1
|
Bhattacharjee P, Iyer MR. Therapeutic Potential of Vascular Adhesion Protein-1 (VAP-1)/Semicarbazide-Sensitive Amine Oxidase (SSAO) Inhibitors: Current Medicinal Chemistry and Emerging Opportunities. Med Res Rev 2025. [PMID: 40396328 DOI: 10.1002/med.22118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/14/2025] [Accepted: 04/27/2025] [Indexed: 05/22/2025]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO) is a vascular enzyme and expressed in high concentrations in vascular smooth muscle cells (VSMCs), localized in the caveolae of the plasma membrane, and the endothelial cells. SSAO is classified as a copper amine oxidase and encoded by the amine oxidase copper-containing 3 gene. SSAO exists both as a soluble protein and as a tissue-bound transmembrane protein. The latter is often called vascular adhesion protein 1. Vascular adhesion protein-1 or VAP-1, encoded by the AOC3 gene, is a pro-inflammatory and multifunctional molecule belonging to the SSAO family. It assists the transformation of primary amines to aldehydes resulting in the production of hydrogen peroxide and ammonia. Work from the last two decades, has shown that VAP-1/SSAO plays a role in several physiological and pathological processes, making it a potentially valuable target for therapeutic development. In this review, we provide a detailed overview of the inhibitors of VAP-1/SSAO that are being developed specifically for the treatment of inflammatory diseases. Here in we have highlighted important aspects of the compounds investigated in therapeutic applications. Furthermore, we have outlined potential avenues for innovation with the aim of maximizing the therapeutic efficacy of VAP-1/SSAO inhibitors in clinical settings.
Collapse
Affiliation(s)
- Pinaki Bhattacharjee
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
2
|
Zhang Y, Geng C, Zhou Y, Li F, Peng S, Guo X, Gu X, Li J, Li H. Association Between Vascular Adhesion Protein-1 (VAP-1) and MACE in Patients with Coronary Heart Disease: A Cohort Study. J Inflamm Res 2024; 17:3603-3615. [PMID: 38855169 PMCID: PMC11162208 DOI: 10.2147/jir.s460605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
Background Vascular adhesion protein-1 (VAP-1), an inflammation-inducible endothelial cell molecule, was reported to be implicated in a variety of cardiovascular diseases. However, the clinical significance of circulating VAP-1 levels in patients with coronary heart disease (CHD) remains less studied. Patients and Methods We retrospectively analyzed clinical data of 336 hospitalized patients in the Second Affiliated Hospital of Soochow University from May 2020 to September 2022, 174 of which were diagnosed with CHD. Serum VAP-1 was measured by enzyme-linked immunosorbent assay at enrollment. The primary end point of this study was the occurrence of major adverse cardiovascular events (MACE). The coronary stenosis and clinical manifestations of CHD were assessed and recorded from medical records or follow-up calls. The relevant results were obtained, and the reliability of the conclusions was verified through regression analysis, curve fitting, and survival curve. Results After adjusting for potential confounders, higher serum VAP-1 level was associated with increased risk of MACE in patients with CHD [(HR = 5.11, 95% CI = 1.02-25.59), (HR = 5.81, 95% CI = 1.16-29.11)]. The results of curve fitting and survival analysis were consistent with those of regression analysis. However, no significant association was observed between VAP-1 and MACE in the entire study population [(HR = 5.11, 95% CI = 0.41-1.93), (HR = 1.17, 95% CI = 0.52-2.62)]. Furthermore, the level of VAP-1 did not show a significant correlation with coronary stenosis and the clinical manifestations of CHD. Conclusion These findings suggested that CHD patients with higher serum levels of VAP-1 are at a higher risk of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- You Zhang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Chi Geng
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Yulun Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Feng Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Siliang Peng
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Xinru Guo
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Xiaosong Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Jing Li
- Department of Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
3
|
Wang W, Liu L, Shan R, Wang C. Associations between dietary copper intake, general obesity and abdominal obesity risk: A nationwide cohort study in China. Front Nutr 2022; 9:1009721. [PMID: 36466427 PMCID: PMC9716269 DOI: 10.3389/fnut.2022.1009721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/07/2022] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Copper plays a crucial role in redox reactions. The aims of this research are to examine the effects of copper consumption on general obesity and abdominal obesity risk. METHODS Overall, data of 13,282 participants were obtained from the China Health and Nutrition Survey (1997-2011). A combination of individual 24-h recall and household survey was used to assess dietary intake. Time-dependent mixed effect Cox regression model treating family as a random effect were used to assess the associations between quintiles of copper intake, general obesity and abdominal obesity risk. Obesity was defined by BMI ≥ 28 kg/m2, and abdominal obesity was defined as waist circumference ≥85 cm in men and ≥80 cm in women. RESULTS During follow-up, 1,073 and 4,583 incident cases of general obesity and abdominal obesity occurred respectively. There were U-shaped associations of dietary copper intakes with general obesity and abdominal obesity (P for nonlinearity <0.001). In the general obesity track, compared with quintile 3 (reference category), participants in the top quintile and bottom quintile showed higher general obesity risk (HR, 2.00; 95%CI: 1.63, 2.45 for the top quintile, HR, 1.34; 95%CI: 1.08, 1.68 for the bottom quintile). In the abdominal obesity track, compared with quintile 3, the top quintile and bottom quintile were also associated with a significantly increased risk of abdominal obesity (HR, 1.68; 95%CI: 1.52, 1.87 for the top quintile, HR, 1.36; 95%CI: 1.22, 1.52 for the bottom quintile). CONCLUSIONS We demonstrated U-shaped associations between dietary copper, general and abdominal obesity risk in Chinese and emphasized the importance of maintaining appropriate copper intake level for the prevention of obesity.
Collapse
Affiliation(s)
- Weiqi Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Lin Liu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Ruiqi Shan
- Department of Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhong Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
4
|
Danielli M, Thomas RC, Quinn LM, Tan BK. Vascular adhesion protein-1 (VAP-1) in vascular inflammatory diseases. VASA 2022; 51:341-350. [DOI: 10.1024/0301-1526/a001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Summary: Vascular adhesion protein-1 (VAP-1) also known as amino oxidase copper containing 3 (AOC3) is a pro-inflammatory and versatile molecule with adhesive and enzymatic properties. VAP-1 is a primary amine oxidase belonging to the semicarbazide-sensitive amine oxidase (SSAO) family, which catalyzes the oxidation of primary amines leading to the production of ammonium, formaldehyde, methylglyoxal, and hydrogen peroxide. VAP-1 is mainly expressed by endothelial cells, smooth muscle cells, adipocytes and pericytes. It is involved in a repertoire of biological functions, e.g., immune cell extravasation, angiogenesis, and vascularization. Research into VAP-1 has intensified within the last decade on its role as a novel clinical biomarker and as a potential therapeutic target of vascular inflammatory disorders such as atherosclerosis, stroke, diabetes, neurovascular disorders (e.g., Alzheimer’s Disease), hepatic disease (e.g., non-alcoholic steatohepatitis), and skin conditions (e.g., psoriasis). This is the most up-to-date and comprehensive review on VAP-1 focusing on the translational aspects of VAP-1. Compared to recent reviews, our review provides novel insights on VAP-1 and heart failure, stroke and frailty, diabetes, endometriosis, osteoarthritis, COVID-19, conjunctivitis associated systemic lupus erythematosus, hematopoietic stem cells, gliomas, treatment of colorectal cancer with a novel VAP-1 inhibitor (U-V269), promoting recovery of motor functions and habit learning with a novel VAP-1 inhibitor (PXS-4681A), and 68Ga-DOTA-Siglec-9, a labelled peptide of Siglec-9 (a VAP-1 ligand), which appears to be a safe PET tracer for inflammation in rheumatoid arthritis. Finally, we present the emerging role of VAP-1 in pregnancy as a gatekeeper of immune cells, which are critical for spiral arterial remodeling, the deficiency of which could lead to vascular disorders of pregnancy such as preeclampsia. Future research should prioritize clinical trials on VAP-1 small-molecule inhibitors and monoclonal antibodies, thus, maximizing the potential of VAP-1 targeted therapy as well as research into sVAP-1 as a clinical biomarker of diseases and its prognosis.
