1
|
Salvarredi L, Oglio RA, Rodriguez C, Navarro D, Perona M, Dagrosa MA, Juvenal GJ, Thomasz L. 2-iodohexadecanal induces autophagy during goiter involution. Prostaglandins Other Lipid Mediat 2024; 172:106819. [PMID: 38346574 DOI: 10.1016/j.prostaglandins.2024.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Iodine plays an important role in thyroid physiology and biochemistry. The thyroid is capable of producing different iodolipids such as 2-iodohexadecanal (2-IHDA). Data from different laboratories have shown that 2-IHDA inhibits several thyroid parameters and it has been postulated as intermediary on the action of iodide function. OBJECTIVE To explore different mechanisms involved during the involution of the hyperplastic thyroid gland of Wistar rats towards normality induced by 2-IHDA. METHODS Goiter was induced by the administration of MMI for 10 days, then the treatment was discontinued and Wistar rats were injected with 2-IHDA or KI. RESULTS During involution, 2-IHDA treatment reduced PCNA expression compared to spontaneous involution. KI treatment caused an increase of Caspase-3 activity and TUNEL-positive cells. In contrast, 2-IHDA failed to alter this value but induced an increase of LC3B expression. KI but not 2-IHDA led to an increase in peroxides levels, catalase and glutathione peroxidase activity. CONCLUSIONS We demonstrated that 2-IHDA, in contrast to iodide, did not lead to an increase in oxidative stress or apoptosis induction, indicating that the involution triggered by 2-IHDA in Wistar rats, is primarily due to the inhibition of cell proliferation and the induction of autophagy.
Collapse
Affiliation(s)
- Leonardo Salvarredi
- Nuclear Medicine School Foundation (FUESMEN), National Commission of Atomic Energy (CNEA), Mendoza, Argentina; Instituto Balseiro, National Comission of Atomic Energy & National University of Cuyo, Mendoza, Argentina
| | - Romina A Oglio
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina
| | - Carla Rodriguez
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina
| | | | - Marina Perona
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina
| | - María A Dagrosa
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina
| | - Guillermo J Juvenal
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina
| | - Lisa Thomasz
- Department of Radiobiology (CAC), National Commission of Atomic Energy (CNEA), Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), CABA, Argentina.
| |
Collapse
|
2
|
Li Y, Yang W, Yang X, Ma A, Zhang X, Li H, Wu H. Quemeiteng granule relieves goiter by suppressing thyroid microvascular endothelial cell proliferation and angiogenesis via miR-217-5p-mediated targeting of FGF2-induced regulation of the ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117908. [PMID: 38367931 DOI: 10.1016/j.jep.2024.117908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Goiters are enlargements of the thyroid gland and are a global public issue. Quemeiteng granule (QMTG) is a traditional Chinese medicine (TCM) formula used to treat goiter in Yunnan Province. However, the effectiveness and underlying mechanism of these treatments have not been fully elucidated. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of QMTG on goiter and the downstream regulatory mechanisms. MATERIALS AND METHODS In this study, we first evaluated the antigoiter efficacy of QMTG through biochemical indices [body weight, thyroid coefficient, triiodothyronine (T3), thyroxine (T4), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH)] and hematoxylin-eosin (HE) staining in a Propylthiouracil (PTU)-induced model. Based on microRNA sequencing (miRNA-seq) and bioinformatics analysis, key miRNA was screened out. A dual-luciferase reporter assay was performed to confirm the transcriptional regulation of the target gene by the miRNA. The viability of rat thyroid microvascular endothelial cells (RTMECs) and human thyroid microvascular endothelial cells (HTMECs) was assessed using the CCK-8 assays. The migration and angiogenesis of RTMECs and HTMECs were visualized through tube formation and wound scratch assays. Proteins involved in angiogenesis and the ERK pathway were assessed via Western blotting. RESULTS QMTG significantly increased body weight, decreased the thyroid coefficient, increased the levels of T3, T4, FT3 and FT4 and reduced TSH levels in rats with goiter. QMTG also promoted the morphological recovery of thyroid follicles. MiR-217-5p was identified as a key miRNA. Our studies revealed that miR-217-5p directly targets FGF2 and that QMTG promotes the recovery of thyroid hormone (TH) levels and morphological changes in the thyroid, suppresses thyroid microvascular endothelial cell vitality, tube formation and migration, and reduces the expression of VEGF, Ang-1 and VCAM-1 triggered by miR-217-5p, thereby inhibiting the Ras/MEK/ERK cascade through FGF2. CONCLUSIONS Our experiments demonstrated that the QMTG had therapeutic effects on goiter. These effects were attributed to the inhibition of ERK pathway-induced proliferation and angiogenesis through the targeting of FGF2 by miR-217-5p.
Collapse
Affiliation(s)
- Yang Li
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Yang
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, China
| | - Xuewei Yang
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Aijia Ma
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xuepeng Zhang
- Department and Lab of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wu
- Clinical Pharmacy Center, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
4
|
Ilias I, Milionis C, Koukkou E. Further understanding of thyroid function in pregnant women. Expert Rev Endocrinol Metab 2022; 17:365-374. [PMID: 35831988 DOI: 10.1080/17446651.2022.2099372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Normal thyroid status throughout pregnancy is important for both maternal and fetal health. Despite the bulk of contemporary research honing on thyroid function in gestation and the relevant disorders, there are still gaps in our current knowledge about the etiology and treatment of thyroid diseases in pregnant women. AREAS COVERED This article analyzes the adaptation of the thyroid gland to gestational physiological changes and attempts to explain the effect of several factors on thyroid function in pregnancy. It also stresses proper utilization and interpretation of thyroid tests during pregnancy and underlines the significance of proper screening and treatment of pregnant women aiming at favorable health outcomes. EXPERT OPINION Appropriate strategies for diagnosing and treating thyroid disease in pregnancy are important. Laboratory thyroid testing plays a leading role, but test results should be interpreted with caution. Given the possible serious maternal and fetal/neonatal complications of thyroid disease in pregnancy, we recommend universal screening with TSH measurements of all pregnant women. Additional assessment with determination of the levels of free thyroid hormones and thyroid antibodies may be necessary under certain conditions. The economic burden of such interventions should be considered.
