1
|
Giroud J, Combémorel E, Pourtier A, Abbadie C, Pluquet O. Unraveling the functional and molecular interplay between cellular senescence and the unfolded protein response. Am J Physiol Cell Physiol 2025; 328:C1764-C1782. [PMID: 40257464 DOI: 10.1152/ajpcell.00091.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/12/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Senescence is a complex cellular state that can be considered as a stress response phenotype. A decade ago, we suggested the intricate connections between unfolded protein response (UPR) signaling and the development of the senescent phenotype. Over the past ten years, significant advances have been made in understanding the multifaceted role of the UPR in regulating cellular senescence, highlighting its contribution to biological processes such as oxidative stress and autophagy. In this updated review, we expand these interconnections with the benefit of new insights, and we suggest that targeting specific components of the UPR could provide novel therapeutic strategies to mitigate the deleterious effects of senescence, with significant implications for age-related pathologies and geroscience.
Collapse
Affiliation(s)
- Joëlle Giroud
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Emilie Combémorel
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Albin Pourtier
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Corinne Abbadie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| | - Olivier Pluquet
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France
| |
Collapse
|
2
|
Thau H, Gerjol BP, Hahn K, von Gudenberg RW, Knoedler L, Stallcup K, Emmert MY, Buhl T, Wyles SP, Tchkonia T, Tullius SG, Iske J. Senescence as a molecular target in skin aging and disease. Ageing Res Rev 2025; 105:102686. [PMID: 39929368 DOI: 10.1016/j.arr.2025.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Skin aging represents a multifactorial process influenced by both intrinsic and extrinsic factors, collectively known as the skin exposome. Cellular senescence, characterized by stable cell cycle arrest and secretion of pro-inflammatory molecules, has been implicated as a key driver of physiological and pathological skin aging. Increasing evidence points towards the role of senescence in a variety of dermatological diseases, where the accumulation of senescent cells in the epidermis and dermis exacerbates disease progression. Emerging therapeutic strategies such as senolytics and senomorphics offer promising avenues to target senescent cells and mitigate their deleterious effects, providing potential treatments for both skin aging and senescence-associated skin diseases. This review explores the molecular mechanisms of cellular senescence and its role in promoting age-related skin changes and pathologies, while compiling the observed effects of senotherapeutics in the skin and discussing the translational relevance.
Collapse
Affiliation(s)
- Henriette Thau
- Van Cleve Cardiac Regenerative Medicine Program Mayo Clinic, Rochester, Minesota, USA; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian P Gerjol
- Department of Internal Medicine, Klinik Hirslanden, Zurich, Switzerland
| | - Katharina Hahn
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | - Rosalie Wolff von Gudenberg
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonard Knoedler
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin, Germany
| | - Kenneth Stallcup
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | | | - Tamar Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Srour E, Martin N, Drullion C, De Schutter C, Giroud J, Pioger A, Deslé J, Saas L, Nassour J, Théry J, Decanter G, Penel N, Vercamer C, Salazar-Cardozo C, Abbadie C, Pluquet O. Prostaglandin E 2 regulates senescence and post-senescence neoplastic escape in primary human keratinocytes. Aging (Albany NY) 2024; 16:13201-13224. [PMID: 39560493 PMCID: PMC11719115 DOI: 10.18632/aging.206149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
Aging of the epidermis partially occurs as a consequence of epidermal cell senescence, a non-proliferative state in which cells remain metabolically active and acquire changes in their secretome. We previously reported that senescent normal human epidermal keratinocytes (NHEKs) have two opposite outcomes: either cell death by excess of autophagic activity or escape from senescence to give rise to post-senescence neoplastic emerging (PSNE) cells. In this study, we investigated the role of PTGS2, the inducible enzyme of the prostaglandin biosynthesis pathway, in the onset of NHEK senescence and in the switch from senescence to pre-transformation. We provide evidence that the PTGS2/PGE2/EP4 pathway plays a critical role in NHEK senescence as well as in senescence escape. We show that treating proliferating NHEKs with prostaglandin E2 (PGE2) or with an agonist of one of its receptors, EP4, induced the establishment of the senescent phenotype, according to several markers including the senescence-associated β-galactosidase activity. Conversely, treating already senescent NHEKs with an antagonist of EP4, or knocking-down PTGS2 by siRNA resulted in the decrease of the percentage of senescence-associated β-galactosidase-positive cells. We also demonstrate that the PSNE frequency was significantly decreased upon PTGS2 silencing by siRNA, pharmacological PTGS2 inhibition, or treatment by an EP4 antagonist, while on the contrary treatments with PGE2 or EP4 agonist increased the PSNE frequency. These results indicate that the PTGS2/PGE2/EP4 pathway is required to induce and maintain the senescent phenotype of NHEKs, and that PGE2 level is a potential determinant of the initial steps of the age-related oncogenic process.
Collapse
Affiliation(s)
- Elise Srour
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Nathalie Martin
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Claire Drullion
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Clémentine De Schutter
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Joëlle Giroud
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Adrien Pioger
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Julie Deslé
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Laure Saas
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Joe Nassour
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Julien Théry
- Direction of Clinical Research and Innovation, Oscar Lambret Center, Lille, France
| | | | - Nicolas Penel
- Direction of Clinical Research and Innovation, Oscar Lambret Center, Lille, France
- CHU Lille, ULR 2694 - Metrics: Evaluation des Technologies de Santé et des Pratiques Médicales, University of Lille, Lille, France
| | - Chantal Vercamer
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Clara Salazar-Cardozo
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Corinne Abbadie
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| | - Olivier Pluquet
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 – U1277 – CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille F-59000, France
| |
Collapse
|
4
|
Yadav JP, Verma A, Pathak P, Dwivedi AR, Singh AK, Kumar P, Khalilullah H, Jaremko M, Emwas AH, Patel DK. Phytoconstituents as modulators of NF-κB signalling: Investigating therapeutic potential for diabetic wound healing. Biomed Pharmacother 2024; 177:117058. [PMID: 38968797 DOI: 10.1016/j.biopha.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India; Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ashish R Dwivedi
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ankit Kumar Singh
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| |
Collapse
|
5
|
Rodzinski É, Martin N, Rouget R, Pioger A, Dehennaut V, Molendi-Coste O, Dombrowicz D, Goy E, de Launoit Y, Abbadie C. [Sorting of senescent cells by flow cytometry: Specificities and pitfalls to avoid]. Med Sci (Paris) 2024; 40:275-282. [PMID: 38520103 DOI: 10.1051/medsci/2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
Cells can be reprogrammed into senescence to adapt to a variety of stresses, most often affecting the genome integrity. Senescent cells accumulate with age or upon various insults in almost all tissues, and contribute to the development of several age-associated pathologies. Studying the molecular pathways involved in senescence induction, maintenance, or escape is challenged by the heterogeneity in the level of commitment to senescence, and by the pollution of senescent cell populations by proliferating pre- or post-senescent cells. We coped with these difficulties by developing a protocol for sorting senescent cells by flow cytometry, based on three major senescence markers : the SA-β-Galactosidase activity, the size of the cells, and their granularity reflecting the accumulation of aggregates, lysosomes, and altered mitochondria. We address the issues related to sorting senescent cells, the pitfalls to avoid, and propose solutions for sorting viable cells expressing senescent markers at different extents.
Collapse
Affiliation(s)
- Élodie Rodzinski
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Nathalie Martin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Raphael Rouget
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Adrien Pioger
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Vanessa Dehennaut
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Olivier Molendi-Coste
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Erwan Goy
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Yvan de Launoit
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Corinne Abbadie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| |
Collapse
|
6
|
Hellani F, Leleu I, Saidi N, Martin N, Lecoeur C, Werkmeister E, Koffi D, Trottein F, Yapo-Etté H, Das B, Abbadie C, Pied S. Role of astrocyte senescence regulated by the non- canonical autophagy in the neuroinflammation associated to cerebral malaria. Brain Behav Immun 2024; 117:20-35. [PMID: 38157948 DOI: 10.1016/j.bbi.2023.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a fatal neuroinflammatory syndrome caused (in humans) by the protozoa Plasmodium (P.) falciparum. Glial cell activation is one of the mechanisms that contributes to neuroinflammation in CM. RESULT By studying a mouse model of CM (caused by P. berghei ANKA), we describe that the induction of autophagy promoted p21-dependent senescence in astrocytes and that CXCL-10 was part of the senescence-associated secretory phenotype. Furthermore, p21 expression was observed in post-mortem brain and peripheral blood samples from patients with CM. Lastly, we found that the depletion of senescent astrocytes with senolytic drugs abrogated inflammation and protected mice from CM. CONCLUSION Our data provide evidence for a novel mechanism through which astrocytes could be involved in the neuropathophysiology of CM. p21 gene expression in blood cell and an elevated plasma CXCL-10 concentration could be valuable biomarkers of CM in humans. In the end, we believe senolytic drugs shall open up new avenues to develop newer treatment options.