Collapse
Affiliation(s)
- Marianna Danielli
- Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Lauren Marie Quinn
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Bee Kang Tan
- Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Diabetes Research Centre, Leicester General Hospital, Leicester, United Kingdom
| |
Collapse
|
5
|
Carpéné C, Viana P, Iffiú-Soltesz Z, Tapolcsányi P, Földi AÁ, Mátyus P, Dunkel P. Effects of Chemical Structures Interacting with Amine Oxidases on Glucose, Lipid and Hydrogen Peroxide Handling by Human Adipocytes. Molecules 2022; 27:6224. [PMID: 36234761 PMCID: PMC9571511 DOI: 10.3390/molecules27196224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Benzylamine is a natural molecule present in food and edible plants, capable of activating hexose uptake and inhibiting lipolysis in human fat cells. These effects are dependent on its oxidation by amine oxidases present in adipocytes, and on the subsequent hydrogen peroxide production, known to exhibit insulin-like actions. Virtually, other substrates interacting with such hydrogen peroxide-releasing enzymes potentially can modulate lipid accumulation in adipose tissue. Inhibition of such enzymes has also been reported to influence lipid deposition. We have therefore studied in human adipocytes the lipolytic and lipogenic activities of pharmacological entities designed to interact with amine oxidases highly expressed in this cell type: the semicarbazide-sensitive amine oxidase (SSAO also known as PrAO or VAP-1) and the monoamine oxidases (MAO). The results showed that SZV-2016 and SZV-2017 behaved as better substrates than benzylamine, releasing hydrogen peroxide once oxidized, and reproduced or even exceeded its insulin-like metabolic effects in fat cells. Additionally, several novel SSAO inhibitors, such as SZV-2007 and SZV-1398, have been evidenced and shown to inhibit benzylamine metabolic actions. Taken as a whole, our findings reinforce the list of molecules that influence the regulation of triacylglycerol assembly/breakdown, at least in vitro in human adipocytes. The novel compounds deserve deeper investigation of their mechanisms of interaction with SSAO or MAO, and constitute potential candidates for therapeutic use in obesity and diabetes.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, 31432 Toulouse, France
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, 31432 Toulouse, France
| | - Pénélope Viana
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, 31432 Toulouse, France
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, 31432 Toulouse, France
| | - Zsuzsa Iffiú-Soltesz
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, 31432 Toulouse, France
| | - Pál Tapolcsányi
- Department of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hungary
| | - Anna Ágota Földi
- Department of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hungary
| | - Péter Mátyus
- Department of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hungary
- E-Group ICT SOFTWARE, H-1027 Budapest, Hungary
| | - Petra Dunkel
- Department of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hungary
| |
Collapse
|
6
|
Powell DR, Revelli JP, Doree DD, DaCosta CM, Desai U, Shadoan MK, Rodriguez L, Mullens M, Yang QM, Ding ZM, Kirkpatrick LL, Vogel P, Zambrowicz B, Sands AT, Platt KA, Hansen GM, Brommage R. High-Throughput Screening of Mouse Gene Knockouts Identifies Established and Novel High Body Fat Phenotypes. Diabetes Metab Syndr Obes 2021; 14:3753-3785. [PMID: 34483672 PMCID: PMC8409770 DOI: 10.2147/dmso.s322083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.
Collapse
Affiliation(s)
- David R Powell
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Jean-Pierre Revelli
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Deon D Doree
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Christopher M DaCosta
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Urvi Desai
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Melanie K Shadoan
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Lawrence Rodriguez
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Michael Mullens
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Qi M Yang
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Zhi-Ming Ding
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Laura L Kirkpatrick
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Peter Vogel
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| | - Brian Zambrowicz
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Arthur T Sands
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
- Department of Information Technology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Kenneth A Platt
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Gwenn M Hansen
- Department of Molecular Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, Tx, USA
| | - Robert Brommage
- Department of Pharmaceutical Biology, Lexicon Pharmaceuticals, Inc, The Woodlands, TX, USA
| |
Collapse
|
7
|
Copper and lipid metabolism: A reciprocal relationship. Biochim Biophys Acta Gen Subj 2021; 1865:129979. [PMID: 34364973 DOI: 10.1016/j.bbagen.2021.129979] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Copper and lipid metabolism are intimately linked, sharing a complex, inverse relationship in the periphery (outside of the central nervous system), which remains to be fully elucidated. SCOPE Copper and lipids have independently been implicated in the pathogenesis of diseases involving dyslipidaemia, including obesity, cardiovascular disease and non-alcoholic fatty liver disease and also in Wilson disease, an inherited disorder of copper overload. Here we review the relationship between copper and lipid regulatory pathways, which are potential druggable targets for therapeutic intervention. MAJOR CONCLUSIONS While the inverse relationship between copper and lipids is apparent, tissue-specific roles for the copper regulatory protein, ATP7B provide further insight into the association between copper and lipid metabolism. GENERAL SIGNIFICANCE Understanding the relationship between copper and lipid metabolism is important for identifying druggable targets for diseases with disrupted copper and/or lipid metabolism; and may reveal similar connections within the brain and in neurological diseases with impaired copper and lipid transport.
Collapse
|
8
|
Li H, Du S, Niu P, Gu X, Wang J, Zhao Y. Vascular Adhesion Protein-1 (VAP-1)/Semicarbazide-Sensitive Amine Oxidase (SSAO): A Potential Therapeutic Target for Atherosclerotic Cardiovascular Diseases. Front Pharmacol 2021; 12:679707. [PMID: 34322017 PMCID: PMC8312380 DOI: 10.3389/fphar.2021.679707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular adhesion protein-1 (VAP-1) is a semicarbazide-sensitive amine oxidase (SSAO), whose enzymatic activity regulates the adhesion/exudation of leukocytes in/from blood vessels. Due to its abundant expressions in vascular systems and prominent roles in inflammations, increasing attentions have been paid to the roles of VAP-1/SSAO in atherosclerosis, a chronic vascular inflammation that eventually drives clinical cardiovascular events. Clinical studies have demonstrated a potential value of soluble VAP-1 (sVAP-1) for the diagnosis and prognosis of cardiovascular diseases. Recent findings revealed that VAP-1 is expressed in atherosclerotic plaques and treatment with VAP-1 inhibitors alleviates the progression of atherosclerosis. This review will focus on the roles of VAP-1/SSAO in the progression of atherosclerotic lesions and therapeutic potentials of VAP-1 inhibitors for cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shiyu Du
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Panpan Niu
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaosong Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Unzeta M, Hernàndez-Guillamon M, Sun P, Solé M. SSAO/VAP-1 in Cerebrovascular Disorders: A Potential Therapeutic Target for Stroke and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22073365. [PMID: 33805974 PMCID: PMC8036996 DOI: 10.3390/ijms22073365] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
The semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1) or primary amine oxidase (PrAO), is a deaminating enzyme highly expressed in vessels that generates harmful products as a result of its enzymatic activity. As a multifunctional enzyme, it is also involved in inflammation through its ability to bind and promote the transmigration of circulating leukocytes into inflamed tissues. Inflammation is present in different systemic and cerebral diseases, including stroke and Alzheimer’s disease (AD). These pathologies show important affectations on cerebral vessels, together with increased SSAO levels. This review summarizes the main roles of SSAO/VAP-1 in human physiology and pathophysiology and discusses the mechanisms by which it can affect the onset and progression of both stroke and AD. As there is an evident interrelationship between stroke and AD, basically through the vascular system dysfunction, the possibility that SSAO/VAP-1 could be involved in the transition between these two pathologies is suggested. Hence, its inhibition is proposed to be an interesting therapeutical approach to the brain damage induced in these both cerebral pathologies.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Auònoma de Barcelona, 08193 Barcelona, Spain;
| | - Mar Hernàndez-Guillamon
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Correspondence: ; Tel.: +34-934-896-766
| | - Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| |
Collapse
|
10
|
Vascular Adhesion Protein 1 Mediates Gut Microbial Flagellin-Induced Inflammation, Leukocyte Infiltration, and Hepatic Steatosis. SCI 2021. [DOI: 10.3390/sci3010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
Abstract
Toll-like receptor 5 ligand, flagellin, and vascular adhesion protein 1 (VAP-1) are involved in non-alcoholic fatty liver disease. This study aimed to determine whether VAP-1 mediates flagellin-induced hepatic fat accumulation. The effects of flagellin on adipocyte VAP-1 expression were first studied in vitro. Then, flagellin (100 ng/mouse) or saline was intraperitoneally injected into C57BL/6J (WT) and C57BL/6-Aoc3-/- (VAP-1 KO) mice on a high-fat diet twice a week every 2 weeks for 10 weeks. After that, the effects on inflammation, insulin signaling, and metabolism were studied in liver and adipose tissues. Hepatic fat was quantified histologically and biochemically. Because flagellin challenge increased VAP-1 expression in human adipocytes, we used VAP-1 KO mice to determine whether VAP-1 regulates the inflammatory and metabolic effects of flagellin in vivo. In mice, VAP-1 mediated flagellin-induced inflammation, leukocyte infiltration, and lipolysis in visceral adipose tissue. Consequently, an increased release of glycerol led to hepatic steatosis in WT, but not in KO mice. Flagellin-induced hepatic fibrosis was not mediated by VAP-1. VAP-1 KO mice harbored more inflammation-related microbes than WT mice, while flagellin did not affect the gut microbiota. Our results suggest that by acting on visceral adipose tissue, flagellin increased leukocyte infiltration that induced lipolysis. Further, the released glycerol participated in hepatic fat accumulation. In conclusion, the results describe that gut microbial flagellin through VAP-1 induced hepatic steatosis.
