1
|
Wu Z, Deng B, Shen Y, Li X, Li J, Li Y, Ma S, Pan Y, Ding F. Acyloxyacyl Hydrolase Protects against Kidney Injury via Inhibition of Tubular CD74-Macrophage Crosstalk. Int J Biol Sci 2024; 20:3061-3075. [PMID: 38904010 PMCID: PMC11186370 DOI: 10.7150/ijbs.91237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Renal fibrosis is the common pathway in the progression of chronic kidney disease (CKD). Acyloxyacyl hydrolase (AOAH) is expressed in various phagocytes and is highly expressed in proximal tubular epithelial cells (PTECs). Research shows that AOAH plays a critical role in infections and chronic inflammatory diseases, although its role in kidney injury is unknown. Here, we found that AOAH deletion led to exacerbated kidney injury and fibrosis after folic acid (FA) administration, which was reversed by overexpression of Aoah in kidneys. ScRNA-seq revealed that Aoah-/- mice exhibited increased subpopulation of CD74+ PTECs, though the percentage of total PTECs were decreased compared to WT mice after FA treatment. Additionally, exacerbated kidney injury and fibrosis seen in Aoah-/- mice was attenuated via administration of methyl ester of (S, R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (ISO-1), an inhibitor of macrophage inhibition factor (MIF) and CD74 binding. Finally, AOAH expression was found positively correlated with estimated glomerular filtration rate while negatively correlated with the degree of renal fibrosis in kidneys of CKD patients. Thus, our work indicates that AOAH protects against kidney injury and fibrosis by inhibiting renal tubular epithelial cells CD74 signaling pathways. Targeting kidney AOAH represents a promising strategy to prevent renal fibrosis progression.
Collapse
Affiliation(s)
- Zhenkai Wu
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Shen
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuezhu Li
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaolun Li
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Ma
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Pan
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research
| |
Collapse
|
2
|
Klemke L, De Oliveira T, Witt D, Winkler N, Bohnenberger H, Bucala R, Conradi LC, Schulz-Heddergott R. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer. Cell Death Dis 2021; 12:155. [PMID: 33542244 PMCID: PMC7862487 DOI: 10.1038/s41419-021-03426-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity, but its expression is increased in some cancers via stabilization with HSP90-associated chaperones. Here, we show that MIF stabilization is tumor-specific in an acute colitis-associated colorectal cancer (CRC) mouse model, leading to tumor-specific functions and selective therapeutic vulnerabilities. Therefore, we demonstrate that a Mif deletion reduced CRC tumor growth. Further, we define a dual role for MIF in CRC tumor progression. Mif deletion protects mice from inflammation-associated tumor initiation, confirming the action of MIF on host inflammatory pathways; however, macrophage recruitment, neoangiogenesis, and proliferative responses are reduced in Mif-deficient tumors once the tumors are established. Thus, during neoplastic transformation, the function of MIF switches from a proinflammatory cytokine to an angiogenesis promoting factor within our experimental model. Mechanistically, Mif-containing tumor cells regulate angiogenic gene expression via a MIF/CD74/MAPK axis in vitro. Clinical correlation studies of CRC patients show the shortest overall survival for patients with high MIF levels in combination with CD74 expression. Pharmacological inhibition of HSP90 to reduce MIF levels decreased tumor growth in vivo, and selectively reduced the growth of organoids derived from murine and human tumors without affecting organoids derived from healthy epithelial cells. Therefore, novel, clinically relevant Hsp90 inhibitors provide therapeutic selectivity by interfering with tumorigenic MIF in tumor epithelial cells but not in normal cells. Furthermore, Mif-depleted colonic tumor organoids showed growth defects compared to wild-type organoids and were less susceptible toward HSP90 inhibitor treatment. Our data support that tumor-specific stabilization of MIF promotes CRC progression and allows MIF to become a potential and selective therapeutic target in CRC.
Collapse
Affiliation(s)
- Luisa Klemke
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago De Oliveira
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Daria Witt
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Winkler
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Richard Bucala
- Departments of Medicine, Pathology, and Epidemiology & Public Health, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Lena-Christin Conradi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | | |
Collapse
|
3
|
Role of Host and Parasite MIF Cytokines during Leishmania Infection. Trop Med Infect Dis 2020; 5:tropicalmed5010046. [PMID: 32244916 PMCID: PMC7157535 DOI: 10.3390/tropicalmed5010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine that has been extensively characterized in human disease and in mouse models. Its pro-inflammatory functions in mammals includes the retention of tissue macrophages and a unique ability to counteract the immunosuppressive activity of glucocorticoids. MIF also acts as a survival factor by preventing activation-induced apoptosis and by promoting sustained expression of inflammatory factors such as TNF-α and nitric oxide. The pro-inflammatory activity of MIF has been shown to be protective against Leishmania major infection in mouse models of cutaneous disease, however the precise role of this cytokine in human infections is less clear. Moreover, various species of Leishmania produce their own MIF orthologs, and there is evidence that these may drive an inflammatory environment that is detrimental to the host response. Herein the immune response to Leishmania in mouse models and humans will be reviewed, and the properties and activities of mammalian and Leishmania MIF will be integrated into the current understandings in this field. Furthermore, the prospect of targeting Leishmania MIF for therapeutic purposes will be discussed.