Collapse
Affiliation(s)
- Fatima Hellani
- Univ. Lille, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille F-59019 Lille, France
| | - Inès Leleu
- Univ. Lille, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille F-59019 Lille, France
| | - Nasreddine Saidi
- Univ. Lille, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille F-59019 Lille, France
| | - Nathalie Martin
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies F-59000 Lille, France
| | - Cécile Lecoeur
- Univ. Lille, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille F-59019 Lille, France
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS F-59000 Lille, France
| | - David Koffi
- Parasitology and Mycology Department, Institut Pasteur de Côte d'Ivoire, Ivory Coast
| | - François Trottein
- Univ. Lille, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille F-59019 Lille, France
| | - Hélène Yapo-Etté
- Institute of Forensic Medicine-Faculty of Health, University Félix Houphouët-Boigny of Abidjan, Ivory Coast
| | - Bidyut Das
- SCB Medical College, Cuttack, Orissa, India
| | - Corinne Abbadie
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies F-59000 Lille, France
| | - Sylviane Pied
- Univ. Lille, CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-CIIL, Institut Pasteur de Lille F-59019 Lille, France.
| |
Collapse
|
7
|
Nedachi T, Bonod C, Rorteau J, Chinoune W, Ishiuchi Y, Hughes S, Gillet B, Bechetoille N, Sigaudo-Roussel D, Lamartine J. Chronological aging impacts abundance, function and microRNA content of extracellular vesicles produced by human epidermal keratinocytes. Aging (Albany NY) 2023; 15:12702-12722. [PMID: 38015712 DOI: 10.18632/aging.205245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/15/2023] [Indexed: 11/30/2023]
Abstract
The disturbance of intercellular communication is one of the hallmarks of aging. The goal of this study is to clarify the impact of chronological aging on extracellular vesicles (EVs), a key mode of communication in mammalian tissues. We focused on epidermal keratinocytes, the main cells of the outer protective layer of the skin which is strongly impaired in the skin of elderly. EVs were purified from conditioned medium of primary keratinocytes isolated from infant or aged adult skin. A significant increase of the relative number of EVs released from aged keratinocytes was observed whereas their size distribution was not modified. By small RNA sequencing, we described a specific microRNA (miRNA) signature of aged EVs with an increase abundance of miR-30a, a key regulator of barrier function in human epidermis. EVs from aged keratinocytes were found to be able to reduce the proliferation of young keratinocytes, to impact their organogenesis properties in a reconstructed epidermis model and to slow down the early steps of skin wound healing in mice, three features observed in aged epidermis. This work reveals that intercellular communication mediated by EVs is modulated during aging process in keratinocytes and might be involved in the functional defects observed in aged skin.
Collapse
Affiliation(s)
- Taku Nedachi
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
- Department of Life Science, Toyo University, Gunma, Japan
| | - Christelle Bonod
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Julie Rorteau
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Wafae Chinoune
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Yuri Ishiuchi
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
- Department of Life Science, Toyo University, Gunma, Japan
| | - Sandrine Hughes
- IGFL CNRS UMR5242, ENS de Lyon, University of Lyon, Lyon, France
| | - Benjamin Gillet
- IGFL CNRS UMR5242, ENS de Lyon, University of Lyon, Lyon, France
| | - Nicolas Bechetoille
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
- Gattefossé SAS, St Priest, France
| | - Dominique Sigaudo-Roussel
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Jérôme Lamartine
- Skin Functional Integrity group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| |
Collapse
|
8
|
D’Arino A, Caputo S, Eibenschutz L, Piemonte P, Buccini P, Frascione P, Bellei B. Skin Cancer Microenvironment: What We Can Learn from Skin Aging? Int J Mol Sci 2023; 24:14043. [PMID: 37762344 PMCID: PMC10531546 DOI: 10.3390/ijms241814043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a natural intrinsic process associated with the loss of fibrous tissue, a slower cell turnover, and a reduction in immune system competence. In the skin, the continuous exposition of environmental factors superimposes extrinsic damage, mainly due to ultraviolet radiation causing photoaging. Although not usually considered a pathogenic event, photoaging affects cutaneous biology, increasing the risk of skin carcinogenesis. At the cellular level, aging is typified by the rise of senescence cells a condition characterized by reduced or absent capacity to proliferate and aberrant hyper-secretory activity. Senescence has a double-edged sword in cancer biology given that senescence prevents the uncontrolled proliferation of damaged cells and favors their clearance by paracrine secretion. Nevertheless, the cumulative insults and the poor clearance of injured cells in the elderly increase cancer incidence. However, there are not conclusive data proving that aged skin represents a permissive milieu for tumor onset. On the other hand, tumor cells are capable of activating resident fibroblasts onto a pro-tumorigenic phenotype resembling those of senescent fibroblasts suggesting that aged fibroblasts might facilitate cancer progression. This review discusses changes that occur during aging that can prime neoplasm or increase the aggressiveness of melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- Andrea D’Arino
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Paolo Piemonte
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pierluigi Buccini
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| |
Collapse
|
9
|
Giroud J, Bouriez I, Paulus H, Pourtier A, Debacq-Chainiaux F, Pluquet O. Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment. Int J Mol Sci 2023; 24:10788. [PMID: 37445973 DOI: 10.3390/ijms241310788] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges. In this review, we first aim to update the definition of senescence and its associated biomarkers from its discovery to the present day. We detail the regulatory mechanisms involved in the expression of SASP at multiple levels and develop how SASP can orchestrate microenvironment modifications, by focusing on extracellular matrix modifications, neighboring cells' fate, and intercellular communications. We present hypotheses on how these microenvironmental events may affect dynamic changes in SASP composition in return. Finally, we discuss the various existing approaches to targeting SASP and clarify what is currently known about the biological effects of these modified SASPs on the cellular environment.
Collapse
Affiliation(s)
- Joëlle Giroud
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Inès Bouriez
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Hugo Paulus
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Albin Pourtier
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Florence Debacq-Chainiaux
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Olivier Pluquet
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
10
|
Fang WC, Lan CCE. The Epidermal Keratinocyte as a Therapeutic Target for Management of Diabetic Wounds. Int J Mol Sci 2023; 24:4290. [PMID: 36901720 PMCID: PMC10002069 DOI: 10.3390/ijms24054290] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Diabetes mellitus (DM) is an important cause of chronic wounds and non-traumatic amputation. The prevalence and number of cases of diabetic mellitus are increasing worldwide. Keratinocytes, the outermost layer of the epidermis, play an important role in wound healing. A high glucose environment may disrupt the physiologic functions of keratinocytes, resulting in prolonged inflammation, impaired proliferation, and the migration of keratinocytes and impaired angiogenesis. This review provides an overview of keratinocyte dysfunctions in a high glucose environment. Effective and safe therapeutic approaches for promoting diabetic wound healing can be developed if molecular mechanisms responsible for keratinocyte dysfunction in high glucose environments are elucidated.
Collapse
Affiliation(s)
- Wei-Cheng Fang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheng-Che E. Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Shining Light on Autophagy in Skin Pigmentation and Pigmentary Disorders. Cells 2022; 11:cells11192999. [PMID: 36230960 PMCID: PMC9563738 DOI: 10.3390/cells11192999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a vital process for cell survival and it preserves homeostasis by recycling or disassembling unnecessary or dysfunctional cellular constituents. Autophagy ameliorates skin integrity, regulating epidermal differentiation and constitutive pigmentation. It induces melanogenesis and contributes to skin color through melanosome turnover. Autophagy activity is involved in skin phenotypic plasticity and cell function maintenance and, if altered, it concurs to the onset and/or progression of hypopigmentary and hyperpigmentary disorders. Overexpression of autophagy exerts a protective role against the intrinsic metabolic stress occurring in vitiligo skin, while its dysfunction has been linked to the tuberous sclerosis complex hypopigmentation. Again, autophagy impairment reduces melanosome degradation by concurring to pigment accumulation characterizing senile lentigo and melasma. Here we provide an updated review that describes recent findings on the crucial role of autophagy in skin pigmentation, thus revealing the complex interplay among melanocyte biology, skin environment and autophagy. Hence, targeting this process may also represent a promising strategy for treating pigmentary disorders.
Collapse
|
12
|
Kovacs D, Bastonini E, Briganti S, Ottaviani M, D’Arino A, Truglio M, Sciuto L, Zaccarini M, Pacifico A, Cota C, Iacovelli P, Picardo M. Altered epidermal proliferation, differentiation, and lipid composition: Novel key elements in the vitiligo puzzle. SCIENCE ADVANCES 2022; 8:eabn9299. [PMID: 36054352 PMCID: PMC10848961 DOI: 10.1126/sciadv.abn9299] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Vitiligo is an acquired skin depigmentation disease involving multiple pathogenetic mechanisms, which ultimately direct cytotoxic CD8+ cells to destroy melanocytes. Abnormalities have been described in several cells even in pigmented skin as an expression of a functional inherited defect. Keratinocytes regulate skin homeostasis by the assembly of a proper skin barrier and releasing and responding to cytokines and growth factors. Alterations in epidermal proliferation, differentiation, and lipid composition as triggers for immune response activation in vitiligo have not yet been investigated. By applying cellular and lipidomic approaches, we revealed a deregulated keratinocyte differentiation with altered lipid composition, associated with impaired energy metabolism and increased glycolytic enzyme expression. Vitiligo keratinocytes secreted inflammatory mediators, which further increased following mild mechanical stress, thus evidencing immune activation. These findings identify intrinsic alterations of the nonlesional epidermis, which can be the prime instigator of the local inflammatory milieu that stimulates immune responses targeting melanocytes.
