1
|
Yun CC, Han Y, McConnell B. Lysophosphatidic Acid Signaling in the Gastrointestinal System. Cell Mol Gastroenterol Hepatol 2024; 18:101398. [PMID: 39233124 PMCID: PMC11532463 DOI: 10.1016/j.jcmgh.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The intestinal epithelium undergoes continuous homeostatic renewal to conduct the digestion and absorption of nutrients. At the same time, the intestinal epithelial barrier separates the host from the intestinal lumen, preventing systemic infection from enteric pathogens. To maintain homeostasis and epithelial functionality, stem cells, which reside in the base of intestinal crypts, generate progenitor cells that ultimately differentiate to produce an array of secretory and absorptive cells. Intestinal regeneration is regulated by niche signaling pathways, specifically, Wnt, bone morphogenetic protein, Notch, and epidermal growth factor. In addition, growth factors and other peptides have emerged as potential modulators of intestinal repair and inflammation through their roles in cellular proliferation, differentiation, migration, and survival. Lysophosphatidic acid (LPA) is such a factor that modulates the proliferation, survival, and migration of epithelial cells while also regulating trafficking of immune cells, both of which are important for tissue homeostasis. Perturbation of LPA signaling, however, has been shown to promote cancer and inflammation. This review focuses on the recent advances in LPA-mediated signaling that contribute to physiological and pathophysiological regulation of the gastrointestinal system.
Collapse
Affiliation(s)
- C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia.
| | - Yiran Han
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Beth McConnell
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
2
|
Petersen-Cherubini CL, Liu Y, Deffenbaugh JL, Murphy SP, Xin M, Rau CN, Yang Y, Lovett-Racke AE. Dysregulated autotaxin expression by T cells in multiple sclerosis. J Neuroimmunol 2024; 387:578282. [PMID: 38183947 PMCID: PMC10923181 DOI: 10.1016/j.jneuroim.2023.578282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by infiltration of autoreactive T cells into the central nervous system (CNS). In order to understand how activated, autoreactive T cells are able to cross the blood brain barrier, the unique molecular characteristics of pathogenic T cells need to be more thoroughly examined. In previous work, our laboratory found autotaxin (ATX) to be upregulated by activated autoreactive T cells in the mouse model of MS. ATX is a secreted glycoprotein that promotes T cell chemokinesis and transmigration through catalysis of lysophoshphatidic acid (LPA). ATX is elevated in the serum of MS patients during active disease phases, and we previously found that inhibiting ATX decreases severity of neurological deficits in the mouse model. In this study, ATX expression was found to be lower in MS patient immune cells during rest, but significantly increased during early activation in a manner not seen in healthy controls. The ribosomal binding protein HuR, which stabilizes ATX mRNA, was also increased in MS patients in a similar pattern to that of ATX, suggesting it may be helping regulate ATX levels after activation. The proinflammatory cytokine interleukin-23 (IL-23) was shown to induce prolonged ATX expression in MS patient Th1 and Th17 cells. Finally, through ChIP, re-ChIP analysis, we show that IL-23 may be signaling through pSTAT3/pSTAT4 heterodimers to induce expression of ATX. Taken together, these findings elucidate cell types that may be contributing to elevated serum ATX levels in MS patients and identify potential drivers of sustained expression in encephalitogenic T cells.
Collapse
Affiliation(s)
- Cora L Petersen-Cherubini
- The Ohio State University, Neuroscience Graduate Program, 460 West 12th Avenue, Biomedical Research Tower 6894, Columbus, OH 43210, USA; The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA
| | - Yue Liu
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Joshua L Deffenbaugh
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Shawn P Murphy
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Matthew Xin
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA
| | - Christina N Rau
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| | - Yuhong Yang
- The Ohio State University, Wexner Medical Center, Department of Neurology, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA
| | - Amy E Lovett-Racke
- The Ohio State University, Wexner Medical Center, Department of Microbial Infection and Immunity, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA; The Ohio State University, Wexner Medical Center, Department of Neuroscience, 460 West 12th Avenue, Biomedical Research Tower 684, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
4
|
Yaginuma S, Omi J, Uwamizu A, Aoki J. Emerging roles of lysophosphatidylserine as an immune modulator. Immunol Rev 2023; 317:20-29. [PMID: 37036835 DOI: 10.1111/imr.13204] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023]
Abstract
In addition to direct activation by pathogens and antigens, immune cell functions are further modulated by factors in their environment. Recent studies have revealed that lysophospholipids (LPL) derived from membrane glycerophospholipids are such environmental factors. They are produced by the action of various phospholipases and modulate immune responses positively or negatively via G-protein-coupled receptor-type receptors. These include lysophosphatidic acid, lysophosphatidylserine (LysoPS), and lysophosphatidylinositol. Here, we summarize what is known about the synthetic pathways, receptors, and immunomodulatory functions of these LPLs. Particular focus is given to LysoPS, which have recently been identified, and recent findings on their immunomodulatory actions are presented.
Collapse
Affiliation(s)
- Shun Yaginuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jumpei Omi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akiharu Uwamizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
5
|
Cerutis DR, Weston MD, Miyamoto T. Entering, Linked with the Sphinx: Lysophosphatidic Acids Everywhere, All at Once, in the Oral System and Cancer. Int J Mol Sci 2023; 24:10278. [PMID: 37373424 PMCID: PMC10299546 DOI: 10.3390/ijms241210278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Oral health is crucial to overall health, and periodontal disease (PDD) is a chronic inflammatory disease. Over the past decade, PDD has been recognized as a significant contributor to systemic inflammation. Here, we relate our seminal work defining the role of lysophosphatidic acid (LPA) and its receptors (LPARs) in the oral system with findings and parallels relevant to cancer. We discuss the largely unexplored fine-tuning potential of LPA species for biological control of complex immune responses and suggest approaches for the areas where we believe more research should be undertaken to advance our understanding of signaling at the level of the cellular microenvironment in biological processes where LPA is a key player so we can better treat diseases such as PDD, cancer, and emerging diseases.
Collapse
Affiliation(s)
- D. Roselyn Cerutis
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| | - Michael D. Weston
- Department of Oral Biology, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| | - Takanari Miyamoto
- Department of Periodontics, Creighton University School of Dentistry, Omaha, NE 68178, USA;
| |
Collapse
|
6
|
Yanagida K, Shimizu T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol Ther 2023; 246:108421. [PMID: 37080433 DOI: 10.1016/j.pharmthera.2023.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA1-6. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system. Furthermore, many studies are illuminating detailed mechanisms to orchestrate multiple LPA receptor signaling pathways and to facilitate their coordinated function. Importantly, these extensive "bench" works are now translated into the "bedside" as exemplified by approaches targeting LPA1 signaling to combat fibrotic diseases. In this review, we discuss the physiological and pathological roles of LPA signaling and their implications for clinical application by focusing on findings revealed by in vivo studies utilizing genetic tools targeting LPA receptors.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Takao Shimizu
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan; Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
7
|
Yaginuma S, Omi J, Kano K, Aoki J. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers. Pharmacol Ther 2023; 246:108415. [PMID: 37061204 DOI: 10.1016/j.pharmthera.2023.108415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Accumulating evidence suggests that lysophospholipids (LPL) serve as lipid mediators that exert their diverse pathophysiological functions via G protein-coupled receptors. These include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), lysophosphatidylserine (LysoPS) and lysophosphatidylinositol (LPI). Unlike S1P, which is produced intracellularly and secreted from various cell types, some LPLs, such as LPA, LysoPS and LPI, are produced in lesions, especially under pathological conditions, where they positively or negatively regulate disease progression through their autacoid-like actions. Although these LPLs are minor components of the cell membrane, recent developments in mass spectrometry techniques have made it possible to detect and quantify them in a variety of biological fluids, including plasma, serum, urine and cerebrospinal fluid. The synthetic enzymes of LPA and LysoPS are also present in these biological fluids, which also can be detected by antibody-based methods. Importantly, their levels have been found to dramatically increase during various pathological conditions. Thus, LPLs and their synthetic enzymes in these biological fluids are potential biomarkers. This review discusses the potential of these LPLs and LPL-related molecules as pathological biomarkers, including methods and problems in their measurement.
Collapse
Affiliation(s)
- Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
8
|
Kalamatianos T, Drosos E, Magkrioti C, Nikitopoulou I, Koutsarnakis C, Kotanidou A, Paraskevas GP, Aidinis V, Stranjalis G. Autotaxin Activity in Chronic Subdural Hematoma: A Prospective Clinical Study. Diagnostics (Basel) 2022; 12:diagnostics12081865. [PMID: 36010216 PMCID: PMC9406550 DOI: 10.3390/diagnostics12081865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
Autotaxin (ATX) is the ectoenzyme producing the bulk of lysophosphatidic acid (LPA) in circulation. ATX and LPA-mediated signaling (the ATX-LPA axis) play critical roles in the vascular and nervous system development. In adults, this axis contributes to diverse processes, including coagulation, inflammation, fibroproliferation and angiogenesis under physiological and/or pathophysiological conditions. Given evidence implicating several of these processes in chronic subdural hematoma (CSDH) pathogenesis and development, we assessed ATX activity in CSDH patients. Twenty-eight patients were recruited. Blood and hematoma fluid were collected. Enzymatic assays were used to establish serum and hematoma ATX activity. Enzyme-linked immunosorbent assays were used to establish hematoma beta trace (BT) levels, a cerebrospinal fluid (CSF) marker, in a hematoma. ATX activity was nearly three folds higher in hematoma compared to serum (P < 0.001). There was no significant correlation between BT levels and ATX activity in a hematoma. The present results show, for the first time, that ATX is catalytically active in the hematoma fluid of CSDH patients. Moreover, our findings of significantly elevated ATX activity in hematoma compared to serum, implicate the ATX-LPA axis in CSDH pathophysiology. The CSF origin of ATX could not be inferred with the present results. Additional research is warranted to establish the significance of the ATX-LPA axis in CSDH and its potential as a biomarker and/or therapeutic target.
Collapse
Affiliation(s)
- Theodosis Kalamatianos
- Department of Neurosurgery, Faculty of Health Sciences, School of Medicine, Evaggelismos General Hospital, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (E.D.); (C.K.); (G.S.)