Collapse
Affiliation(s)
- Ioannis Ilias
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens, Greece
| | - Charalampos Milionis
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens, Greece
| | - Eftychia Koukkou
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens, Greece
| |
Collapse
|
5
|
Vanderstraeten J, Derradji H, Sonveaux P, Colin IM, Many MC, Gérard AC. Acute iodine deficiency induces a transient VEGF-dependent microvascular response in mammary glands involving HIF-1, ROS, and mTOR. Am J Physiol Cell Physiol 2018; 315:C544-C557. [PMID: 30020826 DOI: 10.1152/ajpcell.00095.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iodine deficiency (ID), which affects almost two billion people worldwide, is associated with breast pathologies such as fibrosis in human and induces breast atypia in animal models. Because ID induces vascular activation in the thyroid, another iodide-uptaking organ, and as breast is also sensitive to ID, we aimed to characterize ID-induced effects on the breast microvasculature in vivo and in two different breast cell lines in vitro. Virgin and lactating NMRI mice received an iodide-deficient diet and a Na+/I- symporter inhibitor for 1 to 20 days. Some virgin mice were treated with vascular endothelial growth factor A (VEGF) or VEGF receptor inhibitors. In vitro, ID was induced in MCF7 and MCF12A cells by replacing the iodide-containing medium by an iodide-deficient medium. In vivo, VEGF expression was increased following ID in mammary tissues. Consequently, ID induced a transient increase in mammary gland blood flow, measured after anesthesia, in virgin and lactating mice, which was repressed by VEGF or VEGF receptor inhibitors. In MCF7 cells, ID induced a transient increase in reactive oxygen species, followed by an increase in hypoxia-inducible factor-1α (HIF-1α) protein and VEGF mRNA expression. Antioxidant N-acetylcysteine and mammalian target of rapamycin (mTOR) inhibitor blocked ID-induced HIF-1α protein increase and VEGF transcription. However, mTOR activity was not inhibited by N-acetylcysteine. Similar responses were observed in MCF12A cells. These data indicate that ID activates the canonical VEGF pathway and mTOR in breast tissues, which provides new insights to better understand the correlation between ID, vascular activation, and breast pathologies.
Collapse
Affiliation(s)
- Jessica Vanderstraeten
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Hanane Derradji
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Ides M Colin
- Service d'Endocrino-Diabétologie, Centre Hospitalier Régional, Mons-Hainaut, Belgium
| | - Marie-Christine Many
- Pole of Morphology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain , Brussels , Belgium
| | - Anne-Catherine Gérard
- Service d'Endocrino-Diabétologie, Centre Hospitalier Régional, Mons-Hainaut, Belgium
| |
Collapse
|
6
|
Effect of the micronutrient iodine in thyroid carcinoma angiogenesis. Aging (Albany NY) 2017; 8:3180-3184. [PMID: 27997357 PMCID: PMC5270662 DOI: 10.18632/aging.101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022]
Abstract
Iodide is a micronutrient essential for thyroid hormone production. The uptake and metabolism of iodide by thyrocytes is crucial to proper thyroid function. Iodide ions are drawn into the thyroid follicular cell via the sodium-iodide symporter (NIS) in the cell membrane and become integrated into tyrosyl residues to ultimately form thyroid hormones. We sought to learn how an abnormal concentration of iodide within thyrocyte can have significant effects on the thyroid, specifically the surrounding vascular network. Insufficient levels of iodide can lead to increased expression or activity of several pathways, including vascular endothelial growth factor (VEGF). The VEGF protein fuel vessel growth (angiogenesis) and therefore enhances the nutrients available to surrounding cells. Alternatively, normal/surplus iodide levels can have inhibitory effects on angiogenesis. Varying levels of iodide in the thyroid can influence thyroid carcinoma cell proliferation and angiogenesis via regulation of the hypoxia inducible factor-1 (HIF-1) and VEGF-dependent pathway. We have reviewed a number of studies to investigate how the effect of iodide on angiogenic and oxidative stress regulation can affect the viability of thyroid carcinoma cells. The various studies outlined give key insights to the role of iodide in thyroid follicles function and vascular growth, generally highlighting that insufficient levels of iodide stimulate pathways resulting in vascular growth, and viceversa normal/surplus iodide levels inhibit such pathways. Intriguingly, TSH and iodine levels differentially regulate the expression levels of angiogenic factors. All cells, including carcinoma cells, increase uptake of blood nutrients, meaning the vascular profile is influential to tumor growth and progression. Importantly, variation in the iodine concentrations also influence BRAFV600E-mediated oncogenic activity and might deregulate tumor proliferation. Although the mechanisms are not well eluted, iodine concentrations and metabolism might have a crucial influence on thyroid carcinoma cell viability via regulation of different molecular pathways, including angiogenesis regulatory autocrine and microenvironment-mediated signals.
Collapse
|
7
|
Kang HS, Kumar D, Liao G, Lichti-Kaiser K, Gerrish K, Liao XH, Refetoff S, Jothi R, Jetten AM. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. J Clin Invest 2017; 127:4326-4337. [PMID: 29083325 DOI: 10.1172/jci94417] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division-related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development.
Collapse
Affiliation(s)
| | | | - Grace Liao
- 1, Immunity, Inflammation and Disease Laboratory
| | | | - Kevin Gerrish
- 3, Molecular Genomics Core, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, North Carolina, USA
| | | | - Samuel Refetoff
- 4, Department of Medicine, and.,5, Department of Pediatrics and Committee on Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Raja Jothi
- 2, Epigenetics and Stem Cell Biology Laboratory, and
| | | |
Collapse
|
8
|
Gardell AM, von Hippel FA, Adams EM, Dillon DM, Petersen AM, Postlethwait JH, Cresko WA, Buck CL. Exogenous iodide ameliorates perchlorate-induced thyroid phenotypes in threespine stickleback. Gen Comp Endocrinol 2017; 243:60-69. [PMID: 27815158 PMCID: PMC5318228 DOI: 10.1016/j.ygcen.2016.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/07/2016] [Accepted: 10/30/2016] [Indexed: 12/25/2022]
Abstract
Perchlorate is a ubiquitous environmental contaminant that has widespread endocrine disrupting effects in vertebrates, including threespine stickleback (Gasterosteus aculeatus). The target of perchlorate is thyroid tissue where it induces changes in the organization, activation, and morphology of thyroid follicles and surrounding tissues. To test the hypothesis that some phenotypes of perchlorate toxicity are not mediated by thyroid hormone, we chronically exposed stickleback beginning at fertilization to perchlorate (10, 30, 100ppm) or control water with and without supplementation of either iodide or thyroxine (T4). Stickleback were sampled across a one-year timespan to identify potential differences in responses to treatment combinations before and after sexual maturation. We found that most thyroid histomorphological phenotypes induced by perchlorate (follicle proliferation, reduced follicle area (adults only), colloid depletion, thyrocyte hypertrophy (subadults only)) were significantly ameliorated by exogenous iodide supplementation. In contrast, treatment with exogenous T4 did not correct any of the thyroid-specific histopathologies induced by perchlorate. Whole-body thyroid hormone concentrations were not significantly affected by perchlorate exposure; however, supplementation with iodide and T4 significantly increased T4 concentrations. This study also revealed an increased erythrocyte area in the thyroid region of perchlorate-exposed adults, while lipid droplet number increased in perchlorate-exposed subadults. Increased erythrocyte area was ameliorated by both iodide and T4, while neither supplement was able to correct lipid droplet number. Our finding on lipid droplets indicates that exposure to perchlorate in early development may have obesogenic effects.