Collapse
|
4
|
Zhu C, Liu Y, Song Y, Wang Q, Liu Y, Yang S, Li D, Zhang Y, Cheng B. Deletion of macrophage migration inhibitory factor ameliorates inflammation in mice model severe acute pancreatitis. Biomed Pharmacother 2020; 125:109919. [PMID: 32062385 DOI: 10.1016/j.biopha.2020.109919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is an important pro-inflammatory cytokine implicated in sepsis, rheumatoid arthritis and other diseases. However, the role of MIF in acute pancreatitis (AP) remains unclear. This study aims to explore the role of MIF in the pathogenesis of AP using MIF-/- mice (referred to as KO) and the biological effects of pharmacological inhibition of MIF in l-arginine induced AP. METHODS AP was induced in C57BL/6 wild-type (referred to as WT) and KO mice by administration of l-arginine. The severity of AP was assessed by serum analysis of amylase and lipase, and of these pro-inflammatory cytokines TNF-α and IL-1β. Histological hematoxylin and eosin (H&E) and immunohistochemical staining of pancreatic tissues were examined for inflammation and expression of pro-inflammatory mediators. We also investigated the biological effects of pharmacological inhibition of MIF activity using ISO-1((S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester). RESULTS At 72 h after the induction of AP with l-arginine, significantly lower levels of serum amylase, lipase, TNF-α, and IL-1β were observed in KO mice when compared with WT controls. Histological examination further showed protective effects against pancreatic tissue damage and inflammation, with pancreatic expression of TNF-α, IL-1β and NF-κB p65 markedly reduced. Pharmacological inhibition of MIF activity with ISO-1 markedly mirrored the protective effect seen in the KO AP model providing further evidence that MIF is involved in the pathogenesis of AP. CONCLUSION Our data provided strong evidence for the participation of MIF in the pathogenesis of AP and subsequent inflammatory response. The genetic ablation of MIF or its inhibition with pharmacological agents significantly ameliorated the severity of AP.
Collapse
Affiliation(s)
- Changju Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China.
| | - Yanna Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Yaodong Song
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Qiaofang Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Yanyan Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Shujun Yang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Dejian Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China
| | - Yan Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Bo Cheng
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| |
Collapse
|
5
|
Wang YY, Jiang H, Wang YC, Huang XR, Pan J, Yang C, Shou ZF, Xiang SL, Chen DJ, Lan HY, Chen JH. Deletion of Smad3 improves cardiac allograft rejection in mice. Oncotarget 2016. [PMID: 26219259 PMCID: PMC4627288 DOI: 10.18632/oncotarget.4849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T cells play a critical role in acute allograft rejection. TGF-β/Smad3 signaling is a key pathway in regulating T cell development. We report here that Smad3 is a key transcriptional factor of TGF-β signaling that differentially regulates T cell immune responses in a mouse model of cardiac allograft rejection in which donor hearts from BALB/c mice were transplanted into Smad3 knockout (KO) and wild type (WT) mice. Results showed that the cardiac allograft survival was prolonged in Smad3 KO recipients. This allograft protection was associated with a significant inhibition of proinflammatory cytokines (IL-1β, TNF-α, and MCP-1) and infiltration of neutrophils, CD3+ T cells, and F4/80+ macrophages. Importantly, deletion of Smad3 markedly suppressed T-bet and IFN-γ while enhancing GATA3 and IL-4 expression, resulting in a shift from the Th1 to Th2 immune responses. Furthermore, mice lacking Smad3 were also protected from the Th17-mediated cardiac injury, although the regulatory T cell (Treg) response was also suppressed. In conclusion, Smad3 is an immune regulator in T cell-mediated cardiac allograft rejection. Loss of Smad3 results in a shift from Th1 to Th2 but suppressing Th17 immune responses. Thus, modulation of TGF-β/Smad3 signaling may be a novel therapy for acute allograft rejection.
Collapse
Affiliation(s)
- Ying-Ying Wang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Cheng Wang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jun Pan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Yang
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhang-Fei Shou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shi-Long Xiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Da-Jin Chen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jiang-Hua Chen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
He LJ, Xie D, Hu PJ, Liao YJ, Deng HX, Kung HF, Zhu SL. Macrophage migration inhibitory factor as a potential prognostic factor in gastric cancer. World J Gastroenterol 2015; 21:9916-9926. [PMID: 26379396 PMCID: PMC4566384 DOI: 10.3748/wjg.v21.i34.9916] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/13/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate macrophage migration inhibitory factor (MIF) expression and its clinical relevance in gastric cancer, and effects of MIF knockdown on proliferation of gastric cancer cells.
METHODS: Tissue microarray containing 117 samples of gastric cancer and adjacent non-cancer normal tissues was studied for MIF expression by immunohistochemistry (IHC) semiquantitatively, and the association of MIF expression with clinical parameters was analyzed. MIF expression in gastric cancer cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Two pairs of siRNA targeting the MIF gene (MIF si-1 and MIF si-2) and one pair of scrambled siRNA as a negative control (NC) were designed and chemically synthesized. All siRNAs were transiently transfected in AGS cells with OligofectamineTM to knock down the MIF expression, with the NC group and mock group (OligofectamineTM alone) as controls. At 24, 48, and 72 h after transfection, MIF mRNA was analyzed by RT-PCR, and MIF and proliferating cell nuclear antigen (PCNA) proteins were detected by Western blot. The proliferative rate of AGS cells was assessed by methylthiazolyl tetrazolium (MTT) assay and colony forming assay.
RESULTS: The tissue microarray was informative for IHC staining, in which the MIF expression in gastric cancer tissues was higher than that in adjacent non-cancer normal tissues (P < 0.001), and high level of MIF was related to poor tumor differentiation, advanced T stage, advanced tumor stage, lymph node metastasis, and poor patient survival (P < 0.05 for all). After siRNA transfection, MIF mRNA was measured by real-time PCR, and MIF protein and PCNA were assessed by Western blot analysis. We found that compared to the NC group and mock group, MIF expression was knocked down successfully in gastric cancer cells, and PCNA expression was downregulated with MIF knockdown as well. The cell counts and the doubling times were assayed by MTT 4 d after transfection, and colonies formed were assayed by colony forming assay 10 d after transfection; all these showed significant changes in gastric cancer cells transfected with specific siRNA compared with the control siRNA and mock groups (P < 0.001 for all).
CONCLUSION: MIF could be of prognostic value in gastric cancer and might be a potential target for small-molecule therapy.
