1
|
Gila F, Alamdari-Palangi V, Rafiee M, Jokar A, Ehtiaty S, Dianatinasab A, Khatami SH, Taheri-Anganeh M, Movahedpour A, Fallahi J. Gene-edited cells: novel allogeneic gene/cell therapy for epidermolysis bullosa. J Appl Genet 2024; 65:705-726. [PMID: 38459407 DOI: 10.1007/s13353-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Arezoo Jokar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Ehtiaty
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aria Dianatinasab
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Zorina A, Zorin V, Isaev A, Kudlay D, Manturova N, Ustugov A, Kopnin P. Current Status of Biomedical Products for Gene and Cell Therapy of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2024; 25:10270. [PMID: 39408598 PMCID: PMC11476579 DOI: 10.3390/ijms251910270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/20/2024] Open
Abstract
This detailed review describes innovative strategies and current products for gene and cell therapy at different stages of research and development to treat recessive dystrophic epidermolysis bullosa (RDEB) which is associated with the functional deficiency of collagen type VII alpha 1 (C7) caused by defects in the COL7A1 gene. The use of allogenic mesenchymal stem/stromal cells, which can be injected intradermally and intravenously, appears to be the most promising approach in the field of RDEB cell therapy. Injections of genetically modified autologous dermal fibroblasts are also worth mentioning under this framework. The most common methods of RDEB gene therapy are gene replacement using viral vectors and gene editing using programmable nucleases. Ex vivo epidermal transplants (ETs) based on autologous keratinocytes (Ks) have been developed using gene therapy methods; one such ET successively passed phase III clinical trials. Products based on the use of two-layer transplants have also been developed with both types of skin cells producing C7. Gene products have also been developed for local use. To date, significant progress has been achieved in the development of efficient biomedical products to treat RDEB, one of the most severe hereditary diseases.
Collapse
Affiliation(s)
- Alla Zorina
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Vadim Zorin
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Artur Isaev
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
| | - Dmitry Kudlay
- Department of Pharmacology, The I. M. Sechenov First Moscow State Medical University (The Sechenov University), Moscow 119991, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Natalia Manturova
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Andrei Ustugov
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Pavel Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia
| |
Collapse
|
3
|
Agustin M, Mahadewi A, Danarti R. Bone marrow transplantation and bone marrow-derived mesenchymal stem cell therapy in epidermolysis bullosa: A systematic review. Pediatr Dermatol 2024; 41:599-605. [PMID: 38558462 DOI: 10.1111/pde.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/24/2024] [Indexed: 04/04/2024]
Abstract
Epidermolysis bullosa (EB) is a genodermatosis that lacks effective treatments and requires supportive care for its severe, life-threatening manifestations. Bone marrow transplantation (BMT) and its derived cells have been suggested to improve clinical symptoms and quality of life. A comprehensive search was conducted for publications evaluating BMT and bone marrow-derived mesenchymal stem cell (BM-MSC) therapy for EB in PubMed/MEDLINE, Google Scholar, and Cochrane databases from inception until June 2023. A total of 55 participants with severe forms of EB had BMT and/or BM-MSCs, with recessive dystrophic EB as the most common EB type; 53 (96.4%) patients had better wound healing, and 3 (5.5%) patients died of sepsis. The most common adverse events reported were graft failure, sepsis, graft-versus-host disease, and renal insufficiency. Allogeneic BMT is a high-risk procedure with possible benefits and adverse events. BM-MSCs revealed favorable outcomes to improve the safety of EB cell-based therapy by minimizing the risk of serious adverse events, reducing blisters, and accelerating wound healing. Further studies are needed to assess the treatment's long-term effects and clarify the risk/benefit ratio of procedure versus conventional therapy.
Collapse
Affiliation(s)
- Maulidina Agustin
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Anita Mahadewi
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Retno Danarti
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Matsuda A, Hasegawa T, Ikeda Y, Wada A, Ikeda S. Histological and molecular restoration of type VII collagen in Recessive dystrophic epidermolysis bullosa mouse skin by topical injection of keratinocyte-like cells differentiated from human adipose-derived mesenchymal stromal cells. J Dermatol Sci 2024; 115:42-50. [PMID: 38876908 DOI: 10.1016/j.jdermsci.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the COL7A1 gene, which encodes type VII collagen (COL7), the main constituent of anchoring fibrils for attaching the epidermis to the dermis. Persistent skin erosions frequently result in intractable ulcers in RDEB patients. Adipose-derived mesenchymal stromal cells (AD-MSCs) are easily harvested in large quantities and have low immunogenicity. Therefore, they are suitable for clinical use, including applications involving allogeneic cell transplantation. Keratinocyte-like cells transdifferentiated from AD-MSCs (KC-AD-MSCs) express more COL7 than undifferentiated AD-MSCs and facilitate skin wound healing with less contracture. Therefore, these cells can be used for skin ulcer treatment in RDEB patients. OBJECTIVE We investigated whether KC-AD-MSCs transplantation ameliorated the RDEB phenotype severity in the grafted skin of a RDEB mouse model (col7a1-null) on the back of the immunodeficient mouse. METHODS KC-AD-MSCs were intradermally injected into the region surrounding the skin grafts, and this procedure was repeated after 7 days. After a further 7-day interval, the skin grafts were harvested. RESULTS Neodeposition of COL7 and generation of anchoring fibrils at the dermal-epidermal junction were observed, although experiments were based on qualitative. CONCLUSION KC-AD-MSCs may correct the COL7 insufficiency, repair defective/reduced anchoring fibrils, and improve skin integrity in RDEB patients.
Collapse
Affiliation(s)
- Akinori Matsuda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Toshio Hasegawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Yuri Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Akino Wada
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Japan.
| |
Collapse
|
5
|
Hou PC, del Agua N, Lwin SM, Hsu CK, McGrath JA. Innovations in the Treatment of Dystrophic Epidermolysis Bullosa (DEB): Current Landscape and Prospects. Ther Clin Risk Manag 2023; 19:455-473. [PMID: 37337559 PMCID: PMC10277004 DOI: 10.2147/tcrm.s386923] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Dystrophic epidermolysis bullosa (DEB) is one of the major types of EB, a rare hereditary group of trauma-induced blistering skin disorders. DEB is caused by inherited pathogenic variants in the COL7A1 gene, which encodes type VII collagen, the major component of anchoring fibrils which maintain adhesion between the outer epidermis and underlying dermis. DEB can be subclassified into dominant (DDEB) and recessive (RDEB) forms. Generally, DDEB has a milder phenotype, while RDEB patients often have more extensive blistering, chronic inflammation, skin fibrosis, and a propensity for squamous cell carcinoma development, collectively impacting on daily activities and life expectancy. At present, best practice treatments are mostly supportive, and thus there is a considerable burden of disease with unmet therapeutic need. Over the last 20 years, considerable translational research efforts have focused on either trying to cure DEB by direct correction of the COL7A1 gene pathology, or by modifying secondary inflammation to lessen phenotypic severity and improve patient symptoms such as poor wound healing, itch, and pain. In this review, we provide an overview and update on various therapeutic innovations for DEB, including gene therapy, cell-based therapy, protein therapy, and disease-modifying and symptomatic control agents. We outline the progress and challenges for each treatment modality and identify likely prospects for future clinical impact.