Collapse
Affiliation(s)
- Alison M Gardell
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Frank A von Hippel
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Elise M Adams
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Danielle M Dillon
- Center for Bioengineering Innovation & Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ann M Petersen
- Department of Integrative Biology, Oregon State University, Cascades, Bend, OR 97703, USA
| | | | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - C Loren Buck
- Center for Bioengineering Innovation & Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| |
Collapse
|
9
|
Craps J, Joris V, De Jongh B, Sonveaux P, Horman S, Lengelé B, Bertrand L, Many MC, Colin IM, Gérard AC. Involvement of mTOR and Regulation by AMPK in Early Iodine Deficiency-Induced Thyroid Microvascular Activation. Endocrinology 2016; 157:2545-59. [PMID: 27035650 DOI: 10.1210/en.2015-1911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Iodine deficiency (ID) induces TSH-independent microvascular activation in the thyroid via the reactive oxygen species/nitric oxide-hypoxia-inducible factor-1α/vascular endothelial growth factor (VEGF) pathway. We hypothesized the additional involvement of mammalian target of rapamycin (mTOR) as a positive regulator of this pathway and AMP-activated protein kinase (AMPK) as a negative feedback regulator to explain the transient nature of ID-induced microvascular changes under nonmalignant conditions. mTOR and AMPK involvement was investigated using an in vitro model (human thyrocytes in primary cultures) and 2 murine models of goitrogenesis (normal NMRI and RET-PTC mice [a papillary thyroid cancer model]). In NMRI mice, ID had no effect on the phosphorylation of ribosomal S6 kinase (p70S6K), a downstream target of mTOR. However, rapamycin inhibited ID-induced thyroid blood flow and VEGF protein expression. In the RET-PTC model, ID strongly increased the phosphorylation of p70S6K, whereas rapamycin completely inhibited the ID-induced increase in p70S6K phosphorylation, thyroid blood flow, and VEGF-A expression. In vitro, although ID increased p70S6K phosphorylation, the ID-stimulated hypoxia-inducible factor/VEGF pathway was inhibited by rapamycin. Activation of AMPK by metformin inhibited ID effects both in vivo and in vitro. In AMPK-α1 knockout mice, the ID-induced increase in thyroid blood flow and VEGF-A protein expression persisted throughout the treatment, whereas both parameters returned to control values in wild-type mice after 4 days of ID. In conclusion, mTOR is required for early ID-induced thyroid microvascular activation. AMPK negatively regulates this pathway, which may account for the transient nature of ID-induced TSH-independent vascular effects under benign conditions.
Collapse
Affiliation(s)
- J Craps
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| | - V Joris
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| | - B De Jongh
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| | - P Sonveaux
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| | - S Horman
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| | - B Lengelé
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| | - L Bertrand
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| | - M-C Many
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| | - I M Colin
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| | - A-C Gérard
- Pôle de Morphologie (J.C., B.D.J., B.L., M.-C.M., I.M.C., A.-C.G.), de Pharmacologie et Thérapeutique (V.J., P.S.), de Recherche Cardiovasculaire (S.H., L.B.), Institut de Recherche Expérimentale et Clinique, Laboratoire de Biologie Cellulaire, and Institut des Sciences de la Vie (A.-C.G.), Université Catholique de Louvain, Louvain-La-Neuve, Brussels 1200, Belgium
| |
Collapse
|
10
|
Hopfinger M, Huber B, Lametschwandtner A. Microvascularization of the thyroid glands in larval and adultXenopus laevis-histomorphology and scanning electron microscopy of vascular corrosion casts. ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathias Hopfinger
- Division of Animal Structure & Function; Department of Cell Biology; Vascular and Performance Biology Research Group; University of Salzburg; Hellbrunnerstrasse 34 5020 Salzburg Austria
| | - Bettina Huber
- Chair of Urban Water Systems Engineering; Technical University of Munich; Am Coulombwall 8 85748 Garching Germany
| | - Alois Lametschwandtner
- Division of Animal Structure & Function; Department of Cell Biology; Vascular and Performance Biology Research Group; University of Salzburg; Hellbrunnerstrasse 34 5020 Salzburg Austria
| |
Collapse
|
11
|
Craps J, Wilvers C, Joris V, De Jongh B, Vanderstraeten J, Lobysheva I, Balligand JL, Sonveaux P, Gilon P, Many MC, Gérard AC, Colin IM. Involvement of nitric oxide in iodine deficiency-induced microvascular remodeling in the thyroid gland: role of nitric oxide synthase 3 and ryanodine receptors. Endocrinology 2015; 156:707-20. [PMID: 25406019 DOI: 10.1210/en.2014-1729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iodine deficiency (ID) induces microvascular changes in the thyroid gland via a TSH-independent reactive oxygen species-hypoxia inducible factor (HIF)-1α-vascular endothelial growth factor (VEGF) pathway. The involvement of nitric oxide (NO) in this pathway and the role of calcium (Ca(2+)) and of ryanodine receptors (RYRs) in NO synthase 3 (NOS3) activation were investigated in a murine model of goitrogenesis and in 3 in vitro models of ID, including primary cultures of human thyrocytes. ID activated NOS3 and the production of NO in thyrocytes in vitro and increased the thyroid blood flow in vivo. Using bevacizumab (a blocking antibody against VEGF-A) in mice, it appeared that NOS3 is activated upstream of VEGF-A. L-nitroarginine methyl ester (a NOS inhibitor) blocked the ID-induced increase in thyroid blood flow in vivo and NO production in vitro, as well as ID-induced VEGF-A mRNA and HIF-1α expression in vitro, whereas S-nitroso-acetyl-penicillamine (a NO donor) did the opposite. Ca(2+) is involved in this pathway as intracellular Ca(2+) flux increased after ID, and thapsigargin activated NOS3 and increased VEGF-A mRNA expression. Two of the 3 known mammalian RYR isoforms (RYR1 and RYR2) were shown to be expressed in thyrocytes. RYR inhibition using ryanodine at 10μM decreased ID-induced NOS3 activation, HIF-1α, and VEGF-A expression, whereas RYR activation with ryanodine at 1nM increased NOS3 activation and VEGF-A mRNA expression. In conclusion, during the early phase of TSH-independent ID-induced microvascular activation, ID sequentially activates RYRs and NOS3, thereby supporting ID-induced activation of the NO/HIF-1α/VEGF-A pathway in thyrocytes.