Collapse
|
11
|
Tékus V, Horváth ÁI, Csekő K, Szabadfi K, Kovács-Valasek A, Dányádi B, Deres L, Halmosi R, Sághy É, Varga ZV, Adeghate E, Kőszegi T, Mátyus P, Gábriel R, Ferdinandy P, Pintér E, Helyes Z. Protective effects of the novel amine-oxidase inhibitor multi-target drug SZV 1287 on streptozotocin-induced beta cell damage and diabetic complications in rats. Biomed Pharmacother 2020; 134:111105. [PMID: 33338750 DOI: 10.1016/j.biopha.2020.111105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/12/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is a common metabolic disease leading to hyperglycemia due to insufficient pancreatic insulin production or effect. Amine oxidase copper containing 3 (AOC3) is an enzyme that belongs to the semicarbazide-sensitive amine oxidase family, which may be a novel therapeutic target to treat diabetic complications. We aimed to explore the effects of AOC3 inhibition and to test the actions of our novel AOC3 inhibitor multi-target drug candidate, SZV 1287, compared to a selective reference compound, LJP 1207, in an 8-week long insulin-controlled streptozotocin (STZ)-induced (60 mg/kg i.p.) rat diabetes model. Both AOC3 inhibitors (20 mg/kg, daily s.c. injections) were protective against STZ-induced pancreatic beta cell damage determined by insulin immunohistochemistry and radioimmunoassay, neuropathic cold hypersensitivity measured by paw withdrawal latency decrease from 0 °C water, and retinal dysfunction detected by electroretinography. SZV 1287 showed greater inhibitory effects on beta cell damage, and reduced retinal apoptosis shown by histochemistry. Mechanical hypersensitivity measured by aesthesiometry, cardiac dysfunction and nitrosative stress determined by echocardiography and immunohistochemistry/Western blot, respectively, serum Na+, K+, fructosamine, and urine microalbumin, creatinine, total protein/creatinine ratio alterations did not develop in response to diabetes. None of these parameters were influenced by the treatments except for SZV 1287 reducing serum fructosamine and LJP 1207 increasing urine creatinine. We provide the first evidence for protective effects of AOC3 inhibition on STZ-induced pancreatic beta cell damage, neuropathic cold hypersensitivity and diabetic retinal dysfunction. Long-term treatment with our novel multi-target analgesic candidate, SZV 1287, is safe and effective also under diabetic conditions.
Collapse
Affiliation(s)
- Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624, Pécs, Hungary; Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
| | - Ádám István Horváth
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624, Pécs, Hungary; Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624, Pécs, Hungary; Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
| | - Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pécs, Faculty of Sciences, Ifjúság útja 6, H-7624, Pécs, Hungary; Retinal Neurobiology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Faculty of Sciences, Ifjúság útja 6, H-7624, Pécs, Hungary; Retinal Neurobiology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
| | - Bese Dányádi
- Department of Anatomy, University of Pécs, Medical School, Szigeti út 12, H-7624, Pécs, Hungary; Retinal Neurobiology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
| | - László Deres
- Genomics and Experimental Cardiology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; HAS-UP Nuclear-Mitochondrial Interactions Research Group, H-1245, Budapest, Hungary; 1st Department of Medicine, Clinical Centre, University of Pécs, Medical School, Ifjúság útja 13, H-7624, Pécs, Hungary
| | - Róbert Halmosi
- Genomics and Experimental Cardiology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; 1st Department of Medicine, Clinical Centre, University of Pécs, Medical School, Ifjúság útja 13, H-7624, Pécs, Hungary
| | - Éva Sághy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Faculty of Medicine, Nagyvárad tér 4, H-1089, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Faculty of Medicine, Nagyvárad tér 4, H-1089, Budapest, Hungary
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Tamás Kőszegi
- Department of Laboratory Medicine, University of Pécs, Medical School, Ifjúság útja 13, H-7624, Pécs, Hungary
| | - Péter Mátyus
- Institute of Digital Health Sciences, Semmelweis University, Faculty of Health and Public Services, Ferenc tér 15, H-1094, Budapest, Hungary
| | - Róbert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Faculty of Sciences, Ifjúság útja 6, H-7624, Pécs, Hungary; Retinal Neurobiology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Faculty of Medicine, Nagyvárad tér 4, H-1089, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624, Pécs, Hungary; PharmInVivo Ltd., Szondi György u. 10, H-7629, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Szigeti út 12, H-7624, Pécs, Hungary; Molecular Pharmacology Research Group & Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; PharmInVivo Ltd., Szondi György u. 10, H-7629, Pécs, Hungary.
| |
Collapse
|
12
|
Jargaud V, Bour S, Tercé F, Collet X, Valet P, Bouloumié A, Guillemot JC, Mauriège P, Jalkanen S, Stolen C, Salmi M, Smith DJ, Carpéné C. Obesity of mice lacking VAP-1/SSAO by Aoc3 gene deletion is reproduced in mice expressing a mutated vascular adhesion protein-1 (VAP-1) devoid of amine oxidase activity. J Physiol Biochem 2020; 77:141-154. [PMID: 32712883 DOI: 10.1007/s13105-020-00756-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
The product of Aoc3 gene is known as vascular adhesion protein-1 (VAP-1), a glycoprotein contributing to leukocyte extravasation and exhibiting semicarbazide-sensitive amine oxidase activity (SSAO). Regarding the immune functions of VAP-1/SSAO, it is known that mice bearing Aoc3 gene knock-out (AOC3KO) exhibit defects in leukocyte migration similar to those of mice expressing a mutated VAP-1 lacking functional SSAO activity (knock-in, AOC3KI). However, it has not been reported whether these models differ regarding other disturbances. Thus, we further compared endocrine-metabolic phenotypes of AOC3KO and AOC3KI mice to their respective control. Special attention was paid on adiposity, glucose and lipid handling, since VAP-1/SSAO is highly expressed in adipose tissue (AT). In both mouse lines, no tissue SSAO activity was found, while Aoc3 mRNA was absent in AOC3KO only. Although food consumption was unchanged, both AOC3KO and AOC3KI mice were heavier and fatter than their respective controls. Other alterations commonly found in adipocytes from both lines were loss of benzylamine insulin-like action with unchanged insulin lipogenic responsiveness and adiponectin expression. A similar downregulation of inflammatory markers (CD45, IL6) was found in AT. Glucose handling and liver mass remained unchanged, while circulating lipid profile was distinctly altered, with increased cholesterol in AOC3KO only. These results suggest that the lack of oxidase activity found in AOC3KI is sufficient to reproduce the metabolic disturbances observed in AOC3KO mice, save those related with cholesterol transport. Modulation of SSAO activity therefore constitutes a potential target for the treatment of cardiometabolic diseases, especially obesity when complicated by low-grade inflammation.
Collapse
Affiliation(s)
- Valentin Jargaud
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France.,Sanofi, Translational Sciences Unit, Chilly-Mazarin, France
| | - Sandy Bour
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - François Tercé
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Xavier Collet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Philippe Valet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Anne Bouloumié
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | | | - Pascale Mauriège
- Dept. of Kinesiology, Fac. of Medicine and PEPS, Laval University, Québec, Canada
| | - Sirpa Jalkanen
- MediCity and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Craig Stolen
- MediCity and Biotie Therapies Plc, Turku, Finland
| | - Marko Salmi
- MediCity and Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Toulouse, France. .,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France.
| |
Collapse
|
13
|
Vascular Adhesion Protein 1 Mediates Gut Microbial Flagellin-Induced Inflammation, Leukocyte Infiltration, and Hepatic Steatosis. SCI 2019. [DOI: 10.3390/sci1030065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 5 ligand, flagellin, and Vascular Adhesion Protein-1 (VAP-1) are involved in non-alcoholic fatty liver disease (NAFLD). This study aimed to determine whether VAP-1 mediates flagellin-induced hepatic fat accumulation. The effects of flagellin on adipocyte VAP-1 expression were first studied in vitro. Then, flagellin (100 ng/mouse) or saline was intraperitoneally injected to C57BL/6J WT and C57BL/6-Aoc3-/- (VAP-1 KO) mice on high-fat diet twice a week every two weeks for 10-weeks. After that, the effects on inflammation, insulin signaling, and metabolism were studied in liver and adipose tissues. Hepatic fat was quantified histologically and biochemically. Because flagellin challenge increased VAP-1 expression in human adipocytes, we used VAP-1 KO mice to determine whether VAP-1 regulates the inflammatory and metabolic effects of flagellin in vivo. In mice, VAP-1 mediated flagellin-induced inflammation, leukocyte infiltration and lipolysis in visceral adipose tissue. Consequently, increased release of glycerol led to hepatic steatosis in WT but not KO mice. Flagellin-induced hepatic fibrosis was not mediated by VAP-1. VAP-1 KO mice harbored more inflammation-related microbes than WT, while flagellin did not affect the gut microbiota. Our results suggest that by acting on visceral adipose tissue, flagellin increased leukocyte infiltration that induced lipolysis. Further, the released glycerol participated in hepatic fat accumulation. In conclusion, the results describe that gut microbial flagellin through VAP-1 induced hepatic steatosis.