Collapse
Affiliation(s)
- Ping-Chen Hou
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nathalie del Agua
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Su M Lwin
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - John A McGrath
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
- St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London, UK
| |
Collapse
|
6
|
Niti A, Koliakos G, Michopoulou A. Stem Cell Therapies for Epidermolysis Bullosa Treatment. Bioengineering (Basel) 2023; 10:bioengineering10040422. [PMID: 37106609 PMCID: PMC10135837 DOI: 10.3390/bioengineering10040422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Epidermolysis bullosa (EB) includes a group of rare skin diseases characterized by skin fragility with bullous formation in the skin, in response to minor mechanical injury, as well as varying degrees of involvement of the mucous membranes of the internal organs. EB is classified into simplex, junctional, dystrophic and mixed. The impact of the disease on patients is both physical and psychological, with the result that their quality of life is constantly affected. Unfortunately, there are still no approved treatments available to confront the disease, and treatment focuses on improving the symptoms with topical treatments to avoid complications and other infections. Stem cells are undifferentiated cells capable of producing, maintaining and replacing terminally differentiated cells and tissues. Stem cells can be isolated from embryonic or adult tissues, including skin, but are also produced by genetic reprogramming of differentiated cells. Preclinical and clinical research has recently greatly improved stem cell therapy, making it a promising treatment option for various diseases in which current medical treatments fail to cure, prevent progression, or alleviate symptoms. So far, stem cells from different sources, mainly hematopoietic and mesenchymal, autologous or heterologous have been used for the treatment of the most severe forms of the disease each one of them with some beneficial effects. However, the mechanisms through which stem cells exert their beneficial role are still unknown or incompletely understood and most importantly further research is required to evaluate the effectiveness and safety of these treatments. The transplantation of skin grafts to patients produced by gene-corrected autologous epidermal stem cells has been proved to be rather successful for the treatment of skin lesions in the long term in a limited number of patients. Nevertheless, these treatments do not address the internal epithelia-related complications manifested in patients with more severe forms.
Collapse
|
7
|
Natsuga K, Shinkuma S, Hsu CK, Fujita Y, Ishiko A, Tamai K, McGrath JA. Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. J Dermatol Sci 2021; 104:164-176. [PMID: 34916041 DOI: 10.1016/j.jdermsci.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Epidermolysis bullosa (EB) is a group of inherited skin and mucosal fragility disorders resulting from mutations in genes encoding basement membrane zone (BMZ) components or proteins that maintain the integrity of BMZ and adjacent keratinocytes. More than 30 years have passed since the first causative gene for EB was identified, and over 40 genes are now known to be responsible for the protean collection of mechanobullous diseases included under the umbrella term of EB. Through the elucidation of disease mechanisms using human skin samples, animal models, and cultured cells, we have now reached the stage of developing more effective therapeutics for EB. This review will initially focus on what is known about blister wound healing in EB, since recent and emerging basic science data are very relevant to clinical translation and therapeutic strategies for patients. We then place these studies in the context of the latest information on gene therapy, read-through therapy, and cell therapy that provide optimism for improved clinical management of people living with EB.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan.
| | - Satoru Shinkuma
- Department of Dermatology, Nara Medical University School of Medicine, Kashihara, Japan
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yasuyuki Fujita
- Department of Dermatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Hokkaido, Japan; Department of Dermatology, Sapporo City General Hospital, Sapporo, Japan
| | - Akira Ishiko
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - John A McGrath
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Availability of mRNA Obtained from Peripheral Blood Mononuclear Cells for Testing Mutation Consequences in Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2021; 22:ijms222413369. [PMID: 34948168 PMCID: PMC8709150 DOI: 10.3390/ijms222413369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Dystrophic epidermolysis bullosa (DEB) is an inheritable blistering disease caused by mutations in COL7A1, which encodes type VII collagen. To address the issue of genotype-phenotype correlations in DEB, analyzing the consequences of COL7A1 mutations using mRNA is indispensable. Herein we established a novel method for testing the effect of mutations in DEB using COL7A1 mRNA extracted from peripheral blood mononuclear cells (PBMCs). We investigated the consequences of four COL7A1 mutations (c.6573 + 1G > C, c.6216 + 5G > T, c.7270C > T and c.2527C > T) in three Japanese individuals with recessive DEB. The novel method detected the consequences of two recurrent COL7A1 mutations (c.6573 + 1G > C, c.6216 + 5G > T) and a novel COL7A1 mutation (c.7270C > T) accurately. In addition, it detected aberrant splicing resulting from a COL7A1 mutation (c.2527C > T) which was previously reported as a nonsense mutation. Furthermore, we revealed that type VII collagen-expressing cells in PBMCs have similar cell surface markers as mesenchymal stem cells; they were CD105+, CD29+, CD45-, and CD34-, suggesting that a small number of mesenchymal stem cells or mesenchymal stromal cells are circulating in the peripheral blood, which enables us to detect COL7A1 mRNA in PBMCs. Taken together, our novel method for analyzing mutation consequences using mRNA obtained from PBMCs in DEB will significantly contribute to genetic diagnoses and novel therapies for DEB.
Collapse
|
9
|
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of rare inherited blistering skin disorders characterized by skin fragility following minor trauma, usually present since birth. EB can be categorized into four classical subtypes, EB simplex, junctional EB, dystrophic EB and Kindler EB, distinguished on clinical features, plane of blister formation in the skin, and molecular pathology. Treatment for EB is mostly supportive, focusing on wound care and patient symptoms such as itch or pain. However, therapeutic advances have also been made in targeting the primary genetic abnormalities as well as the secondary inflammatory footprint of EB. Pre-clinical or clinical testing of gene therapies (gene replacement, gene editing, RNA-based therapy, natural gene therapy), cell-based therapies (fibroblasts, bone marrow transplantation, mesenchymal stromal cells, induced pluripotential stem cells), recombinant protein therapies, and small molecule and drug repurposing approaches, have generated new hope for better patient care. In this article, we review advances in translational research that are impacting on the quality of life for people living with different forms of EB and which offer hope for improved clinical management.
Collapse
|
10
|
Fujimura Y, Watanabe M, Ohno K, Kobayashi Y, Takashima S, Nakamura H, Kosumi H, Wang Y, Mai Y, Lauria A, Proserpio V, Ujiie H, Iwata H, Nishie W, Nagayama M, Oliviero S, Donati G, Shimizu H, Natsuga K. Hair follicle stem cell progeny heal blisters while pausing skin development. EMBO Rep 2021; 22:e50882. [PMID: 34085753 DOI: 10.15252/embr.202050882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.
Collapse
Affiliation(s)
- Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Kota Ohno
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kobayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Shota Takashima
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yunan Wang
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Valentina Proserpio
- Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Iwai S, Okada A, Sasano K, Endo M, Yamazaki S, Wang X, Shimbo T, Tomimatsu T, Kimura T, Tamai K. Controlled induction of immune tolerance by mesenchymal stem cells transferred by maternal microchimerism. Biochem Biophys Res Commun 2021; 539:83-88. [PMID: 33461067 DOI: 10.1016/j.bbrc.2020.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
Feto-maternal immune tolerance is established during pregnancy; however, its mechanism and maintenance remain underexplored. Here, we investigated whether mesenchymal stem/stromal cells (MSCs) as non-inherited maternal antigens (NIMAs) transferred by maternal microchimerism could induce immune tolerance. We showed that MSCs had a potential equivalent to hematopoietic stem and progenitor cells (HSPCs) to induce immune tolerance and that MSCs were essential to induce tolerance to MSC-specific antigens. Furthermore, we demonstrated that MSCs as NIMAs transferred by maternal microchimerism could induce robust immune tolerance that can be further enhanced using a drug. Our data shed light on induction of immune tolerance and serve as a foundation to develop new therapies using maternally derived cells for autoimmune or genetic diseases.