Collapse
|
7
|
Yamamoto S, Zhong J, Yancey PG, Zuo Y, Linton MF, Fazio S, Yang H, Narita I, Kon V. Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype. Atherosclerosis 2015; 242:56-64. [PMID: 26184694 DOI: 10.1016/j.atherosclerosis.2015.06.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 05/18/2015] [Accepted: 06/28/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Chronic kidney disease (CKD) amplifies atherosclerosis, which involves renin-angiotensin system (RAS) regulation of macrophages. RAS influences peroxisome proliferator-activated receptor-γ (PPARγ), a modulator of atherogenic functions of macrophages, however, little is known about its effects in CKD. We examined the impact of combined therapy with a PPARγ agonist and angiotensin receptor blocker on atherogenesis in a murine uninephrectomy model. METHODS Apolipoprotein E knockout mice underwent uninephrectomy (UNx) and treatment with pioglitazone (UNx + Pio), losartan (UNx + Los), or both (UNx + Pio/Los) for 10 weeks. Extent and characteristics of atherosclerotic lesions and macrophage phenotypes were assessed; RAW264.7 and primary peritoneal mouse cells were used to examine pioglitazone and losartan effects on macrophage phenotype and inflammatory response. RESULTS UNx significantly increased atherosclerosis. Pioglitazone and losartan each significantly reduced the atherosclerotic burden by 29.6% and 33.5%, respectively; although the benefit was dramatically augmented by combination treatment which lessened atherosclerosis by 55.7%. Assessment of plaques revealed significantly greater macrophage area in UNx + Pio/Los (80.7 ± 11.4% vs. 50.3 ± 4.2% in UNx + Pio and 57.2 ± 6.5% in UNx + Los) with more apoptotic cells. The expanded macrophage-rich lesions of UNx + Pio/Los had more alternatively activated, Ym-1 and arginine 1-positive M2 phenotypes (Ym-1: 33.6 ± 8.2%, p < 0.05 vs. 12.0 ± 1.1% in UNx; arginase 1: 27.8 ± 0.9%, p < 0.05 vs. 11.8 ± 1.3% in UNx). In vitro, pioglitazone alone and together with losartan was more effective than losartan alone in dampening lipopolysaccharide-induced cytokine production, suppressing M1 phenotypic change while enhancing M2 phenotypic change. CONCLUSION Combination of pioglitazone and losartan is more effective in reducing renal injury-induced atherosclerosis than either treatment alone. This benefit reflects mitigation in macrophage cytokine production, enhanced apoptosis, and a shift toward an anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Jiayong Zhong
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Patricia G Yancey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yiqin Zuo
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - MacRae F Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergio Fazio
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Preventive Cardiology at The Knight Cardiovascular Institute of Oregon Health and Science University, Portland, OR, USA
| | - Haichun Yang
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Valentina Kon
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Expression of Human Tissue Factor Pathway Inhibitor on Vascular Smooth Muscle Cells Inhibits Secretion of Macrophage Migration Inhibitory Factor and Attenuates Atherosclerosis in ApoE
−/−
Mice. Circulation 2015. [PMID: 25677604 DOI: 10.1161/circulationaha.114.013423] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background—
Tissue factor (TF) and coagulation proteases are involved in promoting atherosclerosis, but the molecular and cellular bases for their involvement are unknown.
Methods and Results—
We generated a new strain (ApX4) of apolipoprotein E–deficient mice expressing a membrane-tethered human tissue factor pathway inhibitor fusion protein on smooth muscle actin–positive cells, including vascular smooth muscle cells (SMCs). ApX4 mice developed little atherosclerosis on either a normal chow or high-fat diet. Lipid levels were similar to those in parental ApoE
−/−
mice, and there was no detectable difference in systemic (circulating) tissue factor pathway inhibitor levels or activity. The small lipid-rich lesions that developed had markedly reduced leukocyte infiltrates, and in contrast to ApoE
−/−
mice, SMCs did not express macrophage migratory inhibitory factor (MIF), including at sites distant from atheromatous lesions. Low levels of circulating MIF in ApX4 mice normalized to levels seen in ApoE
−/−
mice after injection of an inhibitory anti–human tissue factor pathway inhibitor antibody, which also led to MIF expression by tissue factor–positive medial SMCs. MIF production by SMCs in ApoE
−/−
mice in vitro and in vivo was shown to be dependent on tissue factor and protease-activated receptor signaling, which were inhibited in ApX4 mice.
Conclusions—
Our data indicate that tissue factor plays a hitherto unreported role in the generation of MIF by SMCs in atherosclerosis-prone ApoE
−/−
mice, inhibition of which significantly prevents the development of atherosclerosis, through inhibition of leukocyte recruitment. These data significantly enhance our understanding of the pathophysiology of this important pathology and suggest new potential translational strategies to prevent atheroma formation.
Collapse
|
9
|
Hsieh CY, Chen CL, Lin YS, Yeh TM, Tsai TT, Hong MY, Lin CF. Macrophage migration inhibitory factor triggers chemotaxis of CD74+CXCR2+ NKT cells in chemically induced IFN-γ-mediated skin inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 193:3693-703. [PMID: 25172501 DOI: 10.4049/jimmunol.1400692] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-γ mediates chemically induced skin inflammation; however, the mechanism by which IFN-γ-producing cells are recruited to the sites of inflammation remains undefined. Secretion of macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, from damaged cells may promote immune cell recruitment. We hypothesized that MIF triggers an initial step in the chemotaxis of IFN-γ-producing cells in chemically induced skin inflammation. Using acute and chronic models of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mouse ears, MIF expression was examined, and its role in this process was investigated pharmacologically. The cell populations targeted by MIF, their receptor expression patterns, and the effects of MIF on cell migration were examined. TPA directly caused cytotoxicity accompanied by MIF release in mouse ear epidermal keratinocytes, as well as in human keratinocytic HaCaT cells. Treatment with the MIF antagonist (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester considerably attenuated TPA-induced ear swelling, leukocyte infiltration, epidermal cell proliferation, and dermal angiogenesis. Inhibition of MIF greatly diminished the dermal infiltration of IFN-γ(+) NKT cells, whereas the addition of exogenous TPA and MIF to NKT cells promoted their IFN-γ production and migration, respectively. MIF specifically triggered the chemotaxis of NKT cells via CD74 and CXCR2, and the resulting depletion of NKT cells abolished TPA-induced skin inflammation. In TPA-induced skin inflammation, MIF is released from damaged keratinocytes and then triggers the chemotaxis of CD74(+)CXCR2(+) NKT cells for IFN-γ production.