Collapse
Affiliation(s)
- J Craps
- Pôle de Morphologie (J.C., C.W., B.D.J., J.V., M.-C.M., I.M.C.), de Pharmacologie et Thérapeutique (V.J., I.L., J.-L.B., P.S.), et d'Endocrinologie, Diabète et Nutrition (P.G.), Institut de Recherche Expérimentale et Clinique, Secteur des Sciences de la Santé, Faculté de Médecine, Université catholique de Louvain, 1200, Brussels, Belgium; and Service d'Endocrino-Diabétologie (A.-C.G., I.M.C.), Centre Hospitalier Régional, 7000, Mons-Hainaut, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Surgery for recurrent goiter: complication rate and role of the thyroid-stimulating hormone-suppressive therapy after the first operation. Langenbecks Arch Surg 2014; 400:253-8. [DOI: 10.1007/s00423-014-1258-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
|
13
|
Nagasaki S, Fukui M, Asano S, Ono K, Miki Y, Araki SI, Isobe M, Nakashima N, Takahashi K, Sasano H, Sato J. Induction of adrenomedullin 2/intermedin expression by thyroid stimulating hormone in thyroid. Mol Cell Endocrinol 2014; 395:32-40. [PMID: 25102228 DOI: 10.1016/j.mce.2014.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
Abstract
TSH is the important regulator of thyroid function but detailed molecular mechanisms have not been clarified. We first generated the iodine deficient (ID) rat in which goiter is induced by accelerated endogenous TSH secretion. The result of microarray analysis demonstrated markedly increased levels of adrenomedullin 2/intermedin (AM2/IMD) expression in the ID rat thyroid. AM2/IMD is a potent vasodilator. AM2/IMD mRNA expression was induced by TSH in a rat thyroid follicular cell line FRTL-5. Immunohistochemical analysis in human normal and Graves' disease thyroid revealed that AM2/IMD immunoreactivity was detected in follicular cells and more pronounced in Graves' disease. These results indicated that TSH induced AM2/IMD expression in the rat thyroid gland and it could locally work as a potent vasodilator, resulting in the expansion of thyroid inter-follicular capillaries. AM2/IMD could also contribute to facilitate thyroid hormone synthesis possibly via vasodilation effects and/or cAMP stimulating effects in the human thyroid gland.
Collapse
Affiliation(s)
- Shuji Nagasaki
- Drug Discovery Department, ASKA Pharmaceutical Co., Ltd., Kawasaki, Japan; Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Motoko Fukui
- Safety Research Department, ASKA Pharmaceutical Co., Ltd., Kawasaki, Japan
| | - Satoko Asano
- Drug Discovery Department, ASKA Pharmaceutical Co., Ltd., Kawasaki, Japan
| | - Katsuhiko Ono
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sei-ichi Araki
- Safety Research Department, ASKA Pharmaceutical Co., Ltd., Kawasaki, Japan
| | - Mitsui Isobe
- Safety Research Department, ASKA Pharmaceutical Co., Ltd., Kawasaki, Japan
| | - Noriaki Nakashima
- Department of Breast and Endocrine Surgery, Tohoku University Hospital, Sendai, Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Sato
- Drug Discovery Department, ASKA Pharmaceutical Co., Ltd., Kawasaki, Japan
| |
Collapse
|
14
|
Šošić-Jurjević B, Filipović B, Wirth EK, Živanović J, Radulović N, Janković S, Milošević V, Köhrle J. Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats. Toxicol Appl Pharmacol 2014; 278:124-34. [PMID: 24793811 DOI: 10.1016/j.taap.2014.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 01/10/2023]
Abstract
We previously reported that genistein (G) and daidzein (D) administered subcutaneously (10mg/kg) induce changes in the angio-follicular units of the thyroid gland, reduce concentration of total thyroid hormones (TH) and increase thyrotropin (TSH) in serum of orchidectomized middle-aged (16-month-old) rats. To further investigate these effects, we now examined expression levels of the thyroglobulin (Tg), thyroperoxidase (Tpo), vascular endothelial growth factor A (Vegfa) and deiodinase type 1 (Dio 1) genes in the thyroid; in the pituitary, genes involved in TH feedback control (Tsh β, Dio 1, Dio 2, Trh receptor); and in the liver and kidney, expression of T3-activated genes Dio 1 and Spot 14, as well as transthyretin (Ttr), by quantitative real-time PCR. We also analyzed TPO-immunopositivity and immunofluorescence of T4 bound to Tg, determined thyroid T4 levels and measured deiodinase enzyme activities in examined organs. Decreased expression of Tg and Tpo genes (p<0.05) correlated with immunohistochemical staining results, and together with decreased serum total T4 levels, indicates decreased Tg and TH synthesis following treatments with both isoflavones. However, expression of Spot 14 (p<0.05) gene in liver and kidney was up-regulated, and liver Dio 1 expression and activity (p<0.05) increased. At the level of pituitary, no significant change in gene expression levels, or Dio 1 and 2 enzyme activities was observed. In conclusion, both G and D impaired Tg and TH synthesis, but at the same time increased tissue availability of TH in peripheral tissues of Orx middle-aged rats.
Collapse
Affiliation(s)
- Branka Šošić-Jurjević
- Institute for Biological Research, Siniša Stanković, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - Branko Filipović
- Institute for Biological Research, Siniša Stanković, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Eva Katrin Wirth
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Jasmina Živanović
- Institute for Biological Research, Siniša Stanković, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Niko Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Snežana Janković
- Institute for Science Application in Agriculture, University of Belgrade, Despot Stefan Blvd. 68b, 11000 Belgrade, Serbia
| | - Verica Milošević
- Institute for Biological Research, Siniša Stanković, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| |
Collapse
|
15
|
Rudolph N, Dominguez C, Beaulieu A, De Wailly P, Kraimps JL. The Morbidity of Reoperative Surgery for Recurrent Benign Nodular Goitre: Impact of Previous Unilateral Thyroid Lobectomy versus Subtotal Thyroidectomy. J Thyroid Res 2014; 2014:231857. [PMID: 24563802 PMCID: PMC3915859 DOI: 10.1155/2014/231857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/22/2013] [Accepted: 10/20/2013] [Indexed: 11/17/2022] Open
Abstract
Background. Subtotal thyroidectomy (STT) was previously considered the gold standard in the surgical management of multinodular goitre despite its propensity for recurrence. Our aim was to assess whether prior STT or unilateral lobectomy was associated with increased reoperative morbidity. Methods. A retrospective analysis was conducted extracting data from our endocrine surgical database for the period from January 1991 to June 2006. Two patient groups were defined: Group 1 consisted of patients with previous unilateral thyroid lobectomy; Group 2 had undergone previous STT. Specific outcomes investigated were transient and permanent recurrent laryngeal nerve (RLN) injury and hypoparathyroidism. Results. 494 reoperative cases were performed which consisted of 259 patients with previous unilateral lobectomy (Group 1) and 235 patients with previous subtotal thyroidectomy (Group 2). A statistically significant increase relating to previous STT was demonstrated in both permanent RLN injury (0.77% versus 3.4%, RR 4.38, P = 0.038) and permanent hypoparathyroidism (1.5% versus 5.1%, RR 3.14, P = 0.041). Transient nerve injury and hypocalcaemia incidence was comparable. Conclusions. Reoperative surgery following subtotal thyroidectomy is associated with a significantly increased risk of permanent recurrent laryngeal nerve injury and hypoparathyroidism when compared with previous unilateral thyroidectomy. Subtotal thyroidectomy should therefore no longer be recommended in the management of multinodular goitre.