Collapse
Affiliation(s)
- Sayuri Iwai
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Aiko Okada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kei Sasano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Endo
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan; Department of Children's and Women's Health, Division of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Sho Yamazaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc, Ibaraki, Osaka, Japan
| | - Xin Wang
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc, Ibaraki, Osaka, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan
| | - Takuji Tomimatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
12
|
Titeux M, Bonnet des Claustres M, Izmiryan A, Ragot H, Hovnanian A. Emerging drugs for the treatment of epidermolysis bullosa. Expert Opin Emerg Drugs 2020; 25:467-489. [DOI: 10.1080/14728214.2020.1839049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Matthias Titeux
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | | | - Araksya Izmiryan
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Helene Ragot
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
| | - Alain Hovnanian
- Imagine Institute, Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Université de Paris, Paris, France
- Départment de Génétique, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
13
|
Okada A, Shimbo T, Endo M, Iwai S, Kitayama T, Ouchi Y, Yamamoto R, Takaki E, Yamazaki S, Nishida M, Wang X, Kikuchi Y, Tomimatsu T, Kaneda Y, Kimura T, Tamai K. Transcriptionally distinct mesenchymal stem/stromal cells circulate in fetus. Biochem Biophys Res Commun 2019; 512:326-330. [PMID: 30890337 DOI: 10.1016/j.bbrc.2019.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Umbilical cord blood contains mesenchymal stem/stromal cells (MSCs) in addition to hematopoietic stem cells, serving as an attractive tool for regenerative medicine. As umbilical cord blood originates from fetus, abundant MSCs are expected to circulate in fetus. However, the properties of circulating MSCs in fetus have not been fully examined. In the present study, we aimed to analyze circulating MSCs, marked by the expression of platelet-derived growth factor receptor α (PDGFRα), during fetal development. Using PDGFRα GFP knock-in mice, we quantified the number of circulating PDGFRα positive MSCs during development. We further performed whole transcriptome analysis of circulating MSCs at single cell levels. We found that abundant PDGFRα positive cells circulate in embryo and diminish immediately after birth. In addition, single cell RNA-sequencing revealed transcriptional heterogeneity of MSCs in fetal circulation. These data lay a foundation to analyze the function of circulating MSCs during development.
Collapse
Affiliation(s)
- Aiko Okada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masayuki Endo
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Sayuri Iwai
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomomi Kitayama
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Co., Ltd., Ibaraki, Japan
| | - Yuya Ouchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Co., Ltd., Ibaraki, Japan
| | - Ryoma Yamamoto
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Co., Ltd., Ibaraki, Japan
| | - Eiichi Takaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Co., Ltd., Ibaraki, Japan
| | - Sho Yamazaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Co., Ltd., Ibaraki, Japan
| | - Mami Nishida
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Co., Ltd., Ibaraki, Japan
| | - Xin Wang
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Co., Ltd., Ibaraki, Japan
| | - Yasushi Kikuchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuji Tomimatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
14
|
Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, Zhang Y, Timashev P. Skin tissue regeneration for burn injury. Stem Cell Res Ther 2019; 10:94. [PMID: 30876456 PMCID: PMC6419807 DOI: 10.1186/s13287-019-1203-3] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin is the largest organ of the body, which meets the environment most directly. Thus, the skin is vulnerable to various damages, particularly burn injury. Skin wound healing is a serious interaction between cell types, cytokines, mediators, the neurovascular system, and matrix remodeling. Tissue regeneration technology remarkably enhances skin repair via re-epidermalization, epidermal-stromal cell interactions, angiogenesis, and inhabitation of hypertrophic scars and keloids. The success rates of skin healing for burn injuries have significantly increased with the use of various skin substitutes. In this review, we discuss skin replacement with cells, growth factors, scaffolds, or cell-seeded scaffolds for skin tissue reconstruction and also compare the high efficacy and cost-effectiveness of each therapy. We describe the essentials, achievements, and challenges of cell-based therapy in reducing scar formation and improving burn injury treatment.
Collapse
Affiliation(s)
- Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Denis Butnaru
- Sechenov Biomedical Science and Technology Park, Sechenov University, Moscow, Russia
| | | | | | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Vitaliy Burdukovskii
- Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Research Center “Crystallography and Photonics” RAS, Institute of Photonic Technologies, Troitsk, Moscow, Russia
- Departments of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
15
|
Liao Y, Ivanova L, Sivalenka R, Plumer T, Zhu H, Zhang X, Christiano AM, McGrath JA, Gurney JP, Cairo MS. Efficacy of Human Placental-Derived Stem Cells in Collagen VII Knockout (Recessive Dystrophic Epidermolysis Bullosa) Animal Model. Stem Cells Transl Med 2018; 7:530-542. [PMID: 29745997 PMCID: PMC6052609 DOI: 10.1002/sctm.17-0182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a devastating inherited skin blistering disease caused by mutations in the COL7A1 gene that encodes type VII collagen (C7), a major structural component of anchoring fibrils at the dermal-epidermal junction (DEJ). We recently demonstrated that human cord blood-derived unrestricted somatic stem cells promote wound healing and ameliorate the blistering phenotype in a RDEB (col7a1-/- ) mouse model. Here, we demonstrate significant therapeutic effect of a further novel stem cell product in RDEB, that is, human placental-derived stem cells (HPDSCs), currently being used as human leukocyte antigen-independent donor cells with allogeneic umbilical cord blood stem cell transplantation in patients with malignant and nonmalignant diseases. HPDSCs are isolated from full-term placentas following saline perfusion, red blood cell depletion, and volume reduction. HPDSCs contain significantly higher level of both hematopoietic and nonhematopoietic stem and progenitor cells than cord blood and are low in T cell content. A single intrahepatic administration of HPDSCs significantly elongated the median life span of the col7a1-/- mice from 2 to 7 days and an additional intrahepatic administration significantly extended the median life span to 18 days. We further demonstrated that after intrahepatic administration, HPDSCs engrafted short-term in the organs affected by RDEB, that is, skin and gastrointestinal tract of col7a1-/- mice, increased adhesion at the DEJ and deposited C7 even at 4 months after administration of HPDSCs, without inducing anti-C7 antibodies. This study warrants future clinical investigation to determine the safety and efficacy of HPDSCs in patients with severe RDEB. Stem Cells Translational Medicine 2018;7:530-542.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Trevor Plumer
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Surgery, Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, People's Republic of China
| | - Xiaokui Zhang
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - John A McGrath
- St John's Institute of Dermatology, King's College, London, United Kingdom
| | - Jodi P Gurney
- Celgene Cellular Therapeutics, Warren, New Jersey, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Department of Medicine, New York Medical College, Valhalla, New York, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Immunology & Microbiology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
16
|
Bone Marrow-Derived Stem Cells Migrate into Intraepidermal Skin Defects of a Desmoglein-3 Knockout Mouse Model but Preserve their Mesodermal Differentiation. J Invest Dermatol 2018; 138:1157-1165. [DOI: 10.1016/j.jid.2017.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 11/15/2022]
|
17
|
Negative Evidence of Direct Differentiation from Bone-Marrow Cells to Keratinocytes in Normal and Wounded Skin Using Keratin 5-Specific Reporter Mice. J Invest Dermatol 2018; 138:1228-1231. [DOI: 10.1016/j.jid.2017.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022]
|
18
|
Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol 2017; 71-72:330-347. [PMID: 29274938 DOI: 10.1016/j.matbio.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A specialized, highly developed dermal extracellular matrix (ECM) provides the skin with its unique mechano-resilient properties and is vital for organ function. Accordingly, genetically acquired deficiency of dermal ECM proteins or proteins essential for the post-translational modification and homeostasis of the dermal ECM, results in diseases affecting the skin. Some of these diseases are lethal or lead to severe complications for the affected individuals. At present limited efficient and evidence-based treatment options exist for genetic ECM diseases of the skin. There is thus a high unmet medical need, creating an urgent demand to develop improved care for these diseases. Here, by drawing examples from the wealth of research on epidermolysis bullosa, we present the current status of biological and small molecule therapies for genetic ECM diseases with skin manifestations. We discuss challenges, and using existing data to propose strategies and future directions allowing development of more efficacious therapies and advancement of them into clinical practice.