Collapse
Affiliation(s)
- Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Emanuela Bastonini
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Andrea D’Arino
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Lorenzo Sciuto
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Alessia Pacifico
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Paolo Iacovelli
- Clinical Dermatology, Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
13
|
Rodríguez-Ibarra C, Medina-Reyes EI, Déciga-Alcaraz A, Delgado-Buenrostro NL, Quezada-Maldonado EM, Ispanixtlahuatl-Meráz O, Ganem-Rondero A, Flores-Flores JO, Vázquez-Zapién GJ, Mata-Miranda MM, López-Marure R, Pedraza-Chaverri J, García-Cuéllar CM, Sánchez-Pérez Y, Chirino YI. Food grade titanium dioxide accumulation leads to cellular alterations in colon cells after removal of a 24-hour exposure. Toxicology 2022; 478:153280. [PMID: 35973603 DOI: 10.1016/j.tox.2022.153280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Titanium dioxide food grade (E171) is one of the most used food additives containing nanoparticles. Recently, the European Food Safety Authority indicated that E171 could no longer be considered safe as a food additive due to the possibility of it being genotoxic and there is evidence that E171 administration exacerbates colon tumor formation in murine models. However, less is known about the effects of E171 accumulation once the exposure stopped, then we hypothesized that toxic effects could be detected even after E171 removal. Therefore, we investigated the effects of E171 exposure after being removed from colon cell cultures. Human colon cancer cell line (HCT116) was exposed to 0, 1, 10 and 50 μg/cm2 of E171. Our results showed that in the absence of cytotoxicity, E171 was accumulated in the cells after 24 of exposure, increasing granularity and reactive oxygen species, inducing alterations in the molecular pattern of nucleic acids and lipids, and causing nuclei enlargement, DNA damage and tubulin depolymerization. After the removal of E171, colon cells were cultured for 48 h more hours to analyze the ability to restore the previously detected alterations. As we hypothesized, the removal of E171 was unable to revert the alterations found after 24 h of exposure in colon cells. In conclusion, exposure to E171 causes alterations that cannot be reverted after 48 h if E171 is removed from colon cells.
Collapse
Affiliation(s)
- Carolina Rodríguez-Ibarra
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Estefany I Medina-Reyes
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Alejandro Déciga-Alcaraz
- Atmospheric Organic Aerosol Chemical Speciation Group, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, AP 70228, Ciudad de México 04510, Mexico
| | - Norma Laura Delgado-Buenrostro
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Octavio Ispanixtlahuatl-Meráz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Adriana Ganem-Rondero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1° de Mayo s/n, Cuautitlán Izcalli CP 54740, Estado de México, Mexico
| | - José Ocotlán Flores-Flores
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| | - Gustavo J Vázquez-Zapién
- Laboratorio de Embriología, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200 Ciudad de México, Mexico
| | - Mónica M Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200 Ciudad de México, Mexico
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CP 04510 Ciudad de México, Mexico
| | - Claudia M García-Cuéllar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico.
| |
Collapse
|
14
|
Barbosa FAR, Rode MP, Santos Canto RF, Silva AH, Creczynski‐Pasa TB, Braga AL. Antiproliferative Effect and Autophagy Inhibition of Dihydropyrimidinone‐Cinnamic Acid Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Flavio Augusto Rocha Barbosa
- Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen) Departamento de Química Universidade Federal de Santa Catarina (UFSC) 88040-900 Florianópolis SC Brazi
| | - Michele Patrícia Rode
- Grupo de Estudos de Interações entre Micro e Macromoléculas (GEIMM) Departamento de Ciências Farmacêuticas Universidade Federal de Santa Catarina (UFSC) 88040-370 Florianópolis SC Brazil
| | - Rômulo Faria Santos Canto
- Laboratório de Química Medicinal de Compostos de Selênio (QMCSe) Departamento de Farmacociências Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) 90050-170 Porto Alegre RS Brazil
| | - Adny Henrique Silva
- Grupo de Estudos de Interações entre Micro e Macromoléculas (GEIMM) Departamento de Ciências Farmacêuticas Universidade Federal de Santa Catarina (UFSC) 88040-370 Florianópolis SC Brazil
| | - Tânia Beatriz Creczynski‐Pasa
- Grupo de Estudos de Interações entre Micro e Macromoléculas (GEIMM) Departamento de Ciências Farmacêuticas Universidade Federal de Santa Catarina (UFSC) 88040-370 Florianópolis SC Brazil
| | - Antonio Luiz Braga
- Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen) Departamento de Química Universidade Federal de Santa Catarina (UFSC) 88040-900 Florianópolis SC Brazi
| |
Collapse
|
15
|
Goy E, Tomezak M, Facchin C, Martin N, Bouchaert E, Benoit J, de Schutter C, Nassour J, Saas L, Drullion C, Brodin PM, Vandeputte A, Molendi-Coste O, Pineau L, Goormachtigh G, Pluquet O, Pourtier A, Cleri F, Lartigau E, Penel N, Abbadie C. The out-of-field dose in radiation therapy induces delayed tumorigenesis by senescence evasion. eLife 2022; 11:67190. [PMID: 35302491 PMCID: PMC8933005 DOI: 10.7554/elife.67190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
A rare but severe complication of curative-intent radiation therapy is the induction of second primary cancers. These cancers preferentially develop not inside the planning target volume (PTV) but around, over several centimeters, after a latency period of 1–40 years. We show here that normal human or mouse dermal fibroblasts submitted to the out-of-field dose scattering at the margin of a PTV receiving a mimicked patient’s treatment do not die but enter in a long-lived senescent state resulting from the accumulation of unrepaired DNA single-strand breaks, in the almost absence of double-strand breaks. Importantly, a few of these senescent cells systematically and spontaneously escape from the cell cycle arrest after a while to generate daughter cells harboring mutations and invasive capacities. These findings highlight single-strand break-induced senescence as the mechanism of second primary cancer initiation, with clinically relevant spatiotemporal specificities. Senescence being pharmacologically targetable, they open the avenue for second primary cancer prevention.
Collapse
Affiliation(s)
- Erwan Goy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Maxime Tomezak
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.,Univ. Lille, CNRS, UMR8520, Institut d'Electronique, Microélectronique et Nanotechnologie, F-59652 Villeneuve d'Ascq, France
| | - Caterina Facchin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Nathalie Martin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Emmanuel Bouchaert
- Oncovet Clinical Research, Plateforme PRECI, F-59120 Loos, France.,Oncovet, Plateforme PRECI, F-59650 Villeneuve d'Ascq, France
| | - Jerome Benoit
- Oncovet Clinical Research, Plateforme PRECI, F-59120 Loos, France.,Oncovet, Plateforme PRECI, F-59650 Villeneuve d'Ascq, France
| | - Clementine de Schutter
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Joe Nassour
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Laure Saas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Claire Drullion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Priscille M Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Alexandre Vandeputte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Olivier Molendi-Coste
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Laurent Pineau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Gautier Goormachtigh
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Olivier Pluquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Fabrizio Cleri
- Univ. Lille, CNRS, UMR8520, Institut d'Electronique, Microélectronique et Nanotechnologie, F-59652 Villeneuve d'Ascq, France
| | - Eric Lartigau
- Lille University, Medical School and Centre Oscar Lambret, Lille, France
| | - Nicolas Penel
- Lille University, Medical School and Centre Oscar Lambret, Lille, France
| | - Corinne Abbadie
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
16
|
Ashraf W, Ahmad T, Almalki NAR, Krifa M, Zaayter L, Pizzi A, Muller CD, Hamiche A, Mély Y, Bronner C, Mousli M. Tannin extract from maritime pine bark exhibits anticancer properties by targeting the epigenetic UHRF1/DNMT1 tandem leading to the re-expression of TP73. Food Funct 2022; 13:316-326. [PMID: 34897340 DOI: 10.1039/d1fo01484f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maritime pine bark is a rich source of polyphenolic compounds and is commonly employed as a herbal supplement worldwide. This study was designed to check the potential of maritime pine tannin extract (MPTE) in anticancer therapy and to determine the underlying mechanism of action. Our results showed that MPTE, containing procyanidin oligomers and lanostane type terpenoids, has an inhibitory effect on cancer cell proliferation through cell cycle arrest in the G2/M phase. Treatment with MPTE also induced apoptosis in a concentration-dependent manner in human cancer cell lines (HeLa and U2OS), as evidenced by the enhanced activation of caspase 3 and the cleavage of PARP along with the downregulation of the antiapoptotic protein Bcl-2. Interestingly, human non-cancerous fibroblasts are much less sensitive to MPTE, suggesting that it preferentially targets cancer cells. MPTE played a pro-oxidant role in cancer cells and promoted the expression of the p73 tumor suppressor gene in p53-deficient cells. It also downregulated the protooncogenic proteins UHRF1 and DNMT1, mediators of the DNA methylation machinery, and reduced the global methylation levels in HeLa cells. Overall, our results show that maritime pine tannin extract can play a favorable role in cancer treatment, and can be further explored by the pharmaceutical industry.