Collapse
Affiliation(s)
- Navin Rudolph
- Department of Endocrine Surgery, University Hospital of Poitiers, 86021 Poitiers, France
| | - Claudia Dominguez
- Department of Endocrine Surgery, University Hospital of Poitiers, 86021 Poitiers, France
| | - Anthony Beaulieu
- Department of Endocrine Surgery, University Hospital of Poitiers, 86021 Poitiers, France
| | - Pierre De Wailly
- Department of Endocrine Surgery, University Hospital of Poitiers, 86021 Poitiers, France
| | - Jean-Louis Kraimps
- Department of Endocrine Surgery, University Hospital of Poitiers, 86021 Poitiers, France
| |
Collapse
|
16
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
17
|
Laing B, Han DY, Ferguson LR. Candidate genes involved in beneficial or adverse responses to commonly eaten brassica vegetables in a New Zealand Crohn's disease cohort. Nutrients 2013; 5:5046-64. [PMID: 24352087 PMCID: PMC3875924 DOI: 10.3390/nu5125046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022] Open
Abstract
Crohn’s disease (CD) is one of the two manifestations of inflammatory bowel disease. Particular foods are thought with CD to exacerbate their illness. Vegetables, especially Brassicaceae, are often shunned by people with CD because of the negative effects they are alleged to have on their symptoms. Brassicaceae supply key nutrients which are necessary to meet recommended daily intakes. We sought to identify the candidate genes involved in the beneficial or adverse effects of Brassicaceae most commonly eaten, as reported by the New Zealand adults from the “Genes and Diet in Inflammatory Bowel disease Study” based in Auckland. An analysis of associations between the single nucleotide polymorphisms (SNPs) and the beneficial or adverse effects of the ten most commonly eaten Brassicaceae was carried out. A total of 37 SNPs were significantly associated with beneficial effects (p = 0.00097 to 0.0497) and 64 SNPs were identified with adverse effects (p = 0.0000751 to 0.049). After correcting for multiple testing, rs7515322 (DIO1) and rs9469220 (HLA) remained significant. Our findings show that the tolerance of some varieties of Brassicaceae may be shown by analysis of a person’s genotype.
Collapse
Affiliation(s)
- Bobbi Laing
- Discipline of Nutrition, School of Medical Sciences, Auckland University, 85 Park Road, Grafton Campus, Auckland 1142, New Zealand.
| | | | | |
Collapse
|
18
|
Colin IM, Denef JF, Lengelé B, Many MC, Gérard AC. Recent insights into the cell biology of thyroid angiofollicular units. Endocr Rev 2013; 34:209-38. [PMID: 23349248 PMCID: PMC3610675 DOI: 10.1210/er.2012-1015] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 11/07/2012] [Indexed: 01/06/2023]
Abstract
In thyrocytes, cell polarity is of crucial importance for proper thyroid function. Many intrinsic mechanisms of self-regulation control how the key players involved in thyroid hormone (TH) biosynthesis interact in apical microvilli, so that hazardous biochemical processes may occur without detriment to the cell. In some pathological conditions, this enzymatic complex is disrupted, with some components abnormally activated into the cytoplasm, which can lead to further morphological and functional breakdown. When iodine intake is altered, autoregulatory mechanisms outside the thyrocytes are activated. They involve adjacent capillaries that, together with thyrocytes, form the angiofollicular units (AFUs) that can be considered as the functional and morphological units of the thyroid. In response to iodine shortage, a rapid expansion of the microvasculature occurs, which, in addition to nutrients and oxygen, optimizes iodide supply. These changes are triggered by angiogenic signals released from thyrocytes via a reactive oxygen species/hypoxia-inducible factor/vascular endothelial growth factor pathway. When intra- and extrathyrocyte autoregulation fails, other forms of adaptation arise, such as euthyroid goiters. From onset, goiters are morphologically and functionally heterogeneous due to the polyclonal nature of the cells, with nodules distributed around areas of quiescent AFUs containing globules of compact thyroglobulin (Tg) and surrounded by a hypotrophic microvasculature. Upon TSH stimulation, quiescent AFUs are activated with Tg globules undergoing fragmentation into soluble Tg, proteins involved in TH biosynthesis being expressed and the local microvascular network extending. Over time and depending on physiological needs, AFUs may undergo repetitive phases of high, moderate, or low cell and tissue activity, which may ultimately culminate in multinodular goiters.
Collapse
Affiliation(s)
- Ides M Colin
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Secteur des Sciences de la Santé, Université Catholique de Louvain (UCL), UCL-5251, 52 Avenue E. Mounier, B-1200, Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
19
|
Porcu E, Medici M, Pistis G, Volpato CB, Wilson SG, Cappola AR, Bos SD, Deelen J, den Heijer M, Freathy RM, Lahti J, Liu C, Lopez LM, Nolte IM, O'Connell JR, Tanaka T, Trompet S, Arnold A, Bandinelli S, Beekman M, Böhringer S, Brown SJ, Buckley BM, Camaschella C, de Craen AJM, Davies G, de Visser MCH, Ford I, Forsen T, Frayling TM, Fugazzola L, Gögele M, Hattersley AT, Hermus AR, Hofman A, Houwing-Duistermaat JJ, Jensen RA, Kajantie E, Kloppenburg M, Lim EM, Masciullo C, Mariotti S, Minelli C, Mitchell BD, Nagaraja R, Netea-Maier RT, Palotie A, Persani L, Piras MG, Psaty BM, Räikkönen K, Richards JB, Rivadeneira F, Sala C, Sabra MM, Sattar N, Shields BM, Soranzo N, Starr JM, Stott DJ, Sweep FCGJ, Usala G, van der Klauw MM, van Heemst D, van Mullem A, H.Vermeulen S, Visser WE, Walsh JP, Westendorp RGJ, Widen E, Zhai G, Cucca F, Deary IJ, Eriksson JG, Ferrucci L, Fox CS, Jukema JW, Kiemeney LA, Pramstaller PP, Schlessinger D, Shuldiner AR, Slagboom EP, Uitterlinden AG, Vaidya B, Visser TJ, Wolffenbuttel BHR, Meulenbelt I, Rotter JI, Spector TD, Hicks AA, Toniolo D, Sanna S, Peeters RP, Naitza S. A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Genet 2013; 9:e1003266. [PMID: 23408906 PMCID: PMC3567175 DOI: 10.1371/journal.pgen.1003266] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/12/2012] [Indexed: 12/15/2022] Open
Abstract
Thyroid hormone is essential for normal metabolism and development, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10% of individuals over their life span. In addition, even mild alterations in thyroid function are associated with weight changes, atrial fibrillation, osteoporosis, and psychiatric disorders. To identify novel variants underlying thyroid function, we performed a large meta-analysis of genome-wide association studies for serum levels of the highly heritable thyroid function markers TSH and FT4, in up to 26,420 and 17,520 euthyroid subjects, respectively. Here we report 26 independent associations, including several novel loci for TSH (PDE10A, VEGFA, IGFBP5, NFIA, SOX9, PRDM11, FGF7, INSR, ABO, MIR1179, NRG1, MBIP, ITPK1, SASH1, GLIS3) and FT4 (LHX3, FOXE1, AADAT, NETO1/FBXO15, LPCAT2/CAPNS2). Notably, only limited overlap was detected between TSH and FT4 associated signals, in spite of the feedback regulation of their circulating levels by the hypothalamic-pituitary-thyroid axis. Five of the reported loci (PDE8B, PDE10A, MAF/LOC440389, NETO1/FBXO15, and LPCAT2/CAPNS2) show strong gender-specific differences, which offer clues for the known sexual dimorphism in thyroid function and related pathologies. Importantly, the TSH-associated loci contribute not only to variation within the normal range, but also to TSH values outside the reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings explain, respectively, 5.64% and 2.30% of total TSH and FT4 trait variance, and they improve the current knowledge of the regulation of hypothalamic-pituitary-thyroid axis function and the consequences of genetic variation for hypo- or hyperthyroidism. Levels of thyroid hormones are tightly regulated by TSH produced in the pituitary, and even mild alterations in their concentrations are strong indicators of thyroid pathologies, which are very common worldwide. To identify common genetic variants associated with the highly heritable markers of thyroid function, TSH and FT4, we conducted a meta-analysis of genome-wide association studies in 26,420 and 17,520 individuals, respectively, of European ancestry with normal thyroid function. Our analysis identified 26 independent genetic variants regulating these traits, several of which are new, and confirmed previously detected polymorphisms affecting TSH (within the PDE8B gene and near CAPZB, MAF/LOC440389, and NR3C2) and FT4 (within DIO1) levels. Gender-specific differences in the genetic effects of several variants for TSH and FT4 levels were identified at several loci, which offer clues to understand the known sexual dimorphism in thyroid function and pathology. Of particular clinical interest, we show that TSH-associated loci contribute not only to normal variation, but also to TSH values outside reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings add to the developing landscape of the regulation of thyroid homeostasis and the consequences of genetic variation for thyroid related diseases.
