1
|
Bashandy SAE, Elbaset MA, Ibrahim FAA, Abdelrahman SS, Moussa SAA, El-Seidy AMA. Management of cardiovascular disease by cerium oxide nanoparticles via alleviating oxidative stress and adipokine abnormalities. Sci Rep 2025; 15:5709. [PMID: 39962072 PMCID: PMC11833101 DOI: 10.1038/s41598-025-85794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
The current study aimed to evaluate the role of cerium oxide nanoparticles (C-1), a potent antioxidant, in the medication of cardiovascular disease in obese animal model. C-1 was prepared using a modified sonication sol-gel method. Thirty-two adult male rats were equally divided into 4 groups (n=8/each). The first (control) and second (obese) groups are not treated while the obese rats in the third and fourth groups were given 15 and 30 mg/kg C-1(IP), respectively, for 8 weeks. Parameters of insulin resistance, adipocyte hormones, inflammatory markers, lipid profile, cardiac enzymes and cardiac iron content (C-Fe) were estimated. Moreover, histological study and immunohistochemical stain for inducible nitric oxide synthase (INOS) for cardiac and aortic tissues were performed. The XRD patterns of C-1 showed narrow symmetric diffraction peaks. The particle diameters were calculated from the TEM histogram (21.09 nm) and the Debye-Scherrer Method (20.74 nm) which were very similar. Using the most intense peak ( 28 . 47 ∘ ), structural parameters were calculated including nano-crystallite size, Micro-strain, Lorentz factor, Thomson polarization parameter, and Lorentz polarization parameter. BET was used to calculate The total surface area (ST ), and specific surface area (SBET ). The XPS survey spectrum of C-1 showed peaks for C-1s, O-1s and Ce-3d. The treatment of obese rats with C-1 led to a significant decrease in body weight, C-Fe , plasma leptin, tumor necrosis factor-alpha (TNF α ), interleukin-6 (IL6), C-reactive protein (CRP), resistin, cholesterol, triglycerides, low-density lipoprotein (LDL), Troponin, Creatinine Kinase-MB (CK-MB), lactate dehydrogenase (LDH), and malondialdehyde (MDA) in cardiac tissue or in plasma. Also, C-1 lowered plasma monocyte chemoattractant protein-1 (MCP-1), Epithelial Neutrophil-Activating Peptide (ENA-78), and insulin and glucose levels in obese rats. Furthermore, C-1 alleviated the increase of cardiac iNOS. Moreover, C-1 mitigated pathological changes of cardiac muscle and aorta observed in obese rats. On the other hand, C-1 enhanced adiponectin, cardiac glutathione (GSH) and superoxide dismutase (SOD) in obese rats. The effect of C-1 is dose-dependent ( 30 mg/kg of C-1 is more evident than 15 mg/kg). The modified synthesis method may lead to a smaller particle size than that reported in our previously reported work. The XRD patterns of C-1 indicate its cubic structure with space group F m -3 m (225) which was matched by code id 4343161 from COD. The Raman spectrum of C-1 indicates the absence of rearrangement oxygen atoms, the presence of oxygen in its fluorite lattice positions, and the oxygen vacancies in C-1 and the Ce vibration model (F2g). The presence of ten peaks in the high-resolution Ce-3d XP spectrum indicates the existence of both Ce3+ and Ce4+. C-1 showed therapeutic efficacy in atherosclerosis and cardiac muscle abnormalities associated with obese rats, probably because of their antioxidant and anti-inflammatory properties, which lead to lowering oxidative stress.
Collapse
Affiliation(s)
- Samir A E Bashandy
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt
| | - Marawan A Elbaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt.
| | - Fatma A A Ibrahim
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt
| | - Sahar S Abdelrahman
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sherif A Abdelmottaleb Moussa
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt
| | - Ahmed M A El-Seidy
- Inorganic Chemistry Department, Advanced Materials Technology & Mineral Resources Research Institute, National Research Centre, El-bohouth St., P.O. 12622, Dokki, Cairo, Egypt.
| |
Collapse
|
2
|
Milewski K, Czarnecka AM, Albrecht J, Zielińska M. Decreased Expression and Uncoupling of Endothelial Nitric Oxide Synthase in the Cerebral Cortex of Rats with Thioacetamide-Induced Acute Liver Failure. Int J Mol Sci 2021; 22:6662. [PMID: 34206365 PMCID: PMC8268495 DOI: 10.3390/ijms22136662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/04/2023] Open
Abstract
Acute liver failure (ALF) is associated with deregulated nitric oxide (NO) signaling in the brain, which is one of the key molecular abnormalities leading to the neuropsychiatric disorder called hepatic encephalopathy (HE). This study focuses on the effect of ALF on the relatively unexplored endothelial NOS isoform (eNOS). The cerebral prefrontal cortices of rats with thioacetamide (TAA)-induced ALF showed decreased eNOS expression, which resulted in an overall reduction of NOS activity. ALF also decreased the content of the NOS cofactor, tetrahydro-L-biopterin (BH4), and evoked eNOS uncoupling (reduction of the eNOS dimer/monomer ratio). The addition of the NO precursor L-arginine in the absence of BH4 potentiated ROS accumulation, whereas nonspecific NOS inhibitor L-NAME or EDTA attenuated ROS increase. The ALF-induced decrease of eNOS content and its uncoupling concurred with, and was likely causally related to, both increased brain content of reactive oxidative species (ROS) and decreased cerebral cortical blood flow (CBF) in the same model.