Collapse
Affiliation(s)
- Waseem Ashraf
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France. .,Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Tanveer Ahmad
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Naif A R Almalki
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Equipe labellisée Ligue contre le Cancer, Illkirch, France
| | - Mounira Krifa
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France. .,Unit of Bioactive and Natural Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Liliyana Zaayter
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | | | - Christian D Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS Université de Strasbourg, Illkirch, France
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Equipe labellisée Ligue contre le Cancer, Illkirch, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg, Equipe labellisée Ligue contre le Cancer, Illkirch, France
| | - Marc Mousli
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
17
|
Lee H, Hong Y, Kim M. Structural and Functional Changes and Possible Molecular Mechanisms in Aged Skin. Int J Mol Sci 2021; 22:ijms222212489. [PMID: 34830368 PMCID: PMC8624050 DOI: 10.3390/ijms222212489] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023] Open
Abstract
Skin aging is a complex process influenced by intrinsic and extrinsic factors. Together, these factors affect the structure and function of the epidermis and dermis. Histologically, aging skin typically shows epidermal atrophy due to decreased cell numbers. The dermis of aged skin shows decreased numbers of mast cells and fibroblasts. Fibroblast senescence contributes to skin aging by secreting a senescence-associated secretory phenotype, which decreases proliferation by impairing the release of essential growth factors and enhancing degradation of the extracellular matrix through activation of matrix metalloproteinases (MMPs). Several molecular mechanisms affect skin aging including telomere shortening, oxidative stress and MMP, cytokines, autophagic control, microRNAs, and the microbiome. Accumulating evidence on the molecular mechanisms of skin aging has provided clinicians with a wide range of therapeutic targets for treating aging skin.
Collapse
Affiliation(s)
| | | | - Miri Kim
- Correspondence: ; Tel.: +82-3779-1056
| |
Collapse
|
18
|
Logli E, Marzuolo E, D'Agostino M, Conti LA, Lena AM, Diociaiuti A, Dellambra E, Has C, Cianfanelli V, Zambruno G, El Hachem M, Magenta A, Candi E, Condorelli AG. Proteasome-mediated degradation of keratins 7, 8, 17 and 18 by mutant KLHL24 in a foetal keratinocyte model: Novel insight in congenital skin defects and fragility of epidermolysis bullosa simplex with cardiomyopathy. Hum Mol Genet 2021; 31:1308-1324. [PMID: 34740256 PMCID: PMC9029237 DOI: 10.1093/hmg/ddab318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Epidermolysis bullosa simplex (EBS) with cardiomyopathy (EBS-KLHL24) is an EBS subtype caused by dominantly inherited, gain-of-function mutations in the gene encoding for the ubiquitin-ligase KLHL24, which addresses specific proteins to proteasomal degradation. EBS-KLHL24 patients are born with extensive denuded skin areas and skin fragility. Whilst skin fragility rapidly ameliorates, atrophy and scarring develop over time, accompanied by life-threatening cardiomyopathy. To date, pathogenetic mechanisms underlying such a unique disease phenotype are not fully characterized. The basal keratin 14 (K14) has been indicated as a KLHL24 substrate in keratinocytes. However, EBS-KLHL24 pathobiology cannot be determined by the mutation-enhanced disruption of K14 alone, as K14 is similarly expressed in foetal and postnatal epidermis and its protein levels are preserved both in vivo and in vitro disease models. In this study, we focused on foetal keratins as additional KLHL24 substrates. We showed that K7, K8, K17 and K18 protein levels are markedly reduced via proteasome degradation in normal foetal keratinocytes transduced with the mutant KLHL24 protein (ΔN28-KLHL24) as compared to control cells expressing the wild-type form. In addition, heat stress led to keratin network defects and decreased resilience in ΔN28-KLHL24 cells. The KLHL24-mediated degradation of foetal keratins could contribute to congenital skin defects in EBS-KLHL24. Furthermore, we observed that primary keratinocytes from EBS-KLHL24 patients undergo accelerated clonal conversion with reduced colony forming efficiency (CFE) and early replicative senescence. Finally, our findings pointed out a reduced CFE in ΔN28-KLHL24-transduced foetal keratinocytes as compared to controls, suggesting that mutant KLHL24 contributes to patients’ keratinocyte clonogenicity impairment.
Collapse
Affiliation(s)
- Elena Logli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Elisa Marzuolo
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Marco D'Agostino
- Laboratory of Experimental Immunology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | | | - Cristina Has
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Valentina Cianfanelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
19
|
Gasek NS, Kuchel GA, Kirkland JL, Xu M. Strategies for Targeting Senescent Cells in Human Disease. NATURE AGING 2021; 1:870-879. [PMID: 34841261 PMCID: PMC8612694 DOI: 10.1038/s43587-021-00121-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cellular senescence represents a distinct cell fate characterized by replicative arrest in response to a host of extrinsic and intrinsic stresses. Senescence provides programming during development and wound healing, while limiting tumorigenesis. However, pathologic accumulation of senescent cells is implicated in a range of diseases and age-associated morbidities across organ systems. Senescent cells produce distinct paracrine and endocrine signals, causing local tissue dysfunction and exerting deleterious systemic effects. Senescent cell removal by apoptosis-inducing "senolytic" agents or therapies that inhibit the senescence-associated secretory phenotype, SASP inhibitors, have demonstrated benefit in both pre-clinical and clinical models of geriatric decline and chronic diseases, suggesting senescent cells represent a pharmacologic target for alleviating effects of fundamental aging processes. However, senescent cell populations are heterogeneous in form, function, tissue distribution, and even differ among species, possibly explaining issues of bench-to-bedside translation in current clinical trials. Here, we review features of senescent cells and strategies for targeting them, including immunologic approaches, as well as key intracellular signaling pathways. Additionally, we survey current senolytic therapies in human trials. Collectively, there is demand for research to develop targeted senotherapeutics that address the needs of the aging and chronically-ill.
Collapse
Affiliation(s)
- Nathan S. Gasek
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | | | | | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| |
Collapse
|
20
|
De Blander H, Morel AP, Senaratne AP, Ouzounova M, Puisieux A. Cellular Plasticity: A Route to Senescence Exit and Tumorigenesis. Cancers (Basel) 2021; 13:4561. [PMID: 34572787 PMCID: PMC8468602 DOI: 10.3390/cancers13184561] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence is a dynamic, multistep program that results in permanent cell cycle arrest and is triggered by developmental or environmental, oncogenic or therapy-induced stress signals. Senescence is considered as a tumor suppressor mechanism that prevents the risk of neoplastic transformation by restricting the proliferation of damaged cells. Cells undergoing senescence sustain important morphological changes, chromatin remodeling and metabolic reprogramming, and secrete pro-inflammatory factors termed senescence-associated secretory phenotype (SASP). SASP activation is required for the clearance of senescent cells by innate immunity. Therefore, escape from senescence and the associated immune editing would be a prerequisite for tumor initiation and progression as well as therapeutic resistance. One of the possible mechanisms for overcoming senescence could be the acquisition of cellular plasticity resulting from the accumulation of genomic alterations and genetic and epigenetic reprogramming. The modified composition of the SASP produced by these reprogrammed cancer cells would create a permissive environment, allowing their immune evasion. Additionally, the SASP produced by cancer cells could enhance the cellular plasticity of neighboring cells, thus hindering their recognition by the immune system. Here, we propose a comprehensive review of the literature, highlighting the role of cellular plasticity in the pro-tumoral activity of senescence in normal cells and in the cancer context.
Collapse
Affiliation(s)
- Hadrien De Blander
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
| | - Anne-Pierre Morel
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
| | - Aruni P. Senaratne
- UMR3664—Nuclear Dynamics, Development, Biology, Cancer, Genetics and Epigenetics, Institut Curie, PSL Research University, 75005 Paris, France;
| | - Maria Ouzounova
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
- CNRS UMR3666, Inserm U1143, Cellular and Chemical Biology, Institut Curie, PSL Research University, 75005 Paris, France
| | - Alain Puisieux
- Equipe Labellisée Ligue Contre le Cancer “EMT and Cancer Cell Plasticity”, CNRS 5286, INSERM 1052, Centre Léon Bérard, Cancer Research Center of Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France; (A.-P.M.); (M.O.)