Collapse
Affiliation(s)
- Chia-Yuan Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Ling Chen
- Center of Translational Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tsung-Ting Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Ming-Yuan Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiou-Feng Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Center of Translational Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan; Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
10
|
Villarreal-Calderon R, Luévano-González A, Aragón-Flores M, Zhu H, Yuan Y, Xiang Q, Yan B, Stoll KA, Cross JV, Iczkowski KA, Mackinnon AC. Antral atrophy, intestinal metaplasia, and preneoplastic markers in Mexican children with Helicobacter pylori-positive and Helicobacter pylori-negative gastritis. Ann Diagn Pathol 2014; 18:129-35. [PMID: 24656654 DOI: 10.1016/j.anndiagpath.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/04/2014] [Indexed: 02/08/2023]
Abstract
Chronic inflammation and infection are major risk factors for gastric carcinogenesis in adults. As chronic gastritis is common in Mexican children, diagnosis of Helicobacter pylori and other causes of gastritis are critical for the identification of children who would benefit from closer surveillance. Antral biopsies from 82 Mexican children (mean age, 8.3 ± 4.8 years) with chronic gastritis (36 H pylori+, 46 H pylori-) were examined for gastritis activity, atrophy, intestinal metaplasia (IM), and immunohistochemical expression of gastric carcinogenesis biomarkers caudal type homeobox 2 (CDX2), ephrin type-B receptor 4 (EphB4), matrix metalloproteinase 3 (MMP3), macrophage migration inhibitory factor (MIF), p53, β-catenin, and E-cadherin. Atrophy was diagnosed in 7 (9%) of 82, and IM, in 5 (6%) of 82 by routine histology, whereas 6 additional children (7%) (3 H pylori+) exhibited aberrant CDX2 expression without IM. Significant positive correlations were seen between EphB4, MMP3, and MIF (P<.0001). Atrophy and follicular pathology were more frequent in H pylori+ biopsies (P<.0001), whereas IM and CDX2 expression showed no significant correlation with H pylori status. Antral biopsies demonstrating atrophy, IM, and/or aberrant CDX2 expression were seen in 21.95% (18/82) of the children, potentially identifying those who would benefit from closer surveillance and preventive dietary strategies. Biomarkers CDX2, EphB4, MMP3, and MIF may be useful in the workup of pediatric gastritis.
Collapse
Affiliation(s)
| | - Arturo Luévano-González
- Department of Pathology, Clinical and Translational Research Core Lab, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599
| | - Ying Yuan
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599
| | - Qun Xiang
- Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Benjamin Yan
- Department of Pathology, Clinical and Translational Research Core Lab, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kathryn Anne Stoll
- Department of Pathology, Clinical and Translational Research Core Lab, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Janet V Cross
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908
| | - Kenneth A Iczkowski
- Department of Pathology, Clinical and Translational Research Core Lab, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexander Craig Mackinnon
- Department of Pathology, Clinical and Translational Research Core Lab, Medical College of Wisconsin, Milwaukee, WI 53226.
| |
Collapse
|
11
|
Carbo A, Bassaganya-Riera J, Pedragosa M, Viladomiu M, Marathe M, Eubank S, Wendelsdorf K, Bisset K, Hoops S, Deng X, Alam M, Kronsteiner B, Mei Y, Hontecillas R. Predictive computational modeling of the mucosal immune responses during Helicobacter pylori infection. PLoS One 2013; 8:e73365. [PMID: 24039925 PMCID: PMC3764126 DOI: 10.1371/journal.pone.0073365] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023] Open
Abstract
T helper (Th) cells play a major role in the immune response and pathology at the gastric mucosa during Helicobacter pylori infection. There is a limited mechanistic understanding regarding the contributions of CD4+ T cell subsets to gastritis development during H. pylori colonization. We used two computational approaches: ordinary differential equation (ODE)-based and agent-based modeling (ABM) to study the mechanisms underlying cellular immune responses to H. pylori and how CD4+ T cell subsets influenced initiation, progression and outcome of disease. To calibrate the model, in vivo experimentation was performed by infecting C57BL/6 mice intragastrically with H. pylori and assaying immune cell subsets in the stomach and gastric lymph nodes (GLN) on days 0, 7, 14, 30 and 60 post-infection. Our computational model reproduced the dynamics of effector and regulatory pathways in the gastric lamina propria (LP) in silico. Simulation results show the induction of a Th17 response and a dominant Th1 response, together with a regulatory response characterized by high levels of mucosal Treg) cells. We also investigated the potential role of peroxisome proliferator-activated receptor γ (PPARγ) activation on the modulation of host responses to H. pylori by using loss-of-function approaches. Specifically, in silico results showed a predominance of Th1 and Th17 cells in the stomach of the cell-specific PPARγ knockout system when compared to the wild-type simulation. Spatio-temporal, object-oriented ABM approaches suggested similar dynamics in induction of host responses showing analogous T cell distributions to ODE modeling and facilitated tracking lesion formation. In addition, sensitivity analysis predicted a crucial contribution of Th1 and Th17 effector responses as mediators of histopathological changes in the gastric mucosa during chronic stages of infection, which were experimentally validated in mice. These integrated immunoinformatics approaches characterized the induction of mucosal effector and regulatory pathways controlled by PPARγ during H. pylori infection affecting disease outcomes.
Collapse
Affiliation(s)
- Adria Carbo
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mireia Pedragosa
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Madhav Marathe
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephen Eubank
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Katherine Wendelsdorf
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Keith Bisset
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stefan Hoops
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Xinwei Deng
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Maksudul Alam
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Barbara Kronsteiner
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yongguo Mei
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Modeling Immunity to Enteric Pathogens Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Tan SY, Wu PB, Zhang G, Luo HS, Yao WM. Association between macrophage migration inhibitory factor _173G/C polymorphism and inflammatory bowel disease: A meta-analysis. Shijie Huaren Xiaohua Zazhi 2013; 21:1140-1145. [DOI: 10.11569/wcjd.v21.i12.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the association between macrophage migration inhibitory factor (MIF) -173G/C polymorphism and susceptibility to inflammatory bowel disease.
METHODS: Searches of electronic databases CBM, CNKI, PubMed and EMbase were performed to retrieve published case-control studies investigating the association between MIF -173G/C polymorphism and susceptibility to ulcerative colitis (UC) or Crohn's disease (CD). The pooled odds ratios (ORs) with 95% confidence intervals (95%CIs) were calculated using fixed-effect or random-effect methods based on the absence or presence of significant heterogeneity. Publication bias was assessed. All statistical analyses were conducted with STATA10.0 software.