- Hellenic Centre for Neurosurgery Research, “Professor Petros S. Kokkalis”, 106 75 Athens, Greece
- Correspondence:
| | - Evangelos Drosos
- Department of Neurosurgery, Faculty of Health Sciences, School of Medicine, Evaggelismos General Hospital, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (E.D.); (C.K.); (G.S.)
| | - Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 166 72 Athens, Greece; (C.M.); (V.A.)
| | - Ioanna Nikitopoulou
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care & Pulmonary Services, School of Medicine, Evaggelismos General Hospital, National and Kapodistrian University of Athens, 106 76 Athens, Greece;
| | - Christos Koutsarnakis
- Department of Neurosurgery, Faculty of Health Sciences, School of Medicine, Evaggelismos General Hospital, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (E.D.); (C.K.); (G.S.)
| | - Anastasia Kotanidou
- 1st Department of Critical Care & Pulmonary Services, School of Medicine, Evaggelismos General Hospital, National and Kapodistrian University of Athens, 106 76 Athens, Greece;
| | - George P. Paraskevas
- 2nd Department of Neurology, School of Medicine, “Attikon” General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece;
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 166 72 Athens, Greece; (C.M.); (V.A.)
| | - George Stranjalis
- Department of Neurosurgery, Faculty of Health Sciences, School of Medicine, Evaggelismos General Hospital, National and Kapodistrian University of Athens, 106 76 Athens, Greece; (E.D.); (C.K.); (G.S.)
- Hellenic Centre for Neurosurgery Research, “Professor Petros S. Kokkalis”, 106 75 Athens, Greece
| |
Collapse
|
9
|
Takagi Y, Nishikado S, Omi J, Aoki J. The Many Roles of Lysophospholipid Mediators and Japanese Contributions to This Field. Biol Pharm Bull 2022; 45:1008-1021. [DOI: 10.1248/bpb.b22-00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yugo Takagi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Shun Nishikado
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
10
|
Karshovska E, Mohibullah R, Zhu M, Zahedi F, Thomas D, Magkrioti C, Geissler C, Megens RTA, Bianchini M, Nazari-Jahantigh M, Ferreirós N, Aidinis V, Schober A. ENPP2 (Endothelial Ectonucleotide Pyrophosphatase/Phosphodiesterase 2) Increases Atherosclerosis in Female and Male Mice. Arterioscler Thromb Vasc Biol 2022; 42:1023-1036. [PMID: 35708027 DOI: 10.1161/atvbaha.122.317682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.
Collapse
Affiliation(s)
- Ela Karshovska
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Rokia Mohibullah
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Mengyu Zhu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Farima Zahedi
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Now with Department of Biomedical Science and Mari Lowe Center for Comparative Oncology, University of Pennsylvania, Philadelphia (F.Z.)
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.).,Fraunhofer Institute for Translational Medicine and Pharmacology, Frankfurt, Germany (D.T.)
| | - Christiana Magkrioti
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Claudia Geissler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands (M.Z., R.T.A.M.)
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.)
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany (D.T., N.F.)
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Science Research, Center Alexander Fleming, Athens, Greece (C.M., V.A.)
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany (E.K., R.M., M.Z., F.Z., C.G., R.T.A.M., M.B., M.N.-J., A.S.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Germany (M.N.-J., A.S.)
| |
Collapse
|
11
|
Abstract
Lysophospholipids, exemplified by lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are produced by the metabolism and perturbation of biological membranes. Both molecules are established extracellular lipid mediators that signal via specific G protein-coupled receptors in vertebrates. This widespread signaling axis regulates the development, physiological functions, and pathological processes of all organ systems. Indeed, recent research into LPA and S1P has revealed their important roles in cellular stress signaling, inflammation, resolution, and host defense responses. In this review, we focus on how LPA regulates fibrosis, neuropathic pain, abnormal angiogenesis, endometriosis, and disorders of neuroectodermal development such as hydrocephalus and alopecia. In addition, we discuss how S1P controls collective behavior, apoptotic cell clearance, and immunosurveillance of cancers. Advances in lysophospholipid research have led to new therapeutics in autoimmune diseases, with many more in earlier stages of development for a wide variety of diseases, such as fibrotic disorders, vascular diseases, and cancer.
Collapse
Affiliation(s)
- Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Okasato R, Kano K, Kise R, Inoue A, Fukuhara S, Aoki J. An ATX-LPA 6-Gα 13-ROCK axis shapes and maintains caudal vein plexus in zebrafish. iScience 2021; 24:103254. [PMID: 34755093 PMCID: PMC8564058 DOI: 10.1016/j.isci.2021.103254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potential regulator of vascular formation derived from blood. In this study, we utilized zebrafish as a model organism to monitor the blood vessel formation in detail. Zebrafish mutant of ATX, an LPA-producing enzyme, had a defect in the caudal vein plexus (CVP). Pharmacological inhibition of ATX resulted in a fusion of the delicate vessels in the CVP to form large sac-like vessels. Mutant embryos of LPA6 receptor and downstream Gα13 showed the same phenotype. Administration of OMPT, a stable LPA-analog, induced rapid CVP constriction, which was attenuated significantly in the LPA6 mutant. We also found that blood flow-induced CVP formation was dependent on ATX. The present study demonstrated that the ATX-LPA6 axis acts cooperatively with blood flow and contributes to the formation and maintenance of the CVP by generating contractive force in endothelial cells. Blocking an ATX-LPA6-Gα13-ROCK axis causes malformation of the caudal vein plexus The axis also contributes to maintaining the fine structure of the caudal vein plexus Activation of LPA6 induces vasoconstriction Caudal vein plexus formation evoked by blood flow is dependent on an ATX-LPA6 axis
Collapse
Affiliation(s)
- Ryohei Okasato
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
13
|
Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells 2021; 10:cells10112963. [PMID: 34831185 PMCID: PMC8616333 DOI: 10.3390/cells10112963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids are major components in the lipid bilayer of cell membranes. These molecules are comprised of two acyl or alkyl groups and different phospho-base groups linked to the glycerol backbone. Over the years, substantial interest has focused on metabolism of phospholipids by phospholipases and the role of their metabolic products in mediating cell functions. The high levels of polyunsaturated fatty acids (PUFA) in the central nervous system (CNS) have led to studies centered on phospholipases A2 (PLA2s), enzymes responsible for cleaving the acyl groups at the sn-2 position of the phospholipids and resulting in production of PUFA and lysophospholipids. Among the many subtypes of PLA2s, studies have centered on three major types of PLA2s, namely, the calcium-dependent cytosolic cPLA2, the calcium-independent iPLA2 and the secretory sPLA2. These PLA2s are different in their molecular structures, cellular localization and, thus, production of lipid mediators with diverse functions. In the past, studies on specific role of PLA2 on cells in the CNS are limited, partly because of the complex cellular make-up of the nervous tissue. However, understanding of the molecular actions of these PLA2s have improved with recent advances in techniques for separation and isolation of specific cell types in the brain tissue as well as development of sensitive molecular tools for analyses of proteins and lipids. A major goal here is to summarize recent studies on the characteristics and dynamic roles of the three major types of PLA2s and their oxidative products towards brain health and neurological disorders.
Collapse
|
14
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
15
|
Asal F, Ziada D, Wageh A, El-Kohy M, Hawash N, Abd-Elsalam S, Badawi R. The Correlation Between the Autotaxin Enzyme and Pruritus in Egyptian Patients Suffering from Chronic Liver Disease. Antiinflamm Antiallergy Agents Med Chem 2021; 20:302-307. [PMID: 33459246 DOI: 10.2174/1871523020666210114092924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND & AIMS Pruritus associated with liver diseases confines daily activities and causes sleep deprivation in patients with chronic liver diseases. Autotoxin enzyme (ATX) was found to be higher in sera of patients with intrahepatic cholestasis and it was found to be associated with the intensity of itching. The aim of this study was to assess the correlation between the autotaxin enzyme and pruritus in Egyptian patients suffering from chronic liver disease (CLD). METHODS This cross-sectional study was carried on a total number of 80 patients with chronic liver disease divided into four groups: Group A and B included cirrhotic patients suffering from pruritis with and without cholestasis, while group C and D included patients without pruritis with or without cholestasis and group E included 17 healthy controls. They were subjected to measurement of serum autotoxin concentration by ELISA in addition to routine investigations including liver function tests: Total and direct bilirubin, ALT, AST, Alkaline phosphatase, Gama- glutamyl transferase, and serum albumin. RESULTS There was a significant increase in autotaxin in the four groups included chronic liver disease patients (P-value <0.001*) compared to control group (group E). Autotoxin level was the only marker that had a significant increase in pruritus groups (groups A & B) compared to non-pruritus groups (groups C & D) with cut off value ≥ 32. CONCLUSION Serum autotaxin level was elevated in patients with chronic liver diseases with pruritus. Autotaxin enzyme may play a key role in the induction of hepatogenic pruritus. So, autotaxin enzyme inhibitors and lysophosphatidic acid (LPA) receptor blockers could be a future line of treatment of hepatogenic pruritus.