Collapse
Affiliation(s)
- Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Marco Medici
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Università degli Studi di Trieste, Trieste, Italy
| | - Claudia B. Volpato
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Scott G. Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Anne R. Cappola
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Steffan D. Bos
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Joris Deelen
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Martin den Heijer
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Free University Medical Center, Amsterdam, The Netherlands
| | - Rachel M. Freathy
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Chunyu Liu
- Center for Population Studies, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
| | - Lorna M. Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ilja M. Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeffrey R. O'Connell
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Toshiko Tanaka
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alice Arnold
- Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Marian Beekman
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Stefan Böhringer
- Leiden University Medical Center, Medical Statistics and Bioinformatics, Leiden, The Netherlands
| | - Suzanne J. Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Brendan M. Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Vita e Salute University, San Raffaele Scientific Institute, Milano, Italy
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Marieke C. H. de Visser
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - Tom Forsen
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Vaasa Health Care Centre, Diabetes Unit, Vaasa, Finland
| | - Timothy M. Frayling
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Laura Fugazzola
- Endocrine Unit, Fondazione Ca' Granda Policlinico and Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Martin Gögele
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Andrew T. Hattersley
- Peninsula NIHR Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Ad R. Hermus
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)–sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | | | - Richard A. Jensen
- Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Eero Kajantie
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Margreet Kloppenburg
- Department of Clinical Epidemiology and Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ee M. Lim
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Pathwest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Corrado Masciullo
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
| | - Stefano Mariotti
- Dipartimento di Scienze Mediche, Università di Cagliari, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Cosetta Minelli
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Ramaiah Nagaraja
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Romana T. Netea-Maier
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Aarno Palotie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
- Division of Endocrinology and Metabolic Diseases, IRCCS Ospedale San Luca, Milan, Italy
| | - Maria G. Piras
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - J. Brent Richards
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Department of Medicine, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Departments of Human Genetics, Epidemiology, and Biostatistics, Jewish General Hospital, Lady Davis Institute, McGill University, Montréal, Québec
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)–sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
| | - Mona M. Sabra
- Memorial Sloan Kettering Cancer Center, Medicine-Endocrinology, New York, New York, United States of America
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom
| | - Beverley M. Shields
- Peninsula NIHR Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Nicole Soranzo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Stott
- Academic Section of Geriatric Medicine, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Fred C. G. J. Sweep
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Gianluca Usala
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Melanie M. van der Klauw
- LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diana van Heemst
- Leiden University Medical Center, Gerontology and Geriatrics, Leiden, The Netherlands
| | - Alies van Mullem
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sita H.Vermeulen
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - W. Edward Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Rudi G. J. Westendorp
- Leiden University Medical Center, Gerontology and Geriatrics, Leiden, The Netherlands
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Guangju Zhai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Johan G. Eriksson
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
- Vasa Central Hospital, Vasa, Finland
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Caroline S. Fox
- Division of Intramural Research, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
- Division of Endocrinology, Hypertension, and Metabolism, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter P. Pramstaller
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
- Department of Neurology, General Central Hospital, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Alan R. Shuldiner
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
- Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, United States of America
| | - Eline P. Slagboom
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)–sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - Bijay Vaidya
- Diabetes, Endocrinology and Vascular Health Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Bruce H. R. Wolffenbuttel
- LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ingrid Meulenbelt
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Andrew A. Hicks
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Institute of Molecular Genetics–CNR, Pavia, Italy
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- * E-mail: (S Sanna); (RP Peeters); (S Naitza)
| | - Robin P. Peeters
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- * E-mail: (S Sanna); (RP Peeters); (S Naitza)
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- * E-mail: (S Sanna); (RP Peeters); (S Naitza)
| |
Collapse
|
20
|
Gérard AC, Humblet K, Wilvers C, Poncin S, Derradji H, de Ville de Goyet C, Abou-el-Ardat K, Baatout S, Sonveaux P, Denef JF, Colin IM. Iodine-deficiency-induced long lasting angiogenic reaction in thyroid cancers occurs via a vascular endothelial growth factor-hypoxia inducible factor-1-dependent, but not a reactive oxygen species-dependent, pathway. Thyroid 2012; 22:699-708. [PMID: 22663304 DOI: 10.1089/thy.2011.0387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In the thyroid, iodine deficiency (ID) induces angiogenesis via a tightly controlled reactive oxygen species (ROS)-hypoxia inducible factor-1 (HIF-1)-vascular endothelial growth factor (VEGF) dependent pathway (ROS-HIF-VEGF). Deficient iodine intake may be associated with increased thyroid cancer incidence. The hypothesis of this work is to test whether ID affects the angiogenic processes in thyroid malignant cells by altering the ROS-HIF-VEGF pathway. METHODS Goiters were obtained in RET/PTC3 transgenic and wild-type (wt) mice and ID was induced in three thyroid carcinoma cell lines (TPC-1, 8305c, and R082-w1). Thyroid blood flow, VEGF mRNA and protein, and HIF-1α protein expression were measured. The role of HIF-1 and of ROS was assessed using echinomycin and N-acetylcysteine (NAC), respectively. RESULTS The goitrogen treatment increased the thyroid blood flow in wt and RET/PTC3 mice. Compared with wt mice, basal VEGF expression was higher in RET/PTC3 mice and increased with goitrogen treatment. In the three cell lines, ID induced marked increases in VEGF mRNA, and moderate increases in HIF-1α protein expression that were not transient as in normal cells. ID-induced VEGF mRNA expression was fully (8305c), partially (TPC-1), or not (R082-w1) blocked by echinomycin. NAC had no effect on ID-induced VEGF mRNA and HIF-1α protein expression in the three cell lines. CONCLUSIONS ID induces a long lasting angiogenic phenotype in thyroid cancer cells that occurs through VEGF induction via a pathway partially mediated by HIF-1, but not by ROS. These results suggest that, in contrast with normal cells, ID-induced angiogenesis in cancer cells occurs via alternative and likely less controlled routes, thereby leading to uncontrolled growth.