Collapse
|
14
|
Mercader J, Sabater AG, Le Gonidec S, Decaunes P, Chaplin A, Gómez-Zorita S, Milagro FI, Carpéné C. Oral Phenelzine Treatment Mitigates Metabolic Disturbances in Mice Fed a High-Fat Diet. J Pharmacol Exp Ther 2019; 371:555-566. [PMID: 31270215 DOI: 10.1124/jpet.119.259895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Novel mechanisms and health benefits have been recently suggested for the antidepressant drug phenelzine (PHE), known as a nonselective monoamine oxidase inhibitor. They include an antilipogenic action that could have an impact on excessive fat accumulation and obesity-related metabolic alterations. We evaluated the metabolic effects of an oral PHE treatment on mice fed a high-fat diet (HFD). Eleven-week-old male C57BL/6 mice were fed a HFD and either a 0.028% PHE solution (HFD + PHE) or water to drink for 11 weeks. PHE attenuated the increase in body weight and adiposity without affecting food consumption. Energy efficiency was lower in HFD + PHE mice. Lipid content was reduced in subcutaneous fat pads, liver, and skeletal muscle. In white adipose tissue (WAT), PHE reduced sterol regulatory element-binding protein-1c and phosphoenolpyruvate carboxykinase mRNA levels, inhibited amine-induced lipogenesis, and did not increase lipolysis. Moreover, HFD + PHE mice presented diminished levels of hydrogen peroxide release in subcutaneous WAT and reduced expression of leukocyte transmigration markers and proinflammatory cytokines in visceral WAT and liver. PHE reduced the circulating levels of glycerol, triacylglycerols, high-density lipoprotein cholesterol, and insulin. Insulin resistance was reduced, without affecting glucose levels and glucose tolerance. In contrast, PHE increased rectal temperature and slightly increased energy expenditure. The mitigation of HFD-induced metabolic disturbances points toward a promising role for PHE in obesity treatment and encourages further research on its mechanisms of action. SIGNIFICANCE STATEMENT: Phenelzine reduces body fat, markers of oxidative stress, inflammation, and insulin resistance in high-fat diet mice. Semicarbazide-sensitive amine oxidase, monoamine oxidase, phosphoenolpyruvate carboxykinase, and sterol regulatory element-binding protein-1c are involved in the metabolic effects of phenelzine. Phenelzine could be potentially used for the treatment of obesity-related complications.
Collapse
Affiliation(s)
- Josep Mercader
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Agustín G Sabater
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Sophie Le Gonidec
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Pauline Decaunes
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Alice Chaplin
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Saioa Gómez-Zorita
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Fermín I Milagro
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Christian Carpéné
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| |
Collapse
|
15
|
Yang H, Liu CN, Wolf RM, Ralle M, Dev S, Pierson H, Askin F, Steele KE, Magnuson TH, Schweitzer MA, Wong GW, Lutsenko S. Obesity is associated with copper elevation in serum and tissues. Metallomics 2019; 11:1363-1371. [PMID: 31249997 DOI: 10.1039/c9mt00148d] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Copper misbalance has been linked to fat accumulation in animals and experimental systems; however, information about copper homeostasis in human obesity is limited. In this study, the copper status of obese individuals was evaluated by measuring their levels of copper and cuproproteins in serum, adipose and hepatic tissues. The analysis of serum trace elements showed significant positive and element-specific correlation between copper and BMI after controlling for gender, age, and ethnicity. Serum copper also positively correlated with leptin, insulin, and the leptin/BMI ratio. When compared to lean controls, obese patients had elevated circulating cuproproteins, such as semucarbazide-sensitive amine oxidase (SSAO) and ceruloplasmin, and higher SSAO activity and copper levels in visceral fat. Although hepatic steatosis reduces copper levels in the liver, obese patients with no or mild steatosis have higher copper content in the liver compared to lean controls. In conclusion, obese patients evaluated in this study had altered copper status. Strong positive correlations of copper levels with BMI and leptin suggest that copper and/or cuproproteins may be functionally linked to fat accumulation.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Chin-Nung Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Risa M Wolf
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martina Ralle
- Department of Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Som Dev
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hannah Pierson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Frederic Askin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberley E Steele
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas H Magnuson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Schweitzer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Resveratrol Anti-Obesity Effects: Rapid Inhibition of Adipocyte Glucose Utilization. Antioxidants (Basel) 2019; 8:antiox8030074. [PMID: 30917543 PMCID: PMC6466544 DOI: 10.3390/antiox8030074] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Studies in animal models of diabetes and obesity have shown that resveratrol mitigates complications of metabolic diseases, beyond those resulting from oxidative stress. Furthermore, results obtained with cultured preadipocytes have also revealed that prolonged resveratrol treatment impairs adipogenesis. Considering the role of adipocytes in the hypertrophy of fat stores, and keeping in mind that insulin is the main trigger of excessive energy storage during post-prandial periods, the present study aimed to investigate how short-term effects of resveratrol can limit glucose disposal in a gut-adipose tissue axis. We found that resveratrol exhibits a more potent inhibitory capacity towards α-glucosidase than pancreatic lipase activity. Resveratrol also rapidly blunts glucose transport in mature fat cells by counteracting the effect of insulin and insulin-like lipogenic agents. Within two hours, resveratrol also inhibited the incorporation of glucose into lipids of adipocytes, which was unaffected by membrane cholesterol depletion. Moreover, the comparison between adipocytes with invalidated semicarbazide-sensitive amine oxidase activity and their control, or between resveratrol and several inhibitors, did not indicate that the recently described interaction of resveratrol with amine oxidases was involved in its antilipogenic effect. Caffeine and piceatannol, previously said to interact with glucose carriers, also inhibit lipogenesis in adipocytes, whereas other antioxidant phytochemicals do not reproduce such an antilipogenic effect. This study highlights the diverse first steps by which resveratrol impairs excessive fat accumulation, indicating that this natural molecule and its derivatives deserve further studies to develop their potential anti-obesity properties.
Collapse
|
17
|
Abstract
Significance: Vascular adhesion protein-1 (VAP-1) is an ectoenzyme that oxidates primary amines in a reaction producing also hydrogen peroxide. VAP-1 on the blood vessel endothelium regulates leukocyte extravasation from the blood into tissues under physiological and pathological conditions. Recent Advances: Inhibition of VAP-1 by neutralizing antibodies and by several novel small-molecule enzyme inhibitors interferes with leukocyte trafficking and alleviates inflammation in many experimental models. Targeting of VAP-1 also shows beneficial effects in several other diseases, such as ischemia/reperfusion, fibrosis, and cancer. Moreover, soluble VAP-1 levels may serve as a new prognostic biomarker in selected diseases. Critical Issues: Understanding the contribution of the enzyme activity-independent and enzyme activity-dependent functions, which often appear to be mediated by the hydrogen peroxide production, in the VAP-1 biology will be crucial. Similarly, there is a pressing need to understand which of the VAP-1 functions are regulated through the modulation of leukocyte trafficking, and what is the role of VAP-1 synthesized in adipose and smooth muscle cells. Future Directions: The specificity and selectivity of new VAP-1 inhibitors, and their value in animal models under therapeutic settings need to be addressed. Results from several programs studying the therapeutic potential of VAP-1 inhibition, which now are in clinical trials, will reveal the relevance of this amine oxidase in humans.
Collapse
Affiliation(s)
- Marko Salmi
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Carpéné C, Boulet N, Chaplin A, Mercader J. Past, Present and Future Anti-Obesity Effects of Flavin-Containing and/or Copper-Containing Amine Oxidase Inhibitors. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E9. [PMID: 30650583 PMCID: PMC6473341 DOI: 10.3390/medicines6010009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
Background: Two classes of amine oxidases are found in mammals: those with a flavin adenine dinucleotide as a cofactor, such as monoamine oxidases (MAO) and lysine-specific demethylases (LSD), and those with copper as a cofactor, including copper-containing amine oxidases (AOC) and lysyl oxidases (LOX). All are expressed in adipose tissue, including a semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) strongly present on the adipocyte surface. Methods: Previously, irreversible MAO inhibitors have been reported to limit food intake and/or fat extension in rodents; however, their use for the treatment of depressed patients has not revealed a clear anti-obesity action. Semicarbazide and other molecules inhibiting SSAO/VAP-1 also reduce adiposity in obese rodents. Results: Recently, a LOX inhibitor and a subtype-selective MAO inhibitor have been shown to limit fattening in high-fat diet-fed rats. Phenelzine, which inhibits MAO and AOC, limits adipogenesis in cultured preadipocytes and impairs lipogenesis in mature adipocytes. When tested in rats or mice, phenelzine reduces food intake and/or fat accumulation without cardiac adverse effects. Novel amine oxidase inhibitors have been recently characterized in a quest for promising anti-inflammatory or anti-cancer approaches; however, their capacity to mitigate obesity has not been studied so far. Conclusions: The present review of the diverse effects of amine oxidase inhibitors impairing adipocyte differentiation or limiting excessive fat accumulation indicates that further studies are needed to reveal their potential anti-obesity properties.