Collapse
Affiliation(s)
- Fathia Asal
- Department of Tropical Medicine & Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina Ziada
- Department of Tropical Medicine & Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ayman Wageh
- Department of Biochemistry, Faculty of Medicine, Tanta University Tanta, Egypt
| | | | - Nehad Hawash
- Department of Tropical Medicine & Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sherief Abd-Elsalam
- Department of Tropical Medicine & Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab Badawi
- Department of Tropical Medicine & Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
16
|
Cao P, Walker NM, Braeuer RR, Mazzoni-Putman S, Aoki Y, Misumi K, Wheeler DS, Vittal R, Lama VN. Loss of FOXF1 expression promotes human lung-resident mesenchymal stromal cell migration via ATX/LPA/LPA1 signaling axis. Sci Rep 2020; 10:21231. [PMID: 33277571 PMCID: PMC7718269 DOI: 10.1038/s41598-020-77601-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Forkhead box F1 (FOXF1) is a lung embryonic mesenchyme-associated transcription factor that demonstrates persistent expression into adulthood in mesenchymal stromal cells. However, its biologic function in human adult lung-resident mesenchymal stromal cells (LR-MSCs) remain to be elucidated. Here, we demonstrate that FOXF1 expression acts as a restraint on the migratory function of LR-MSCs via its role as a novel transcriptional repressor of autocrine motility-stimulating factor Autotaxin (ATX). Fibrotic human LR-MSCs demonstrated lower expression of FOXF1 mRNA and protein, compared to non-fibrotic controls. RNAi-mediated FOXF1 silencing in LR-MSCs was associated with upregulation of key genes regulating proliferation, migration, and inflammatory responses and significantly higher migration were confirmed in FOXF1-silenced LR-MSCs by Boyden chamber. ATX is a secreted lysophospholipase D largely responsible for extracellular lysophosphatidic acid (LPA) production, and was among the top ten upregulated genes upon Affymetrix analysis. FOXF1-silenced LR-MSCs demonstrated increased ATX activity, while mFoxf1 overexpression diminished ATX expression and activity. The FOXF1 silencing-induced increase in LR-MSC migration was abrogated by genetic and pharmacologic targeting of ATX and LPA1 receptor. Chromatin immunoprecipitation analyses identified three putative FOXF1 binding sites in the 1.5 kb ATX promoter which demonstrated transcriptional repression of ATX expression. Together these findings identify FOXF1 as a novel transcriptional repressor of ATX and demonstrate that loss of FOXF1 promotes LR-MSC migration via the ATX/LPA/LPA1 signaling axis.
Collapse
Affiliation(s)
- Pengxiu Cao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Natalie M Walker
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Russell R Braeuer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Serina Mazzoni-Putman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Yoshiro Aoki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Keizo Misumi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - David S Wheeler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Ragini Vittal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA
| | - Vibha N Lama
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, 1500 W Medical Center Drive, 3916 Taubman Center, Ann Arbor, MI, 48109-0360, USA.
| |
Collapse
|
17
|
Characterization of glycerophosphodiesterase 4-interacting molecules Gαq/11 and Gβ, which mediate cellular lysophospholipase D activity. Biochem J 2020; 476:3721-3736. [PMID: 31794025 DOI: 10.1042/bcj20190666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/31/2023]
Abstract
We previously purified lysophospholipase D (lysoPLD), which hydrolyzes lysophosphatidylcholine (lysoPC) to lysophosphatidic acid (LPA), from rat brain and identified the heterotrimeric G protein subunits Gαq and Gβ1 in the lysoPLD active fractions. Tag-affinity purified Gαq exhibits lysoPLD activity but a mutant that affected cellular localization or interaction with the Gβ subunit reduced lysoPLD activity. Size exclusion chromatography revealed that active lysoPLD is a much higher molecular mass complex than is heterotrimeric G protein, suggesting the presence of other components. Liquid chromatography-tandem mass spectrometry of lysoPLD purified from rat brain identified glycerophosphodiesterase 4 (GDE4), recently reported as lysoPLD, in the same fraction as G proteins. The overexpressed and tag-purified Gαq fractions, which exhibit lysoPLD activity, contained GDE4. Exogenously expressed GDE4 was co-immunoprecipitated with endogenous Gαq and Gβ and exhibited high lysoPLD activity. The results of confocal microscopy and cell fractionation experiments indicated that exogenously expressed GDE4 in cells mainly localized at the endoplasmic reticulum and partially co-localized with Gαq protein at the plasma membrane. Proteinase K protection assay results suggested that the catalytic domain of GDE4 faces the lumen/extracellular space. Mutations at the conserved amino acids in the C-terminus cytoplasmic regions amongst GDE1, 4 and 7, dramatically suppressed GDE4 enzyme activities. When both the Gαq and Gα11 genes in Neuro2A cells were disrupted using the CRISPR-Cas9 system, endogenous lysoPLD activity was partially reduced but rescued by overexpression of Gαq. These results suggest that GDE4 is a new effector of G protein signaling that produces bioactive phospholipid LPA and/or modulates membrane homeostasis.
Collapse
|
18
|
Signalling by lysophosphatidate and its health implications. Essays Biochem 2020; 64:547-563. [DOI: 10.1042/ebc20190088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
AbstractExtracellular lysophosphatidate (LPA) signalling is regulated by the balance of LPA formation by autotaxin (ATX) versus LPA degradation by lipid phosphate phosphatases (LPP) and by the relative expressions of six G-protein-coupled LPA receptors. These receptors increase cell proliferation, migration, survival and angiogenesis. Acute inflammation produced by tissue damage stimulates ATX production and LPA signalling as a component of wound healing. If inflammation does not resolve, LPA signalling becomes maladaptive in conditions including arthritis, neurologic pain, obesity and cancers. Furthermore, LPA signalling through LPA1 receptors promotes fibrosis in skin, liver, kidneys and lungs. LPA also promotes the spread of tumours to other organs (metastasis) and the pro-survival properties of LPA explain why LPA counteracts the effects of chemotherapeutic agents and radiotherapy. ATX is secreted in response to radiation-induced DNA damage during cancer treatments and this together with increased LPA1 receptor expression leads to radiation-induced fibrosis. The anti-inflammatory agent, dexamethasone, decreases levels of inflammatory cytokines/chemokines. This is linked to a coordinated decrease in the production of ATX and LPA1/2 receptors and increased LPA degradation through LPP1. These effects explain why dexamethasone attenuates radiation-induced fibrosis. Increased LPA signalling is also associated with cardiovascular disease including atherosclerosis and deranged LPA signalling is associated with pregnancy complications including preeclampsia and intrahepatic cholestasis of pregnancy. LPA contributes to chronic inflammation because it stimulates the secretion of inflammatory cytokines/chemokines, which increase further ATX production and LPA signalling. Attenuating maladaptive LPA signalling provides a novel means of treating inflammatory diseases that underlie so many important medical conditions.
Collapse
|
19
|
The roles of autotaxin/lysophosphatidic acid in immune regulation and asthma. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158641. [PMID: 32004685 DOI: 10.1016/j.bbalip.2020.158641] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/26/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Lysophosphatidic acid (LPA) species are present in almost all organ systems and play diverse roles through its receptors. Asthma is an airway disease characterized by chronic allergic inflammation where various innate and adaptive immune cells participate in establishing Th2 immune response. Here, we will review the contribution of LPA and its receptors to the functions of immune cells that play a key role in establishing allergic airway inflammation and aggravation of allergic asthma.
Collapse
|
20
|
Eckert N, Permanyer M, Yu K, Werth K, Förster R. Chemokines and other mediators in the development and functional organization of lymph nodes. Immunol Rev 2020; 289:62-83. [PMID: 30977201 DOI: 10.1111/imr.12746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Secondary lymphoid organs like lymph nodes (LNs) are the main inductive sites for adaptive immune responses. Lymphocytes are constantly entering LNs, scanning the environment for their cognate antigen and get replenished by incoming cells after a certain period of time. As only a minor percentage of lymphocytes recognizes cognate antigen, this mechanism of permanent recirculation ensures fast and effective immune responses when necessary. Thus, homing, positioning, and activation as well as egress require precise regulation within LNs. In this review we discuss the mediators, including chemokines, cytokines, growth factors, and others that are involved in the formation of the LN anlage and subsequent functional organization of LNs. We highlight very recent findings in the fields of LN development, steady-state migration in LNs, and the intranodal processes during an adaptive immune response.
Collapse
Affiliation(s)
- Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Yanagida K, Valentine WJ. Druggable Lysophospholipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:137-176. [DOI: 10.1007/978-3-030-50621-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Elevated Autotaxin and LPA Levels During Chronic Viral Hepatitis and Hepatocellular Carcinoma Associate with Systemic Immune Activation. Cancers (Basel) 2019; 11:cancers11121867. [PMID: 31769428 PMCID: PMC6966516 DOI: 10.3390/cancers11121867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Circulating autotaxin (ATX) is elevated in persons with liver disease, particularly in the setting of chronic hepatitis C virus (HCV) and HCV/HIV infection. It is thought that plasma ATX levels are, in part, attributable to impaired liver clearance that is secondary to fibrotic liver disease. In a discovery data set, we identified plasma ATX to be associated with parameters of systemic immune activation during chronic HCV and HCV/HIV infection. We and others have observed a partial normalization of ATX levels within months of starting interferon-free direct-acting antiviral (DAA) HCV therapy, consistent with a non-fibrotic liver disease contribution to elevated ATX levels, or HCV-mediated hepatocyte activation. Relationships between ATX, lysophosphatidic acid (LPA) and parameters of systemic immune activation will be discussed in the context of HCV infection, age, immune health, liver health, and hepatocellular carcinoma (HCC).
Collapse
|
23
|
Simmons S, Sasaki N, Umemoto E, Uchida Y, Fukuhara S, Kitazawa Y, Okudaira M, Inoue A, Tohya K, Aoi K, Aoki J, Mochizuki N, Matsuno K, Takeda K, Miyasaka M, Ishii M. High-endothelial cell-derived S1P regulates dendritic cell localization and vascular integrity in the lymph node. eLife 2019; 8:41239. [PMID: 31570118 PMCID: PMC6773441 DOI: 10.7554/elife.41239] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
While the sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor-1 (S1PR1) axis is critically important for lymphocyte egress from lymphoid organs, S1PR1-activation also occurs in vascular endothelial cells (ECs), including those of the high-endothelial venules (HEVs) that mediate lymphocyte immigration into lymph nodes (LNs). To understand the functional significance of the S1P/S1PR1-Gi axis in HEVs, we generated Lyve1;Spns2Δ/Δ conditional knockout mice for the S1P-transporter Spinster-homologue-2 (SPNS2), as HEVs express LYVE1 during development. In these mice HEVs appeared apoptotic and were severely impaired in function, morphology and size; leading to markedly hypotrophic peripheral LNs. Dendritic cells (DCs) were unable to interact with HEVs, which was also observed in Cdh5CRE-ERT2;S1pr1Δ/Δ mice and wildtype mice treated with S1PR1-antagonists. Wildtype HEVs treated with S1PR1-antagonists in vitro and Lyve1-deficient HEVs show severely reduced release of the DC-chemoattractant CCL21 in vivo. Together, our results reveal that EC-derived S1P warrants HEV-integrity through autocrine control of S1PR1-Gi signaling, and facilitates concomitant HEV-DC interactions.
