMID: 23061908 DOI: 10.1080/01635581.2012.716898] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We recently reported that a combination of dietary grape polyphenols resveratrol, quercetin, and catechin (RQC), at low concentrations, was effective at inhibiting metastatic cancer progression. Herein, we investigate the molecular mechanisms of RQC in breast cancer and explore the potential of RQC as a potentiation agent for the epidermal growth factor receptor (EGFR) therapeutic gefitinib. Our in vitro experiments showed RQC induced apoptosis in gefitinib-resistant breast cancer cells via regulation of a myriad of proapoptotic proteins. Because the Akt/mammalian target of rapamycin (mTOR) signaling pathway is often elevated during development of anti-EGFR therapy resistance, the effect of RQC on the mTOR upstream effector Akt and the negative regulator AMP kinase (AMPK) was investigated. RQC was found to reduce Akt activity, induce the activation of AMPK, and inhibit mTOR signaling in breast cancer cells. Combined RQC and gefitinib decreased gefitinib resistant breast cancer cell viability to a greater extent than RQC or gefitinib alone. Moreover, RQC inhibited Akt and mTOR and activated AMPK even in the presence of gefitinib. Our in vivo experiments showed combined RQC and gefitinib was more effective than the individual treatments at inhibiting mammary tumor growth and metastasis in nude mice. Therefore, RQC treatment inhibits breast cancer progression and may potentiate anti-EGFR therapy by inhibition of Akt/mTOR signaling.
Collapse
Affiliation(s)
- Linette Castillo-Pichardo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | |
Collapse
|
48
|
Hallett MA, Teng B, Hasegawa H, Schwab LP, Seagroves TN, Pourmotabbed T. Anti-matrix metalloproteinase-9 DNAzyme decreases tumor growth in the MMTV-PyMT mouse model of breast cancer. Breast Cancer Res 2013; 15:R12. [PMID: 23407024 PMCID: PMC3672740 DOI: 10.1186/bcr3385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 02/08/2013] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Despite continued improvements in diagnosis, surgical techniques, and chemotherapy, breast cancer patients are still overcome by cancer metastasis. Tumor cell proliferation, invasion and metastasis are mediated, at least in part, through degradation of basement membrane by neutral matrix metalloproteinases (MMP) produced by tumor and stromal cells. Evidence suggests that MMP-9 plays a significant role in breast tumor cell invasion and metastasis. DNAzymes or catalytic oligonucleotides are new classes of gene targeting molecules that bind and cleave a specific mRNA, resulting in decreased protein expression. METHODS The application of anti-MMP-9 DNAzyme (AM9D) for the treatment of primary and metastatic breast cancer was evaluated in vitro and in vivo using MDA-MB-231 cells and the MMTV-PyMT transgenic breast cancer mouse model. Spontaneously developed mammary tumors in MMTV-PyMT transgenic mice were treated intratumorally with naked AM9D, once a week for 4 weeks. The stability of DNAzyme was determined in vitro and in vivo using fluorescently labeled DNAzyme. RESULTS AM9D specifically inhibited expression of MMP-9 in MDA-MB-231 cells resulting in reduced invasive property of these cells by 43%. Weekly intratumoral treatment of spontaneously developed mammary tumors in MMTV-PyMT transgenic mice was sufficient to significantly reduce the rate of tumor growth and final tumor load in a dose dependent and statistically significant manner (P < 0.05). This decrease in tumor growth was correlated with decreased MMP-9 protein production within the treated tumor tissues. Tumors treated with AM9D were also less vascularized and contained more apoptotic cells compared to control and untreated tumors. CONCLUSIONS These results show that targeting and down regulation of MMP-9 by AM9D could prove useful as a therapy against breast carcinoma tumor growth and invasion.
Collapse
|
49
|
The C-terminal putative nuclear localization sequence of breast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression. PLoS One 2013; 8:e55966. [PMID: 23390556 PMCID: PMC3563580 DOI: 10.1371/journal.pone.0055966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/04/2013] [Indexed: 12/19/2022] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is a predominantly nuclear protein that suppresses metastasis in multiple human and murine carcinoma cell lines. BRMS1 interacts with several nuclear proteins including SIN3:HDAC chromatin remodeling complexes that are involved in repressing transcription. However, recent reports suggest BRMS1 may function in the cytoplasm. BRMS1 has two predicted nuclear localization sequences (NLS) that are located near the C-terminus (amino acids 198–205 and 238–244, NLS1 and NLS2 respectively). We hypothesized that nuclear localization sequences of BRMS1 were essential for BRMS1 mediated metastasis suppression. Replacement of NLS2 with NLS1 (BRMS1NLS1,1), truncation at 238 (BRMS1ΔNLS2), or switching the location of NLS1 and NLS2 (BRMS1NLS2,1) did not affect nuclear localization; but, replacement of NLS1 with NLS2 (BRMS1NLS2,2) or truncation at 197 (BRMS1ΔNLS which removes both NLS) promoted cytoplasmic localization. MDA-MB-231 human metastatic breast cancer cells transduced with BRMS1NLS1,1, BRMS1NLS2,2 or BRMS1NLS2,1 were evaluated for metastasis suppression in an experimental xenograft mouse model. Interestingly, while NLS2 was not necessary for nuclear localization, it was found to be important for metastasis suppression since BRMS1NLS2,2 suppressed metastasis by 85%. In contrast, BRMS1NLS2,1 and BRMS1NLS1,1 did not significantly suppress metastasis. Both BRMS1 and BRMS1NLS2,2 co-immunoprecipitated with SIN3A in the nucleus and cytoplasm; however, BRMS1NLS1,1 and BRMS1NLS2,1 were associated with SIN3A in the nucleus only. Moreover, BRMS1 and BRMS1NLS2,2, but not BRMS1NLS1,1 and BRMS1NLS2,1, down-regulated the pro-metastatic microRNA, miR-10b. Together, these data demonstrate an important role for NLS2 in the cytoplasm that is critical for metastasis suppression and is distinct from nuclear localization.
Collapse
|
50
|
Liu Y, Mayo MW, Nagji AS, Hall EH, Shock LS, Xiao A, Stelow EB, Jones DR. BRMS1 suppresses lung cancer metastases through an E3 ligase function on histone acetyltransferase p300. Cancer Res 2012; 73:1308-17. [PMID: 23269275 DOI: 10.1158/0008-5472.can-12-2489] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mechanisms through which the metastasis suppressor gene BRMS1 functions are poorly understood. Herein, we report the identification of a previously undescribed E3 ligase function of BRMS1 on the histone acetyltransferase p300. BRMS1 induces polyubiquitination of p300, resulting in its proteasome-mediated degradation. We identify BRMS1 as the first eukaryote structural mimic of the bacterial IpaH E3 ligase family and establish that the evolutionarily conserved CXD motif located in BRMS1 is responsible for its E3 ligase function. Mutation of this E3 ligase motif not only abolishes BRMS1-induced p300 polyubiquitination and degradation, but importantly, dramatically reduces the metastasis suppressor function of BRMS1 in both in vitro and in vivo models of lung cancer metastasis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|