Collapse
Affiliation(s)
- Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse Cedex 4, France.
| | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse Cedex 4, France.
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Josep Mercader
- Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, 07122 Palma, Spain.
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma, Spain.
| |
Collapse
|
19
|
Semicarbazide-sensitive amine oxidase activity levels in patients with acute lymphoblastic leukemia after cytotoxic chemotherapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Yang H, Ralle M, Wolfgang MJ, Dhawan N, Burkhead JL, Rodriguez S, Kaplan JH, Wong GW, Haughey N, Lutsenko S. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol 2018; 16:e2006519. [PMID: 30199530 PMCID: PMC6130853 DOI: 10.1371/journal.pbio.2006519] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
Copper (Cu) has emerged as an important modifier of body lipid metabolism. However, how Cu contributes to the physiology of fat cells remains largely unknown. We found that adipocytes require Cu to establish a balance between main metabolic fuels. Differentiating adipocytes increase their Cu uptake along with the ATP7A-dependent transport of Cu into the secretory pathway to activate a highly up-regulated amino-oxidase copper-containing 3 (AOC3)/semicarbazide-sensitive amine oxidase (SSAO); in vivo, the activity of SSAO depends on the organism's Cu status. Activated SSAO oppositely regulates uptake of glucose and long-chain fatty acids and remodels the cellular proteome to coordinate changes in fuel availability and related downstream processes, such as glycolysis, de novo lipogenesis, and sphingomyelin/ceramide synthesis. The loss of SSAO-dependent regulation due to Cu deficiency, limited Cu transport to the secretory pathway, or SSAO inactivation shifts metabolism towards lipid-dependent pathways and results in adipocyte hypertrophy and fat accumulation. The results establish a role for Cu homeostasis in adipocyte metabolism and identify SSAO as a regulator of energy utilization processes in adipocytes.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Martina Ralle
- Department of Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael J. Wolfgang
- Center for Metabolism and Obesity Research, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Neha Dhawan
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jason L. Burkhead
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States of America
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Metabolism and Obesity Research, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jack H. Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - G. William Wong
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Metabolism and Obesity Research, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
21
|
Serum vascular adhesion protein-1 is up-regulated in hyperglycemia and is associated with incident diabetes negatively. Int J Obes (Lond) 2018; 43:512-522. [PMID: 30022055 DOI: 10.1038/s41366-018-0172-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Vascular adhesion protein-1 (VAP-1) can enhance tissue glucose uptake in cell studies and normalize hyperglycemia in animal studies. However, serum VAP-1 concentration (sVAP-1) is higher in subjects with diabetes in cross-sectional studies. In this cohort study, we test our hypothesis that sVAP-1 is increased in prediabetes to counteract hyperglycemia and is associated with incident diabetes negatively. SUBJECTS/METHODS From 2006 to 2012, 600 subjects without diabetes from Taiwan Lifestyle Study were included and followed regularly. Diabetes was diagnosed if FPG ≥ 126 mg/dL (7 mmol/L), 2-h plasma glucose (2hPG) during an oral glucose tolerance test (OGTT) ≥ 200 mg/dL (11.1 mmol/L), or hemoglobin A1c (HbA1c) ≥ 6.5%, or if the subject received anti-diabetic medications. Abdominal fat areas were measured by abdominal computed tomography and sVAP-1 was analyzed by ELISA. RESULTS sVAP-1 was higher in subjects with prediabetes (p < 0.05) and increased during an OGTT (p < 0.001). Fasting sVAP-1 was associated with the response of sVAP-1 during an OGTT (p < 0.001). Besides, sVAP-1 was associated negatively with body mass index (BMI, r = -0.1449, p = 0.003), waist circumference (r = -0.1425, p = 0.004), abdominal visceral (r = -0.1457, p = 0.003), and subcutaneous (r = -0.1025, p = 0.035) fat areas, and serum high-sensitivity C-reactive protein (hsCRP) concentration (r = -0.2035, p < 0.0001), and positively with plasma adiponectin concentration (r = 0.2086, p < 0.0001), adjusted for age and gender. After 4.7 ± 2.6 years, 73 subjects (12.2%) developed incident diabetes. High sVAP-1 predicted a lower incidence of diabetes, adjusted for age, gender, BMI, family history of diabetes, HbA1c, HOMA2-%B and HOMA2-IR (HR = 0.66, 95% CI = 0.50-0.88, p < 0.01). CONCLUSIONS sVAP-1 is increased in response to hyperglycemia. It is associated with obesity and serum hsCRP concentration negatively, and plasma adiponectin concentration positively. Besides, a high sVAP-1 is associated with a lower incidence of diabetes in human.
Collapse
|
22
|
Wang SH, Yu TY, Tsai FC, Weston CJ, Lin MS, Hung CS, Kao HL, Li YI, Solé M, Unzeta M, Chen YL, Chuang LM, Li HY. Inhibition of semicarbazide-sensitive amine oxidase reduces atherosclerosis in apolipoprotein E-deficient mice. Transl Res 2018; 197:12-31. [PMID: 29653075 DOI: 10.1016/j.trsl.2018.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/28/2018] [Accepted: 03/18/2018] [Indexed: 01/08/2023]
Abstract
Inflammation, oxidative stress, and formation of advanced glycated end products (AGEs) and advanced lipoxidation end products (ALEs) are important for atherosclerosis. Vascular adhesion protein-1 (VAP-1) participates in inflammation and has semicarbazide-sensitive amine oxidase (SSAO) activity, which catalyzes oxidative deamination to produce hydrogen peroxide and aldehydes, leading to generation of AGEs and ALEs. However, the effect of VAP-1/SSAO inhibition on atherosclerosis remains controversial, and no studies used coronary angiography to evaluate if plasma VAP-1/SSAO is a biomarker for coronary artery disease (CAD). Here, we examined if plasma VAP-1/SSAO is a biomarker for CAD diagnosed by coronary angiography in humans and investigated the effect of VAP-1/SSAO inhibition by a specific inhibitor PXS-4728A on atherosclerosis in cell and animal models. In the study, VAP-1/SSAO expression was increased in plaques in humans and in apolipoprotein E (ApoE)-deficient mice, and colocalized with vascular endothelial cells and smooth muscle cells (SMCs). Patients with CAD had higher plasma VAP-1/SSAO than those without CAD. Plasma VAP-1/SSAO was positively associated with the extent of CAD. In ApoE-deficient mice, VAP-1/SSAO inhibition reduced atheroma and decreased oxidative stress. VAP-1/SSAO inhibition attenuated the expression of adhesion molecules, chemoattractant proteins, and proinflammatory cytokines in the aorta, and suppressed monocyte adhesion and transmigration across human umbilical vein endothelial cells. Consequently, the expression of markers for macrophage recruitment and activation in plaques was decreased by VAP-1/SSAO inhibition. Besides, VAP-1/SSAO inhibition suppressed proliferation and migration of A7r5 SMC. Our data suggest that plasma VAP-1/SSAO is a novel biomarker for the presence and the extent of CAD in humans. VAP-1/SSAO inhibition by PXS-4728A is a potential treatment for atherosclerosis.
Collapse
Affiliation(s)
- Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tse-Ya Yu
- Health Management Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Feng-Chiao Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chris J Weston
- Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mao-Shin Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Sheng Hung
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Li Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-I Li
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Montse Solé
- Institut de Neurociències i Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
| | - Mercedes Unzeta
- Institut de Neurociències i Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra (Barcelona), Spain
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yuan Li
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
Inhibition of Semicarbazide-sensitive Amine Oxidase Reduces Atherosclerosis in Cholesterol-fed New Zealand White Rabbits. Sci Rep 2018; 8:9249. [PMID: 29915377 PMCID: PMC6006253 DOI: 10.1038/s41598-018-27551-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
Inflammation, oxidative stress, and the formation of advanced glycated end-products (AGEs) are important components of atherosclerosis. Vascular adhesion protein-1 (VAP-1) participates in inflammation. Its enzymatic activity, semicarbazide-sensitive amine oxidase (SSAO), can catalyze oxidative deamination reactions to produce hydrogen peroxide and aldehydes, leading to the subsequent generation of AGEs. This study aimed to investigate the effect of VAP-1/SSAO inhibition on atherosclerosis. In our study, immunohistochemical staining showed that atherosclerotic plaques displayed higher VAP-1 expression than normal arterial walls in apolipoprotein E-deficient mice, cholesterol-fed New Zealand White rabbits and humans. In cholesterol-fed rabbits, VAP-1 was expressed on endothelial cells and smooth muscle cells in the thickened intima of the aorta. Treatment with PXS-4728A, a selective VAP-1/SSAO inhibitor, in cholesterol-fed rabbits significantly decreased SSAO-specific hydrogen peroxide generation in the aorta and reduced atherosclerotic plaques. VAP-1/SSAO inhibition also lowered blood low-density lipoprotein cholesterol, reduced the expression of adhesion molecules and inflammatory cytokines, suppressed recruitment and activation of macrophages, and decreased migration and proliferation of SMC. In conclusion, VAP-1/SSAO inhibition reduces atherosclerosis and may act through suppression of several important mechanisms for atherosclerosis.