- LabEx DEVweCAN, Université de Lyon, 69008 Lyon, France
- Institut Curie “EMT and Cancer Cell Plasticity”, Consortium Centre Léon Bérard, 69008 Lyon, France
- CNRS UMR3666, Inserm U1143, Cellular and Chemical Biology, Institut Curie, PSL Research University, 75005 Paris, France
| |
Collapse
|
21
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
22
|
Chakrabarty A, Chakraborty S, Bhattacharya R, Chowdhury G. Senescence-Induced Chemoresistance in Triple Negative Breast Cancer and Evolution-Based Treatment Strategies. Front Oncol 2021; 11:674354. [PMID: 34249714 PMCID: PMC8264500 DOI: 10.3389/fonc.2021.674354] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Triple negative breast cancer (TNBC) is classically treated with combination chemotherapies. Although, initially responsive to chemotherapies, TNBC patients frequently develop drug-resistant, metastatic disease. Chemotherapy resistance can develop through many mechanisms, including induction of a transient growth-arrested state, known as the therapy-induced senescence (TIS). In this paper, we will focus on chemoresistance in TNBC due to TIS. One of the key characteristics of senescent cells is a complex secretory phenotype, known as the senescence-associated secretory proteome (SASP), which by prompting immune-mediated clearance of senescent cells maintains tissue homeostasis and suppresses tumorigenesis. However, in cancer, particularly with TIS, senescent cells themselves as well as SASP promote cellular reprograming into a stem-like state responsible for the emergence of drug-resistant, aggressive clones. In addition to chemotherapies, outcomes of recently approved immune and DNA damage-response (DDR)-directed therapies are also affected by TIS, implying that this a common strategy used by cancer cells for evading treatment. Although there has been an explosion of scientific research for manipulating TIS for prevention of drug resistance, much of it is still at the pre-clinical stage. From an evolutionary perspective, cancer is driven by natural selection, wherein the fittest tumor cells survive and proliferate while the tumor microenvironment influences tumor cell fitness. As TIS seems to be preferred for increasing the fitness of drug-challenged cancer cells, we will propose a few tactics to control it by using the principles of evolutionary biology. We hope that with appropriate therapeutic intervention, this detrimental cellular fate could be diverted in favor of TNBC patients.
Collapse
|
23
|
Bahamondes Lorca VA, Wu S. Role of constitutive nitric oxide synthases in the dynamic regulation of the autophagy response of keratinocytes upon UVB exposure. Photochem Photobiol Sci 2021; 19:1559-1568. [PMID: 33030168 DOI: 10.1039/d0pp00280a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultraviolet B (UVB) radiation induces autophagy responses, which play a role in the regulation of the oncogenic processes of irradiated cells. However, the mechanism of autophagy responses post-UVB irradiation remains to be fully elucidated. Previous studies indicate that UVB radiation induces the activation and uncoupling of constitutive nitric oxide synthases (cNOS), which produce nitric oxide and peroxynitrite; both have been shown to regulate autophagy responses. In this study, the UVB-induced autophagy responses were analysed in cell line- and UVB dose-dependent manners, and the role of cNOS in UVB-induced autophagy responses was also studied. Our data showed that UVB induces both autophagosome formation and degradation, and that cNOS is involved in the regulation of autophagy responses post UVB exposure. Both nitric oxide and peroxynitrite, the two products that are produced in cells immediately after UVB exposure, could upregulate autophagy in a dose-dependent manner. Furthermore, cNOS is involved in the UVB-induced downregulation of SQSTM1/p62, a scaffold protein used as a reporter of the autophagy response. However, the cNOS-mediated reduction of SQSTM1/p62 is autophagy-independent post UVB irradiation. Our results indicated that autophagy responses post UVB exposure are a dynamic balance of autophagosome formation and degradation, with cNOS playing a role in the regulation of the balance.
Collapse
Affiliation(s)
- Verónica A Bahamondes Lorca
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA. and Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shiyong Wu
- Edison Biotechnology Institute and Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
24
|
Jeong D, Qomaladewi NP, Lee J, Park SH, Cho JY. The Role of Autophagy in Skin Fibroblasts, Keratinocytes, Melanocytes, and Epidermal Stem Cells. J Invest Dermatol 2021; 140:1691-1697. [PMID: 32800183 DOI: 10.1016/j.jid.2019.11.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022]
Abstract
Human skin acts as a barrier to protect our bodies from UV rays and external pathogens and to prevent water loss. Phenotypes of aging, or natural aging due to chronic damage, include wrinkles and the reduction of skin thickness that occur because of a loss of skin cell function. The dysregulation of autophagy, a lysosome-related degradation pathway, can lead to cell senescence, cancer, and various human diseases due to abnormal cellular homeostasis. Here, we discuss the roles and molecular mechanisms of autophagy involved in the anti-aging effects of autophagy and the relationship between autophagy and aging in skin cells.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | | | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
25
|
Talukdar S, Das SK, Emdad L, Fisher PB. Autophagy and senescence: Insights from normal and cancer stem cells. Adv Cancer Res 2021; 150:147-208. [PMID: 33858596 DOI: 10.1016/bs.acr.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
26
|
Bastonini E, Kovacs D, Raffa S, Delle Macchie M, Pacifico A, Iacovelli P, Torrisi MR, Picardo M. A protective role for autophagy in vitiligo. Cell Death Dis 2021; 12:318. [PMID: 33767135 PMCID: PMC7994839 DOI: 10.1038/s41419-021-03592-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
A growing number of studies supports the existence of a dynamic interplay between energetic metabolism and autophagy, whose induction represents an adaptive response against several stress conditions. Autophagy is an evolutionarily conserved and a highly orchestrated catabolic recycling process that guarantees cellular homeostasis. To date, the exact role of autophagy in vitiligo pathogenesis is still not clear. Here, we provide the first evidence that autophagy occurs in melanocytes and fibroblasts from non-lesional skin of vitiligo patients, as a result of metabolic surveillance response. More precisely, this study is the first to reveal that induction of autophagy exerts a protective role against the intrinsic metabolic stress and attempts to antagonize degenerative processes in normal appearing vitiligo skin, where melanocytes and fibroblasts are already prone to premature senescence.
Collapse
Affiliation(s)
- Emanuela Bastonini
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Daniela Kovacs
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Salvatore Raffa
- Ultrastructural Pathology Lab., Medical Genetics and Advanced Cellular Diagnostics Unit, Sant'Andrea University Hospital & Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marina Delle Macchie
- Ultrastructural Pathology Lab., Medical Genetics and Advanced Cellular Diagnostics Unit, Sant'Andrea University Hospital & Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessia Pacifico
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Paolo Iacovelli
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Maria Rosaria Torrisi
- Ultrastructural Pathology Lab., Medical Genetics and Advanced Cellular Diagnostics Unit, Sant'Andrea University Hospital & Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| |
Collapse
|
27
|
Pluquet O, Abbadie C. Cellular senescence and tumor promotion: Role of the Unfolded Protein Response. Adv Cancer Res 2021; 150:285-334. [PMID: 33858599 DOI: 10.1016/bs.acr.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Senescence is a cellular state which can be viewed as a stress response phenotype implicated in various physiological and pathological processes, including cancer. Therefore, it is of fundamental importance to understand why and how a cell acquires and maintains a senescent phenotype. Direct evidence has pointed to the homeostasis of the endoplasmic reticulum whose control appears strikingly affected during senescence. The endoplasmic reticulum is one of the sensing organelles that transduce signals between different pathways in order to adapt a functional proteome upon intrinsic or extrinsic challenges. One of these signaling pathways is the Unfolded Protein Response (UPR), which has been shown to be activated during senescence. Its exact contribution to senescence onset, maintenance, and escape, however, is still poorly understood. In this article, we review the mechanisms through which the UPR contributes to the appearance and maintenance of characteristic senescent features. We also discuss whether the perturbation of the endoplasmic reticulum proteostasis or accumulation of misfolded proteins could be possible causes of senescence, and-as a consequence-to what extent the UPR components could be considered as therapeutic targets allowing for the elimination of senescent cells or altering their secretome to prevent neoplastic transformation.
Collapse
Affiliation(s)
- Olivier Pluquet
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France.
| | - Corinne Abbadie
- Univ Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
28
|
Csekes E, Vágvölgyi M, Hunyadi A, Račková L. Protoflavones in melanoma therapy: Prooxidant and pro-senescence effect of protoapigenone and its synthetic alkyl derivative in A375 cells. Life Sci 2020; 260:118419. [PMID: 32931795 DOI: 10.1016/j.lfs.2020.118419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
AIMS In our study, the anticancer effects of a semisynthetic p-quinol, protoapigenone 1'-O-butyl ether (PABut), were tested in human melanoma A375 cells also in comparison with natural congener, protoapigenone (PA). MAIN METHODS The cytotoxic effect of PABut and PA was determined using MTT assay. Flow cytometry analysis was used to evaluate the influence of the compounds tested on ROS generation and cell cycle distribution in A375 cells. Moreover, apoptosis was evaluated by AO/EB dual staining as well as by flow cytometry. Markers of senescence were quantified by spectrofluorimetry and by Western blot analysis. KEY FINDINGS Both PABut and PA showed significant cytotoxicity against melanoma A375 cells at sub-micromolar concentrations. Both protoflavones induced comparable cell cycle arrest in G2/M phase. However, a more profound upregulation of intracellular ROS levels was found following PABut treatment. An increased apoptosis in the cells following 48 h treatment with both protoflavones tested was also confirmed. Both compounds tested remarkably upregulated p21 protein levels in A375 cells. Unlike PA, PABut significantly decreased protein levels of NAD+-dependent deacetylase SirT1 and β-actin accompanied by mild significant upregulation of mitochondrial SOD2 and senescence markers, p16 protein and SA-β-Gal activity. However, a significant upregulation of p53 only following PA treatment was found. SIGNIFICANCE These results suggest that PABut and PA confer high chemotherapeutic potential in melanoma cells and are suitable for further testing. Furthermore, modification of protoapigenone with 1'-O-butyl ether moiety can be associated with improved senescence-inducing effect and, thus, enhanced chemotherapeutic potency of PABut compared to the unmodified natural protoflavone.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic.