Collapse
Affiliation(s)
- Anne-Catherine Gérard
- Department of Morphology, Institute of Experimental and Clinical Research, Catholic University of Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Verheesen RH, Schweitzer CM. Amino acids and our genetic code: a highly adaptive and interacting defense system. Med Hypotheses 2012; 78:450-3. [PMID: 22289341 DOI: 10.1016/j.mehy.2011.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/29/2011] [Indexed: 10/14/2022]
Abstract
Since the discovery of the genetic code, Mendel's heredity theory and Darwin's evolution theory, science believes that adaptations to the environment are processes in which the adaptation of the genes is a matter of probability, in which finally the specie will survive which is evolved by chance. We hypothesize that evolution and the adaptation of the genes is a well-organized fully adaptive system in which there is no rigidity of the genes. The dividing of the genes will take place in line with the environment to be expected, sensed through the mother. The encoding triplets can encode for more than one amino acid depending on the availability of the amino acids and the needed micronutrients. Those nutrients can cause disease but also prevent diseases, even cancer and auto immunity. In fact we hypothesize that auto immunity is an effective process of the organism to clear suboptimal proteins, formed due to amino acid and micronutrient deficiencies. Only when deficiencies sustain, disease will develop, otherwise the autoantibodies will function as all antibodies function, in a protective way. Furthermore, we hypothesize that essential amino acids are less important than nonessential amino acid (NEA). Species developed the ability to produce the nonessential amino acids themselves because they were not provided by food sufficiently. In contrast essential amino acids are widely available, without any evolutionary pressure. Since we can only produce small amounts of NEA and the availability in food can be reasoned to be too low they are still our main concern in amino acid availability. In conclusion, we hypothesize that increasing health will only be possible by improving our natural environment and living circumstances, not by changing the genes, since they are our last line of defense in surviving our environmental changes.
Collapse
Affiliation(s)
- R H Verheesen
- Regionaal Reuma Centrum, Maxima Medisch Centrum, Ds Th. Fliednerstraat 1, 5631 BM Eindhoven, The Netherlands.
| | | |
Collapse
|
22
|
Geers C, Colin IM, Gérard AC. Delta-like 4/Notch pathway is differentially regulated in benign and malignant thyroid tissues. Thyroid 2011; 21:1323-30. [PMID: 22066479 DOI: 10.1089/thy.2010.0444] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Angiogenesis plays an essential role in embryonic and tumoral developments. Vascular endothelial growth factor (VEGF), one of the best known proangiogenic factors, is increased in thyroid cancers, especially in papillary carcinomas (PC). However, other regulating mechanisms refine VEGF-induced cellular changes, such as the Notch family of ligands and receptors. Their role has not yet been investigated in the thyroid. The purpose of our study was to analyze the expression of Notch1, Notch4, and Delta-like 4 (DLL4) in benign and malignant thyroid lesions. METHODS The expression of Notch1, Notch4, and DLL4 was analyzed by immunohistochemistry, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and Western-blot in normal thyroids (NTs), hyperplasic thyroids from patients with Graves' disease (GD), microcarcinomas, PC, and follicular carcinomas. RESULTS The immunohistochemical expression of Notch1, Notch4, and DLL4 was highly variable in thyrocytes from NTs and GD. In contrast, the staining in tumors was homogeneous and often intense. The increased expression of Notch1, Notch4, and DLL4 in carcinomas compared with the neighboring normal tissue was confirmed by qRT-PCR and Western-blot. However, only capillary endothelial cells from GD samples were positive for DLL4, the expression being restricted to large vessels in carcinomas and NTs. CONCLUSIONS The detection of Notch1, Notch4, and DLL4 in thyrocytes and their regulation in various pathologies suggest that this pathway may play a role in thyroid carcinogenesis and angiogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adenocarcinoma, Follicular
- Analysis of Variance
- Belgium
- Blotting, Western
- Calcium-Binding Proteins
- Carcinoma
- Carcinoma, Papillary
- Graves Disease/genetics
- Graves Disease/metabolism
- Graves Disease/pathology
- Humans
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/analysis
- Intercellular Signaling Peptides and Proteins/genetics
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins/genetics
- RNA, Messenger/analysis
- Receptor, Notch1/analysis
- Receptor, Notch1/genetics
- Receptor, Notch4
- Receptors, Notch/analysis
- Receptors, Notch/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Thyroid Cancer, Papillary
- Thyroid Gland/chemistry
- Thyroid Gland/pathology
- Thyroid Neoplasms/chemistry
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Caroline Geers
- Department of Pathology, University Hospital (UZ) Brussels, Vrij University of Brussels, Brussels, Belgium
| | | | | |
Collapse
|
23
|
Paschke R. Molecular pathogenesis of nodular goiter. Langenbecks Arch Surg 2011; 396:1127-36. [PMID: 21487943 DOI: 10.1007/s00423-011-0788-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/13/2011] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Familial clustering of goiters mostly with an autosomal dominant pattern of inheritance has repeatedly been reported. Moreover, other environmental and etiologic factors are likely to be involved in the development of euthyroid goiter. Therefore, a multifactorial etiology based on complex interactions of both genetic predisposition and the individuals' environment is likely. METHODS The line of events from early thyroid hyperplasia to multinodular goiter argues for the predominant neoplastic (i.e., originating from a single mutated cell) character of nodular structures. Etiologically, relevant somatic mutations are known in two thirds of papillary and follicular thyroid carcinomas and hot thyroid nodules. In contrast, the somatic mutations relevant for benign cold or benign isocaptant thyroid nodules which constitute the majority of thyroid nodules are unknown. RESULTS The nodular process is triggered by the oxidative nature of thyroid hormone synthesis or additional oxidative stress caused by iodine deficiency or smoking. If the antioxidant defense is not effective, this oxidative stress will cause DNA damage followed by an increase of the spontaneous mutation rate which is a substrate for tumorogenesis. CONCLUSIONS Therefore, the hallmark of thyroid physiology--H(2)O(2) production during hormone synthesis--is very likely the ultimate cause for the frequent mutagenesis in the thyroid gland. Because iodine deficiency increases the oxidative burden, DNA damage and mutagenesis could provide the basis for the frequent nodular transformation of endemic goiters.