Collapse
|
24
|
Peng Y, Wang J, Zhang M, Niu P, Yang M, Yang Y, Zhao Y. Inactivation of Semicarbazide-Sensitive Amine Oxidase Stabilizes the Established Atherosclerotic Lesions via Inducing the Phenotypic Switch of Smooth Muscle Cells. PLoS One 2016; 11:e0152758. [PMID: 27043821 PMCID: PMC4820117 DOI: 10.1371/journal.pone.0152758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 03/19/2016] [Indexed: 12/11/2022] Open
Abstract
Given that the elevated serum semicarbazide-sensitive amine oxidase (SSAO) activity is associated with the severity of carotid atherosclerosis in clinic, the current study aims to investigate whether SSAO inactivation by semicarbazide is beneficial for established atherosclerotic lesions in LDLr knockout mice on a high-fat/high- cholesterol Western-type diet or after dietary lipid lowering. Despite no impact on plasma total cholesterol levels, the infiltration of circulating monocytes into peripheral tissues, and the size of atherosclerotic lesions, abrogation of SSAO activity resulted in the stabilization of established lesions as evidenced by the increased collagen contents under both conditions. Moreover, SSAO inactivation decreased Ly6Chigh monocytosis and lesion macrophage contents in hypercholesterolemic mice, while no effect was observed in mice after normalization of hypercholesterolemia by dietary lipid lowering. Strikingly, abrogation of SSAO activity significantly increased not only the absolute numbers of smooth muscle cells (SMCs), but also the percent of SMCs with a synthetic phenotype in established lesions of mice regardless of plasma cholesterol levels. Overall, our data indicate that SSAO inactivation in vivo stabilizes the established plaques mainly via inducing the switch of SMCs from a contractile to a synthetic phenotype. Targeting SSAO activity thus may represent a potential treatment for patients with atherosclerosis.
Collapse
MESH Headings
- Amine Oxidase (Copper-Containing)/antagonists & inhibitors
- Amine Oxidase (Copper-Containing)/genetics
- Amine Oxidase (Copper-Containing)/metabolism
- Animals
- Atherosclerosis/chemically induced
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Dietary Fats/adverse effects
- Dietary Fats/pharmacology
- Female
- Macrophages/enzymology
- Macrophages/pathology
- Male
- Mice
- Mice, Knockout
- Monocytes/enzymology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic/chemically induced
- Plaque, Atherosclerotic/enzymology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
Collapse
Affiliation(s)
- Ya Peng
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Miao Zhang
- Department of Pathophysiology, Soochow University, Suzhou, 215123, China
| | - Panpan Niu
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
| | - Mengya Yang
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
| | - Yilin Yang
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
- Modern Medical Research Center, The First People’s Hospital of Changzhou, Soochow University, Changzhou, 213003, China
- * E-mail: (YZ); (YY)
| | - Ying Zhao
- Department of Pathophysiology, Soochow University, Suzhou, 215123, China
- * E-mail: (YZ); (YY)
| |
Collapse
|
25
|
Pannecoeck R, Serruys D, Benmeridja L, Delanghe JR, van Geel N, Speeckaert R, Speeckaert MM. Vascular adhesion protein-1: Role in human pathology and application as a biomarker. Crit Rev Clin Lab Sci 2015; 52:284-300. [PMID: 26287391 DOI: 10.3109/10408363.2015.1050714] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vascular adhesion protein-1 (VAP-1) is a member of the copper-containing amine oxidase/semicarbazide-sensitive amine oxidase (AOC/SSAO) enzyme family. SSAO enzymes catalyze oxidative deamination of primary amines, which results in the production of the corresponding aldehyde, hydrogen peroxide and ammonium. VAP-1 is continuously expressed as a transmembrane glycoprotein in the vascular wall during development and facilitates the accumulation of inflammatory cells into the inflamed environment in concert with other leukocyte adhesion molecules. The soluble form of VAP-1 is released into the circulation mainly from vascular endothelial cells. Over- and under-expression of sVAP-1 result in alterations of the reported reaction product levels, which are involved in the pathogenesis of multiple human diseases. The combination of enzymatic and adhesion capacities as well as its strong association with inflammatory pathologies makes VAP-1 an interesting therapeutic target for drug discovery. In this article, we will review the general characteristics and biological functions of VAP-1, focusing on its important role as a prognostic biomarker in human pathologies. In addition, the potential therapeutic application of VAP-1 inhibitors will be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Nanja van Geel
- c Department of Dermatology , Ghent University Hospital , Gent , Belgium
| | | | | |
Collapse
|
26
|
Repessé X, Moldes M, Muscat A, Vatier C, Chetrite G, Gille T, Planes C, Filip A, Mercier N, Duranteau J, Fève B. Hypoxia inhibits semicarbazide-sensitive amine oxidase activity in adipocytes. Mol Cell Endocrinol 2015; 411:58-66. [PMID: 25907140 DOI: 10.1016/j.mce.2015.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed on adipocyte plasma membranes, converts primary amines into aldehydes, ammonium and hydrogen peroxide, and is likely involved in endothelial damage during the course of diabetes and obesity. We investigated whether in vitro, adipocyte SSAO was modulated under hypoxic conditions that is present in adipose tissue from obese or intensive care unit. Physical or pharmacological hypoxia decreased SSAO activity in murine adipocytes and human adipose tissue explants, while enzyme expression was preserved. This effect was time-, dose-dependent and reversible. This down-regulation was confirmed in vivo in subcutaneous adipose tissue from a rat model of hypoxia. Hypoxia-induced suppression in SSAO activity was independent of the HIF-1-α pathway or of oxidative stress, but was partially antagonized by medium acidification. Hypoxia-induced down-regulation of SSAO activity could represent an adaptive mechanism to lower toxic molecules production, and may thus protect from tissue injury during these harmful conditions.
Collapse
Affiliation(s)
- Xavier Repessé
- UMR S_1185, INSERM, Université Paris-Sud, Le Kremlin-Bicêtre, France; Service de Réanimation Médico-Chirurgicale, pôle Thorax-Vaisseaux-Abdomen-Métabolisme, Hôpital Ambroise Paré, Assistance Publique-Hôpitaux de Paris, Boulogne-Billancourt, France.
| | - Marthe Moldes
- Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Adeline Muscat
- UMR S_1185, INSERM, Université Paris-Sud, Le Kremlin-Bicêtre, France; Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Camille Vatier
- Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France; Service d'Endocrinologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gérard Chetrite
- UMR S_1185, INSERM, Université Paris-Sud, Le Kremlin-Bicêtre, France; Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France; Service d'Endocrinologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thomas Gille
- Université Paris 13, Sorbonne Paris Cité, EA2363 Bobigny, France; Service d'Explorations Fonctionnelles, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Carole Planes
- Université Paris 13, Sorbonne Paris Cité, EA2363 Bobigny, France; Service d'Explorations Fonctionnelles, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Anna Filip
- INSERM U1116, Faculté de Médecine, Vandoeuvre-les-Nancy, France
| | - Nathalie Mercier
- INSERM U1116, Faculté de Médecine, Vandoeuvre-les-Nancy, France; Université de Lorraine, Nancy, France
| | - Jacques Duranteau
- Service d'Anesthésie-Réanimation, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Microcirculation, Bioénergétique, Inflammation et Insuffisance Circulatoire Aigue, Equipe Universitaire 3509, Paris VII-Paris XI-Paris XIII, Paris, France
| | - Bruno Fève
- UMR S_1185, INSERM, Université Paris-Sud, Le Kremlin-Bicêtre, France; Centre de Recherche Saint-Antoine, INSERM, UMR S_938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France; Service d'Endocrinologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
27
|
Cousin B, Casteilla L, Laharrague P, Luche E, Lorsignol A, Cuminetti V, Paupert J. Immuno-metabolism and adipose tissue: The key role of hematopoietic stem cells. Biochimie 2015; 124:21-26. [PMID: 26107410 DOI: 10.1016/j.biochi.2015.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/13/2015] [Indexed: 12/17/2022]
Abstract
The field of immunometabolism has come a long way in the past decade, leading to the emergence of a new role for white adipose tissue (WAT) that is now recognized to stand at the junction of immune and metabolic regulations. Interestingly, a crucial role of the abundant and heterogeneous immune population present in WAT has been proposed in the induction and development of metabolic diseases. Although a large body of data focused on mature immune cells, only few scattered studies are dedicated to leukocyte production, and the activity of hematopoietic stem cells (HSC) in these pathological states. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from their microenvironment, it thus seems worth to better understand the relationships between metabolism and HSC. This review discusses the alterations of hematopoietic process described in metabolic diseases and focused on the emerging data concerning HSC present in WAT.