| |
Collapse
|
29
|
Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59:101036. [PMID: 32105850 DOI: 10.1016/j.arr.2020.101036] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Aging is a major cause of many degenerative diseases. The most intuitive consequence of aging is mainly manifested on the skin, resulting in cumulative changes in skin structure, function and appearance, such as increased wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation of the skin. Unlike other organs of the human body, skin is not only inevitably affected by the intrinsic aging process, but also affected by various extrinsic environmental factors to accelerate aging, especially ultraviolet (UV) radiation. Skin aging is a highly complex and not fully understood process, and the lack of universal biomarkers for the definitive detection and evaluation of aging is also a major research challenge. Oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to lipid, protein, nucleic acid and organelle damage, thus leading to the occurrence of cellular senescence, which is one of the core mechanisms mediating skin aging. Autophagy can maintain cellular homeostasis when faced with different stress conditions and is one of the survival mechanisms of cell resistance to intrinsic and extrinsic stress. Autophagy and aging have many features in common and may be associated with skin aging mediated by different factors. Here, we summarize the changes and biomarkers of skin aging, and discuss the effects of oxidative stress and autophagy on skin aging.
Collapse
|
30
|
Kruglikov IL, Scherer PE. Caveolin-1 as a possible target in the treatment for acne. Exp Dermatol 2020; 29:177-183. [PMID: 31769542 PMCID: PMC6995412 DOI: 10.1111/exd.14063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Expression of caveolin-1 (Cav-1) is an important pathophysiological factor in acne. Cav-1 strongly interacts with such well-recognized etiopathogenic factors such as hyperseborrhea, follicular hyperkeratinization and pathogenicity of Cutibacterium acnes. Cav-1 is a strong negative regulator of transforming growth factor beta (TGF-β) expression. It acts as a critical determinant of autophagy, which is significantly induced in acne lesions through C. acnes and by absorption of fatty acids. Cav-1 also demonstrates different correlations with the development of innate immunity. We propose that normalization of Cav-1 expression can serve as a target in anti-acne therapy.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
31
|
Duroy PO, Bosshard S, Schmid-Siegert E, Neuenschwander S, Arib G, Lemercier P, Masternak J, Roesch L, Buron F, Girod PA, Xenarios I, Mermod N. Characterization and mutagenesis of Chinese hamster ovary cells endogenous retroviruses to inactivate viral particle release. Biotechnol Bioeng 2019; 117:466-485. [PMID: 31631325 PMCID: PMC7003738 DOI: 10.1002/bit.27200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
The Chinese hamster ovary (CHO) cells used to produce biopharmaceutical proteins are known to contain type‐C endogenous retrovirus (ERV) sequences in their genome and to release retroviral‐like particles. Although evidence for their infectivity is missing, this has raised safety concerns. As the genomic origin of these particles remained unclear, we characterized type‐C ERV elements at the genome, transcriptome, and viral particle RNA levels. We identified 173 type‐C ERV sequences clustering into three functionally conserved groups. Transcripts from one type‐C ERV group were full‐length, with intact open reading frames, and cognate viral genome RNA was loaded into retroviral‐like particles, suggesting that this ERV group may produce functional viruses. CRISPR‐Cas9 genome editing was used to disrupt the gag gene of the expressed type‐C ERV group. Comparison of CRISPR‐derived mutations at the DNA and RNA level led to the identification of a single ERV as the main source of the release of RNA‐loaded viral particles. Clones bearing a Gag loss‐of‐function mutation in this ERV showed a reduction of RNA‐containing viral particle release down to detection limits, without compromising cell growth or therapeutic protein production. Overall, our study provides a strategy to mitigate potential viral particle contaminations resulting from ERVs during biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Pierre-Olivier Duroy
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Present address: Selexis SA, Plan-les-Ouates, Switzerland
| | - Sandra Bosshard
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Present address: Lonza AG, Visp, Switzerland
| | | | | | | | - Philippe Lemercier
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Jacqueline Masternak
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Lucien Roesch
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Flavien Buron
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | - Ioannis Xenarios
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Present address: Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Mermod
- Institute of Biotechnology and Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Connecting cancer relapse with senescence. Cancer Lett 2019; 463:50-58. [DOI: 10.1016/j.canlet.2019.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023]
|
33
|
Koenig U, Robenek H, Barresi C, Brandstetter M, Resch GP, Gröger M, Pap T, Hartmann C. Cell death induced autophagy contributes to terminal differentiation of skin and skin appendages. Autophagy 2019; 16:932-945. [PMID: 31379249 PMCID: PMC7144843 DOI: 10.1080/15548627.2019.1646552] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In the adult mammalian skin, cells are constantly renewing, differentiating and moving upward, to finally die in a yet not fully understood manner. Here, we provide evidence that macroautophagy/autophagy has a dual role in the skin. In addition to its known catabolic protective role as an evolutionary conserved upstream regulator of lysosomal degradation, we show that autophagy induced cell death (CDA) occurs in epithelial lineage-derived organs, such as the inter-follicular epidermis, the sebaceous- and the Harderian gland. By utilizing GFP-LC3 transgenic and ATG7-deficient mice, we show that CDA is initiated during terminal differentiation at a stage when the cells have become highly resistant to apoptosis. In these transitional cells, the Golgi compartment expands, which accounts for the formation of primary lysosomes, and the nucleus starts to condense. During CDA a burst of autophagosome formation is observed, first the endoplasmic reticulum (ER) is phagocytosed followed by autophagy of the nucleus. By this selective form of cell death, most of the cytoplasmic organelles are degraded, but structural proteins remain intact. In the absence of autophagy, consequently, parts of the ER, ribosomes, and chromatin remain. A burst of autophagy was stochastically observed in single cells of the epidermis and collectively in larger areas of ductal cells, arguing for a coordinated induction. We conclude that autophagy is an integral part of cell death in keratinocyte lineage cells and participates in their terminal cell fate. Abbreviations: Atg7: autophagy related 7; BECN1: beclin 1; CDA: cell death-induced autophagy; Cre: Cre-recombinase; DAPI: 4′,6-diamidino-2-phenylindole; ER: endoplasmatic reticulum; GFP: green fluorescent protein; HaGl: haderian gland; IVL: involucrin; KRT14: keratin 14; LD: lipid droplet; LSM: laser scanning microscope; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PN: perinuclear space; RB: residual body; rER: rough endoplasmatic reticulum; SB: sebum; SG-SC: stratum granulosum – stratum corneum; SGl: sebaceous gland; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labelling.
Collapse
Affiliation(s)
- Ulrich Koenig
- Institute of Musculoskeletal Medicine, Dept. Molecular Medicine, University Hospital Münster, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Previous Address: Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Horst Robenek
- Institute of Musculoskeletal Medicine, Dept. Bone and Skeletal Research, University Hospital Münster, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Caterina Barresi
- Previous Address: Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Current Address: Children´s Cancer Research Institute, Vienna, Austria
| | - Marlene Brandstetter
- Electron Microscopy Facility, Vienna Biocenter Core Facilities GmbH, Vienna, Austria
| | - Guenter P Resch
- Electron Microscopy Facility, Vienna Biocenter Core Facilities GmbH, Vienna, Austria.,Current Address: Nexperion e.U.-Solutions for Electron Microscopy, Vienna, Austria
| | - Marion Gröger
- Imaging Unit, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, Dept. Molecular Medicine, University Hospital Münster, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Dept. Bone and Skeletal Research, University Hospital Münster, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
34
|
Soto-Gamez A, Quax WJ, Demaria M. Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions. J Mol Biol 2019; 431:2629-2643. [DOI: 10.1016/j.jmb.2019.05.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 01/10/2023]
|
35
|
Li L, Zhang J, Zhang Q, Zhang D, Xiang F, Jia J, Wei P, Zhang J, Hu J, Huang Y. High Glucose Suppresses Keratinocyte Migration Through the Inhibition of p38 MAPK/Autophagy Pathway. Front Physiol 2019; 10:24. [PMID: 30745880 PMCID: PMC6360165 DOI: 10.3389/fphys.2019.00024] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Wound healing is delayed frequently in patients with diabetes. Proper keratinocyte migration is an essential step during re-epithelialization. Impaired keratinocyte migration is a critical underlying factor responsible for the deficiency of diabetic wound healing, which is mainly attributed to the hyperglycemic state. However, the underlying mechanisms remain largely unknown. Previously, we demonstrated a marked activation of p38/mitogen-activated protein kinase (MAPK) pathway in the regenerated migrating epidermis, which in turn promoted keratinocyte migration. In the present study, we find that p38/MAPK pathway is downregulated and accompanied by inactivation of autophagy under high glucose (HG) environment. In addition, we demonstrate that inactivation of p38/MAPK and autophagy result in the inhibition of keratinocyte migration under HG environment, and the activating p38/MAPK by MKK6(Glu) overexpression rescues cell migration through an autophagy-dependent way. Moreover, diabetic wound epidermis shows a significant inhibition of p38/MAPK and autophagy. Targeting these dysfunctions may provide novel therapeutic approaches.