Collapse
Affiliation(s)
| | | | | | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str, 02-106 Warsaw, Poland; (K.M.); (A.M.C.); (J.A.)
| |
Collapse
|
3
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Dumont A, Lee M, Barouillet T, Murphy A, Yvan-Charvet L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol Aspects Med 2020; 77:100922. [PMID: 33162108 DOI: 10.1016/j.mam.2020.100922] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Macrophages are pivotal in the initiation and development of atherosclerotic cardiovascular diseases. Recent studies have reinforced the importance of mitochondria in metabolic and signaling pathways to maintain macrophage effector functions. In this review, we discuss the past and emerging roles of macrophage mitochondria metabolic diversity in atherosclerosis and the potential avenue as biomarker. Beyond metabolic functions, mitochondria are also a signaling platform integrating epigenetic, redox, efferocytic and apoptotic regulations, which are exquisitely linked to their dynamics. Indeed, mitochondria functions depend on their density and shape perpetually controlled by mitochondria fusion/fission and biogenesis/mitophagy balances. Mitochondria can also communicate with other organelles such as the endoplasmic reticulum through mitochondria-associated membrane (MAM) or be secreted for paracrine actions. All these functions are perturbed in macrophages from mouse or human atherosclerotic plaques. A better understanding and integration of how these metabolic and signaling processes are integrated and dictate macrophage effector functions in atherosclerosis may ultimately help the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Adélie Dumont
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - ManKS Lee
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - Andrew Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France.
| |
Collapse
|
5
|
Gallerand A, Stunault MI, Merlin J, Guinamard RR, Yvan-Charvet L, Ivanov S. Myeloid Cell Diversity and Impact of Metabolic Cues during Atherosclerosis. IMMUNOMETABOLISM 2020; 2:immunometab20200028. [PMID: 39649554 PMCID: PMC7617020 DOI: 10.20900/immunometab20200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Myeloid cells are key contributors to tissue, immune and metabolic homeostasis and their alteration fuels inflammation and associated disorders such as atherosclerosis. Conversely, in a classical chicken-and-egg situation, systemic and local metabolism, together with receptor-mediated activation, regulate intracellular metabolism and reprogram myeloid cell functions. Those regulatory loops are notable during the development of atherosclerotic lesions. Therefore, understanding the intricate metabolic mechanisms regulating myeloid cell biology could lead to innovative approaches to prevent and treat cardiovascular diseases. In this review, we will attempt to summarize the different metabolic factors regulating myeloid cell homeostasis and contribution to atherosclerosis, the most frequent cardiovascular disease.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Marion I. Stunault
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Johanna Merlin
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Rodolphe R. Guinamard
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Laurent Yvan-Charvet
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Stoyan Ivanov
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| |
Collapse
|
6
|
Stepien KM, Roncaroli F, Turton N, Hendriksz CJ, Roberts M, Heaton RA, Hargreaves I. Mechanisms of Mitochondrial Dysfunction in Lysosomal Storage Disorders: A Review. J Clin Med 2020; 9:jcm9082596. [PMID: 32796538 PMCID: PMC7463786 DOI: 10.3390/jcm9082596] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is emerging as an important contributory factor to the pathophysiology of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs appears to be multifactorial, although impaired mitophagy and oxidative stress appear to be common inhibitory mechanisms shared amongst these heterogeneous disorders. Once impaired, dysfunctional mitochondria may impact upon the function of the lysosome by the generation of reactive oxygen species as well as depriving the lysosome of ATP which is required by the V-ATPase proton pump to maintain the acidity of the lumen. Given the reported evidence of mitochondrial dysfunction in LSDs together with the important symbiotic relationship between these two organelles, therapeutic strategies targeting both lysosome and mitochondrial dysfunction may be an important consideration in the treatment of LSDs. In this review we examine the putative mechanisms that may be responsible for mitochondrial dysfunction in reported LSDs which will be supplemented with morphological and clinical information.
Collapse
Affiliation(s)
- Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Correspondence:
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, School of Biology, Medicine and Health, University of Manchester and Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Nadia Turton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Christian J. Hendriksz
- Paediatrics and Child Health, Steve Biko Academic Unit, University of Pretoria, 0002 Pretoria, South Africa;
| | - Mark Roberts
- Neurology Department, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Robert A. Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Iain Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| |
Collapse
|
7
|
Aspirin enhances regulatory functional activities of monocytes and downregulates CD16 and CD40 expression in myocardial infarction autoinflammatory disease. Int Immunopharmacol 2020; 83:106349. [DOI: 10.1016/j.intimp.2020.106349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
|
8
|
Abstract
Macrophage immunometabolism, the changes in intracellular metabolic pathways that alter the function of these highly plastic cells, has been the subject of intense interest in the past few years, in part because macrophage immunometabolism plays important roles in atherosclerosis and other inflammatory diseases. In this review article, part of the Compendium on Atherosclerosis, we introduce the concepts of (1) intracellular immunometabolism-the canonical pathways of intrinsic cell activation leading to changes in intracellular metabolism, which in turn alter cellular function; and (2) intercellular immunometabolism-conditions in which intermediates of cellular metabolism are transferred from one cell to another, thereby altering the function of the recipient cell. The recent discovery that the metabolite cargo of dead and dying cells ingested through efferocytosis by macrophages can alter metabolic pathways and downstream function of the efferocyte is markedly changing the way we think about macrophage immunometabolism. Metabolic transitions of macrophages contribute to their functions in all stages of atherosclerosis, from lesion initiation to formation of advanced lesions characterized by necrotic cores, to lesion regression following aggressive lipid lowering. This review article discusses recent advances in our understanding of these different aspects of macrophage immunometabolism in atherosclerosis. With the increasing understanding of the roles of macrophage immunometabolism in atherosclerosis, new exciting concepts and potential targets for intervention are emerging.
Collapse
Affiliation(s)
- Ira Tabas
- From the Departments of Medicine, Anatomy and Cell Biology, and Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY (I.T.)
| | - Karin E Bornfeldt
- Department of Medicine, and Division of Metabolism, Endocrinology and Nutrition, Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (K.E.B.)