Collapse
|
19
|
Uitto J. The Conundrum of Allogeneic Bone Marrow Transplantation for Epidermolysis Bullosa. J Invest Dermatol 2017; 138:1029-1031. [PMID: 29258894 DOI: 10.1016/j.jid.2017.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023]
Abstract
Epidermolysis bullosa is a heterogeneous group of heritable blistering disorders with considerable morbidity and mortality. Currently, there is no effective treatment or cure for epidermolysis bullosa, but bone marrow transplantation has been suggested to improve the clinical presentation and quality of life of some patients with the recessive dystrophic subtype of epidermolysis bullosa. In this issue, two studies (Hünefeld et al., and Egawa and Kabashima) address the issue whether bone marrow transplantation could be applied to patients with epidermolysis bullosa simplex with intraepidermal blistering. Utilizing a desmoglein-3 mouse model (Dsg3-/-) or keratin 5-specific reporter mice, the investigators show that transplanted bone marrow-derived cells migrate to the skin of bone marrow transplantation recipient mice, but these cells fail to transdifferentiate into epidermal keratinocytes, and there was no improvement in the clinical manifestations of the Dsg3-/- mice. Thus, further preclinical experimentation, possibly using mouse models that more faithfully recapitulate the epidermolysis bullosa simplex phenotype, is advisable before commencing clinical trials of bone marrow transplantation for epidermolysis bullosa simplex.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
20
|
Prodinger CM, Reichelt J, Bauer JW, Laimer M. Current and Future Perspectives of Stem Cell Therapy in Dermatology. Ann Dermatol 2017; 29:667-687. [PMID: 29200755 PMCID: PMC5705348 DOI: 10.5021/ad.2017.29.6.667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022] Open
Abstract
Stem cells are undifferentiated cells capable of generating, sustaining, and replacing terminally differentiated cells and tissues. They can be isolated from embryonic as well as almost all adult tissues including skin, but are also generated through genetic reprogramming of differentiated cells. Preclinical and clinical research has recently tremendously improved stem cell therapy, being a promising treatment option for various diseases in which current medical therapies fail to cure, prevent progression or relieve symptoms. With the main goal of regeneration or sustained genetic correction of damaged tissue, advanced tissue-engineering techniques are especially applicable for many dermatological diseases including wound healing, genodermatoses (like the severe blistering disorder epidermolysis bullosa) and chronic (auto-)inflammatory diseases. This review summarizes general aspects as well as current and future perspectives of stem cell therapy in dermatology.
Collapse
Affiliation(s)
- Christine M Prodinger
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Julia Reichelt
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Martin Laimer
- Department of Dermatology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| |
Collapse
|
21
|
Rashidghamat E, McGrath JA. Novel and emerging therapies in the treatment of recessive dystrophic epidermolysis bullosa. Intractable Rare Dis Res 2017; 6:6-20. [PMID: 28357176 PMCID: PMC5359356 DOI: 10.5582/irdr.2017.01005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of inherited blistering diseases that affects ∼ 500,000 people worldwide. Clinically, individuals with EB have fragile skin and are susceptible to blistering following minimal trauma, with mucous membrane and other organ involvement in some subtypes. Within the spectrum of EB, ∼ 5% of affected individuals have the clinically more severe recessive dystrophic (RDEB) variant with a prevalence of 8 per one million of the population. RDEB is caused by loss-of-function mutations in the type VII collagen gene, COL7A1, which leads to reduced or absent type VII collagen (C7) and a paucity of structurally effective anchoring fibrils at the dermal-epidermal junction (DEJ). Currently, there is no cure for RDEB, although considerable progress has been made in testing novel treatments including gene therapy (lentiviral and gamma retroviral vectors for COL7A1 supplementation in keratinocytes and fibroblasts), as well as cell therapy (use of allogeneic fibroblasts, mesenchymal stromal cells (MSCs), and bone marrow transplantation (BMT)). Here, we review current treatment modalities available as well as novel and emerging therapies in the treatment of RDEB. Clinical trials of new translational therapies in RDEB offer hope for improved clinical management of patients as well as generating broader lessons for regenerative medicine that could be applicable to other inherited or acquired abnormalities of wound healing or scarring.
Collapse
Affiliation(s)
- Ellie Rashidghamat
- St. John's Institute of Dermatology, King's College London, London, United Kingdom
| | - John A. McGrath
- St. John's Institute of Dermatology, King's College London, London, United Kingdom
- Address correspondence to: Dr. John A. McGrath, Dermatology Research Laboratories, Floor 9 Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom. E-mail:
| |
Collapse
|
22
|
Khafagy WW, El-Said MM, Thabet WM, Aref SES, Omar W, Emile SH, Elfeki H, El-Ghonemy MS, El-Shobaky MT. Evaluation of anatomical and functional results of overlapping anal sphincter repair with or without the injection of bone marrow aspirate concentrate: a case-control study. Colorectal Dis 2017; 19:O66-O74. [PMID: 27943520 DOI: 10.1111/codi.13579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
AIM Overlapping anal sphincter repair (OASR) is used for treatment of faecal incontinence due to an external anal sphincter (EAS) defect; however, it is not the optimal treatment as its functional results tend to deteriorate significantly with time. The present study aimed to evaluate the effect of local injection of bone marrow aspirate concentrate (BMAC) on the outcome of OASR. METHOD We compared a prospective group of 20 patients with EAS defect who were managed with OASR and BMAC injection (group I) with a historical control group of an equal number of patients managed with OASR alone (group II). Patients were assessed preoperatively and during follow-up by the Wexner continence score and endoanal ultrasound. The primary end-points were the improvement of the continence level measured by the Wexner score and the residual EAS defect size measured by endoanal ultrasound. RESULTS At the end of follow-up, group I had significantly lower mean postoperative Wexner score (5.4 ± 7.6 vs 10.6 ± 7.4; P = 0.03) and smaller EAS defect percentage (12.2 ± 17.5 vs 18.3 ± 18.9). These findings were statistically significant in patients with a small preoperative EAS defect equal to or less than one-third of the anal circumference. Patients with larger preoperative EAS did not show a significant improvement of the continence level after repair in either group. CONCLUSION Augmenting OASR with local injection of BMAC in patients with faecal incontinence caused by an EAS defect, particularly a smaller defect, can improve both functional and anatomical outcomes of OASR.