RESULTS: Increased risk of UC was associated with MIF -173G/C polymorphism in the dominant genetic model (GG/C + C/C vs G/G: OR = 1.15, 95%CI: 1.00-1.32), the homozygote comparison (C/C vs G/G: OR = 1.54, 95%CI: 1.08-2.19) and recessive model (C/C vs G/C + G/G: OR = 1.52, 95%CI: 1.07-2.17). However, no association was found between MIF -173G/C polymorphism and susceptibility to CD.
CONCLUSION: Our meta-analysis strongly suggests that MIF -173G/C polymorphism is associated with susceptibility to UC. However, current studies do not support a direct relationship between MIF -173G/C polymorphism and susceptibility to CD.
Collapse
|
13
|
Ribosomal protein S19 is a novel therapeutic agent in inflammatory kidney disease. Clin Sci (Lond) 2013; 124:627-37. [PMID: 23252627 DOI: 10.1042/cs20120526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RPS19 (ribosomal protein S19), a component of the 40S small ribosomal subunit, has recently been identified to bind the pro-inflammatory cytokine macrophage MIF (migration inhibitory factor). In vitro experiments identify RPS19 as the first endogenous MIF inhibitor by blocking the binding of MIF to its receptor CD74 and MIF functions on monocyte adherence to endothelial cells. In the present study, we sought to establish whether recombinant RPS19 can exert anti-inflammatory effects in a mouse model of anti-GBM (glomerular basement membrane) GN (glomerulonephritis) in which MIF is known to play an important role. Accelerated anti-GBM GN was induced in C57BL/6J mice by immunization with sheep IgG followed 5 days later by administration of sheep anti-mouse GBM serum. Groups of eight mice were treated once daily by intraperitoneal injection with 6 mg of RPS19/kg of body weight or an irrelevant control protein (human secretoglobin 2A1), or received no treatment, from day 0 until being killed on day 10. Mice that received control or no treatment developed severe crescentic anti-GBM disease on day 10 with increased serum creatinine, declined creatinine clearance and increased proteinuria. These changes were associated with up-regulation of MIF and its receptor CD74 activation of ERK (extracellular-signal-regulated kinase) and NF-κB (nuclear factor κB) signalling, prominent macrophage and T-cell infiltration, as well as up-regulation of Th1 [T-bet and IFNγ (interferon γ)] and Th17 [STAT3 (signal transducer and activator of transcription 3) and IL (interleukin)-17A] as well as IL-1β and TNFα (tumour necrosis factor α). In contrast, RPS19 treatment largely prevented the development of glomerular crescents and glomerular necrosis, and prevented renal dysfunction and proteinuria (all P<0.001). Of note, RPS19 blocked up-regulation of MIF and CD74 and inactivated ERK and NF-κB signalling, thereby inhibiting macrophage and T-cell infiltration, Th1 and Th17 responses and up-regulation of pro-inflammatory cytokines (all P<0.01). These results demonstrate that RPS19 is a potent anti-inflammatory agent, which appears to work primarily by inhibiting MIF signalling.
Collapse
|
14
|
Béland K, Lapierre P, Djilali-Saiah I, Alvarez F. Liver restores immune homeostasis after local inflammation despite the presence of autoreactive T cells. PLoS One 2012; 7:e48192. [PMID: 23110209 PMCID: PMC3480501 DOI: 10.1371/journal.pone.0048192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 09/24/2012] [Indexed: 12/11/2022] Open
Abstract
The liver must keep equilibrium between immune tolerance and immunity in order to protect itself from pathogens while maintaining tolerance to food antigens. An imbalance between these two states could result in an inflammatory liver disease. The aims of this study were to identify factors responsible for a break of tolerance and characterize the subsequent restoration of liver immune homeostasis. A pro-inflammatory environment was created in the liver by the co-administration of TLR ligands CpG and Poly(I:C) in presence or absence of activated liver-specific autoreactive CD8(+) T cells. Regardless of autoreactive CD8(+) T cells, mice injected with CpG and Poly(I:C) showed elevated serum ALT levels and a transient liver inflammation. Both CpG/Poly(I:C) and autoreactive CD8(+)T cells induced expression of TLR9 and INF-γ by the liver, and an up-regulation of homing and adhesion molecules CXCL9, CXCL10, CXCL16, ICAM-1 and VCAM-1. Transferred CFSE-labeled autoreactive CD8(+) T cells, in presence of TLR3 and 9 ligands, were recruited by the liver and spleen and proliferated. This population then contracted by apoptosis through intrinsic and extrinsic pathways. Up-regulation of FasL and PD-L1 in the liver was observed. In conclusion, TLR-mediated activation of the innate immune system results in a pro-inflammatory environment that promotes the recruitment of lymphocytes resulting in bystander hepatitis. Despite this pro-inflammatory environment, the presence of autoreactive CD8(+) T cells is not sufficient to sustain an autoimmune response against the liver and immune homeostasis is rapidly restored through the apoptosis of T cells.