| |
Collapse
|
9
|
Candidate SNP Markers of Atherogenesis Significantly Shifting the Affinity of TATA-Binding Protein for Human Gene Promoters show stabilizing Natural Selection as a Sum of Neutral Drift Accelerating Atherogenesis and Directional Natural Selection Slowing It. Int J Mol Sci 2020; 21:ijms21031045. [PMID: 32033288 PMCID: PMC7037642 DOI: 10.3390/ijms21031045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: The World Health Organization (WHO) regards atherosclerosis-related myocardial infarction and stroke as the main causes of death in humans. Susceptibility to atherogenesis-associated diseases is caused by single-nucleotide polymorphisms (SNPs). (2) Methods: Using our previously developed public web-service SNP_TATA_Comparator, we estimated statistical significance of the SNP-caused alterations in TATA-binding protein (TBP) binding affinity for 70 bp proximal promoter regions of the human genes clinically associated with diseases syntonic or dystonic with atherogenesis. Additionally, we did the same for several genes related to the maintenance of mitochondrial genome integrity, according to present-day active research aimed at retarding atherogenesis. (3) Results: In dbSNP, we found 1186 SNPs altering such affinity to the same extent as clinical SNP markers do (as estimated). Particularly, clinical SNP marker rs2276109 can prevent autoimmune diseases via reduced TBP affinity for the human MMP12 gene promoter and therefore macrophage elastase deficiency, which is a well-known physiological marker of accelerated atherogenesis that could be retarded nutritionally using dairy fermented by lactobacilli. (4) Conclusions: Our results uncovered SNPs near clinical SNP markers as the basis of neutral drift accelerating atherogenesis and SNPs of genes encoding proteins related to mitochondrial genome integrity and microRNA genes associated with instability of the atherosclerotic plaque as a basis of directional natural selection slowing atherogenesis. Their sum may be stabilizing the natural selection that sets the normal level of atherogenesis.
Collapse
|
10
|
Lin H, Wang X. The effects of gasotransmitters on bronchopulmonary dysplasia. Eur J Pharmacol 2020; 873:172983. [PMID: 32017936 DOI: 10.1016/j.ejphar.2020.172983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD), which remains a major clinical problem for preterm infants, is caused mainly by hyperoxia, mechanical ventilation and inflammation. Many approaches have been developed with the aim of decreasing the incidence of or alleviating BPD, but effective methods are still lacking. Gasotransmitters, a type of small gas molecule that can be generated endogenously, exert a protective effect against BPD-associated lung injury; nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are three such gasotransmitters. The protective effects of NO have been extensively studied in animal models of BPD, but the results of these studies are inconsistent with those of clinical trials. NO inhalation seems to have no effect on BPD, although side effects have been reported. NO inhalation is not recommended for BPD treatment in preterm infants, except those with severe pulmonary hypertension. Both CO and H2S decreased lung injury in BPD rodent models in preclinical studies. Another small gas molecule, hydrogen, exerts a protective effect against BPD. The nuclear factor erythroid-derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis seems to play a central role in the protective effect of these gasotransmitters on BPD. Gasotransmitters play important roles in mammals, but further clinical trials are needed to explore their effects on BPD.
Collapse
Affiliation(s)
- Hai Lin
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xinbao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
11
|
Douglas G, Hale AB, Patel J, Chuaiphichai S, Al Haj Zen A, Rashbrook VS, Trelfa L, Crabtree MJ, McNeill E, Channon KM. Roles for endothelial cell and macrophage Gch1 and tetrahydrobiopterin in atherosclerosis progression. Cardiovasc Res 2018; 114:1385-1399. [PMID: 29596571 PMCID: PMC6054219 DOI: 10.1093/cvr/cvy078] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/22/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Aims GTP cyclohydrolase I catalyses the first and rate-limiting reaction in the synthesis of tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthases (NOS). Both eNOS and iNOS have been implicated in the progression of atherosclerosis, with opposing effects in eNOS and iNOS knockout mice. However, the pathophysiologic requirement for BH4 in regulating both eNOS and iNOS function, and the effects of loss of BH4 on the progression of atherosclerosis remains unknown. Methods and results Hyperlipidemic mice deficient in Gch1 in endothelial cells and leucocytes were generated by crossing Gch1fl/flTie2cre mice with ApoE-/- mice. Deficiency of Gch1 and BH4 in endothelial cells and myeloid cells was associated with mildly increased blood pressure. High fat feeding for 6 weeks in Gch1fl/flTie2CreApoE-/- mice resulted in significantly decreased circulating BH4 levels, increased atherosclerosis burden and increased plaque macrophage content. Gch1fl/flTie2CreApoE-/- mice showed hallmarks of endothelial cell dysfunction, with increased aortic VCAM-1 expression and decreased endothelial cell dependent vasodilation. Furthermore, loss of BH4 from pro-inflammatory macrophages resulted in increased foam cell formation and altered cellular redox signalling, with decreased expression of antioxidant genes and increased reactive oxygen species. Bone marrow chimeras revealed that loss of Gch1 in both endothelial cells and leucocytes is required to accelerate atherosclerosis. Conclusion Both endothelial cell and macrophage BH4 play important roles in the regulation of NOS function and cellular redox signalling in atherosclerosis.
Collapse
Affiliation(s)
- Gillian Douglas
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ashley B Hale
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jyoti Patel
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Surawee Chuaiphichai
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ayman Al Haj Zen
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Victoria S Rashbrook
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lucy Trelfa
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eileen McNeill
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
12
|
Dikalov SI, Polienko YF, Kirilyuk I. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes. Antioxid Redox Signal 2018; 28:1433-1443. [PMID: 29037084 PMCID: PMC5910043 DOI: 10.1089/ars.2017.7396] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. CRITICAL ISSUES Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. FUTURE DIRECTIONS Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.