Collapse
Affiliation(s)
- W W Khafagy
- General Surgery Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura City, Dakahlia Providence, Egypt
| | - M M El-Said
- General Surgery Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura City, Dakahlia Providence, Egypt
| | - W M Thabet
- General Surgery Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura City, Dakahlia Providence, Egypt
| | - S E-S Aref
- Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura City, Dakahlia Providence, Egypt
| | - W Omar
- General Surgery Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura City, Dakahlia Providence, Egypt
| | - S H Emile
- General Surgery Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura City, Dakahlia Providence, Egypt
| | - H Elfeki
- General Surgery Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura City, Dakahlia Providence, Egypt
| | - M S El-Ghonemy
- Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura City, Dakahlia Providence, Egypt
| | - M T El-Shobaky
- General Surgery Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura City, Dakahlia Providence, Egypt
| |
Collapse
|
23
|
|
24
|
Tamai K, Uitto J. Stem Cell Therapy for Epidermolysis Bullosa-Does It Work? J Invest Dermatol 2016; 136:2119-2121. [PMID: 27772543 DOI: 10.1016/j.jid.2016.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022]
Abstract
Epidermolysis bullosa is a group of heritable skin fragility disorders with considerable morbidity and mortality. It is known to be caused by mutations in as many as 18 distinct genes, but there is no specific or effective treatment. Preclinical developments of gene correction, protein replacement, and cell-based approaches for treatment have suggested new therapeutic avenues, and some of them, including bone marrow transplantation and mesenchymal stem cell therapy, have entered into early clinical trials. Hammersen et al. report on two patients with severe generalized junctional epidermolysis bullosa treated with allogeneic stem cell therapy, but with little success. Careful examination of the existing literature suggests that current approaches of cell-based therapies may be helpful in ameliorating some of the clinical features and symptoms in these patients, but advanced strategies, with improved safety profiles, are required for development of durable therapy for these currently intractable disorders.
Collapse
Affiliation(s)
- Katsuto Tamai
- Department of Stem Cell Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
25
|
Nyström A, Bornert O, Kühl T. Cell therapy for basement membrane-linked diseases. Matrix Biol 2016; 57-58:124-139. [PMID: 27609402 DOI: 10.1016/j.matbio.2016.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
For most disorders caused by mutations in genes encoding basement membrane (BM) proteins, there are at present only limited treatment options available. Genetic BM-linked disorders can be viewed as especially suited for treatment with cell-based therapy approaches because the proteins that need to be restored are located in the extracellular space. In consequence, complete and permanent engraftment of cells does not necessarily have to occur to achieve substantial causal therapeutic effects. For these disorders cells can be used as transient vehicles for protein replacement. In addition, it is becoming evident that BM-linked genetic disorders are modified by secondary diseases mechanisms. Cell-based therapies have also the ability to target such disease modifying mechanisms. Thus, cell therapies can simultaneously provide causal treatment and symptomatic relief, and accordingly hold great potential for treatment of BM-linked disorders. However, this potential has for most applications and diseases so far not been realized. Here, we will present the state of cell therapies for BM-linked diseases. We will discuss use of both pluripotent and differentiated cells, the limitation of the approaches, their challenges, and the way forward to potential wider implementation of cell therapies in the clinics.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Olivier Bornert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tobias Kühl
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Liao Y, Ivanova L, Zhu H, Yahr A, Ayello J, van de Ven C, Rashad A, Uitto J, Christiano AM, Cairo MS. Rescue of the mucocutaneous manifestations by human cord blood derived nonhematopoietic stem cells in a mouse model of recessive dystrophic epidermolysis bullosa. Stem Cells 2016; 33:1807-17. [PMID: 25640200 DOI: 10.1002/stem.1966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/22/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin blistering disease caused by mutations in COL7A1-encoding type VII collagen (C7). Currently, there is no curative therapy for patients with RDEB. Our previous studies demonstrated that human umbilical cord blood (HUCB) derived unrestricted somatic stem cells (USSCs) express C7 and facilitate wound healing in a murine wounding model. The primary objective of this study is to investigate the therapeutic functions of USSCs in the C7 null (Col7a1(-/-) ) C57BL6/J mice, a murine model of RDEB. We demonstrated that intrahepatic administration of USSCs significantly improved the blistering phenotype and enhanced the life span in the recipients. The injected USSCs trafficked to the sites of blistering and were incorporated in short-term in the recipients' skin and gastrointestinal tract. Consistent with an overall histological improvement in the epidermal-dermal adherence following USSC treatment, the expression of C7 at the basement membrane zone was detected and the previously disorganized integrin α6 distribution was normalized. We also demonstrated that USSCs treatment induced an infiltration of macrophages with a regenerative "M2" phenotype. Our data suggest that HUCB-derived USSCs improved the RDEB phenotype through multiple mechanisms. This study has warranted future clinical investigation of USSCs as a novel and universal allogeneic stem cell donor source in selected patients with RDEB.
Collapse
Affiliation(s)
- Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Hongwen Zhu
- Department of Surgery, Tianjin Hospital, Tianjin Academy of Integrative Medicine, Tianjin, People's Republic of China
| | - Ashlin Yahr
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | - Ahmed Rashad
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - Angela M Christiano
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Department of Medicine, New York Medical College, Valhalla, New York, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Immunology and Microbiology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
27
|
El-Darouti M, Fawzy M, Amin I, Abdel Hay R, Hegazy R, Gabr H, El Maadawi Z. Treatment of dystrophic epidermolysis bullosa with bone marrow non-hematopoeitic stem cells: a randomized controlled trial. Dermatol Ther 2015; 29:96-100. [DOI: 10.1111/dth.12305] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad El-Darouti
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Marwa Fawzy
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Iman Amin
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Rania Abdel Hay
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Rehab Hegazy
- Department of Dermatology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Hala Gabr
- Department of Clinical Pathology, Faculty of Medicine; Cairo University; Cairo Egypt
| | - Zeinab El Maadawi
- Department of Histology, Faculty of Medicine; Cairo University; Cairo Egypt
| |
Collapse
|
28
|
Watt SA, Dayal JHS, Wright S, Riddle M, Pourreyron C, McMillan JR, Kimble RM, Prisco M, Gartner U, Warbrick E, McLean WHI, Leigh IM, McGrath JA, Salas-Alanis JC, Tolar J, South AP. Lysyl Hydroxylase 3 Localizes to Epidermal Basement Membrane and Is Reduced in Patients with Recessive Dystrophic Epidermolysis Bullosa. PLoS One 2015; 10:e0137639. [PMID: 26380979 PMCID: PMC4575209 DOI: 10.1371/journal.pone.0137639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention.
Collapse
Affiliation(s)
- Stephen A. Watt
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | | | - Sheila Wright
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Megan Riddle
- Stem Cell Institute and Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Celine Pourreyron
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - James R. McMillan
- The Centre for Children’s Burns Research, Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, Australia
| | - Roy M. Kimble
- The Centre for Children’s Burns Research, Queensland Children’s Medical Research Institute, Royal Children’s Hospital, The University of Queensland, Brisbane, Australia
| | - Marco Prisco
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Ulrike Gartner
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - Emma Warbrick
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - W. H. Irwin McLean
- Centre for Dermatology and Genetic Medicine, Division of Molecular Medicine, Colleges of Life Sciences and Medicine, Dentistry & Nursing, University of Dundee, Dundee, United Kingdom
| | - Irene M. Leigh
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - John A. McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, United Kingdom
| | - Julio C. Salas-Alanis
- Basic Sciences Department, Medicine School, University of Monterrey, Monterrey, Mexico
| | - Jakub Tolar
- Stem Cell Institute and Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Andrew P. South
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
From Mesoderm to Mesodermatology: Bone Marrow Mesenchymal Cells Heal Skin Wounds. Mol Ther 2015; 23:1283-1284. [PMID: 26227251 DOI: 10.1038/mt.2015.84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
30
|
Abstract
Dystrophic epidermolysis bullosa is a rare inherited blistering disorder caused by mutations in the COL7A1 gene encoding type VII collagen. The deficiency and/or dysfunction of type VII collagen leads to subepidermal blistering immediately below the lamina densa, resulting in mucocutaneous fragility and disease complications such as intractable ulcers, extensive scarring, malnutrition, and malignancy. The disease is usually diagnosed by immunofluorescence mapping and/or transmission electron microscopy and subsequently subclassified into one of 14 subtypes. This review provides practical knowledge on the disease, including new therapeutic strategies.