Collapse
Affiliation(s)
- Kathie Béland
- Division of Gastroenterology, Hepatology and Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Pascal Lapierre
- Division of Gastroenterology, Hepatology and Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
| | - Idriss Djilali-Saiah
- Division of Gastroenterology, Hepatology and Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
- Microbiology and Immunology department, University of Montreal, Montréal, Quebec, Canada
| | - Fernando Alvarez
- Division of Gastroenterology, Hepatology and Nutrition, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec, Canada
- Microbiology and Immunology department, University of Montreal, Montréal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
15
|
Fehlings M, Drobbe L, Moos V, Renner Viveros P, Hagen J, Beigier-Bompadre M, Pang E, Belogolova E, Churin Y, Schneider T, Meyer TF, Aebischer T, Ignatius R. Comparative analysis of the interaction of Helicobacter pylori with human dendritic cells, macrophages, and monocytes. Infect Immun 2012; 80:2724-34. [PMID: 22615251 PMCID: PMC3434561 DOI: 10.1128/iai.00381-12] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/14/2012] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori may cause chronic gastritis, gastric cancer, or lymphoma. Myeloid antigen-presenting cells (APCs) are most likely involved in the induction and expression of the underlying inflammatory responses. To study the interaction of human APC subsets with H. pylori, we infected monocytes, monocyte-derived dendritic cells (DCs), and monocyte-derived (classically activated; M1) macrophages with H. pylori and analyzed phenotypic alterations, cytokine secretion, phagocytosis, and immunostimulation. Since we detected CD163(+) (alternatively activated; M2) macrophages in gastric biopsy specimens from H. pylori-positive patients, we also included monocyte-derived M2 macrophages in the study. Upon H. pylori infection, monocytes secreted interleukin-1β (IL-1β), IL-6, IL-10, and IL-12p40 (partially secreted as IL-23) but not IL-12p70. Infected DCs became activated, as shown by the enhanced expression of CD25, CD80, CD83, PDL-1, and CCR7, and secreted IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, and IL-23. However, infection led to significantly downregulated CD209 and suppressed the constitutive secretion of macrophage migration inhibitory factor (MIF). H. pylori-infected M1 macrophages upregulated CD14 and CD32, downregulated CD11b and HLA-DR, and secreted mainly IL-1β, IL-6, IL-10, IL-12p40, and IL-23. Activation of DCs and M1 macrophages correlated with increased capacity to induce T-cell proliferation and decreased phagocytosis of dextran. M2 macrophages upregulated CD14 and CD206 and secreted IL-10 but produced less of the proinflammatory cytokines than M1 macrophages. Thus, H. pylori affects the functions of human APC subsets differently, which may influence the course and the outcome of H. pylori infection. The suppression of MIF in DCs constitutes a novel immune evasion mechanism exploited by H. pylori.
Collapse
Affiliation(s)
- Michael Fehlings
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Lea Drobbe
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Verena Moos
- Medical Clinic I, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Pablo Renner Viveros
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Hagen
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Ervinna Pang
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Elena Belogolova
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yuri Churin
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas Schneider
- Medical Clinic I, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Toni Aebischer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Ralf Ignatius
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Li Q, Sarna SK. Nitric oxide modifies chromatin to suppress ICAM-1 expression during colonic inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 303:G103-10. [PMID: 22517771 PMCID: PMC3404578 DOI: 10.1152/ajpgi.00381.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitric oxide (NO) is an established inflammatory mediator. However, it remains controversial whether NO enhances the inflammatory response in the colon or suppresses it. We investigated the epigenetic regulation of Icam-1 expression by NO following induction of colonic inflammation in rats by 2,4,6-trinitrobenzene sulfonic (TNBS) acid and obtaining colonic muscularis externae tissues 24 h later. TNBS inflammation induced intercellular adhesion molecule-1 (ICAM-1) expression by translocating NF-κB to the nucleus. The incubation of inflamed tissues with S-nitrosoglutathione (GSNO) did not affect the nuclear translocation of NF-κB; however, it suppressed the NF-κB binding to DNA. Chromatin immunoprecipitation analysis (ChIP)-qPCR assays showed that the increase in NF-κB/DNA interaction following inflammation is due to the transcriptional downregulation of global HDAC3 and a decrease in its interaction with the DNA on the Icam-1 promoter containing the binding motifs of NF-κB. The decrease in the association of histone deacetylase (HDAC) 3 with the Icam-1 promoter increased the acetylation of histone 4 lysine residue 12 (H4K12), which would favor chromatin relaxation and greater access of NF-κB to its DNA binding sites. HDAC3 dissociation from the DNA did not affect the acetylation levels of H4K8 and H4K16. The NO release by GSNO countered the upregulation of Icam-1 by increasing the transcription of global HDAC3 and its association with the Icam-1 promoter, and by suppressing H4K12 acetylation. We conclude that chromatin modification by transcriptional downregulation of HDAC3 plays a critical role in the induction of the inflammatory response. NO may serve as an anti-inflammatory mediator during the acute stage of inflammation by blunting the downregulation of global HDAC3, increasing HDAC3 interaction with the nucleosomes containing the binding moieties of NF-κB, reducing H4K12Ac to restrict the access of NF-κB to DNA, and suppressing ICAM-1 expression.
Collapse
Affiliation(s)
- Qingjie Li
- 1Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas; and
| | - Sushil K. Sarna
- 1Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas; and ,2Department of Neuroscience and Cell Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
17
|
Hitzler I, Kohler E, Engler DB, Yazgan AS, Müller A. The role of Th cell subsets in the control of Helicobacter infections and in T cell-driven gastric immunopathology. Front Immunol 2012; 3:142. [PMID: 22675328 PMCID: PMC3365484 DOI: 10.3389/fimmu.2012.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/16/2012] [Indexed: 12/12/2022] Open
Abstract
Chronic infection with the gastric bacterial pathogen Helicobacter pylori causes gastric adenocarcinoma in a particularly susceptible fraction of the infected population. The intestinal type of gastric cancer is preceded by a series of preneoplastic lesions that are of immunopathological origin, and that can be recapitulated by experimental infection of C57BL/6 mice with Helicobacter species. Several lines of evidence suggest that specific T cell subsets and/or their signature cytokines contribute to the control of Helicobacter infections on the one hand, and to the associated gastric preneoplastic pathology on the other. Here, we have used virulent H. pylori and H. felis isolates to infect mice that lack α/β T cells due to a targeted deletion of the T cell receptor β-chain, or are deficient for the unique p35 and p19 subunits of the Th1- and Th17-polarizing cytokines interleukin (IL)-12 and IL-23, respectively. We found that α/β T cells are absolutely required for Helicobacter control and for the induction of gastric preneoplastic pathology. In contrast, neither IL-12-dependent Th1 nor IL-23-dependent Th17 cells were essential for controlling the infection; IL-12p35-/- and IL-23p19-/- mice did not differ significantly from wild type animals with respect to Helicobacter colonization densities. Gastritis and gastric preneoplastic pathology developed to a similar extent in all three strains upon H. felis infection; in the H. pylori infection model, IL-23p19-/- mice exhibited significantly less gastritis and precancerous pathology. In summary, the results indicate that neither Th1 nor Th17 cells are by themselves essential for Helicobacter control; the associated gastric pathology is reduced only in the absence of Th17-polarizing IL-23, and only in the H. pylori, but not the H. felis infection model. The results thus suggest the involvement of other, as yet unknown T cell subsets in both processes.