Collapse
Affiliation(s)
- Szandor Simmons
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| | - Naoko Sasaki
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiji Umemoto
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yutaka Uchida
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Michiyo Okudaira
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Kazuo Tohya
- Department of Anatomy, Kansai University of Health Sciences, Osaka, Japan
| | - Keita Aoi
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masayuki Miyasaka
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,MediCity Research Laboratory, University of Turku, Turku, Finland.,Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| |
Collapse
|
24
|
Pleotropic Roles of Autotaxin in the Nervous System Present Opportunities for the Development of Novel Therapeutics for Neurological Diseases. Mol Neurobiol 2019; 57:372-392. [PMID: 31364025 DOI: 10.1007/s12035-019-01719-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022]
Abstract
Autotaxin (ATX) is a soluble extracellular enzyme that is abundant in mammalian plasma and cerebrospinal fluid (CSF). It has two known enzymatic activities, acting as both a phosphodiesterase and a phospholipase. The majority of its biological effects have been associated with its ability to liberate lysophosphatidic acid (LPA) from its substrate, lysophosphatidylcholine (LPC). LPA has diverse pleiotropic effects in the central nervous system (CNS) and other tissues via the activation of a family of six cognate G protein-coupled receptors. These LPA receptors (LPARs) are expressed in some combination in all known cell types in the CNS where they mediate such fundamental cellular processes as proliferation, differentiation, migration, chronic inflammation, and cytoskeletal organization. As a result, dysregulation of LPA content may contribute to many CNS and PNS disorders such as chronic inflammatory or neuropathic pain, glioblastoma multiforme (GBM), hemorrhagic hydrocephalus, schizophrenia, multiple sclerosis, Alzheimer's disease, metabolic syndrome-induced brain damage, traumatic brain injury, hepatic encephalopathy-induced cerebral edema, macular edema, major depressive disorder, stress-induced psychiatric disorder, alcohol-induced brain damage, HIV-induced brain injury, pruritus, and peripheral nerve injury. ATX activity is now known to be the primary biological source of this bioactive signaling lipid, and as such, represents a potentially high-value drug target. There is currently one ATX inhibitor entering phase III clinical trials, with several additional preclinical compounds under investigation. This review discusses the physiological and pathological significance of the ATX-LPA-LPA receptor signaling axis and summarizes the evidence for targeting this pathway for the treatment of CNS diseases.
Collapse
|
25
|
Lysophosphatidic Acid and Autotaxin-associated Effects on the Initiation and Progression of Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11070958. [PMID: 31323936 PMCID: PMC6678549 DOI: 10.3390/cancers11070958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium interacts dynamically with the immune system to maintain its barrier function to protect the host, while performing the physiological roles in absorption of nutrients, electrolytes, water and minerals. The importance of lysophosphatidic acid (LPA) and its receptors in the gut has been progressively appreciated. LPA signaling modulates cell proliferation, invasion, adhesion, angiogenesis, and survival that can promote cancer growth and metastasis. These effects are equally important for the maintenance of the epithelial barrier in the gut, which forms the first line of defense against the milieu of potentially pathogenic stimuli. This review focuses on the LPA-mediated signaling that potentially contributes to inflammation and tumor formation in the gastrointestinal tract.
Collapse
|
26
|
Hisano Y, Kono M, Cartier A, Engelbrecht E, Kano K, Kawakami K, Xiong Y, Piao W, Galvani S, Yanagida K, Kuo A, Ono Y, Ishida S, Aoki J, Proia RL, Bromberg JS, Inoue A, Hla T. Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. J Exp Med 2019; 216:1582-1598. [PMID: 31147448 PMCID: PMC6605750 DOI: 10.1084/jem.20181895] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/29/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) activate G protein-coupled receptors (GPCRs) to regulate biological processes. Using a genome-wide CRISPR/dCas9-based GPCR signaling screen, LPAR1 was identified as an inducer of S1PR1/β-arrestin coupling while suppressing Gαi signaling. S1pr1 and Lpar1-positive lymphatic endothelial cells (LECs) of lymph nodes exhibit constitutive S1PR1/β-arrestin signaling, which was suppressed by LPAR1 antagonism. Pharmacological inhibition or genetic loss of function of Lpar1 reduced the frequency of punctate junctions at sinus-lining LECs. Ligand activation of transfected LPAR1 in endothelial cells remodeled junctions from continuous to punctate structures and increased transendothelial permeability. In addition, LPAR1 antagonism in mice increased lymph node retention of adoptively transferred lymphocytes. These data suggest that cross-talk between LPAR1 and S1PR1 promotes the porous junctional architecture of sinus-lining LECs, which enables efficient lymphocyte trafficking. Heterotypic inter-GPCR coupling may regulate complex cellular phenotypes in physiological milieu containing many GPCR ligands.
Collapse
Affiliation(s)
- Yu Hisano
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA
| | - Mari Kono
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA
| | - Eric Engelbrecht
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yanbao Xiong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Sylvain Galvani
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA
| | - Keisuke Yanagida
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA
| | - Yuki Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Satoru Ishida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA
| |
Collapse
|
27
|
Mathew D, Kremer KN, Strauch P, Tigyi G, Pelanda R, Torres RM. LPA 5 Is an Inhibitory Receptor That Suppresses CD8 T-Cell Cytotoxic Function via Disruption of Early TCR Signaling. Front Immunol 2019; 10:1159. [PMID: 31231367 PMCID: PMC6558414 DOI: 10.3389/fimmu.2019.01159] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Persistent T cell antigen receptor (TCR) signaling by CD8 T cells is a feature of cancer and chronic infections and results in the sustained expression of, and signaling by, inhibitory receptors, which ultimately impair cytotoxic activity via poorly characterized mechanisms. We have previously determined that the LPA5 GPCR expressed by CD8 T cells, upon engaging the lysophosphatidic acid (LPA) bioactive serum lipid, functions as an inhibitory receptor able to negatively regulate TCR signaling. Notably, the levels of LPA and autotaxin (ATX), the phospholipase D enzyme that produces LPA, are often increased in chronic inflammatory disorders such as chronic infections, autoimmune diseases, obesity, and cancer. In this report, we demonstrate that LPA engagement selectively by LPA5 on human and mouse CD8 T cells leads to the inhibition of several early TCR signaling events including intracellular calcium mobilization and ERK activation. We further show that, as a consequence of LPA5 suppression of TCR signaling, the exocytosis of perforin-containing granules is significantly impaired and reflected by repressed in vitro and in vivo CD8 T cell cytolytic activity. Thus, these data not only document LPA5 as a novel inhibitory receptor but also determine the molecular and biochemical mechanisms by which a naturally occurring serum lipid that is elevated under settings of chronic inflammation signals to suppress CD8 T cell killing activity in both human and murine cells. As diverse tumors have repeatedly been shown to aberrantly produce LPA that acts in an autocrine manner to promote tumorigenesis, our findings further implicate LPA in activating a novel inhibitory receptor whose signaling may be therapeutically silenced to promote CD8 T cell immunity.
Collapse
Affiliation(s)
- Divij Mathew
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kimberly N. Kremer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Pamela Strauch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Raul M. Torres
| |
Collapse
|
28
|
Nojiri T, Kurano M, Araki O, Nakawatari K, Nishikawa M, Shimamoto S, Igarashi K, Kano K, Aoki J, Kihara S, Murakami M, Yatomi Y. Serum autotaxin levels are associated with Graves' disease. Endocr J 2019; 66:409-422. [PMID: 30814442 DOI: 10.1507/endocrj.ej18-0451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Graves' Disease is a representative autoimmune thyroid disease that presents with hyperthyroidism. Emerging evidence has shown the involvement of lysophosphatidic acid (LPA) and its producing enzyme, autotaxin (ATX), in the pathogenesis of various diseases; among them, the involvement of the ATX/LPA axis in some immunological disturbances has been proposed. In this study, we investigated the association between serum ATX levels and Graves' disease. We measured the levels of serum total ATX and ATX isoforms (classical ATX and novel ATX) in patients with untreated Graves' disease, Graves' disease treated with anti-thyroid drugs, patients with subacute thyroiditis, silent thyroiditis, Plummer's disease, or Hashimoto's thyroiditis, and patients who had undergone a total thyroidectomy, as well as normal subjects. The serum total ATX and ATX isoform levels were higher in the patients with Graves' disease, compared with the levels in the healthy subjects and the patients with subacute thyroiditis. Treatment with anti-thyroid drugs significantly decreased the serum ATX levels. The serum ATX levels and the changes in serum ATX levels during treatment were moderately or strongly correlated with the serum concentrations or the changes in thyroid hormones. However, the administration of T3 or T4 did not increase the expression or serum levels of ATX in 3T3L1 adipocytes or wild-type mice. In conclusion, the serum ATX levels were higher in subjects with Graves' disease, possibly because of a mechanism that does not involve hyperthyroidism. These results suggest the possible involvement of the ATX/LPA axis in the pathogenesis of Graves' disease.
Collapse
Affiliation(s)
- Takahiro Nojiri
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Araki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuki Nakawatari
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Koji Igarashi
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Murakami
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Abstract
Stem cells are a rare subpopulation defined by the potential to self-renew and differentiate into specific cell types. A population of stem-like cells has been reported to possess the ability of self-renewal, invasion, metastasis, and engraftment of distant tissues. This unique cell subpopulation has been designated as cancer stem cells (CSC). CSC were first identified in leukemia, and the contributions of CSC to cancer progression have been reported in many different types of cancers. The cancer stem cell hypothesis attempts to explain tumor cell heterogeneity based on the existence of stem cell-like cells within solid tumors. The elimination of CSC is challenging for most human cancer types due to their heightened genetic instability and increased drug resistance. To combat these inherent abilities of CSC, multi-pronged strategies aimed at multiple aspects of CSC biology are increasingly being recognized as essential for a cure. One of the most challenging aspects of cancer biology is overcoming the chemotherapeutic resistance in CSC. Here, we provide an overview of autotaxin (ATX), lysophosphatidic acid (LPA), and their signaling pathways in CSC. Increasing evidence supports the role of ATX and LPA in cancer progression, metastasis, and therapeutic resistance. Several studies have demonstrated the ATX-LPA axis signaling in different cancers. This lipid mediator regulatory system is a novel potential therapeutic target in CSC. In this review, we summarize the evidence linking ATX-LPA signaling to CSC and its impact on cancer progression and metastasis. We also provide evidence for the efficacy of cancer therapy involving the pharmacological inhibition of this signaling pathway.