Collapse
Affiliation(s)
- Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
31
|
Takahashi K, Endo M, Miyoshi T, Tsuritani M, Shimazu Y, Hosoda H, Saga K, Tamai K, Flake AW, Yoshimatsu J, Kimura T. Immune tolerance induction using fetal directed placental injection in rodent models: a murine model. PLoS One 2015; 10:e0123712. [PMID: 25876079 PMCID: PMC4395343 DOI: 10.1371/journal.pone.0123712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
Objectives Induction of the immune response is a major problem in replacement therapies for inherited protein deficiencies. Tolerance created in utero can facilitate postnatal treatment. In this study, we aimed to induce immune tolerance towards a foreign protein with early gestational cell transplantation into the chorionic villi under ultrasound guidance in the murine model. Methods Pregnant C57BL/6 (B6) mice on day 10 of gestation were anesthetized and imaged by high resolution ultrasound. Murine embryos and their placenta were positioned to get a clear view in B-mode with power mode of the labyrinth, which is the equivalent of chorionic villi in the human. Bone marrow cells (BMCs) from B6-Green Fluorescence Protein (B6GFP) transgenic mice were injected into the fetal side of the placenta which includes the labyrinth with glass microcapillary pipettes. Each fetal mouse received 2 x 105 viable GFP-BMCs. After birth, we evaluated the humoral and cell-mediated immune response against GFP. Results Bone marrow transfer into fetal side of placenta efficiently distributed donor cells to the fetal mice. The survival rate of this procedure was 13.5%(5 out of 37). Successful engraftment of the B6-GFP donor skin grafts was observed in all recipient (5 out of 5) mice 6 weeks after birth. Induction of anti-GFP antibodies was completely inhibited. Cytotoxic immune reactivity of thymic cells against cells harboring GFP was suppressed by ELISPOT assay. Conclusions In this study, we utilized early gestational placental injection targeting the murine fetus, to transfer donor cells carrying a foreign protein into the fetal circulation. This approach is sufficient to induce both humoral and cell-mediated immune tolerance against the foreign protein.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Endo
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| | - Takekazu Miyoshi
- Department of Perinatology and Gynecology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mitsuhiro Tsuritani
- Department of Perinatology and Gynecology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yukiko Shimazu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Hosoda
- Department of Biochemistry, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kotaro Saga
- Department of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Alan W. Flake
- Center for Fetal Diagnosis and Treatment, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jun Yoshimatsu
- Department of Perinatology and Gynecology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
32
|
From marrow to matrix: novel gene and cell therapies for epidermolysis bullosa. Mol Ther 2015; 23:987-992. [PMID: 25803200 DOI: 10.1038/mt.2015.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa encompasses a group of inherited connective tissue disorders that range from mild to lethal. There is no cure, and current treatment is limited to palliative care that is largely ineffective in treating the systemic, life-threatening pathology associated with the most severe forms of the disease. Although allogeneic cell- and protein-based therapies have shown promise, both novel and combinatorial approaches will undoubtedly be required to totally alleviate the disorder. Progress in the development of next-generation therapies that synergize targeted gene-correction and induced pluripotent stem cell technologies offers exciting prospects for personalized, off-the-shelf treatment options that could avoid many of the limitations associated with current allogeneic cell-based therapies. Although no single therapeutic avenue has achieved complete success, each has substantially increased our collective understanding of the complex biology underlying the disease, both providing mechanistic insights and uncovering new hurdles that must be overcome.
Collapse
|
33
|
Placenta-based therapies for the treatment of epidermolysis bullosa. Cytotherapy 2015; 17:786-795. [PMID: 25795271 DOI: 10.1016/j.jcyt.2015.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/03/2015] [Indexed: 12/30/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering skin disease caused by mutations in the COL7A1 gene. These mutations lead to decreased or absent levels of collagen VII at the dermal-epidermal junction. Over the past decade, significant progress has been made in the treatment of RDEB, including the use of hematopoietic cell transplantation, but a cure has been elusive. Patients still experience life-limiting and life-threatening complications as a result of painful and debilitating wounds. The continued suffering of these patients drives the need to improve existing therapies and develop new ones. In this Review, we will discuss how recent advances in placenta-based, umbilical cord blood-based and amniotic membrane-based therapies may play a role in the both the current and future treatment of RDEB.
Collapse
|
34
|
Iinuma S, Aikawa E, Tamai K, Fujita R, Kikuchi Y, Chino T, Kikuta J, McGrath JA, Uitto J, Ishii M, Iizuka H, Kaneda Y. Transplanted bone marrow-derived circulating PDGFRα+ cells restore type VII collagen in recessive dystrophic epidermolysis bullosa mouse skin graft. THE JOURNAL OF IMMUNOLOGY 2015; 194:1996-2003. [PMID: 25601922 DOI: 10.4049/jimmunol.1400914] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is an intractable genetic blistering skin disease in which the epithelial structure easily separates from the underlying dermis because of genetic loss of functional type VII collagen (Col7) in the cutaneous basement membrane zone. Recent studies have demonstrated that allogeneic bone marrow transplantation (BMT) ameliorates the skin blistering phenotype of RDEB patients by restoring Col7. However, the exact therapeutic mechanism of BMT in RDEB remains unclear. In this study, we investigated the roles of transplanted bone marrow-derived circulating mesenchymal cells in RDEB (Col7-null) mice. In wild-type mice with prior GFP-BMT after lethal irradiation, lineage-negative/GFP-positive (Lin(-)/GFP(+)) cells, including platelet-derived growth factor receptor α-positive (PDGFRα(+)) mesenchymal cells, specifically migrated to skin grafts from RDEB mice and expressed Col7. Vascular endothelial cells and follicular keratinocytes in the deep dermis of the skin grafts expressed SDF-1α, and the bone marrow-derived PDGFRα(+) cells expressed CXCR4 on their surface. Systemic administration of the CXCR4 antagonist AMD3100 markedly decreased the migration of bone marrow-derived PDGFRα(+) cells into the skin graft, resulting in persistent epidermal detachment with massive necrosis and inflammation in the skin graft of RDEB mice; without AMD3100 administration, Col7 was significantly supplemented to ameliorate the pathogenic blistering phenotype. Collectively, these data suggest that the SDF1α/CXCR4 signaling axis induces transplanted bone marrow-derived circulating PDGFRα(+) mesenchymal cells to migrate and supply functional Col7 to regenerate RDEB skin.