Collapse
Affiliation(s)
- Ralf Paschke
- Department for Endocrinology and Nephrology, University of Leipzig, Liebigstrasse 20, D-04103, Leipzig, Germany.
| |
Collapse
|
24
|
Barczyński M, Konturek A, Hubalewska-Dydejczyk A, Gołkowski F, Cichoń S, Nowak W. Five-year Follow-up of a Randomized Clinical Trial of Total Thyroidectomy versus Dunhill Operation versus Bilateral Subtotal Thyroidectomy for Multinodular Nontoxic Goiter. World J Surg 2010; 34:1203-13. [DOI: 10.1007/s00268-010-0491-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Barczyński M, Konturek A, Gołkowski F, Hubalewska-Dydejczyk A, Cichoń S, Nowak W. Five-Year Follow-up of a Randomized Clinical Trial of Unilateral Thyroid Lobectomy with or Without Postoperative Levothyroxine Treatment. World J Surg 2010; 34:1232-8. [DOI: 10.1007/s00268-010-0439-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Senou M, Costa MJ, Massart C, Thimmesch M, Khalifa C, Poncin S, Boucquey M, Gérard AC, Audinot JN, Dessy C, Ruf J, Feron O, Devuyst O, Guiot Y, Dumont JE, Van Sande J, Many MC. Role of caveolin-1 in thyroid phenotype, cell homeostasis, and hormone synthesis: in vivo study of caveolin-1 knockout mice. Am J Physiol Endocrinol Metab 2009; 297:E438-51. [PMID: 19435853 DOI: 10.1152/ajpendo.90784.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In human thyroid, caveolin-1 is localized at the apex of thyrocytes, but its role there remains unknown. Using immunohistochemistry, (127)I imaging, transmission electron microscopy, immunogold electron microscopy, and quantification of H(2)O(2), we found that in caveolin-1 knockout mice thyroid cell homeostasis was disrupted, with evidence of oxidative stress, cell damage, and apoptosis. An even more striking phenotype was the absence of thyroglobulin and iodine in one-half of the follicular lumina and their presence in the cytosol, suggesting that the iodide organification and binding to thyroglobulin were intracellular rather than at the apical membrane/extracellular colloid interface. The latter abnormality may be secondary to the observed mislocalization of the thyroid hormone synthesis machinery (dual oxidases, thyroperoxidase) in the cytosol. Nevertheless, the overall uptake of radioiodide, its organification, and secretion as thyroid hormones were comparable to those of wild-type mice, suggesting adequate compensation by the normal TSH retrocontrol. Accordingly, the levels of free thyroxine and TSH were normal. Only the levels of free triiodothyronine showed a slight decrease in caveolin-1 knockout mice. However, when TSH levels were increased through low-iodine chow and sodium perchlorate, the induced goiter was more prominent in caveolin-1 knockout mice. We conclude that caveolin-1 plays a role in proper thyroid hormone synthesis as well as in cell number homeostasis. Our study demonstrates for the first time a physiological function of caveolin-1 in the thyroid gland. Because the expression and subcellular localization of caveolin-1 were similar between normal human and murine thyroids, our findings in caveolin-1 knockout mice may have direct relevance to the human counterpart.
Collapse
Affiliation(s)
- Maximin Senou
- Unité de Morphologie Expérimentale, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gérard AC, Poncin S, Audinot JN, Denef JF, Colin IM. Iodide deficiency-induced angiogenic stimulus in the thyroid occurs via HIF- and ROS-dependent VEGF-A secretion from thyrocytes. Am J Physiol Endocrinol Metab 2009; 296:E1414-22. [PMID: 19336661 DOI: 10.1152/ajpendo.90876.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vascular supply is an obvious requirement for all organs. In addition to oxygen and nutrients, blood flow also transports essential trace elements. Iodine, which is a key element in thyroid hormone synthesis, is one of them. An inverse relationship exists between the expansion of the thyroid microvasculature and the local availability of iodine. This microvascular trace element-dependent regulation is unique and contributes to keep steady the iodide delivery to the thyroid. Signals involved in this regulation, such as VEGF-A, originate from thyrocytes as early TSH-independent responses to iodide scarcity. The question raised in this paper is how thyrocytes, facing an acute drop in intracellular stores of iodine, generate angiogenic signals acting on adjacent capillaries. Using in vitro models of rat and human thyroid cells, we show for the first time that the deficit in iodine is related to the release of VEGF-A via a reactive oxygen species/hypoxia-inducible factor-1-dependent pathway.
Collapse
Affiliation(s)
- Anne-Catherine Gérard
- Unité de Morphologie Expérimentale, Université Catholique de Louvain, UCL-5251, 52 Av. E. Mounier, B-1200, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
28
|
Regenfuss B, Bock F, Parthasarathy A, Cursiefen C. Corneal (lymph)angiogenesis--from bedside to bench and back: a tribute to Judah Folkman. Lymphat Res Biol 2009; 6:191-201. [PMID: 19093792 DOI: 10.1089/lrb.2008.6348] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The normal cornea, the transparent "windscreen" of the eye, is devoid of both blood and lymphatic vessels. Nevertheless, both hem- and lymphangiogenesis can occur in response to severe corneal inflammation and can lead to blindness. Judah Folkman and co-workers exceedingly used the normally avascular cornea as the in vivo model system to study the mechanisms of angiogenesis and to test activators and inhibitors of angiogenesis in the last 3 decades. Recently, the cornea also became a successful model to study especially inflammatory lymphangiogenesis. As the last step in the circle from bedside to bench and back, we now are seeing the first (usually off-label) use of specific novel angiogenesis inhibitors in the diseased and pathologically vascularized human cornea to treat sight-threatening corneal angiogenesis and to promote graft survival after corneal transplantation by inhibiting lymphangiogenesis.
Collapse
Affiliation(s)
- Birgit Regenfuss
- Department of Ophthalmology and Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|