Collapse
Affiliation(s)
- Sergey I Dikalov
- 1 Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Yuliya F Polienko
- 2 Laboratory of Nitrogen Compounds, Novosibirsk Institute of Organic Chemistry , Novosibirsk, Russia .,3 Department of Organic Chemistry, Novosibirsk State University , Novosibirsk, Russia
| | - Igor Kirilyuk
- 2 Laboratory of Nitrogen Compounds, Novosibirsk Institute of Organic Chemistry , Novosibirsk, Russia .,3 Department of Organic Chemistry, Novosibirsk State University , Novosibirsk, Russia
| |
Collapse
|
13
|
Saji S, Asha S, Svenia PJ, Ratheesh M, Sheethal S, Sandya S, Krishnakumar IM. Curcumin-galactomannoside complex inhibits pathogenesis in Ox-LDL-challenged human peripheral blood mononuclear cells. Inflammopharmacology 2018; 26:1273-1282. [PMID: 29633105 DOI: 10.1007/s10787-018-0474-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
Oxidised low-density lipoprotein (ox-LDL) is a pro-atherogenic molecule, which induces inflammatory response and contributes to the pathogenesis of vascular dysfunction to atherosclerosis. The aim of the present study was to explore the anti-inflammatory effect of a novel bioavailable formulation of curcumin as 'curcumagalactomannosides' (CGM) against ox-LDL-induced inflammatory responses in human peripheral blood mononuclear cells (hPBMCs). Curcumagalactomannosides was made from natural curcumin using the soluble dietary fibre (galactomannans) derived from fenugreek seeds (Trigonella foenumgracum) and the hPBMCs were isolated from healthy human volunteers. The cells were cultured in collagen-coated plates at 37 °C and grouped as Group I (Control), Group II (ox-LDL treated) and Group III (ox-LDL + CGM treated). Further analysis of inflammatory markers, reactive oxygen species and mRNA expression levels indicated significantly increased expressions of iNOS, TNF-α, IL-6 and VCAM-1 in ox-LDL-treated group along with the nuclear translocation of NF-κB. Other inflammatory markers such as LOX, PGE2, total COX and lipid peroxidation level were also found to be significantly (p < 0.05) increased upon ox-LDL treatment. The treatment with CGM on the other hand was found to down-regulate and reverse the ox-LDL-induced alterations indicating its potential anti-inflammatory effect on hPBMCs via. NF-κB signalling pathway.
Collapse
Affiliation(s)
- Sangeeth Saji
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, Kerala, India
| | - S Asha
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, Kerala, India
| | | | - M Ratheesh
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, Kerala, India.
| | - S Sheethal
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, Kerala, India
| | - S Sandya
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, Karnataka, India
| | - I M Krishnakumar
- R&D Centre, Akay Flavours & Aromatics Pvt Ltd, Cochin, Kerala, India
| |
Collapse
|
14
|
Navia-Pelaez JM, Campos-Mota GP, Araujo de Souza JC, Aguilar EC, Stergiopulos N, Alvarez-Leite JI, Capettini LSA. nNOS uncoupling by oxidized LDL: Implications in atherosclerosis. Free Radic Biol Med 2017; 113:335-346. [PMID: 28970060 DOI: 10.1016/j.freeradbiomed.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/13/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Juliana Maria Navia-Pelaez
- Laboratory of Vascular Biology, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Gianne Paul Campos-Mota
- Laboratory of Vascular Biology, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Jessica Cristina Araujo de Souza
- Laboratory of Vascular Biology, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Edenil Costa Aguilar
- Laboratory of Vascular Biology, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil; Laboratory of Atherosclerosis and Nutritional Biochemistry, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Nikos Stergiopulos
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, BM 5128 Station 17, CH-1015 Lausanne, Switzerland.
| | - Jacqueline Isaura Alvarez-Leite
- Laboratory of Atherosclerosis and Nutritional Biochemistry, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - Luciano Santos Aggum Capettini
- Laboratory of Vascular Biology, Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Ugwu FN, Yu AP, Sin TK, Tam BT, Lai CW, Wong SC, Siu PM. Protective Effect of Unacylated Ghrelin on Compression-Induced Skeletal Muscle Injury Mediated by SIRT1-Signaling. Front Physiol 2017; 8:962. [PMID: 29225581 PMCID: PMC5705540 DOI: 10.3389/fphys.2017.00962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022] Open
Abstract
Unacylated ghrelin, the predominant form of circulating ghrelin, protects myotubes from cell death, which is a known attribute of pressure ulcers. In this study, we investigated whether unacylated ghrelin protects skeletal muscle from pressure-induced deep tissue injury by abolishing necroptosis and apoptosis signaling and whether these effects were mediated by SIRT1 pathway. Fifteen adult Sprague Dawley rats were assigned to receive saline or unacylated ghrelin with or without EX527 (a SIRT1 inhibitor). Animals underwent two 6-h compression cycles with 100 mmHg static pressure applied over the mid-tibialis region of the right limb whereas the left uncompressed limb served as the intra-animal control. Muscle tissues underneath the compression region, and at the similar region of the opposite uncompressed limb, were collected for analysis. Unacylated ghrelin attenuated the compression-induced muscle pathohistological alterations including rounding contour of myofibers, extensive nucleus accumulation in the interstitial space, and increased interstitial space. Unacylated ghrelin abolished the increase in necroptosis proteins including RIP1 and RIP3 and attenuated the elevation of apoptotic proteins including p53, Bax, and AIF in the compressed muscle. Furthermore, unacylated ghrelin opposed the compression-induced phosphorylation and acetylation of p65 subunit of NF-kB. The anti-apoptotic effect of unacylated ghrelin was shown by a decrease in apoptotic DNA fragmentation and terminal dUTP nick-end labeling index in the compressed muscle. The protective effects of unacylated ghrelin vanished when co-treated with EX527. Our findings demonstrated that unacylated ghrelin protected skeletal muscle from compression-induced injury. The myoprotective effects of unacylated ghrelin on pressure-induced tissue injury were associated with SIRT1 signaling.
Collapse
Affiliation(s)
- Felix N Ugwu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Angus P Yu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Thomas K Sin
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bjorn T Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Christopher W Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - S C Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Parco M Siu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
16
|
Mao Y, Wang J, Yu F, Li Z, Li H, Guo C, Fan X. Ghrelin protects against palmitic acid or lipopolysaccharide-induced hepatocyte apoptosis through inhibition of MAPKs/iNOS and restoration of Akt/eNOS pathways. Biomed Pharmacother 2016; 84:305-313. [DOI: 10.1016/j.biopha.2016.09.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 01/24/2023] Open
|
17
|
Gupta I, Ganguly S, Rozanas CR, Stuehr DJ, Panda K. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis. Proc Natl Acad Sci U S A 2016; 113:E4208-17. [PMID: 27382160 PMCID: PMC4961122 DOI: 10.1073/pnas.1600056113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage.