Collapse
Affiliation(s)
- Iris Hitzler
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Sekiguchi H, Takabayashi F, Irie K, Murakami A. Auraptene attenuates gastritis via reduction of Helicobacter pylori colonization and pro-inflammatory mediator production in C57BL/6 mice. J Med Food 2012; 15:658-63. [PMID: 22471969 DOI: 10.1089/jmf.2011.1844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that plays central roles in chronic gastritis and gastric cancer. Recently, we reported that auraptene suppressed H. pylori adhesion via expression of CD74, which has been identified as a new receptor for H. pylori urease. In this study, we attempted to clarify the effects of oral feeding of auraptene on H. pylori infection and resultant inflammatory responses in C57BL/6 mice and found that it remarkably attenuated H. pylori colonization and gastritis. Biochemical analyses revealed that auraptene inhibited H. pylori-induced expression and/or production of CD74, macrophage migration inhibitory factor, interleukin-1β, and tumor necrosis factor-α in gastric mucosa, together with serum macrophage inhibitory protein-2. It is notable that treatment with this coumarin during the pretreatment period was more effective than that during posttreatment. Our results suggest that auraptene is a promising phytochemical for reducing the risk of H. pylori-induced gastritis and carcinogenesis.
Collapse
Affiliation(s)
- Hirotaka Sekiguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
19
|
Li Z, Chen J, Chan KW, Qiao L, Wong BCY. A possible role of cIAP2 in Helicobacter pylori-associated gastric cancer. Cancer Lett 2011; 313:192-200. [PMID: 21963223 DOI: 10.1016/j.canlet.2011.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/05/2011] [Accepted: 09/05/2011] [Indexed: 01/19/2023]
Abstract
Cellular inhibitor of apoptosis protein 2 (cIAP2) is a member of the IAP family and is over-expressed in most cancer tissues. In this study, we investigated the role cIAP2 in Helicobacter pylori (HP) related gastric carcinogenesis. We measured the expression of cIAP2 at mRNA and protein levels in a panel of gastric cancer cell lines and human gastric cancer tissues by semi-quantitative reverse transcriptase PCR (RT-PCR), quantitative real time PCR (qPCR), immunoblotting, and immunohistochemistry. The effects of cIAP2 down-regulation on gastric cell proliferation and apoptosis were detected by standard WST-1 assay and flow cytometry, respectively. Infection of gastric mucosa by HP enhances the expression of cIAP2 in mouse gastric tissues. Over 70% of human gastric cancer tissues express higher amount of cIAP2. Well-differentiated gastric cancer cells express more cIAP2 than moderately- and poorly-differentiated gastric cancer cells. Knocking down of cIAP2 in SGC-7901 cells results in a 30% decrease in cell proliferation, a 20% increase in apoptosis and delayed migration. Thus, cIAP2 may play an important role in HP-induced gastric carcinogenesis, and it may serve as a potential target for gastric cancer therapy.
Collapse
Affiliation(s)
- Zesong Li
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002 Shungang West Road, Futian District, Shenzhen 518035, Guangdong Province, China
| | | | | | | | | |
Collapse
|
20
|
A role for macrophage migration inhibitory factor in protective immunity against Aspergillus fumigatus. Immunobiology 2011; 216:1018-27. [PMID: 21489649 DOI: 10.1016/j.imbio.2011.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/23/2022]
Abstract
Inflammation plays an important role in protective immunity against fungi, including the opportunistic pathogen, Aspergillus fumigatus. The balance between pro-inflammatory and anti-inflammatory cytokines is a key determinant of infection outcome. Since macrophage migration inhibitory factor (MIF) is an upstream regulator of many cytokines, we analyzed herein the role of endogenous MIF in the host control of hematogenously disseminated aspergillosis using MIF⁻/⁻ mice. As revealed by their mortality rate, MIF⁻/⁻ mice were more susceptible to disseminated infection than WT mice. Moreover, pharmacologic inhibition of MIF with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester, (ISO-1) increased the susceptibility of WT mice to lethal infection. The higher tissue fungal burden early in sublethal infection indicated increased susceptibility of MIF⁻/⁻ mice to sublethal infection as well. Substantial down-regulation of innate and acquired antifungal responses, characterized by decreased production of IL-1β, IL-6, TNF-α, IFN-γ and IL-17 in the spleen was noted in sublethally infected MIF⁻/⁻ mice. In contrast, IL-4 was higher in MIF⁻/⁻ than in WT mice. Taken together, our findings show that MIF contributes to host resistance against progressive invasive A. fumigatus infection by controlling downstream pro-inflammatory versus anti-inflammatory cytokine production thus determining the outcome of infection.
Collapse
|
21
|
Ji N, Sosa RA, Forsthuber TG. More than just a T-box: the role of T-bet as a possible biomarker and therapeutic target in autoimmune diseases. Immunotherapy 2011; 3:435-41. [PMID: 21395384 PMCID: PMC3160828 DOI: 10.2217/imt.10.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
T-bet was initially described as a T-box transcription factor with an essential role in orchestrating Th1 cell differentiation. Subsequently, it was determined that T-bet controls the expression of numerous cytokines and their receptors, adhesion molecules and chemokine receptors, and therefore determines the differentiation and development status of many types of immune cells. The critical role of T-bet in autoimmune diseases, particularly multiple sclerosis and its animal model experimental autoimmune encephalomyelitis, implicates it as a potential biomarker for pathogenic T cells as well as a therapeutic drug target.