Collapse
Affiliation(s)
- Shin Iinuma
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Department of Dermatology, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | - Eriko Aikawa
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan;
| | - Ryo Fujita
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yasushi Kikuchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takenao Chino
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Junichi Kikuta
- Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - John A McGrath
- Department of Molecular Dermatology, King's College, London WC2R 2LS, United Kingdom; and
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107
| | - Masaru Ishii
- Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Hajime Iizuka
- Department of Dermatology, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
35
|
Tolar J, McGrath JA. Augmentation of cutaneous wound healing by pharmacologic mobilization of endogenous bone marrow stem cells. J Invest Dermatol 2014; 134:2312-2314. [PMID: 25120149 DOI: 10.1038/jid.2014.209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Novel therapeutic tools to accelerate wound healing would have a major impact on the overall burden of skin disease. Lin et al. demonstrate in mice that endogenous bone marrow stem cell mobilization, produced by a pharmacologic combination of AMD3100 and tacrolimus, leads to faster and better-quality wound healing, findings that have exciting potential for clinical translation.
Collapse
Affiliation(s)
- Jakub Tolar
- Stem Cell Institute and Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - John A McGrath
- St John's Institute of Dermatology, King's College, London (Guy's Campus), London, UK
| |
Collapse
|
36
|
Wenzel D, Bayerl J, Nystrom A, Bruckner-Tuderman L, Meixner A, Penninger JM. Genetically corrected iPSCs as cell therapy for recessive dystrophic epidermolysis bullosa. Sci Transl Med 2014; 6:264ra165. [DOI: 10.1126/scitranslmed.3010083] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Abstract
Harnessing the regenerative capacity of keratinocytes and fibroblasts from human skin has created new opportunities to develop cell-based therapies for patients. Cultured cells and bioengineered skin products are being used to treat patients with inherited and acquired skin disorders associated with defective skin, and further clinical trials of new products are in progress. The capacity of extracutaneous sources of cells such as bone marrow is also being investigated for its plasticity in regenerating skin, and new strategies, such as the derivation of inducible pluripotent stem cells, also hold great promise for future cell therapies in dermatology. This article reviews some of the preclinical and clinical studies and future directions relating to cell therapy in dermatology, particularly for inherited skin diseases associated with fragile skin and poor wound healing.
Collapse
Affiliation(s)
- Gabriela Petrof
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 1UL, United Kingdom
| | - Alya Abdul-Wahab
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 1UL, United Kingdom
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London SE1 1UL, United Kingdom
| |
Collapse
|
38
|
Vanden Oever MJ, Tolar J. Advances in understanding and treating dystrophic epidermolysis bullosa. F1000PRIME REPORTS 2014; 6:35. [PMID: 24860657 PMCID: PMC4017907 DOI: 10.12703/p6-35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidermolysis bullosa is a group of inherited disorders that can be both systemic and life-threatening. Standard treatments for the most severe forms of this disorder, typically limited to palliative care, are ineffective in reducing the morbidity and mortality due to complications of the disease. Emerging therapies—such as the use of allogeneic cellular therapy, gene therapy, and protein therapy—have all shown promise, but it is likely that several approaches will need to be combined to realize a cure. For recessive dystrophic epidermolysis bullosa, each particular therapeutic approach has added to our understanding of type VII collagen (C7) function and the basic biology surrounding the disease. The efficacy of these therapies and the mechanisms by which they function also give us insight into developing future strategies for treating this and other extracellular matrix disorders.
Collapse
|
39
|
Lin Q, Wesson RN, Maeda H, Wang Y, Cui Z, Liu JO, Cameron AM, Gao B, Montgomery RA, Williams GM, Sun Z. Pharmacological mobilization of endogenous stem cells significantly promotes skin regeneration after full-thickness excision: the synergistic activity of AMD3100 and tacrolimus. J Invest Dermatol 2014; 134:2458-2468. [PMID: 24682043 DOI: 10.1038/jid.2014.162] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/23/2014] [Accepted: 03/09/2014] [Indexed: 02/03/2023]
Abstract
Stem cell therapy has shown promise in treating a variety of pathologies including skin wounds, but practical applications remain elusive. Here, we demonstrate that endogenous stem cell mobilization produced by AMD3100 and low-dose tacrolimus is able to reduce by 25% the time of complete healing of full-thickness wounds created by surgical excision. Equally important, healing was accompanied by reduced scar formation and regeneration of hair follicles. Searching for mechanisms, we found that AMD3100 combined with low-dose tacrolimus mobilized increased number of lineage-negative c-Kit+, CD34+, and CD133+ stem cells. Low-dose tacrolimus also increased the number of SDF-1-bearing macrophages in the wound sites amplifying the "pull" of mobilized stem cells into the wound. Lineage tracing demonstrated the critical role of CD133 stem cells in enhanced capillary and hair follicle neogenesis, contributing to more rapid and perfect healing. Our findings offer a significant therapeutic approach to wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Qing Lin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell N Wesson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hiromichi Maeda
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhu Cui
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Robert A Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - George M Williams
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
40
|
Ohyama M, Okano H. Promise of Human Induced Pluripotent Stem Cells in Skin Regeneration and Investigation. J Invest Dermatol 2014; 134:605-609. [DOI: 10.1038/jid.2013.376] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
|
41
|
Li X, Hamada T, Ohata C, Furumura M, Hashimoto T. Potential mesenchymal stem cell therapy for skin diseases. Exp Dermatol 2014; 22:515-6. [PMID: 23879810 DOI: 10.1111/exd.12194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2013] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are non-haematopoietic cells that reside in most tissues including adult bone marrow. MSCs have recently been extensively studied and used for clinical therapies, including skin wound healing. However, there are still many questions to be answered. In the viewpoint entitled 'Mesenchymal stem cell therapy in skin: why and what for?', Dr. Khosrotehrani provided a comprehensive overview for MSC properties and current progresses on clinical applications for various skin conditions. This viewpoint is therefore very helpful for both dermatologists and basic skin researchers to understand stem cells researches.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Dermatology, Kurume University School of Medicine, Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
42
|
Kern JS, Has C. Update on diagnosis and therapy of inherited epidermolysis bullosa. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.3.6.721] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2013; 134:1246-1254. [PMID: 24317394 PMCID: PMC3989384 DOI: 10.1038/jid.2013.523] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/30/2013] [Accepted: 10/23/2013] [Indexed: 12/21/2022]
Abstract
Spontaneous reversion of disease-causing mutations has been observed in some genetic disorders. In our clinical observations of severe generalized recessive dystrophic epidermolysis bullosa (RDEB), a currently incurable blistering genodermatosis caused by loss-of-function mutations in COL7A1 that results in a deficit of type VII collagen (C7), we have observed patches of healthy-appearing skin on some individuals. When biopsied, this skin revealed somatic mosaicism resulting from the self-correction of C7 deficiency. We believe this source of cells could represent an opportunity for translational “natural” gene therapy. We show that revertant RDEB keratinocytes expressing functional C7 can be reprogrammed into induced pluripotent stem cells (iPSCs) and that self-corrected RDEB iPSCs can be induced to differentiate into either epidermal or hematopoietic cell populations. Our results give proof in principle that an inexhaustible supply of functional patient-specific revertant cells can be obtained—potentially relevant to local wound therapy and systemic hematopoietic cell transplantation. This technology may also avoid some of the major limitations of other cell therapy strategies, e.g., immune rejection and insertional mutagenesis, which are associated with viral- and nonviral- mediated gene therapy. We believe this approach should be the starting point for autologous cellular therapies using “natural” gene therapy in RDEB and other diseases.