Collapse
Affiliation(s)
- Indranil Gupta
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India
| | - Souradipta Ganguly
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India
| | - Christine R Rozanas
- Proteomics Applications Laboratory, GE Healthcare Life Sciences, Piscataway, NJ 08854
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Koustubh Panda
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India;
| |
Collapse
|
18
|
Neuroprotection of Grape Seed Extract and Pyridoxine against Triton-Induced Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8679506. [PMID: 27293516 PMCID: PMC4884861 DOI: 10.1155/2016/8679506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/11/2016] [Indexed: 12/28/2022]
Abstract
Triton WR-1339 administration causes neurotoxicity. Natural products and herbal extracts can attenuate cerebral injury. In the present study, we investigated the neuroprotective role of grape seed extract and/or vitamin B6 against triton-induced neurotoxicity. Thirty-five adult male albino rats of the Sprague-Dawley strain, weighing 140-145 g, were divided into five groups: control, triton, grape seed extract + triton, grape seed extract + triton + vitamin B6, and vitamin B6 + triton. The hematological and biochemical analyses were carried out. Alteration in iNOS mRNA gene expression was determined using reverse-transcriptase PCR analysis. In addition, qualitative DNA fragmentation was examined using agarose gel electrophoresis. Triton-treatment caused significant disturbances in the hematological parameters, the neurological functions, and the antioxidant profile. Also, triton significantly increased the iNOS mRNA expression and DNA damage. Our results showed that grape seed extract and/or vitamin B6 could attenuate all the examined parameters. These natural substances could exhibit protective effects against triton-induced neurological damage because of their antioxidative and antiapoptotic capacities.
Collapse
|
19
|
Li D, Zhang L, Dong F, Liu Y, Li N, Li H, Lei H, Hao F, Wang Y, Zhu Y, Tang H. Metabonomic Changes Associated with Atherosclerosis Progression for LDLR(-/-) Mice. J Proteome Res 2015; 14:2237-54. [PMID: 25784267 DOI: 10.1021/acs.jproteome.5b00032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atherosclerosis resulting from hyperlipidemia causes many serious cardiovascular diseases. To understand the systems changes associated with pathogenesis and progression of atherosclerosis, we comprehensively analyzed the dynamic metabonomic changes in multiple biological matrices of LDLR(-/-) mice using NMR and GC-FID/MS with gene expression, clinical chemistry, and histopathological data as well. We found that 12 week "Western-type" diet (WD) treatment caused obvious aortic lesions, macrophage infiltration, and collagen level elevation in LDLR(-/-) mice accompanied by up-regulation of inflammatory factors including aortic ICAM-1, MCP-1, iNOS, MMP2, and hepatic TNFα and IL-1β. The WD-induced atherosclerosis progression was accompanied by metabonomic changes in multiple matrices including biofluids (plasma, urine) and (liver, kidney, myocardial) tissues involving multiple metabolic pathways. These included disruption of cholesterol homeostasis, disturbance of biosynthesis of amino acids and proteins, altered gut microbiota functions together with metabolisms of vitamin-B3, choline, purines, and pyrimidines. WD treatment caused down-regulation of SCD1 and promoted oxidative stress reflected by urinary allantoin elevation and decreases in hepatic PUFA-to-MUFA ratio. When switching to normal diet, atherosclerotic LDLR(-/-) mice reprogrammed their metabolisms and reversed the atherosclerosis-associated metabonomic changes to a large extent, although aortic lesions, inflammation parameters, macrophage infiltration, and collagen content were only partially alleviated. We concluded that metabolisms of fatty acids and vitamin-B3 together with gut microbiota played crucially important roles in atherosclerosis development. These findings offered essential biochemistry details of the diet-induced atherosclerosis and demonstrated effectiveness of the integrated metabonomic analysis of multiple biological matrices for understanding the molecular aspects of cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Li
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Lulu Zhang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fangcong Dong
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yan Liu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Ning Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huihui Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hehua Lei
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuhua Hao
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yulan Wang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,∥Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China.,⊥Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huiru Tang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,§State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
20
|
Huang H, Koelle P, Fendler M, Schroettle A, Czihal M, Hoffmann U, Kuhlencordt PJ. Niacin reverses migratory macrophage foam cell arrest mediated by oxLDL in vitro. PLoS One 2014; 9:e114643. [PMID: 25521578 PMCID: PMC4270638 DOI: 10.1371/journal.pone.0114643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/12/2014] [Indexed: 01/05/2023] Open
Abstract
Introduction Niacin reduces vascular oxidative stress and down regulates inducible nitric oxide synthase, an enzyme mediating proatherosclerotic effects in part by increasing oxidative stress. Here, we evaluate whether Niacin reverses the redox sensitive migratory arrest of macrophages in response to oxidised(ox) LDL uptake. Material and Methods Migration of RAW264.7 cells, a murine macrophage cell line and bone marrow derived macrophages from wildtype and iNOS knockout mice was quantified using a modified Boyden chamber. Unstimulated cells or cells preincubated with oxLDL or non-oxidised (n)LDL were treated with Nicotinic acid or Nicotinamide. Nitric oxide, peroxynitrite and ROS production were assessed using electron paramagnetic resonance (ESR). Additionally, flow cytometry analysis of apoptosis, fokal adhesion kinase (FAK), phalloidin, CD36, F4/80 macrophage marker and iNOS gene expression (PCR) were assessed. Results Migration of Nicotinic acid, Nicotinamide treated cells or unstimulated cells did not differ (P>0.05). oxLDL treatment significantly reduced migration vs. unstimulated cells (p<0.05). In contrast, migratory arrest in response to oxLDL treatment was reversed by co-incubation with Nicotinic acid and Nicotinamide. The oxLDL-induced peroxynitrite formation in RAW264.7 cells was abolished by Niacin and glutathion (GSH) oxidation was significantly reduced. However, nitric oxide (NO)- and reactive oxygen species (ROS) production induced by oxLDL were not affected by Niacin treatment of RAW264.7 cells. In addition, Nicotinic acid and Nicotinamide reduced actin polymerization, a marker for migratory arrest. Discussion Our data shows that oxLDL induced inhibition of macrophage migration in vitro can be reversed by Niacin. Furthermore, Niacin reduces peroxynitite formation and improves antioxidant GSH.