Collapse
Affiliation(s)
- Niannian Ji
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | - Rebecca A Sosa
- Department of Biology, University of Texas at San Antonio, TX 78249, USA
| | | |
Collapse
|
22
|
Borghese F, Clanchy FIL. CD74: an emerging opportunity as a therapeutic target in cancer and autoimmune disease. Expert Opin Ther Targets 2011; 15:237-51. [PMID: 21208136 DOI: 10.1517/14728222.2011.550879] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION CD74, also known as the invariant chain, participates in several key processes of the immune system, including antigen presentation, B-cell differentiation and inflammatory signaling. Despite being described more than 3 decades ago, new functions and novel interactions for this evolutionarily conserved molecule are still being unraveled. As a participant in several immunological processes and an indicator of disease in some conditions, it has potential as a therapeutic target. AREAS COVERED The relationship between the structure of CD74 variants and their physiological functions is detailed in this review. The function of CD74 in several cell lineages is examined with a focus on the interactions with cathepsins and, in an inflammatory milieu, the pro-inflammatory cytokine macrophage migratory inhibitory factor. The role of CD74 signaling in inflammatory and carcinogenic processes is outlined as is the use of CD74 as a therapeutic target (in cancer) and tool (as a vaccine). EXPERT OPINION CD74 has several roles within the cell and throughout the immune system. Most prominent amongst these are the complex relationships with MIF and cathepsins. Modulation of CD74 function shows promise for the effective amelioration of disease.
Collapse
Affiliation(s)
- Federica Borghese
- Sapienza University of Rome, Department of Clinical Medicine, Clinical Immunology Unit, Umberto I Policlinico di Roma, 155 Viale del Policlinico, Rome, IT 00161
| | | |
Collapse
|
23
|
Ohkawara T, Takeda H, Ohnishi S, Kato M, Nishihira J, Asaka M. Macrophage migration inhibitory factor contributes to development of nonsteroidal anti-inflammatory drugs-induced gastric injury in mice. Int Immunopharmacol 2010; 11:418-23. [PMID: 21185918 DOI: 10.1016/j.intimp.2010.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/06/2023]
Abstract
Macrophage migration inhibitory factor (MIF) plays an important role in the development of inflammation. In this study, we evaluated the role of MIF in gastric injury induced by non-steroidal anti-inflammatory drugs (NSAIDs) in mice. To induce gastric injury, mice were intraperitnoneally injected with 35 mg/kg of indomethacin. The level of MIF protein was up-regulated and severe gastric injury with inflammatory infiltrate was observed in the stomach of wild-type (WT) mice treated with indomethacin. The severity of gastric injury in MIF-deficient mice was less than that in WT mice. Increase in TNF-α in gastric tissue of mice treated with indomethacin was suppressed in MIF-deficient mice. The expression of HSP70, which has a cytoprotective role, was remarkably up-regulated in the stomach of MIF-deficient mice compared with WT mice after indomethacin treatment. Our results suggest that MIF is essential for the development of gastric injury-induced by NSAIDs.
Collapse
Affiliation(s)
- Tatsuya Ohkawara
- Department of Gastroenterology and Hematology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Sapporo 060-8638, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Helicobacter pylori represents the major etiologic agent of gastritis, gastric, and duodenal ulcer disease and can cause gastric cancer and mucosa-associated lymphoid tissue B-cell lymphoma. It is clear that the consequences of infection reflect diverse outcomes of the interaction of bacteria and host immune system. The hope is that by deciphering the deterministic rules--if any--of this interplay, we will eventually be able to predict, treat, and ultimately prevent disease. Over the past year, research on the immunology of this infection started to probe the role of small noncoding RNAs, a novel class of immune response regulators. Furthermore, we learned new details on how infection is detected by innate pattern recognition receptors. Induction of effective cell-mediated immunity will be key for the development of a vaccine, and new work published analyzed the relevance and contribution of CD4 T helper cell subsets to the immune reaction. Th17 cells, which are also induced during natural infection, were shown to be particularly important for vaccination. Cost-efficiency of vaccination was re-assessed and confirmed. Thus, induction and shaping of the effector roles of such protective Th populations will be a target of the newly described vaccine antigens, formulations, and modes of application that we also review here.
Collapse
|
25
|
Bernhardt A, Kuester D, Roessner A, Reinheckel T, Krueger S. Cathepsin X-deficient gastric epithelial cells in co-culture with macrophages: characterization of cytokine response and migration capability after Helicobacter pylori infection. J Biol Chem 2010; 285:33691-700. [PMID: 20736174 DOI: 10.1074/jbc.m110.146183] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Our previous studies have shown an association between Helicobacter pylori infection, the strong up-regulation of cathepsin X (CTSX, also called cathepsin Z/P), and the development of gastric cancer. In the present study, we analyzed primary and conventional gastric epithelial cell lines to establish an optimal in vitro mouse model system for the examination of H. pylori-induced overexpression of Ctsx in a functional way. Gastric epithelial cells were isolated from stomachs of wild-type C57BL6/N and Ctsx(-/-) mice and compared with the gastric cancer cell line CLS103. Indirect co-cultures of epithelial cells and macrophages were infected with H. pylori strain SS1 and analyzed for the expression of cathepsins, cytokines, and adhesion factors. Cellular interactions, migration capability, and adherence of H. pylori were assessed using time-lapse video microscopy and colony-forming assays. Isolated primary cells from wild-type and transgenic mice revealed qualities and expression profiles similar to those of corresponding tissue samples. Adherence of H. pylori was significantly higher in primary compared with commercially cells. Thus, induction of cathepsins, cytokines, and adhesion proteins was detected solely in primary cells and co-cultured macrophages. Microarray and migration experiments indicated that Ctsx is involved in B/T-cell proliferation/migration and adhesion of macrophages. Primary epithelial cells from stomach of Ctsx(-/-) mice represent an excellent model of H. pylori gastritis to elaborate the special functions of Ctsx in regulating the immune response to H. pylori.
Collapse
Affiliation(s)
- Anja Bernhardt
- Institute of Pathology, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
26
|
Abstract
Adaptive CD4 T-cell responses are important in the pathogenesis of chronic Helicobacter pylori gastritis. However, the gastric antigen-presenting cells that induce these responses have not yet been identified. Here we show that dendritic cells (DCs) are present in the gastric mucosa of healthy subjects and are more prevalent and more activated in the gastric mucosa of H. pylori-infected subjects. H. pylori induced gastric DCs isolated from noninfected subjects to express increased levels of CD11c, CD86 and CD83, and to secrete proinflammatory cytokines, particularly interleukin (IL)-6 and IL-8. Importantly, gastric DCs pulsed with live H. pylori, but not control DCs, mediated T-cell secretion of interferon-gamma. The ability of H. pylori to induce gastric DC maturation and stimulate gastric DC activation of Th1 cells implicates gastric DCs as initiators of the immune response to H. pylori.
Collapse
|