Collapse
|
44
|
Varkey M, Ding J, Tredget EE. Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders. Tissue Eng Part A 2013; 20:540-52. [PMID: 24004160 DOI: 10.1089/ten.tea.2013.0160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Basement membrane is a highly specialized structure that binds the dermis and the epidermis of the skin, and is mainly composed of laminins, nidogen, collagen types IV and VII, and the proteoglycans, collagen type XVIII and perlecan, all of which play critical roles in the function and resilience of skin. Both dermal fibroblasts and epidermal keratinocytes contribute to the development of the basement membrane, and in turn the basement membrane and underlying dermis influence the development and function of the epidermal barrier. Disruption of the basement membrane results in skin fragility, extensive painful blistering, and severe recurring wounds as seen in skin basement membrane disorders such as epidermolysis bullosa, a family of life-threatening congenital skin disorders. Currently, there are no successful strategies for treatment of these disorders; we propose the use of tissue-engineered skin as a promising approach for effective wound coverage and to enhance healing. Fibroblasts and keratinocytes isolated from superficial and deep dermis and epidermis, respectively, of tissue from abdominoplasty patients were independently cocultured on collagen-glycosaminoglycan matrices, and the resulting tissue-engineered skin was assessed for functional differences based on the underlying specific dermal fibroblast subpopulation. Tissue-engineered skin with superficial fibroblasts and keratinocytes formed a continuous epidermis with increased epidermal barrier function and expressed higher levels of epidermal proteins, keratin-5, and E-cadherin, compared to that with deep fibroblasts and keratinocytes, which had an intermittent epidermis. Further, tissue-engineered skin with superficial fibroblasts and keratinocytes formed better basement membrane, and produced more laminin-5, nidogen, collagen type VII, compared to that with deep fibroblasts and keratinocytes. Overall, our results demonstrate that tissue-engineered skin with superficial fibroblasts and keratinocytes forms significantly better basement membrane with higher expression of dermo-epidermal adhesive and anchoring proteins, and superior epidermis with enhanced barrier function compared to that with deep fibroblasts and keratinocytes, or with superficial fibroblasts, deep fibroblasts, and keratinocytes. The specific use of superficial fibroblasts in tissue-engineered skin may thus be more beneficial to promote adhesion of newly formed skin and wound healing, and is therefore promising for the treatment of patients with basement membrane disorders and other skin blistering diseases.
Collapse
Affiliation(s)
- Mathew Varkey
- 1 Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta , Edmonton, Canada
| | | | | |
Collapse
|
45
|
Tolar J, Wagner JE. Allogeneic blood and bone marrow cells for the treatment of severe epidermolysis bullosa: repair of the extracellular matrix. Lancet 2013; 382:1214-23. [PMID: 24095195 PMCID: PMC3959900 DOI: 10.1016/s0140-6736(13)61897-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Contrary to the prevailing professional opinion of the past few decades, recent experimental and clinical data support the fact that protein replacement therapy by allogeneic blood and marrow transplantation is not limited to freely diffusible molecules such as enzymes, but also large structural proteins such as collagens. A prime example is the cross-correction of type VII collagen deficiency in generalised severe recessive dystrophic epidermolysis bullosa, in which blood and marrow transplantation can attenuate the mucocutaneous manifestations of the disease and improve patients' quality of life. Although allogeneic blood and marrow transplantation can improve the integrity of the skin and mucous membranes, today's accomplishments are only the first steps on the long pathway to cure. Future strategies will be built on the lessons learned from these first transplant studies.
Collapse
Affiliation(s)
- Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | |
Collapse
|
46
|
Hünefeld C, Mezger M, Kern JS, Nyström A, Bruckner-Tuderman L, Müller I, Handgretinger R, Röcken M. One goal, different strategies--molecular and cellular approaches for the treatment of inherited skin fragility disorders. Exp Dermatol 2013; 22:162-7. [PMID: 23489418 DOI: 10.1111/exd.12084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2013] [Indexed: 12/29/2022]
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited diseases characterized by the formation of blisters in the skin and mucosa. There is no cure or effective treatment for these potentially severe and fatal diseases. Over the past few years, several reports have proposed different molecular strategies as new therapeutic options for the management of EB. From classical vector-based gene therapy to cell-based strategies such as systemic application of bone marrow stem cells or local application of fibroblasts, a broad range of molecular approaches have been explored. This array also includes novel methods, such as protein replacement therapy, gene silencing and the use of induced pluripotent stem cells (iPCs). In this review, we summarize current concepts of how inherited blistering diseases might be treated in the future and discuss the opportunities, promises, concerns and risks of these innovative approaches.
Collapse
|
47
|
Uitto J, Has C, Bruckner-Tuderman L. Cell-based therapies for epidermolysis bullosa - from bench to bedside. J Dtsch Dermatol Ges 2013; 10:803-7. [PMID: 23107326 DOI: 10.1111/j.1610-0387.2012.08035.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Significant progress has been made over the past two decades in molecular genetics of epidermolysis bullosa (EB), a group of heritable blistering disorders, with diagnostic and prognostic implications. More recently, novel molecular approaches have been developed towards potential treatment of EB, with emphasis on gene-, protein-, and cell-based strategies. This overview highlights cell-based approaches that have recently been tested in pilot clinical trials, attesting to the potential of regenerative medicine for blistering skin diseases.
Collapse
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
48
|
Abdul-Wahab A, Petrof G, McGrath JA. Bone marrow transplantation in epidermolysis bullosa. Immunotherapy 2013; 4:1859-67. [PMID: 23240753 DOI: 10.2217/imt.12.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of inherited blistering skin diseases. Severe forms of EB are associated with increased morbidity and mortality, and there is currently no effective treatment. To combat severe complications of EB, such as chronic erosions, scarring and malignancy, effective therapy needs to be given systemically and at an early age. One recent therapeutic advancement has been a clinical trial of whole bone marrow (BM) transplantation in children with the dystrophic form of EB. This led to correction of the inherent skin basement membrane defect and better skin integrity in some individuals. The challenge now is to precisely identify which BM cells contribute to skin recovery and what mechanisms are involved in tissue regeneration. An improved understanding of the key aspects of BM skin repair is likely to lead to significant health improvements for patients with EB and other skin diseases.
Collapse
Affiliation(s)
- Alya Abdul-Wahab
- St John's Institute of Dermatology, King's College London (Guy's Campus), 9th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | | | | |
Collapse
|
49
|
|
50
|
Avci P, Sadasivam M, Gupta A, De Melo WC, Huang YY, Yin R, Chandran R, Kumar R, Otufowora A, Nyame T, Hamblin MR. Animal models of skin disease for drug discovery. Expert Opin Drug Discov 2013; 8:331-55. [PMID: 23293893 DOI: 10.1517/17460441.2013.761202] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Discovery of novel drugs, treatments, and testing of consumer products in the field of dermatology is a multi-billion dollar business. Due to the distressing nature of many dermatological diseases, and the enormous consumer demand for products to reverse the effects of skin photodamage, aging, and hair loss, this is a very active field. AREAS COVERED In this paper, we will cover the use of animal models that have been reported to recapitulate to a greater or lesser extent the features of human dermatological disease. There has been a remarkable increase in the number and variety of transgenic mouse models in recent years, and the basic strategy for constructing them is outlined. EXPERT OPINION Inflammatory and autoimmune skin diseases are all represented by a range of mouse models both transgenic and normal. Skin cancer is mainly studied in mice and fish. Wound healing is studied in a wider range of animal species, and skin infections such as acne and leprosy also have been studied in animal models. Moving to the more consumer-oriented area of dermatology, there are models for studying the harmful effect of sunlight on the skin, and testing of sunscreens, and several different animal models of hair loss or alopecia.
Collapse
Affiliation(s)
- Pinar Avci
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Department of Dermatology, Boston MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|