Collapse
|
30
|
Lin S, Haque A, Raeman R, Guo L, He P, Denning TL, El-Rayes B, Moolenaar WH, Yun CC. Autotaxin determines colitis severity in mice and is secreted by B cells in the colon. FASEB J 2019; 33:3623-3635. [PMID: 30481488 PMCID: PMC6404565 DOI: 10.1096/fj.201801415rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
Abstract
Autotaxin (ATX or ENPP2) is a secreted lysophospholipase D that produces lysophosphatidic acid (LPA), a pleiotropic lipid mediator acting on specific GPCRs. ATX and LPA have been implicated in key (patho)physiologic processes, including embryonic development, lymphocyte homing, inflammation, and cancer progression. Using LPA receptor knockout mice, we previously uncovered a role for LPA signaling in promoting colitis and colorectal cancer. Here, we examined the role of ATX in experimental colitis through inducible deletion of Enpp2 in adult mice. ATX expression was increased upon induction of colitis, whereas ATX deletion reduced the severity of inflammation in both acute and chronic colitis, accompanied by transient weight loss. ATX expression in lymphocytes was strongly reduced in Rag1-/- and μMT mice, suggesting B cells as a major ATX-producing source, which was validated by immunofluorescence and biochemical analyses. ATX secretion by B cells from control, but not Enpp2 knockout, mice led to ERK activation in colorectal cancer cells and promoted T cell migration. We conclude that ATX deletion suppresses experimental colitis and that B cells are a major source of ATX in the colon. Our study suggests that pharmacological inhibition of ATX could be a therapeutic strategy in colitis.-Lin, S., Haque, A., Raeman, R., Guo, L., He, P., Denning, T. L., El-Rayes, B., Moolenaar, W. H., Yun, C. C. Autotaxin determines colitis severity in mice and is secreted by B cells in the colon.
Collapse
Affiliation(s)
- Songbai Lin
- Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
- Division of Digestive Diseases, Emory University, Atlanta, Georgia, USA
| | - Abedul Haque
- Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
- Division of Digestive Diseases, Emory University, Atlanta, Georgia, USA
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Leilei Guo
- Division of Digestive Diseases, Emory University, Atlanta, Georgia, USA
| | - Peijian He
- Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
- Division of Digestive Diseases, Emory University, Atlanta, Georgia, USA
| | - Timothy L. Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA; and
| | - Wouter H. Moolenaar
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C. Chris Yun
- Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
- Division of Digestive Diseases, Emory University, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA; and
| |
Collapse
|
31
|
He P, Haque A, Lin S, Cominelli F, Yun CC. Inhibition of autotaxin alleviates inflammation and increases the expression of sodium-dependent glucose cotransporter 1 and Na +/H + exchanger 3 in SAMP1/Fc mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G762-G771. [PMID: 30118349 PMCID: PMC6293258 DOI: 10.1152/ajpgi.00215.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Crohn's disease (CD) is a chronic, relapsing, inflammatory disease that is often associated with malnutrition because of inflammation in the small intestine. Autotaxin (ATX) is a secreted enzyme that produces extracellular lysophosphatidic acid. Increasing evidence suggests that ATX is upregulated during inflammation, and inhibition of ATX has been effective in attenuating chronic inflammatory conditions, such as arthritis and pulmonary fibrosis. This study aims to determine whether inhibition of ATX alleviates CD-associated inflammation and malnutrition by using SAMP1/Fc mice, a model of CD-like ileitis. SAMP1/Fc mice were treated the ATX inhibitor PF-8380 for 4 wk. Inhibition of ATX led to increased weight gain in SAMP1/Fc mice, decreased T helper 2 cytokine expression, including IL-4, IL-5, and IL-13, and attenuated immune cell migration. SAMP1/Fc mice have low expression of Na+-dependent glucose transporter 1 (SGLT1), suggesting impaired nutrient absorption associated with ileitis. PF-8380 treatment significantly enhanced SGLT1 expression in SAMP1/Fc mice, which could reflect the increased weight changes. However, IL-4 or IL-13 did not alter SGLT1 expression in Caco-2 cells, ruling out their direct effects on SGLT1 expression. Immunofluorescence analysis showed that the expression of sucrase-isomaltase, a marker for intestinal epithelial cell (IEC) differentiation, was decreased in inflamed regions of SAMP1/Fc mice, which was partially restored by PF-8380. Moreover, expression of Na+/H+ exchanger 3 was also improved by PF-8380, suggesting that suppression of inflammation by PF-8380 enhanced IEC differentiation. Our study therefore suggests that ATX is a potential target for treating intestinal inflammation and restoration of the absorptive function of the intestine. NEW & NOTEWORTHY This study is the first, to our knowledge, to determine whether autotoxin (ATX) inhibition improves inflammation and body weights in SAMP1/Fc mice, a mouse model of ileitis. ATX inhibition increased body weights of SAMP1/Fc mice and increased Na+-dependent glucose transporter 1 (SGLT1) expression. Increased SGLT1 expression in the inflamed regions was not a direct effect of cytokines but an indirect effect of increased epithelial cell differentiation upon ATX inhibition.
Collapse
Affiliation(s)
- Peijian He
- 1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Abedul Haque
- 1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Songbai Lin
- 1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Fabio Cominelli
- 3Department of Medicine, Case Digestive Health Research Institute, Case Western University School of Medicine, Cleveland, Ohio
| | - C. Chris Yun
- 1Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia,4Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
32
|
Ninou I, Kaffe E, Müller S, Budd DC, Stevenson CS, Ullmer C, Aidinis V. Pharmacologic targeting of the ATX/LPA axis attenuates bleomycin-induced pulmonary fibrosis. Pulm Pharmacol Ther 2018; 52:32-40. [DOI: 10.1016/j.pupt.2018.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023]
|
33
|
Yang F, Chen GX. Production of extracellular lysophosphatidic acid in the regulation of adipocyte functions and liver fibrosis. World J Gastroenterol 2018; 24:4132-4151. [PMID: 30271079 PMCID: PMC6158478 DOI: 10.3748/wjg.v24.i36.4132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/24/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA), a glycerophospholipid, consists of a glycerol backbone connected to a phosphate head group and an acyl chain linked to sn-1 or sn-2 position. In the circulation, LPA is in sub-millimolar range and mainly derived from hydrolysis of lysophosphatidylcholine, a process mediated by lysophospholipase D activity in proteins such as autotaxin (ATX). Intracellular and extracellular LPAs act as bioactive lipid mediators with diverse functions in almost every mammalian cell type. The binding of LPA to its receptors LPA1-6 activates multiple cellular processes such as migration, proliferation and survival. The production of LPA and activation of LPA receptor signaling pathways in the events of physiology and pathophysiology have attracted the interest of researchers. Results from studies using transgenic and gene knockout animals with alterations of ATX and LPA receptors genes, have revealed the roles of LPA signaling pathways in metabolic active tissues and organs. The present review was aimed to summarize recent progresses in the studies of extracellular and intracellular LPA production pathways. This includes the functional, structural and biochemical properties of ATX and LPA receptors. The potential roles of LPA production and LPA receptor signaling pathways in obesity, insulin resistance and liver fibrosis are also discussed.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, United States
| |
Collapse
|
34
|
Simmons S, Erfinanda L, Bartz C, Kuebler WM. Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation. J Physiol 2018; 597:997-1021. [PMID: 30015354 DOI: 10.1113/jp276245] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary epithelial and vascular endothelial cell layers provide two sequential physical and immunological barriers that together form a semi-permeable interface and prevent alveolar and interstitial oedema formation. In this review, we focus specifically on the continuous endothelium of the pulmonary microvascular bed that warrants strict control of the exchange of gases, fluid, solutes and circulating cells between the plasma and the interstitial space. The present review provides an overview of emerging molecular mechanisms that permit constant transcellular exchange between the vascular and interstitial compartment, and cause, prevent or reverse lung endothelial barrier failure under experimental conditions, yet with a clinical perspective. Based on recent findings and at times seemingly conflicting results we discuss emerging paradigms of permeability regulation by altered ion transport as well as shifts in the homeostasis of sphingolipids, angiopoietins and prostaglandins.
Collapse
Affiliation(s)
- Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lasti Erfinanda
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bartz
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Ninou I, Magkrioti C, Aidinis V. Autotaxin in Pathophysiology and Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:180. [PMID: 29951481 PMCID: PMC6008954 DOI: 10.3389/fmed.2018.00180] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Abstract
Lysophospholipid signaling is emerging as a druggable regulator of pathophysiological responses, and especially fibrosis, exemplified by the relative ongoing clinical trials in idiopathic pulmonary fibrosis (IPF) patients. In this review, we focus on ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2), or as more widely known Autotaxin (ATX), a secreted lysophospholipase D (lysoPLD) largely responsible for extracellular lysophosphatidic acid (LPA) production. In turn, LPA is a bioactive phospholipid autacoid, forming locally upon increased ATX levels and acting also locally through its receptors, likely guided by ATX's structural conformation and cell surface associations. Increased ATX activity levels have been detected in many inflammatory and fibroproliferative conditions, while genetic and pharmacologic studies have confirmed a pleiotropic participation of ATX/LPA in different processes and disorders. In pulmonary fibrosis, ATX levels rise in the broncheoalveolar fluid (BALF) and stimulate LPA production. LPA engagement of its receptors activate multiple G-protein mediated signal transduction pathways leading to different responses from pulmonary cells including the production of pro-inflammatory signals from stressed epithelial cells, the modulation of endothelial physiology, the activation of TGF signaling and the stimulation of fibroblast accumulation. Genetic or pharmacologic targeting of the ATX/LPA axis attenuated disease development in animal models, thus providing the proof of principle for therapeutic interventions.