Collapse
Affiliation(s)
- Lingfei Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Wei
- Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiaping Zhang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiongyu Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Endocrinology Department, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuesheng Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
36
|
Drullion C, Marot G, Martin N, Desle J, Saas L, Salazar-Cardozo C, Bouali F, Pourtier A, Abbadie C, Pluquet O. Pre-malignant transformation by senescence evasion is prevented by the PERK and ATF6alpha branches of the Unfolded Protein Response. Cancer Lett 2018; 438:187-196. [DOI: 10.1016/j.canlet.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
37
|
Shteingauz A, Porat Y, Voloshin T, Schneiderman RS, Munster M, Zeevi E, Kaynan N, Gotlib K, Giladi M, Kirson ED, Weinberg U, Kinzel A, Palti Y. AMPK-dependent autophagy upregulation serves as a survival mechanism in response to Tumor Treating Fields (TTFields). Cell Death Dis 2018; 9:1074. [PMID: 30341282 PMCID: PMC6195570 DOI: 10.1038/s41419-018-1085-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/04/2023]
Abstract
Tumor Treating Fields (TTFields), an approved treatment modality for glioblastoma, are delivered via non-invasive application of low-intensity, intermediate-frequency, alternating electric fields. TTFields application leads to abnormal mitosis, aneuploidy, and increased cell granularity, which are often associated with enhancement of autophagy. In this work, we evaluated whether TTFields effected the regulation of autophagy in glioma cells. We found that autophagy is upregulated in glioma cells treated with TTFields as demonstrated by immunoblot analysis of the lipidated microtubule-associated protein light chain 3 (LC3-II). Fluorescence and transmission electron microscopy demonstrated the presence of LC3 puncta and typical autophagosome-like structures in TTFields-treated cells. Utilizing time-lapse microscopy, we found that the significant increase in the formation of LC3 puncta was specific to cells that divided during TTFields application. Evaluation of selected cell stress parameters revealed an increase in the expression of the endoplasmic reticulum (ER) stress marker GRP78 and decreased intracellular ATP levels, both of which are indicative of increased proteotoxic stress. Pathway analysis demonstrated that TTFields-induced upregulation of autophagy is dependent on AMP-activated protein kinase (AMPK) activation. Depletion of AMPK or autophagy-related protein 7 (ATG7) inhibited the upregulation of autophagy in response to TTFields, as well as sensitized cells to the treatment, suggesting that cancer cells utilize autophagy as a resistance mechanism to TTFields. Combining TTFields with the autophagy inhibitor chloroquine (CQ) resulted in a significant dose-dependent reduction in cell growth compared with either TTFields or CQ alone. These results suggest that dividing cells upregulate autophagy in response to aneuploidy and ER stress induced by TTFields, and that AMPK serves as a key regulator of this process.
Collapse
|
38
|
Sun Y, Zheng Y, Wang C, Liu Y. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis 2018; 9:753. [PMID: 29988039 PMCID: PMC6037763 DOI: 10.1038/s41419-018-0794-4] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/09/2018] [Accepted: 06/14/2018] [Indexed: 12/28/2022]
Abstract
Glutathione (GSH) protects against oxidative damage in many tissues, including retinal pigment epithelium (RPE). Oxidative stress-mediated senescence and death of RPE and subsequent death of photoreceptors have been observed in age-related macular degeneration (AMD). Although the consequences of GSH depletion have been described previously, questions remain regarding the molecular mechanisms. We herein examined the downstream effects of GSH depletion on stress-induced premature senescence (SIPS) and cell death in human RPE cells. Briefly, cultured ARPE-19 cells were depleted of GSH using: (1) incubation in cystine (Cys2)-free culture medium; (2) treatment with buthionine sulphoximine (BSO, 1000 µM) to block de novo GSH synthesis for 24-48 h; or (3) treatment with erastin (10 µM for 12-24 h) to inhibit Cys2/glutamate antiporter (system xc-). These treatments decreased cell viability and increased both soluble and lipid reactive oxygen species (ROS) generation but did not affect mitochondrial ROS or mitochondrial mass. Western blot analysis revealed decreased expression of ferroptotic modulator glutathione peroxidase 4 (GPX4). Increased autophagy was apparent, as reflected by increased LC3 expression, autophagic vacuoles, and autophagic flux. In addition, GSH depletion induced SIPS, as evidenced by increased percentage of the senescence-associated β-galactosidase-positive cells, increased senescence-associated heterochromatin foci (SAHF), as well as cell cycle arrest at the G1 phase. GSH depletion-dependent cell death was prevented by selective ferroptosis inhibitors (8 μM Fer-1 and 600 nM Lip-1), iron chelator DFO (80 μM), as well as autophagic inhibitors Baf-A1 (75 nM) and 3-MA (10 mM). Inhibiting autophagy with Baf-A1 (75 nM) or 3-MA (10 mM) promoted SIPS. In contrast, inducing autophagy with rapamycin (100 nM) attenuated SIPS. Our findings suggest that GSH depletion induces ferroptosis, autophagy, and SIPS. In addition, we found that autophagy is activated in the process of ferroptosis and reduces SIPS, suggesting an essential role of autophagy in ferroptosis and SIPS.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chunxiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Lysosomes Support the Degradation, Signaling, and Mitochondrial Metabolism Necessary for Human Epidermal Differentiation. J Invest Dermatol 2018. [PMID: 29526763 DOI: 10.1016/j.jid.2018.02.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Keratinocytes undergo significant structural remodeling during epidermal differentiation, including a broad transformation of the proteome coupled with a reduction in total cellular biomass. This suggests that intracellular digestion of proteins and organelles is necessary for keratinocyte differentiation. Here, we use both genetic and pharmacologic approaches to demonstrate that autophagy and lysosomal functions are required for keratinocyte differentiation in organotypic human skin. Lysosomal activity was required for mechanistic target of rapamycin signaling and mitochondrial oxidative metabolism. In turn, mitochondrial reactive oxygen species, produced as a natural byproduct of oxidative phosphorylation, were necessary for keratinocyte differentiation. Finally, treatment with exogenous reactive oxygen species rescued the differentiation defect in lysosome-inhibited keratinocytes. These findings highlight a reciprocal relationship between lysosomes and mitochondria, in which lysosomes support mitochondrial metabolism and the associated production of mitochondrial reactive oxygen species. The mitochondrial reactive oxygen species released to the cytoplasm in suprabasal keratinocytes triggers autophagy and lysosome-mediated degradation necessary for epidermal differentiation. As defective lysosome-dependent autophagy is associated with common skin diseases including psoriasis and atopic dermatitis, a better understanding of the role of lysosomes in epidermal homeostasis may guide future therapeutic strategies.
Collapse
|
40
|
The ATF6α arm of the Unfolded Protein Response mediates replicative senescence in human fibroblasts through a COX2/prostaglandin E 2 intracrine pathway. Mech Ageing Dev 2018; 170:82-91. [DOI: 10.1016/j.mad.2017.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022]
|
41
|
Li L, Chen X, Gu H. The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases. Oncotarget 2018; 7:50682-50697. [PMID: 27191982 PMCID: PMC5226613 DOI: 10.18632/oncotarget.9330] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Autophagy is responsible for the lysosomal degradation of proteins, organelles, microorganisms and exogenous particles. Epidermis primarily consists of keratinocytes which functions as an extremely important barrier. Investigation on autophagy in keratinocytes has been continuously renewing, but is not so systematic due to the complexity of the autophagy machinery. Here we reviewed recent studies on the autophagy in keratinocyte with a focus on interplay between autophagy machinery and keratinocytes biology, and novel autophagy regulators identified in keratinocytes. In this review, we discussed the roles of autophagy in apoptosis, differentiation, immune response, survival and melanin metabolism, trying to reveal the possible involvement of autophagy in skin aging, skin disorders and skin color formation. Since autophagy routinely plays a double-edged sword role in various conditions, its functions in skin homeostasis and potential application as a therapeutic target for skin diseases remains to be clarified. Furthermore, more investigations are needed on optimizing designed strategies to inhibit or enhance autophagy for clinical efficacy.