Collapse
Affiliation(s)
- B Cousin
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France.
| | - L Casteilla
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - P Laharrague
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France; Laboratoire d'Hématologie, TSA 50032, F-31059 Toulouse, France
| | - E Luche
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - A Lorsignol
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - V Cuminetti
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| | - J Paupert
- CNRS 5273, UMR STROMALab, F-31 432 Toulouse Cedex 4, France; Université de Toulouse 3, UPS, F-31 432 Toulouse Cedex 4, France; INSERM U1031, F-31 432 Toulouse Cedex 4, France; EFS Pyrénées -Méditerranée, BP 84225, F-31 432 Toulouse Cedex 4, France
| |
Collapse
|
28
|
Weston CJ, Shepherd EL, Claridge LC, Rantakari P, Curbishley SM, Tomlinson JW, Hubscher SG, Reynolds GM, Aalto K, Anstee QM, Jalkanen S, Salmi M, Smith DJ, Day CP, Adams DH. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest 2014; 125:501-20. [PMID: 25562318 DOI: 10.1172/jci73722] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/13/2014] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a range of manifestations, including steatosis and cirrhosis. Progressive disease is characterized by hepatic leukocyte accumulation in the form of steatohepatitis. The adhesion molecule vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that promotes leukocyte recruitment to the liver, and the soluble form (sVAP-1) accounts for most circulating monoamine oxidase activity, has insulin-like effects, and can initiate oxidative stress. Here, we determined that hepatic VAP-1 expression is increased in patients with chronic liver disease and that serum sVAP-1 levels are elevated in patients with NAFLD compared with those in control individuals. In 4 murine hepatic injury models, an absence or blockade of functional VAP-1 reduced inflammatory cell recruitment to the liver and attenuated fibrosis. Moreover, disease was reduced in animals expressing a catalytically inactive form of VAP-1, implicating enzyme activity in the disease pathogenesis. Within the liver, hepatic stromal cells expressed functional VAP-1, and evaluation of cultured cells revealed that sVAP-1 promotes leukocyte migration through catalytic generation of ROS, which depended on VAP-1 enzyme activity. VAP-1 enhanced stromal cell spreading and wound closure and modulated expression of profibrotic genes. Together, these results link the amine oxidase activity of VAP-1 with hepatic inflammation and fibrosis and suggest that targeting VAP-1 has therapeutic potential for NAFLD and other chronic fibrotic liver diseases.
Collapse
|
29
|
Karim S, Liaskou E, Fear J, Garg A, Reynolds G, Claridge L, Adams DH, Newsome PN, Lalor PF. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1180-90. [PMID: 25342050 PMCID: PMC4269679 DOI: 10.1152/ajpgi.00377.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease.
Collapse
Affiliation(s)
- Sumera Karim
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Evaggelia Liaskou
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Janine Fear
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Abhilok Garg
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Gary Reynolds
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Lee Claridge
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - David H. Adams
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and ,2Liver and Hepatobiliary Unit, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom
| | - Philip N. Newsome
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and ,2Liver and Hepatobiliary Unit, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom
| | - Patricia F. Lalor
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| |
Collapse
|
30
|
Noonan T, Lukas S, Peet GW, Pelletier J, Panzenbeck M, Hanidu A, Mazurek S, Wasti R, Rybina I, Roma T, Kronkaitis A, Shoultz A, Souza D, Jiang H, Nabozny G, Modis LK. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2013; 2:172-185. [PMID: 23885334 PMCID: PMC3714173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1.
Collapse
Affiliation(s)
- Thomas Noonan
- Boehringer Ingelheim Pharmaceuticals 900 Ridgebury Road, Ridgefield, CT 06877
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
White adipose tissue (WAT) is the focus of new interest because of the presence of an abundant and complex immune cell population that is involved in key pathologies such as metabolic syndrome. Based on in vivo reconstitution assays, it is thought that these immune cells are derived from the bone marrow (BM). However, previous studies have shown that WAT exhibits specific hematopoietic activity exerted by an unknown subpopulation of cells. In the present study, we prospectively isolated a peculiar hematopoietic stem/progenitor cell population from murine WAT. The cells are phenotypically similar to BM hematopoietic stem cells and are able to differentiate into both myeloid and lymphoid lineages in vitro. In competitive repopulation assays in vivo, they reconstituted the innate immune compartment in WAT preferentially and more efficiently than BM cells, but did not reconstitute hematopoietic organs. They were also able to give rise to multilineage engraftment in both secondary recipients and in utero transplantation. Therefore, we propose that WAT hematopoietic cells constitute a population of immature cells that are able to renew innate immune cell populations. Considering the amount of WAT in adults, our results suggest that WAT hematopoietic activity controls WAT inflammatory processes and also supports innate immune responses in other organs.
Collapse
|
32
|
Dietary flaxseed oil reduces adipocyte size, adipose monocyte chemoattractant protein-1 levels and T-cell infiltration in obese, insulin-resistant rats. Cytokine 2012; 59:382-91. [DOI: 10.1016/j.cyto.2012.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/13/2012] [Accepted: 04/06/2012] [Indexed: 12/14/2022]
|
33
|
Grès S, Bour S, Valet P, Carpéné C. Benzylamine antihyperglycemic effect is abolished by AOC3 gene invalidation in mice but not rescued by semicarbazide-sensitive amine oxidase expression under the control of aP2 promoter. J Physiol Biochem 2012; 68:651-62. [PMID: 22547093 DOI: 10.1007/s13105-012-0171-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/10/2012] [Indexed: 12/25/2022]
Abstract
Semicarbazide-sensitive amine oxidase (SSAO) is a transmembrane enzyme that metabolizes primary amines from endogenous or dietary origin. SSAO is highly expressed in adipose, smooth muscle and endothelial cells. In each of these cell types, SSAO is implicated in different biological functions, such as glucose transport activation, extracellular matrix maturation and leucocyte extravasation, respectively. However, the physiological functions of SSAO and their involvement in pathogenesis remain uncompletely characterized. To better understand the role of adipose tissue SSAO, we investigated whether it was necessary and/or sufficient to produce the antihyperglycemic effect of the SSAO-substrate benzylamine, already reported in mice. Therefore, we crossed SSAO-deficient mice invalidated for AOC3 gene and transgenic mice expected to express human SSAO in an adipocyte-specific manner, under the control of aP2 promoter. The aP2-human AOC3 construct (aP2-hAOC3) was equally expressed in the adipose tissue of mice expressing or not the native murine form and almost absent in other tissues. However, the corresponding SSAO activity found in adipose tissue represented only 20 % that of control mice. As a consequence, the benzylamine antihyperglycemic effect observed during glucose tolerance test in control was abolished in AOC3-KO mice but not rescued in mice expressing aP2-hAOC3. The capacity of benzylamine or methylamine to activate glucose uptake in adipocytes exhibited parallel variations in the corresponding genotypes. Although the aP2-hAOC3 construct did not allow a total rescue of SSAO activity in adipose tissue, it could be assessed from our observations that adipocyte SSAO plays a pivotal role in the increased glucose tolerance promoted by pharmacological doses of benzylamine.
Collapse
Affiliation(s)
- Sandra Grès
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, I2MC, CHU Rangueil, 31432 Toulouse, France
| | | | | | | |
Collapse
|
34
|
Carpéné C, Desquesnes A, Gomez-Ruiz A, Iffiú-Soltész Z, Le Gonidec S, Mercader J. Long-term activation of semicarbazide-sensitive amine oxidase lowers circulating levels of uric acid in diabetic conditions. Physiol Res 2012; 61:251-7. [PMID: 22480418 DOI: 10.33549/physiolres.932211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Uric acid is involved in nitrogenous waste in animals, together with ammonia and urea. Uric acid has also antioxidant properties and is a surrogate marker of metabolic syndrome. We observed that the elevated plasma uric acid of high-fat fed mice was normalized by benzylamine treatment. Indeed, benzylamine is the reference substrate of semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed in fat depots and vessels, which generates ammonia when catalysing oxidative deamination. Ammonia interferes with uric acid metabolism/solubility. Our aim was therefore to investigate whether the lowering action of benzylamine on uric acid was related to an improvement of diabetic complications, or was connected with SSAO-dependent ammonia production. First, we observed that benzylamine administration lowered plasma uric acid in diabetic db/db mice while it did not modify uric acid levels in normoglycemic and lean mice. In parallel, benzylamine improved the glycemic control in diabetic but not in normoglycemic mice, while plasma urea remained unaltered. Then, uric acid plasma levels were measured in mice invalidated for AOC3 gene, encoding for SSAO. These mice were unable to oxidize benzylamine but were not diabetic and exhibited unaltered plasma uric levels. Therefore, activated or abolished ammonia production by SSAO was without influence on uric acid in the context of normoglycemia. Our observations confirm that plasma uric acid increases with diabetes and can be normalized when glucose tolerance is improved. They also show that uric acid, a multifunctional metabolite at the crossroads of nitrogen waste and of antioxidant defences, can be influenced by SSAO, in a manner apparently related to changes in glucose homeostasis.