Collapse
Affiliation(s)
- Ioanna Ninou
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Christiana Magkrioti
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| |
Collapse
|
36
|
Busnelli M, Manzini S, Parolini C, Escalante-Alcalde D, Chiesa G. Lipid phosphate phosphatase 3 in vascular pathophysiology. Atherosclerosis 2018. [DOI: 10.1016/j.atherosclerosis.2018.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Erenel H, Yilmaz N, Cift T, Bulut B, Sozen I, Aslan Cetin B, Gezer A, Ekmekci H, Kaya B, Tuten A. Maternal serum autotaxin levels in early- and late-onset preeclampsia. Hypertens Pregnancy 2017; 36:310-314. [PMID: 29058512 DOI: 10.1080/10641955.2017.1388389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE We aimed to compare the serum autotaxin levels in early- and late- preeclamptic and healthy pregnant patients at a university hospital. METHODS A total of 55 singleton preeclamptic women who delivered at Cerrahpasa Medical Faculty were included in the study. The patients were subdivided into two groups: early-onset preeclampsia (n = 31) and late-onset preeclampsia (n = 24). Demographic and clinical data were compared between early-onset and late-onset preeclamptic patients. The control group was composed of 32 healthy pregnant patients. RESULTS The mean autotaxin levels were 1.16 ± 0.97 and 0.7 ± 0.35 ng/ml in the early- and late-onset preeclampsia groups, respectively. Autotaxin levels were significantly higher in early-onset preeclampsia group compared with late-onset preeclampsia group. Autotaxin levels were found to be significantly higher in preeclamptic patients compared with control group. Serum autotaxin levels showed a significant positive correlation with maternal systolic, diastolic blood pressures and uric acid levels. CONCLUSION Autotaxin might be a promising marker for detecting early-onset preeclampsia. However, further studies are necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Hakan Erenel
- a Department of Obstetrics and Gynecology , Istanbul University Cerrahpasa Medical Faculty , Istanbul , Turkey
| | - Nevin Yilmaz
- a Department of Obstetrics and Gynecology , Istanbul University Cerrahpasa Medical Faculty , Istanbul , Turkey
| | - Tayfur Cift
- b Department of Obstetrics and Gynecology , Bursa Yüksek ihtisas Education and Research Hospital , Bursa , Turkey
| | - Berk Bulut
- c Department of Obstetrics and Gynecology , Liv Hospital , Istanbul , Turkey
| | - Isik Sozen
- a Department of Obstetrics and Gynecology , Istanbul University Cerrahpasa Medical Faculty , Istanbul , Turkey
| | - Berna Aslan Cetin
- d Department of Obstetrics and Gynecology , Kanuni Sultan Suleyman Education and Research Hospital , Istanbul , Turkey
| | - Altay Gezer
- a Department of Obstetrics and Gynecology , Istanbul University Cerrahpasa Medical Faculty , Istanbul , Turkey
| | - Hakan Ekmekci
- e Department of Biochemistry , Istanbul University Cerrahpasa Medical Faculty
| | - Baris Kaya
- f Department of Obstetrics and Gynecology , Near East University , Mersin , Turkey
| | - Abdullah Tuten
- a Department of Obstetrics and Gynecology , Istanbul University Cerrahpasa Medical Faculty , Istanbul , Turkey
| |
Collapse
|
38
|
Schmitz K, Brunkhorst R, de Bruin N, Mayer CA, Häussler A, Ferreiros N, Schiffmann S, Parnham MJ, Tunaru S, Chun J, Offermanns S, Foerch C, Scholich K, Vogt J, Wicker S, Lötsch J, Geisslinger G, Tegeder I. Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis. Acta Neuropathol Commun 2017; 5:42. [PMID: 28578681 PMCID: PMC5457661 DOI: 10.1186/s40478-017-0446-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/21/2017] [Indexed: 01/18/2023] Open
Abstract
Abstract Bioactive lipids contribute to the pathophysiology of multiple sclerosis. Here, we show that lysophosphatidic acids (LPAs) are dysregulated in multiple sclerosis (MS) and are functionally relevant in this disease. LPAs and autotaxin, the major enzyme producing extracellular LPAs, were analyzed in serum and cerebrospinal fluid in a cross-sectional population of MS patients and were compared with respective data from mice in the experimental autoimmune encephalomyelitis (EAE) model, spontaneous EAE in TCR1640 mice, and EAE in Lpar2-/- mice. Serum LPAs were reduced in MS and EAE whereas spinal cord LPAs in TCR1640 mice increased during the ‘symptom-free’ intervals, i.e. on resolution of inflammation during recovery hence possibly pointing to positive effects of brain LPAs during remyelination as suggested in previous studies. Peripheral LPAs mildly re-raised during relapses but further dropped in refractory relapses. The peripheral loss led to a redistribution of immune cells from the spleen to the spinal cord, suggesting defects of lymphocyte homing. In support, LPAR2 positive T-cells were reduced in EAE and the disease was intensified in Lpar2 deficient mice. Further, treatment with an LPAR2 agonist reduced clinical signs of relapsing-remitting EAE suggesting that the LPAR2 agonist partially compensated the endogenous loss of LPAs and implicating LPA signaling as a novel treatment approach. Graphical abstract Graphical summary of lysophosphatidic signaling in multiple sclerosis![]() Electronic supplementary material The online version of this article (doi:10.1186/s40478-017-0446-4) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Identification and pharmacological characterization of a novel inhibitor of autotaxin in rodent models of joint pain. Osteoarthritis Cartilage 2017; 25:935-942. [PMID: 27638130 DOI: 10.1016/j.joca.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/23/2016] [Accepted: 09/06/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Autotaxin is a secreted lysophospholipase that mediates the conversion of lysophosphatidyl choline (LPC) to lysophosphatidic acid (LPA), a bioactive lipid mediator. Autotaxin levels in plasma and synovial fluid correlate with disease severity in patients with knee osteoarthritis (OA). The goal of this study was to develop and characterize a novel small molecule inhibitor of autotaxin to inhibit LPA production in vivo and determine its efficacy in animal models of musculoskeletal pain. DESIGN Compound libraries were screened using an LPC coupled enzyme assay that measures the amount of choline released from LPC by the action of autotaxin. Hits from this assay were tested in a plasma assay to assess inhibition of endogenous plasma autotaxin and subsequently tested for their ability to lower plasma LPA levels upon oral dosing of rats. The best compounds were then tested in animal models of musculoskeletal pain. RESULTS Compound screening led to the identification of compounds with nanomolar potency for inhibition of autotaxin activity. Studies in rats demonstrated a good correlation between compound exposure levels and a decrease in LPA levels in plasma. The leading molecule (compound-1) resulted in a dose dependent decrease in joint pain in the mono-sodium iodoacetate (MIA) and meniscal tear models and a decrease in bone fracture pain in the osteotomy model in rats. CONCLUSION We have identified and characterized a novel small molecule inhibitor of autotaxin and demonstrated its efficacy in animal models of musculoskeletal pain. The inhibitor has the potential to serve as an analgesic for human OA and bone fracture.
Collapse
|
40
|
Meng G, Tang X, Yang Z, Benesch MGK, Marshall A, Murray D, Hemmings DG, Wuest F, McMullen TPW, Brindley DN. Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy. FASEB J 2017; 31:4064-4077. [PMID: 28539367 DOI: 10.1096/fj.201700159r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/08/2017] [Indexed: 01/08/2023]
Abstract
We have previously established that adipose tissue adjacent to breast tumors becomes inflamed by tumor-derived cytokines. This stimulates autotaxin (ATX) secretion from adipocytes, whereas breast cancer cells produce insignificant ATX. Lysophosphatidate produced by ATX promotes inflammatory cytokine secretion in a vicious inflammatory cycle, which increases tumor growth and metastasis and decreases response to chemotherapy. We hypothesized that damage to adipose tissue during radiotherapy for breast cancer should promote lysophosphatidic acid (LPA) signaling and further inflammatory signaling, which could potentially protect cancer cells from subsequent fractions of radiation therapy. To test this hypothesis, we exposed rat and human adipose tissue to radiation doses (0.25-5 Gy) that were expected during radiotherapy. This exposure increased mRNA levels for ATX, cyclooxygenase-2, IL-1β, IL-6, IL-10, TNF-α, and LPA1 and LPA2 receptors by 1.8- to 5.1-fold after 4 to 48 h. There were also 1.5- to 2.5-fold increases in the secretion of ATX and 14 inflammatory mediators after irradiating at 1 Gy. Inhibition of the radiation-induced activation of NF-κB, cyclooxygenase-2, poly (ADP-ribose) polymerase-1, or ataxia telangiectasia and Rad3-related protein blocked inflammatory responses to γ-radiation. Consequently, collateral damage to adipose tissue during radiotherapy could establish a comprehensive wound-healing response that involves increased signaling by LPA, cyclooxygenase-2, and other inflammatory mediators that could decrease the efficacy of further radiotherapy or chemotherapy.-Meng, G., Tang, X., Yang, Z., Benesch, M. G. K., Marshall, A., Murray, D., Hemmings, D. G., Wuest, F., McMullen, T. P. W., Brindley, D. N. Implications for breast cancer treatment from increased autotaxin production in adipose tissue after radiotherapy.
Collapse
Affiliation(s)
- Guanmin Meng
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zelei Yang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alison Marshall
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Denise G Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Frank Wuest
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Todd P W McMullen
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada;
| |
Collapse
|
41
|
Cao P, Aoki Y, Badri L, Walker NM, Manning CM, Lagstein A, Fearon ER, Lama VN. Autocrine lysophosphatidic acid signaling activates β-catenin and promotes lung allograft fibrosis. J Clin Invest 2017; 127:1517-1530. [PMID: 28240604 DOI: 10.1172/jci88896] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Tissue fibrosis is the primary cause of long-term graft failure after organ transplantation. In lung allografts, progressive terminal airway fibrosis leads to an irreversible decline in lung function termed bronchiolitis obliterans syndrome (BOS). Here, we have identified an autocrine pathway linking nuclear factor of activated T cells 2 (NFAT1), autotaxin (ATX), lysophosphatidic acid (LPA), and β-catenin that contributes to progression of fibrosis in lung allografts. Mesenchymal cells (MCs) derived from fibrotic lung allografts (BOS MCs) demonstrated constitutive nuclear β-catenin expression that was dependent on autocrine ATX secretion and LPA signaling. We found that NFAT1 upstream of ATX regulated expression of ATX as well as β-catenin. Silencing NFAT1 in BOS MCs suppressed ATX expression, and sustained overexpression of NFAT1 increased ATX expression and activity in non-fibrotic MCs. LPA signaling induced NFAT1 nuclear translocation, suggesting that autocrine LPA synthesis promotes NFAT1 transcriptional activation and ATX secretion in a positive feedback loop. In an in vivo mouse orthotopic lung transplant model of BOS, antagonism of the LPA receptor (LPA1) or ATX inhibition decreased allograft fibrosis and was associated with lower active β-catenin and dephosphorylated NFAT1 expression. Lung allografts from β-catenin reporter mice demonstrated reduced β-catenin transcriptional activation in the presence of LPA1 antagonist, confirming an in vivo role for LPA signaling in β-catenin activation.