Collapse
Affiliation(s)
- Li Li
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Chen
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Heng Gu
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
42
|
Oja S, Komulainen P, Penttilä A, Nystedt J, Korhonen M. Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther 2018; 9:6. [PMID: 29321040 PMCID: PMC5763576 DOI: 10.1186/s13287-017-0740-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Senescent cells are undesirable in cell therapy products due to reduced therapeutic activity and risk of aberrant cellular effects, and methods for assessing senescence are needed. Early-passage mesenchymal stromal cells (MSCs) are known to be small and spindle-shaped but become enlarged upon cell aging. Indeed, cell morphology is routinely evaluated during MSC production using subjective methods. We have therefore explored the possibility of utilizing automated imaging-based analysis of cell morphology in clinical cell manufacturing. METHODS An imaging system was adopted for analyzing changes in cell morphology of bone marrow-derived MSCs during long-term culture. Cells taken from the cultures at the desired passages were plated at low density for imaging, representing morphological changes observed in the clinical-grade cultures. The manifestations of aging and onset of senescence were monitored by population doubling numbers, expression of p16INK4a and p21Cip1/Waf1, β-galactosidase activity, and telomeric terminal restriction fragment analysis. RESULTS Cell area was the most statistically significant and practical parameter for describing morphological changes, correlating with biochemical senescence markers. MSCs from passages 1 (p1) and 3 (p3) were remarkably uniform in size, with cell areas between 1800 and 2500 μm2. At p5 the cells began to enlarge resulting in a 4.8-fold increase at p6-9 as compared to p1. The expression of p16INK4a and activity of β-galactosidase had a strong correlation with the increase in cell area, whereas the expression of p21Cip1/Waf1 reached its maximum at the onset of growth arrest and subsequently decreased. Mean telomere length shortened at an apparently constant rate during culture, from 8.2 ± 0.3 kbp at p1, reaching 6.08 ± 0.6 kbp at senescence. CONCLUSIONS Imaging analysis of cell morphology is a useful tool for evaluating aging in cell cultures throughout the lifespan of MSCs. Our findings suggest that imaging analysis can reproducibly detect aging-related changes in cell morphology in MSC cultures. These findings suggest that cell morphology is still a supreme measure of cell quality and may be utilized to develop new noninvasive imaging-based methods to screen and quantitate aging in clinical-grade cell cultures.
Collapse
Affiliation(s)
- S. Oja
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310 Helsinki, Finland
| | - P. Komulainen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310 Helsinki, Finland
- Institute of Biomedicine, Department of Anatomy, University of Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - A. Penttilä
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310 Helsinki, Finland
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - J. Nystedt
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310 Helsinki, Finland
| | - M. Korhonen
- Advanced Cell Therapy Centre, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310 Helsinki, Finland
- Division of Hemato-Oncology and Stem Cell Transplantation, Hospital for Children and Adolescents, Helsinki University Central Hospital, FI-00290 Helsinki, Finland
| |
Collapse
|
43
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
44
|
Mound A, Lozanova V, Warnon C, Hermant M, Robic J, Guere C, Vie K, Lambert de Rouvroit C, Tyteca D, Debacq-Chainiaux F, Poumay Y. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:958-971. [DOI: 10.1016/j.bbalip.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
|
45
|
Abstract
Keratin 24 (K24) is a new kind of keratin genes, which encodes a novel keratin protein, K24 that bears high similarity to the type I keratins and displays a unique expression profile. However, the role of K24 is incompletely understood. In our study, we investigated the localization of K24 within the epidermis and possible functions. Keratin 24 was found to be modestly overexpressed in senescent keratinocytes and was mainly restricted to the upper stratum spinosum of epidermis. The protein was required for terminal differentiation upon CaCl2-induced differentiation. In vitro results showed that increased K24 in keratinocytes dramatically changed the differentiation of primary keratinocytes. It also inhibited cell survival by G1/S phase cell cycle arrest and induced senescence, autophagy and apoptosis of keratinocytes. In addition, K24 activated PKCδ signal pathway involving in cellular survival. In summary, K24 may be suggested as a potential differentiation marker and anti-proliferative factor in the epidermis.
Collapse
|
46
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2017:3-90. [DOI: 10.1016/b978-0-12-805420-8.00001-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
47
|
Hayat M. Overview of Autophagy. AUTOPHAGY: CANCER, OTHER PATHOLOGIES, INFLAMMATION, IMMUNITY, INFECTION, AND AGING 2017:1-122. [DOI: 10.1016/b978-0-12-812146-7.00001-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
The ER stress regulator Bip mediates cadmium-induced autophagy and neuronal senescence. Sci Rep 2016; 6:38091. [PMID: 27905509 PMCID: PMC5131476 DOI: 10.1038/srep38091] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022] Open
Abstract
Autophagy is protective in cadmium (Cd)-induced oxidative damage. Endoplasmic reticulum (ER) stress has been shown to induce autophagy in a process requiring the unfolded protein response signalling pathways. Cd treatment significantly increased senescence in neuronal cells, which was aggravated by 3-MA or silencing of Atg5 and abolished by rapamycin. Cd increased expression of ER stress regulators Bip, chop, eIf2α, and ATF4, and activated autophagy as evidenced by upregulated LC3. Moreover, the ER stress inhibitor mithramycin inhibited the expression of ER stress protein chaperone Bip and blocked autophagic flux. Downregulating Bip significantly blocked the conversion of LC3-I to LC3-II, decreased LC3 puncta formation, and prevented the increase of senescence in PC12 cells. Interestingly, knocking down Bip regulated the expression of p-AMPK, p-AKT and p-s6k induced by Cd. BAPTA, a Bip inhibitor, decreased the expression of p-AMPK and LC3-II, but enhanced neuronal senescence. In addition, we found that siRNA for Bip enhanced GATA4 expression after 6 h Cd exposure in PC12 cells, while rapamycin treatment decreased GATA4 levels induced by 24 h Cd exposure. These results indicate that autophagy degraded GATA4 in a Bip-dependent way. Our findings suggest that autophagy regulated by Bip expression after ER stress suppressed Cd-induced neuronal senescence.
Collapse
|
49
|
Akinduro O, Sully K, Patel A, Robinson DJ, Chikh A, McPhail G, Braun KM, Philpott MP, Harwood CA, Byrne C, O'Shaughnessy RFL, Bergamaschi D. Constitutive Autophagy and Nucleophagy during Epidermal Differentiation. J Invest Dermatol 2016; 136:1460-1470. [PMID: 27021405 DOI: 10.1016/j.jid.2016.03.016] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 12/19/2022]
Abstract
Epidermal keratinocytes migrate through the epidermis up to the granular layer where, on terminal differentiation, they progressively lose organelles and convert into anucleate cells or corneocytes. Our report explores the role of autophagy in ensuring epidermal function providing the first comprehensive profile of autophagy marker expression in developing epidermis. We show that autophagy is constitutively active in the epidermal granular layer where by electron microscopy we identified double-membrane autophagosomes. We demonstrate that differentiating keratinocytes undergo a selective form of nucleophagy characterized by accumulation of microtubule-associated protein light chain 3/lysosomal-associated membrane protein 2/p62 positive autolysosomes. These perinuclear vesicles displayed positivity for histone interacting protein, heterochromatin protein 1α, and localize in proximity with Lamin A and B1 accumulation, whereas in newborn mice and adult human skin, we report LC3 puncta coincident with misshaped nuclei within the granular layer. This process relies on autophagy integrity as confirmed by lack of nucleophagy in differentiating keratinocytes depleted from WD repeat domain phosphoinositide interacting 1 or Unc-51 like autophagy activating kinase 1. Final validation into a skin disease model showed that impaired autophagy contributes to the pathogenesis of psoriasis. Lack of LC3 expression in psoriatic skin lesions correlates with parakeratosis and deregulated expression or location of most of the autophagic markers. Our findings may have implications and improve treatment options for patients with epidermal barrier defects.
Collapse
Affiliation(s)
- Olufolake Akinduro
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katherine Sully
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ankit Patel
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Deborah J Robinson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anissa Chikh
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Graham McPhail
- EM Service, Blizard Institute Pathology Core Facility, Cellular Pathology Department, Royal London Hospital, London, UK
| | - Kristin M Braun
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael P Philpott
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carolyn Byrne
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Livingstone Skin Research Centre for Children, UCL Institute of Child Health, London, UK; Department of Immunobiology, UCL Institute of Child Health, London, UK
| | - Daniele Bergamaschi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
50
|
Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech Ageing Dev 2016; 156:17-24. [PMID: 27060261 DOI: 10.1016/j.mad.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 01/07/2023]
Abstract
Senescence and apoptosis constitute types of cellular responses that normally ensure homeostasis, when endogenous or exogenous signals occur. Their deregulation is often observed in various pathologies, such as age and non-age related diseases including cancer. Although epithelial cells and fibroblasts are capable to exert both functions, under a plethora of insults, the fact that they exhibit notable intrinsic differences in cell/tissue homeostasis properties, might be a crucial determinant of the mode of response to a certain stress signal. Sparse evidence in the literature reveals that in the same tissue/organ context and under the same conditions, the cell type seems to drive the differential counteraction between epithelia and fibroblasts. Based on the above notion we propose that, upon stress insults, human fibroblasts seem to predominantly respond via senescence, while epithelial cells prefer to exert apoptosis. We suggest that considering the tissue as a whole (epithelium and stroma) would benefit research into new therapeutic strategies for chronic diseases and cancer.
Collapse
|