Collapse
Affiliation(s)
- Hua Huang
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - Pirkko Koelle
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - Markus Fendler
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - Angelika Schroettle
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - Michael Czihal
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - Ulrich Hoffmann
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - Peter Jan Kuhlencordt
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
21
|
Dobutovic B, Sudar E, Tepavcevic S, Djordjevic J, Djordjevic A, Radojcic M, Isenovic ER. Effects of ghrelin on protein expression of antioxidative enzymes and iNOS in the rat liver. Arch Med Sci 2014; 10:806-16. [PMID: 25276168 PMCID: PMC4175782 DOI: 10.5114/aoms.2014.44872] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/14/2013] [Accepted: 02/24/2013] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION We investigated the effects of ghrelin on protein expression of the liver antioxidant enzymes superoxide dismutases (SODs), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), nuclear factor κB (NFκB) and inducible nitric oxide synthase (iNOS). Furthermore, we aimed to investigate whether extracellular regulated protein kinase (ERK1/2) and protein kinase B (Akt) are involved in ghrelin-regulated liver antioxidant enzymes and iNOS protein expression. MATERIAL AND METHODS Male Wistar rats were treated with ghrelin (0.3 nmol/5 µl) injected into the lateral cerebral ventricle every 24 h for 5 days, and 2 h after the last treatment the animals were sacrificed and the liver excised. The Western blot method was used to determine expression of antioxidant enzymes, iNOS, phosphorylation of Akt, ERK1/2 and nuclear factor κB (NFκB) subunits 50 and 65. RESULTS There was significantly higher protein expression of CuZnSOD (p < 0.001), MnSOD (p < 0.001), CAT (p < 0.001), GPx, (p < 0.001), and GR (p < 0.01) in the liver isolated from ghrelin-treated animals compared with control animals. In contrast, ghrelin significantly (p < 0.01) reduced protein expression of iNOS. In addition, phosphorylation of NFκB subunits p65 and p50 was significantly (p < 0.001 for p65; p < 0.05 for p50) reduced by ghrelin when compared with controls. Phosphorylation of ERK1/2 and of Akt was significantly higher in ghrelin-treated than in control animals (p < 0.05 for ERK1/2; p < 0.01 for Akt). CONCLUSIONS The results show that activation of Akt and ERK1/2 is involved in ghrelin-mediated regulation of protein expression of antioxidant enzymes and iNOS in the rat liver.
Collapse
Affiliation(s)
- Branislava Dobutovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Marija Radojcic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Esma R. Isenovic
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
22
|
Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Tetrahydrobiopterin in cardiovascular health and disease. Antioxid Redox Signal 2014; 20:3040-77. [PMID: 24294830 PMCID: PMC4038990 DOI: 10.1089/ars.2013.5566] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023]
Abstract
Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases.
Collapse
Affiliation(s)
- Jennifer K Bendall
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford , John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Huang H, Koelle P, Fendler M, Schröttle A, Czihal M, Hoffmann U, Conrad M, Kuhlencordt PJ. Induction of inducible nitric oxide synthase (iNOS) expression by oxLDL inhibits macrophage derived foam cell migration. Atherosclerosis 2014; 235:213-22. [PMID: 24858340 DOI: 10.1016/j.atherosclerosis.2014.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Deletion of inducible nitric oxide synthase (iNOS) in apolipoprotein E knockout mice was shown to mitigate the extent of arteriosclerosis. Oxidized low density lipoprotein (oxLDL) inhibits macrophage migration and traps foam cells, possibly through a mechanism involving oxidative stress. Here, we addressed whether a reduction of iNOS-mediated oxidative stress remobilizes macrophage-derived foam cells and may reverse plaque formation. METHODS Migration of RAW264.7 cells and bone marrow cells was quantified using a modified Boyden chamber. iNOS expression, phalloidin staining, focal adhesion kinase phosphorylation, lipid peroxides, nitric oxide (NO) and reactive oxygen species (ROS) production were assessed. RESULTS oxLDL treatment significantly reduced cell migration compared to unstimulated cells (p < 0.05). This migratory arrest was reversed by co-incubation with a pharmacologic iNOS inhibitor 1400 W (p < 0.05) and iNOS-siRNA (p > 0.05). Furthermore, apoE/iNOS double knockout macrophages do not show migratory arrest in response to oxLDL uptake, compared to apoE knockout controls (p > 0.05). We documented significantly increased iNOS expression following oxLDL treatment and downregulation using 1400 W and small inhibitory RNA (siRNA). iNOS inhibition was associated with a reduction in NO and peroxynitrite (ONOO-)- and increased superoxide generation. Trolox treatment of RAW264.7 cells restored migration indicating that peroxynitrite mediated lipid peroxide formation is involved in the signaling pathway mediating cell arrest.. CONCLUSIONS Here, we provide pharmacologic and genetic evidence that oxLDL induced iNOS expression inhibits macrophage-derived foam cell migration. Therefore, reduction of peroxynitrite and possibly lipid hydroperoxide levels in plaques represents a valuable therapeutic approach to reverse migratory arrest of macrophage-derived foam cells and to impair plaque formation.
Collapse
Affiliation(s)
- H Huang
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - P Koelle
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - M Fendler
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - A Schröttle
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - M Czihal
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - U Hoffmann
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany
| | - M Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Germany
| | - P J Kuhlencordt
- Division of Vascular Medicine, Medical Clinic and Policlinic IV, University Hospital Munich, Munich, Germany.