Collapse
|
42
|
Tang X, Wang X, Zhao YY, Curtis JM, Brindley DN. Doxycycline attenuates breast cancer related inflammation by decreasing plasma lysophosphatidate concentrations and inhibiting NF-κB activation. Mol Cancer 2017; 16:36. [PMID: 28178994 PMCID: PMC5299726 DOI: 10.1186/s12943-017-0607-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background We previously discovered that tetracyclines increase the expression of lipid phosphate phosphatases at the surface of cells. These enzymes degrade circulating lysophosphatidate and therefore doxycycline increases the turnover of plasma lysophosphatidate and decreases its concentration. Extracellular lysophosphatidate signals through six G protein-coupled receptors and it is a potent promoter of tumor growth, metastasis and chemo-resistance. These effects depend partly on the stimulation of inflammation that lysophosphatidate produces. Methods In this work, we used a syngeneic orthotopic mouse model of breast cancer to determine the impact of doxycycline on circulating lysophosphatidate concentrations and tumor growth. Cytokine/chemokine concentrations in tumor tissue and plasma were measured by multiplexing laser bead technology. Leukocyte infiltration in tumors was analyzed by immunohistochemistry. The expression of IL-6 in breast cancer cell lines was determined by RT-PCR. Cell growth was measured in Matrigel™ 3D culture. The effects of doxycycline on NF-κB-dependent signaling were analyzed by Western blotting. Results Doxycycline decreased plasma lysophosphatidate concentrations, delayed tumor growth and decreased the concentrations of several cytokines/chemokines (IL-1β, IL-6, IL-9, CCL2, CCL11, CXCL1, CXCL2, CXCL9, G-CSF, LIF, VEGF) in the tumor. These results were compatible with the effects of doxycycline in decreasing the numbers of F4/80+ macrophages and CD31+ blood vessel endothelial cells in the tumor. Doxycycline also decreased the lysophosphatidate-induced growth of breast cancer cells in three-dimensional culture. Lysophosphatidate-induced Ki-67 expression was inhibited by doxycycline. NF-κB activity in HEK293 cells transiently expressing a NF-κB-luciferase reporter vectors was also inhibited by doxycycline. Treatment of breast cancer cells with doxycycline also decreased the translocation of NF-κB to the nucleus and the mRNA levels for IL-6 in the presence or absence of lysophosphatidate. Conclusion These results contribute a new dimension for understanding the anti-inflammatory effects of tetracyclines, which make them potential candidates for adjuvant therapy of cancers and other inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0607-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Xianyan Wang
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Yuan Y Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, 3-60D South Academic Building, Edmonton, AB, T6G 2P5, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, 3-60D South Academic Building, Edmonton, AB, T6G 2P5, Canada
| | - David N Brindley
- Department of Biochemistry, Signal Transduction Research Group, University of Alberta, Edmonton, AB, T6G 2S2, Canada. .,Department of Biochemistry, 357 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
43
|
TAKEDA A, SASAKI N, MIYASAKA M. The molecular cues regulating immune cell trafficking. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:183-195. [PMID: 28413196 PMCID: PMC5489428 DOI: 10.2183/pjab.93.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/26/2017] [Indexed: 05/28/2023]
Abstract
Lymphocyte recirculation between the blood and the lymphoid/non-lymphoid tissues is an essential homeostatic mechanism that regulates humoral and cellular immune responses in vivo. This system promotes the encounter of naïve T and B cells with their specific cognate antigen presented by dendritic cells, and with the regulatory cells with which they need to interact to initiate, maintain, and terminate immune responses. The constitutive lymphocyte trafficking is mediated by particular types of blood vessels, including the high endothelial venules (HEVs) in lymph nodes and Peyer's patches, and the flat-walled venules in non-lymphoid tissues including the skin. The lymphocyte migration across HEVs involves tethering/rolling, arrest/firm adhesion/intraluminal crawling, and transendothelial migration. On the other hand, relatively little is known about how lymphocytes and other types of cells migrate across the venules of non-lymphoid tissues. Here we summarize recent findings about the molecular mechanisms that govern immune cell trafficking, including the roles of chemokines and lysophospholipids in regulating immune cell motility and endothelial permeability.
Collapse
Affiliation(s)
- Akira TAKEDA
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Naoko SASAKI
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masayuki MIYASAKA
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Interdisciplinary Program for Biomedical Sciences, Institute of Academic Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
44
|
Plastira I, Bernhart E, Goeritzer M, Reicher H, Kumble VB, Kogelnik N, Wintersperger A, Hammer A, Schlager S, Jandl K, Heinemann A, Kratky D, Malle E, Sattler W. 1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype. J Neuroinflammation 2016; 13:205. [PMID: 27565558 PMCID: PMC5002165 DOI: 10.1186/s12974-016-0701-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/20/2016] [Indexed: 01/09/2023] Open
Abstract
Background Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization. Methods LPA receptor expression and cyto-/chemokine mRNA levels in BV-2 and primary murine microglia (PMM) were determined by qPCR. M1/M2 marker expression was analyzed by Western blotting, immunofluorescence microscopy, or flow cytometry. Cyto-/chemokine secretion was quantitated by ELISA. Results BV-2 cells express LPA receptor 2 (LPA2), 3, 5, and 6, whereas PMM express LPA1, 2, 4, 5, and 6. We show that LPA treatment of BV-2 and PMM leads to a shift towards a pro-inflammatory M1-like phenotype. LPA treatment increased CD40 and CD86 (M1 markers) and reduced CD206 (M2 marker) expression. LPA increased inducible nitric oxide synthase (iNOS) and COX-2 levels (both M1), while the M2 marker Arginase-1 was suppressed in BV-2 cells. Immunofluorescence studies (iNOS, COX-2, Arginase-1, and RELMα) extended these findings to PMM. Upregulation of M1 markers in BV-2 and PMM was accompanied by increased cyto-/chemokine transcription and secretion (IL-1β, TNFα, IL-6, CCL5, and CXCL2). The pharmacological LPA5 antagonist TCLPA5 blunted most of these pro-inflammatory responses. Conclusions LPA drives BV-2 and PMM towards a pro-inflammatory M1-like phenotype. Suppression by TCLPA5 indicates that the LPA/LPA5 signaling axis could represent a potential pharmacological target to interfere with microglia polarization in disease.
Collapse
Affiliation(s)
- Ioanna Plastira
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Vishwanath Bhat Kumble
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Nora Kogelnik
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Andrea Wintersperger
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010, Graz, Austria. .,BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
45
|
Bolier R, Tolenaars D, Kremer AE, Saris J, Parés A, Verheij J, Bosma PJ, Beuers U, Oude Elferink RP. Enteroendocrine cells are a potential source of serum autotaxin in men. Biochim Biophys Acta Mol Basis Dis 2016; 1862:696-704. [DOI: 10.1016/j.bbadis.2016.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/22/2015] [Accepted: 01/12/2016] [Indexed: 12/26/2022]
|
46
|
Zhang D, Zhang Y, Zhao C, Zhang W, Shao G, Zhang H. Effect of lysophosphatidic acid on the immune inflammatory response and the connexin 43 protein in myocardial infarction. Exp Ther Med 2016; 11:1617-1624. [PMID: 27168781 DOI: 10.3892/etm.2016.3132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/09/2016] [Indexed: 12/16/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an intermediate product of membrane phospholipid metabolism. Recently, LPA has gained attention for its involvement in the pathological processes of certain cardiovascular diseases. The aim of the present study was to clarify the association between the effect of LPA and the immune inflammatory response, and to investigate the effects of LPA on the protein expression levels of connexin 43 during myocardial infarction. Surface electrocardiograms of myocardial infarction rats and isolated rat heart tissue samples were obtained in order to determine the effect of LPA on the incidence of arrhythmia in rats that exhibited changes in immune status. The results demonstrated that the incidence of arrhythmia decreased when the rat immune systems were suppressed, and the incidence of arrhythmia increased when the rat immune systems were enhanced. The concentration levels of tumor necrosis factor (TNF)-α were determined by ELISA, and the results demonstrated that LPA induced T lymphocyte synthesis and TNF-α release. Using a patch-clamp technique, LPA was shown to increase the current amplitude of the voltage-dependent potassium channels (Kv) and calcium-activated potassium channels (KCa) in Jurkat T cells. The protein expression of connexin 43 (Cx43) was determined by immunohistochemical staining. The results indicated that LPA caused the degradation of Cx43 and decreased the expression of Cx43. This effect was associated with the immune status of the rats. There was a further decrease in Cx43 expression in the rats of the immune-enhanced group. To the best of our knowledge, these results provide the first evidence that LPA causes arrhythmia through the regulation of immune inflammatory cells and the decrease of Cx43 protein expression. The present study provided an experimental basis for the treatment of arrhythmia and may guide clinical care.