Collapse
Affiliation(s)
- C Carpéné
- INSERM U1048 équipe 3, I2MC, Bat. L4, CHU Rangueil, BP 84225, Toulouse Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Salmi M, Jalkanen S. Homing-associated molecules CD73 and VAP-1 as targets to prevent harmful inflammations and cancer spread. FEBS Lett 2011; 585:1543-50. [DOI: 10.1016/j.febslet.2011.04.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 01/01/2023]
|
37
|
Lolmède K, Duffaut C, Zakaroff-Girard A, Bouloumié A. Immune cells in adipose tissue: key players in metabolic disorders. DIABETES & METABOLISM 2011; 37:283-90. [PMID: 21507694 DOI: 10.1016/j.diabet.2011.03.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 02/08/2023]
Abstract
Obesity, defined as the excess development of adipose tissue, is an important risk factor for metabolic and cardiovascular diseases such as type 2 diabetes, hypertension and atherosclerosis. Over the past few years, metabolic inflammation has emerged as a major process underlying the link between obesity and its associated pathologies. Adipose tissue appears to play a primary and crucial role as a source and site of inflammation. Accumulation of immune cells within adipose tissue occurs in obese conditions. The present review focuses on the relationship between adipose tissue and immune cells, including macrophages, dendritic cells, T and B lymphocytes, and natural killer cells, in both the physiological state and under obese conditions. The factors involved in the accumulation of both myeloid and lymphoid cells in adipose tissue are also described. In addition, the role of adipose-tissue immune cells on adipocyte metabolism and cells of the adipose tissue stromal-vascular fraction are discussed, with particular emphasis on the cross-talk between macrophages and adipocytes, together with recent reports of T lymphocytes in adipose tissue.
Collapse
Affiliation(s)
- K Lolmède
- Inserm/UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, équipe 1, Université Paul-Sabatier, 1, avenue Jean-Poulhès, BP 84225, 31432 Toulouse cedex 04, France.
| | | | | | | |
Collapse
|
38
|
NUNES SF, FIGUEIREDO IV, PEREIRA JS, DE LEMOS ET, REIS F, TEIXEIRA F, CARAMONA MM. Monoamine Oxidase and Semicarbazide-Sensitive Amine Oxidase Kinetic Analysis in Mesenteric Arteries of Patients With Type 2 Diabetes. Physiol Res 2011; 60:309-15. [DOI: 10.33549/physiolres.931982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Monoamine oxidase (MAO, type A and B) and semicarbazide-sensitive amine oxidase (SSAO) metabolize biogenic amines, however, the impact of these enzymes in arteries from patients with type 2 diabetes remains poorly understood. We investigated the kinetic parameters of the enzymes to establish putative correlations with noradrenaline (NA) content and patient age in human mesenteric arteries from type 2 diabetic patients. The kinetic parameters were evaluated by radiochemical assay and NA content by high-performance liquid chromatography (HPLC). The activity of MAO-A and SSAO in type 2 diabetic vascular tissues was significantly lower compared to the activity obtained in non-diabetic tissues. In the correlation between MAO-A (Km) and NA content, we found a positive correlation for both the diabetic and non-diabetic group, but no correlation was established for patient age. In both groups, MAO-B (Vmax) showed a negative correlation with age. The results show that MAO-A and SSAO activities and NA content of type 2 diabetic tissues are lower compared to the non-diabetic tissues, while MAO-B activity remained unchanged. These remarks suggest that MAO-A and SSAO may play an important role in vascular tissue as well as in the vascular pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. M. CARAMONA
- Laboratory of Pharmacology, Faculty of Pharmacy, Coimbra University, Coimbra, Portugal
| |
Collapse
|
39
|
Yang W, Li H, Luo H, Luo W. Inhibition of semicarbazide-sensitive amine oxidase attenuates myocardial ischemia-reperfusion injury in an in vivo rat model. Life Sci 2011; 88:302-6. [PMID: 21146547 DOI: 10.1016/j.lfs.2010.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/12/2010] [Accepted: 11/29/2010] [Indexed: 02/05/2023]
Abstract
AIMS This study tested the hypothesis that the inhibition of semicarbazide-sensitive amine oxidase (SSAO) after ischemia could attenuate myocardial ischemia-reperfusion (I/R) injury. MAIN METHODS Anesthetized male Sprague-Dawley rats underwent myocardial I/R injury. Saline, semicarbazide (SCZ, 30 mg/kg), hydralazine (HYD, 10mg/kg), or LJP 1207 (30 mg/kg) was administered intraperitoneally 3 min before reperfusion. After 30 min of ischemia and 180 min of reperfusion, the myocardial infarct size was determined using nitroblue tetrazolium staining. Myocardial myeloperoxidase activity was determined through biochemical assay. HE staining was used for histopathological evaluation. Myocardial SSAO activity was assayed with high performance liquid chromatography analysis. Additionally, the endothelial expression of P-selectin was evaluated using immunohistochemistry after 30 min of ischemia and 20 min of reperfusion. KEY FINDINGS Myocardial SSAO activity was increased in myocardial I/R injury. Administration of SCZ, HYD, or LJP 1207 reduced the myocardial infarct size and decreased leukocyte infiltration and endothelial P-selectin expression in myocardial I/R injury in vivo. SIGNIFICANCE These data suggest that myocardial I/R injury up-regulates myocardial SSAO activity, and the inhibition of SSAO prior to reperfusion is able to attenuate acute myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Yang
- Bioanalytical Laboratory, Shantou University Medical College, Shantou, Guangdong, PR China
| | | | | | | |
Collapse
|
40
|
Caspar-Bauguil S, Cousin B, Bour S, Casteilla L, Penicaud L, Carpéné C. Adipose tissue lymphocytes: types and roles. J Physiol Biochem 2010; 65:423-36. [PMID: 20358356 DOI: 10.1007/bf03185938] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Indexed: 12/11/2022]
Abstract
Besides adipocytes, specialized in lipid handling and involved in energy balance regulation, white adipose tissue (WAT) is mainly composed of other cell types among which lymphocytes represent a non-negligible proportion. Different types of lymphocytes (B, alphabetaT, gammadeltaT, NK and NKT) have been detected in WAT of rodents or humans, and vary in their relative proportion according to the fat pad anatomical location. The lymphocytes found in intra-abdominal, visceral fat pads seem representative of innate immunity, while those present in subcutaneous fat depots are part of adaptive immunity, at least in mice. Both the number and the activity of the different lymphocyte classes, except B lymphocytes, are modified in obesity. Several of these modifications in the relative proportions of the lymphocyte classes depend on the degree of obesity, or on leptin concentration, or even fat depot anatomical location. Recent studies suggest that alterations of lymphocyte number and composition precede the macrophage increase and the enhanced inflammatory state of WAT found in obesity. Lymphocytes express receptors to adipokines while several proinflammatory chemokines are produced in WAT, rendering intricate crosstalk between fat and immune cells. However, the evidences and controversies available so far are in favour of an involvement of lymphocytes in the control of the number of other cells in WAT, either adipocytes or immune cells and of their secretory and metabolic activities. Therefore, immunotherapy deserves to be considered as a promising approach to treat the endocrino-metabolic disorders associated to excessive fat mass development.
Collapse
Affiliation(s)
- S Caspar-Bauguil
- UPS, UMR 5241, Métabolisme, Plasticité et Mitochondrie, Université de Toulouse III, Toulouse, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Duffaut C, Zakaroff-Girard A, Bourlier V, Decaunes P, Maumus M, Chiotasso P, Sengenès C, Lafontan M, Galitzky J, Bouloumié A. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol 2009; 29:1608-14. [PMID: 19644053 DOI: 10.1161/atvbaha.109.192583] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Adipose tissue (AT) plays a major role in the low-grade inflammatory state associated with obesity. The aim of the present study was to characterize the human AT lymphocytes (ATLs) and to analyze their interactions with adipocytes. METHODS AND RESULTS Human ATL subsets were characterized by flow cytometry in subcutaneous ATs from 92 individuals with body mass index (BMI) ranging from 19 to 43 kg/m(2) and in paired biopsies of subcutaneous and visceral AT from 45 class II/III obese patients. CD3(+) ATLs were composed of effector and memory CD4(+) helper and CD8(+) cytotoxic T cells. The number of ATLs correlated positively with BMI and was higher in visceral than subcutaneous AT. Mature adipocytes stimulated the migration of ATLs and released the chemokine CCL20, the receptor of which (CCR6) was expressed in ATLs. The expression of adipocyte CCL20 was positively correlated with BMI and increased in visceral compared to subcutaneous adipocytes. ATLs expressed inflammatory markers and released interferon gamma (IFN gamma). Progenitor and adipocyte treatment with ATL-conditioned media reduced the insulin-mediated upregulation of lipogenic enzymes, an effect involving IFN gamma. CONCLUSIONS Therefore, crosstalk occurs between adipocytes and lymphocytes within human AT involving T cell chemoattraction by adipocytes and modulation of lipogenesis by ATLs.
Collapse
Affiliation(s)
- Carine Duffaut
- Institut National de la Santé et de la Recherche Médicale (INSERM), U858, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|