| |
Collapse
|
24
|
Bautista R, Carreón-Torres E, Luna-Luna M, Komera-Arenas Y, Franco M, Fragoso JM, López-Olmos V, Cruz-Robles D, Vargas-Barrón J, Vargas-Alarcón G, Pérez-Méndez O. Early endothelial nitrosylation and increased abdominal adiposity in Wistar rats after long-term consumption of food fried in canola oil. Nutrition 2014; 30:1055-60. [PMID: 24958674 DOI: 10.1016/j.nut.2014.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 01/07/2014] [Accepted: 01/11/2014] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The aim of this study was to establish whether the long-term consumption of reused canola oil contributes to the development of dyslipidemia, obesity, and endothelial function. METHODS Canola oil was used for one frying cycle (1 FC) of corn flour dough or reused 10 times (10 FC). Rats received chow diet (control) or supplemented with 7% raw oil (RO), 1 FC or 10 FC oil (n = 10 per group). Food consumption, blood pressure (BP), and body weight plasma glucose, plasma lipids were monitored. Vascular reactivity was analyzed using aorta rings stimulated with phenylephrine and acetylcholine. Nitrotyrosine presence in aorta rings was analyzed by immunohistochemistry. RESULTS After 10 wk of follow-up, visceral adipose tissue was significantly more abundant in 1 FC (7.4 ± 0.6 g) and 10 FC (8.8 ± 0.7 g) than the RO (5.0 ± 0.2 g; P = 0.05 versus 10 FC group) or control group (2.6 ± 0.3 g; P = 0.05 versus all groups). Despite similar plasma cholesterol, triglycerides, and BP among groups, a significantly reduced acetylcholine-induced vascular relaxation was observed in the three groups receiving the oil-supplemented diet (47.2% ± 3.6%, 27.2% ± 7.7%, and 25.9% ± 7.6% of relaxation, for the RO, 1 FC, and 10 FC, respectively; P < 0.05 for all versus 62.4% ± 9.7% of the control group). Endothelial dysfunction was concomitant with the presence of nitrotyrosine residues at a higher extent in the groups that received heated oils compared with the RO group. CONCLUSION High canola oil intake over 10 wk was associated with increased adipose tissue and early endothelial dysfunction probably induced by peroxinitrite formation. Such deleterious effects were significantly potentiated when the consumed oil had been used repeatedly for frying.
Collapse
Affiliation(s)
- Rocío Bautista
- Nephrology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - Elizabeth Carreón-Torres
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - María Luna-Luna
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - Yukari Komera-Arenas
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - Martha Franco
- Nephrology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - José-Manuel Fragoso
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - Victoria López-Olmos
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - David Cruz-Robles
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - Jesús Vargas-Barrón
- Echocardiography Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - Gilberto Vargas-Alarcón
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico
| | - Oscar Pérez-Méndez
- Molecular Biology Department, Instituto Nacional de Cardiología "Ignacio Chávez," Mexico, Distrito Federal, Mexico.
| |
Collapse
|
25
|
The Proatherogenic Effect of Chronic Nitric Oxide Synthesis Inhibition in ApoE-Null Mice Is Dependent on the Presence of PPAR α. PPAR Res 2014; 2014:124583. [PMID: 24587793 PMCID: PMC3920724 DOI: 10.1155/2014/124583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
Inhibition of endothelial nitric oxide synthase (eNOS) accelerates atherosclerosis in ApoE-null mice by impairing the balance between angiotensin II (AII) and NO. Our previous data suggested a role for PPARα in the deleterious effect of the renin-angiotensin system (RAS). We tested the hypothesis that ApoE-null mice lacking PPARα (DKO mice) would be resistant to the proatherogenic effect of NOS inhibition. DKO mice fed a Western diet were immune to the 23% worsening in aortic sinus plaque area seen in the ApoE-null animals under 12 weeks of NOS inhibition with a subpressor dose of L-NAME, P = 0.002. This was accompanied by a doubling of reactive oxygen species (ROS-) generating aortic NADPH oxidase activity (a target of AII, which paralleled Nox1 expression) and by a 10-fold excess of the proatherogenic iNOS, P < 0.01. L-NAME also caused a doubling of aortic renin and angiotensinogen mRNA level in the ApoE-null mice but not in the DKO, and it upregulated eNOS in the DKO mice only. These data suggest that, in the ApoE-null mouse, PPARα contributes to the proatherogenic effect of unopposed RAS/AII action induced by L-NAME, an effect which is associated with Nox1 and iNOS induction, and is independent of blood pressure and serum lipids.
Collapse
|
26
|
Western-type diet induces senescence, modifies vascular function in non-senescence mice and triggers adaptive mechanisms in senescent ones. Exp Gerontol 2013; 48:1410-9. [DOI: 10.1016/j.exger.2013.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/16/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022]
|
27
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
28
|
Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalán-Campos J, Hartmann P, Thiemann A, Weber C, Schober A. The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation 2013; 127:1609-19. [PMID: 23513069 DOI: 10.1161/circulationaha.112.000736] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory vascular disease driven by the subendothelial accumulation of macrophages. The mechanism regulating the inflammatory response in macrophages during atherogenesis remains unclear. Because microRNAs (miRNAs) play a crucial role in cellular signaling by posttranscriptional regulation of gene expression, we studied the miRNA expression profiles during the progression of atherosclerosis. METHODS AND RESULTS Using an miRNA real-time polymerase chain reaction array, we found that macrophage-derived miR-342-5p and miR-155 are selectively upregulated in early atherosclerotic lesions in Apoe(-/-) mice. miR-342-5p directly targets Akt1 through its 3'-untranslated region. Akt1 suppression by miR-342-5p induces proinflammatory mediators such as Nos2 and II6 in macrophages via the upregulation of miR-155. The local application of an miR-342-5p antagomir inhibits the development of atherosclerosis in partially ligated carotid arteries. In atherosclerotic lesions, the miR-342-5p antagomir upregulated Akt1 expression and suppressed the expression of miR-155 and Nos2. This reduced Nos2 expression was associated with a diminished generation of nitrotyrosine in the plaques. Furthermore, systemic treatment with an inhibitor of miR-342-5p reduced the progression of atherosclerosis in the aorta of Apoe(-/-) mice. CONCLUSIONS Macrophage-derived miR-342-5p promotes atherosclerosis and enhances the inflammatory stimulation of macrophages by suppressing the Akt1-mediated inhibition of miR-155 expression. Therefore, targeting miR-342-5p may offer a promising strategy to treat atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McNeill E, Channon KM. The role of tetrahydrobiopterin in inflammation and cardiovascular disease. Thromb Haemost 2012; 108:832-9. [PMID: 23052970 PMCID: PMC5238931 DOI: 10.1160/th12-06-0424] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/21/2012] [Indexed: 12/11/2022]
Abstract
The cofactor tetrahydrobiopterin (BH4) is required for nitric oxide (NO) production by all nitric oxide synthase (NOS) enzymes and is a key regulator of cellular redox signalling. When BH4 levels become limiting NOS enzymes become 'uncoupled' and produce superoxide rather than NO. Endothelial cell BH4 is required for the maintenance of vascular function through NO production, and reduced BH4 levels are associated with vascular dysfunction. Evidence increasingly points to important roles for BH4 and NOS enzymes in other vascular cell types. Leukocytes have a fundamental role in atherosclerosis, and new evidence points to a role in the control of hypertension. Leukocytes are a major site of iNOS expression, and the regulation of this isoform is another mechanism by which BH4 availability may modulate disease. This review provides an overview of BH4 control of NOS function in both endothelial cells and leukocytes in the context of vascular disease and current therapeutic evaluations.