Collapse
Affiliation(s)
- Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China; Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chunyan Zhao
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenjie Zhang
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guoguang Shao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hong Zhang
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
47
|
Takeda A, Kobayashi D, Aoi K, Sasaki N, Sugiura Y, Igarashi H, Tohya K, Inoue A, Hata E, Akahoshi N, Hayasaka H, Kikuta J, Scandella E, Ludewig B, Ishii S, Aoki J, Suematsu M, Ishii M, Takeda K, Jalkanen S, Miyasaka M, Umemoto E. Fibroblastic reticular cell-derived lysophosphatidic acid regulates confined intranodal T-cell motility. eLife 2016; 5:e10561. [PMID: 26830463 PMCID: PMC4755752 DOI: 10.7554/elife.10561] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/26/2015] [Indexed: 12/14/2022] Open
Abstract
Lymph nodes (LNs) are highly confined environments with a cell-dense three-dimensional meshwork, in which lymphocyte migration is regulated by intracellular contractile proteins. However, the molecular cues directing intranodal cell migration remain poorly characterized. Here we demonstrate that lysophosphatidic acid (LPA) produced by LN fibroblastic reticular cells (FRCs) acts locally to LPA2 to induce T-cell motility. In vivo, either specific ablation of LPA-producing ectoenzyme autotaxin in FRCs or LPA2 deficiency in T cells markedly decreased intranodal T cell motility, and FRC-derived LPA critically affected the LPA2-dependent T-cell motility. In vitro, LPA activated the small GTPase RhoA in T cells and limited T-cell adhesion to the underlying substrate via LPA2. The LPA-LPA2 axis also enhanced T-cell migration through narrow pores in a three-dimensional environment, in a ROCK-myosin II-dependent manner. These results strongly suggest that FRC-derived LPA serves as a cell-extrinsic factor that optimizes T-cell movement through the densely packed LN reticular network. DOI:http://dx.doi.org/10.7554/eLife.10561.001 Small organs called lymph nodes are found throughout the body and help to filter out harmful particles and cells. Lymph nodes are packed with different types of immune cells, such as the T-cells that play a number of roles in detecting and destroying bacteria, viruses and other disease-causing microbes. Within the lymph node, T-cells crawl along a meshwork made up of cells called fibroblastic reticular cells. The T-cells appear to move in random patterns, but the signals that drive this movement remain ill-defined. Now, Takeda et al. reveal that a lipid called lysophosphatidic acid (LPA), which is produced by the fibroblastic reticular cells, is responsible for regulating how T-cells move around inside the lymph nodes. T-cells are able to detect LPA via certain receptor proteins on their surface. Takeda et al. engineered mice that were either unable to produce a particular LPA receptor on their T-cells, or that produced less LPA than normal. The T-cells of these mice moved around less than T-cells in normal mice. Further experiments revealed that LPA signaling also affects the signaling pathway that alters how well the T-cells stick to nearby surfaces. This suggests that LPA helps to optimize T-cell movement to allow the cells to navigate the small spaces found between the fibroblastic reticular cells. In the future, targeting the processes involved in LPA signaling could help to develop new treatments for disorders of the immune system. DOI:http://dx.doi.org/10.7554/eLife.10561.002
Collapse
Affiliation(s)
- Akira Takeda
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Daichi Kobayashi
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Keita Aoi
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoko Sasaki
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.,JST Precursory Research for Embryonic Science and Technology project, Saitama, Japan
| | - Hidemitsu Igarashi
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kazuo Tohya
- Department of Anatomy, Kansai University of Health Sciences, Awaji, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Erina Hata
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Haruko Hayasaka
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elke Scandella
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Satoshi Ishii
- Department of Immunology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.,Core Research for Evolutional Science and Technology project, Saitama, Japan
| | - Masaru Ishii
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Immunology and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Masayuki Miyasaka
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Eiji Umemoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
48
|
Hata E, Sasaki N, Takeda A, Tohya K, Umemoto E, Akahoshi N, Ishii S, Bando K, Abe T, Kano K, Aoki J, Hayasaka H, Miyasaka M. Lysophosphatidic acid receptors LPA4 and LPA6 differentially promote lymphocyte transmigration across high endothelial venules in lymph nodes. Int Immunol 2015; 28:283-92. [PMID: 26714589 PMCID: PMC4885216 DOI: 10.1093/intimm/dxv072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
HEV LPA receptors differentially regulate lymphocyte recirculation Naive lymphocytes continuously migrate from the blood into lymph nodes (LNs) via high endothelial venules (HEVs). To extravasate from the HEVs, lymphocytes undergo multiple adhesion steps, including tethering, rolling, firm adhesion and transmigration. We previously showed that autotaxin (ATX), an enzyme that generates lysophosphatidic acid (LPA), is highly expressed in HEVs, and that the ATX/LPA axis plays an important role in the lymphocyte transmigration across HEVs. However, the detailed mechanism underlying this axis’s involvement in lymphocyte transmigration has remained ill-defined. Here, we show that two LPA receptors, LPA4 and LPA6, are selectively expressed on HEV endothelial cells (ECs) and that LPA4 plays a major role in the lymphocyte transmigration across HEVs in mice. In the absence of LPA4 expression, lymphocytes accumulated heavily within the HEV EC layer, compared to wild-type (WT) mice. This accumulation was also observed in the absence of LPA6 expression, but it was less pronounced. Adoptive transfer experiments using WT lymphocytes revealed that the LPA4 deficiency in ECs specifically compromised the lymphocyte transmigration process, whereas the effect of LPA6 deficiency was not significant. These results indicate that the signals evoked in HEV ECs via the LPA4 and LPA6 differentially regulate lymphocyte extravasation from HEVs in the peripheral LNs.
Collapse
Affiliation(s)
- Erina Hata
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoko Sasaki
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | - Kazuo Tohya
- Department of Anatomy, Kansai University of Health Sciences, Kumatori, Osaka 590-0482, Japan
| | - Eiji Umemoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Satoshi Ishii
- Department of Immunology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Kana Bando
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Takaya Abe
- Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haruko Hayasaka
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Department of Life Science, Faculty of Science & Engineering, Kinki University, Higashi-Osaka-shi, Osaka 577-8502, Japan
| | - Masayuki Miyasaka
- Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
García-Fontana B, Morales-Santana S, Díaz Navarro C, Rozas-Moreno P, Genilloud O, Vicente Pérez F, Pérez del Palacio J, Muñoz-Torres M. Metabolomic profile related to cardiovascular disease in patients with type 2 diabetes mellitus: A pilot study. Talanta 2015; 148:135-43. [PMID: 26653434 DOI: 10.1016/j.talanta.2015.10.070] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/15/2015] [Accepted: 10/24/2015] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) patients have an increased risk of cardiovascular disease (CVD) that represents one of the main causes of mortality in this population. The knowledge of the underlie factors involved in the development of CVD and the discovery of new biomarkers of the disease could help to early identification of high-risk patients. Using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) we analyzed the serum metabolomic profile of 30 subject distributed according three groups: (i) T2DM patients with CVD; (ii) T2DM patients without CVD; (iii) non-diabetic subjects as controls (C) in order to identify potential biomarkers of the CVD related to T2DM. A partial least squares discriminant analysis (PLS-DA) and one-way analysis of variance (ANOVA) were applied to identify differential metabolites between different groups. Four glycerophospholipids were further identified as potential biomarkers of CVD in T2DM patients. Specifically, a reduction in phosphatidylcholine, lysophosphatidylcholine and lysophosphatidylethanolamine (LPE) serum levels were found in T2DM patients compared to controls, presenting the patients with CVD the lowest serum levels of these metabolites. These results show a generalized reduction of circulating phospholipids species in T2DM patients which is more pronounced in those with CVD providing information of the pathways involved in the pathogenesis and progression of CVD associated to T2DM.
Collapse
Affiliation(s)
- Beatriz García-Fontana
- Bone Metabolic Unit (RETICEF), Endocrinology Unit, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Oloriz 16, 18012 Granada, Spain.
| | - Sonia Morales-Santana
- Bone Metabolic Unit (RETICEF), Endocrinology Unit, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Oloriz 16, 18012 Granada, Spain; Proteomic Research Service, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Oloriz 16, 18012, Granada, Spain.
| | - Caridad Díaz Navarro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico de Ciencias de la Salud, Av del Conocimiento, 34, 18016 Armilla, Granada, Spain.
| | - Pedro Rozas-Moreno
- Endocrinology Division, Hospital General de Ciudad Real, Calle del Obispo Rafael Torija, s/n, 13005 Ciudad Real, Spain.
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico de Ciencias de la Salud, Av del Conocimiento, 34, 18016 Armilla, Granada, Spain.
| | - Francisca Vicente Pérez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico de Ciencias de la Salud, Av del Conocimiento, 34, 18016 Armilla, Granada, Spain
| | - José Pérez del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía. Parque Tecnológico de Ciencias de la Salud, Av del Conocimiento, 34, 18016 Armilla, Granada, Spain.
| | - Mnuel Muñoz-Torres
- Bone Metabolic Unit (RETICEF), Endocrinology Unit, Instituto de Investigación Biosanitaria (Ibs) de Granada, Hospital Universitario San Cecilio, Avda. Doctor Oloriz 16, 18012 Granada, Spain.
| |
Collapse
|
50
|
The Role of Lysophosphatidic Acid on Airway Epithelial Cell Denudation in a Murine Heterotopic Tracheal Transplant Model. Transplant Direct 2015; 1:e35. [PMID: 27500235 PMCID: PMC4946481 DOI: 10.1097/txd.0000000000000542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/15/2015] [Indexed: 01/06/2023] Open
Abstract
Supplemental digital content is available in the text. Background Chronic rejection is the major leading cause of morbidity and mortality after lung transplantation. Obliterative bronchiolitis (OB), a fibroproliferative disorder of the small airways, is the main manifestation of chronic lung allograft rejection. However, there is currently no treatment for the disease. We hypothesized that lysophosphatidic acid (LPA) participates in the progression of OB. The aim of this study was to reveal the involvement of LPA on the lesion of OB. Methods Ki16198, an antagonist specifically for LPA1 and LPA3, was daily administered into the heterotopic tracheal transplant model mice at the day of transplantation. At days 10 and 28, the allografts were isolated and evaluated histologically. The messenger RNA levels of LPAR in microdissected mouse airway regions were assessed to reveal localization of lysophosphatidic acid receptors. The human airway epithelial cell was used to evaluate the mechanism of LPA-induced suppression of cell adhesion to the extracellular matrix (ECM). Results The administration of Ki16198 attenuated airway epithelial cell loss in the allograft at day 10. Messenger RNAs of LPA1 and LPA3 were detected in the airway epithelial cells of the mice. Lysophosphatidic acid inhibited the attachment of human airway epithelial cells to the ECM and induced cell detachment from the ECM, which was mediated by LPA1 and Rho-kinase pathway. However, Ki16198 did not prevent obliteration of allograft at day 28. Conclusions The LPA signaling is involved in the status of epithelial cells by distinct contribution in 2 different phases of the OB lesion. This finding suggests a role of LPA in the pathogenesis of OB.
Collapse
|