Collapse
Affiliation(s)
- Eileen McNeill
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
30
|
Sener A, Egemen G, Cevik O, Yanikkaya-Demirel G, Apikoglu-Rabus S, Ozsavci D. In vitro effects of nitric oxide donors on apoptosis and oxidative/nitrative protein modifications in ADP-activated platelets. Hum Exp Toxicol 2012; 32:225-35. [PMID: 23111882 DOI: 10.1177/0960327112455673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nitric oxide (NO) is an important physiological signaling molecule. However, when produced in excessive amounts, NO can also have toxic effects. The aim of this study is to investigate the effects of exogenous- and endogenous-derived NO on oxidative modifications of proteins and apoptosis in activated platelets. Washed platelets were incubated with L-arginine or nitroso-glutathione (GSNO) in the presence of adenosine diphosphate (ADP). After incubation, caspase-3 activity, phosphatidylserine (PS) externalization and the potential of mitochondrial membrane as markers of apoptosis were measured. In addition, the alterations in protein carbonylation (PCO) and nitrotyrosine (NT) formation as markers of protein oxidation were examined. Platelet activation with ADP (20 µM) significantly increased PCO and NT levels and apoptotic events. After incubation with L-arginine, platelet NO production increased significantly. This L-arginine-induced increase caused decreases in formerly increased PCO and NT levels associated with ADP-induced platelet activation. Stimulation of NO production with L-arginine protected platelets from apoptosis. GSNO caused an increase in protein NT levels. Despite this change, GSNO was effective in inhibition of P-selectin expression, platelet aggregation, protein carbonylation and apoptosis. The results suggest that L-arginine and GSNO-mediated NO leads to the inhibition of key apoptotic processes including caspase-3 activation, PS exposure and low mitochondrial membrane potential in washed platelets. The inhibitory effect of platelet clearance of L-arginine and GSNO may be a novel useful therapeutic property in clinical application.
Collapse
Affiliation(s)
- A Sener
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
31
|
Lear SA, Sarna LK, Siow TJ, Mancini GBJ, Siow YL, O K. Oxidative stress is associated with visceral adipose tissue and subclinical atherosclerosis in a healthy multi-ethnic population. Appl Physiol Nutr Metab 2012; 37:1164-70. [PMID: 23057578 DOI: 10.1139/h2012-107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress plays an important role in the development of atherosclerosis. Excess visceral adipose tissue (VAT) and increased carotid intima-media thickness (IMT) are risk factors for coronary artery disease. We tested the hypothesis that VAT and IMT were associated with systemic oxidative stress. Healthy men and women (n = 565) matched for ethnicity (Aboriginal, Chinese, European, and South Asian) were recruited. Plasma malondialdehyde, a biomarker of oxidative stress, was measured as thiobarbituric acid reactive substances (TBARS). VAT and IMT were determined by computerized tomography and ultrasound scans, respectively. Plasma TBARS levels correlated with VAT and total atheroma burden (sum of IMT area and plaque area) in the entire cohort. When stratified by ethnicity, plasma TBARS levels correlated with distinct body composition and arterial measures in different ethnic populations with more associations present amongst Chinese and Europeans relative to Aboriginals and South Asians. VAT was associated with plasma TBARS levels independent of age, sex, ethnicity, smoking, and body mass index. Plasma TBARS levels were associated with IMT, the presence of plaques, and total atheroma burden, independent of age, sex, ethnicity, smoking, body mass index, and VAT. The association with total atheroma burden remained significant even when adjusted for apolipoprotein B. Results from the present study indicate that oxidative stress is positively associated with VAT as well as diffuse and focal carotid atherosclerosis in apparently healthy men and women.
Collapse
Affiliation(s)
- Scott A Lear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | |
Collapse
|
32
|
eNOS protects from atherosclerosis despite relevant superoxide production by the enzyme in apoE mice. PLoS One 2012; 7:e30193. [PMID: 22291917 PMCID: PMC3264598 DOI: 10.1371/journal.pone.0030193] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/15/2011] [Indexed: 01/19/2023] Open
Abstract
Background All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial- (L/E) and platelet/endothelial- (P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme. Principal Findings Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE−/−/eNOS−/−), while P/E-interactions did not differ, compared to apoE−/−. eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE−/− vessels. Conclusion Overt plaque formation, increased vascular inflammation and L/E- interactions are associated with significant reduction of superoxide production in apoE−/−/eNOS−/− vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE−/− atherosclerosis but does not negate the enzyme's strong protective effects.
Collapse
|
33
|
Seimetz M, Parajuli N, Pichl A, Veit F, Kwapiszewska G, Weisel FC, Milger K, Egemnazarov B, Turowska A, Fuchs B, Nikam S, Roth M, Sydykov A, Medebach T, Klepetko W, Jaksch P, Dumitrascu R, Garn H, Voswinckel R, Kostin S, Seeger W, Schermuly RT, Grimminger F, Ghofrani HA, Weissmann N. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell 2011; 147:293-305. [PMID: 22000010 DOI: 10.1016/j.cell.2011.08.035] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 04/30/2011] [Accepted: 08/13/2011] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common causes of death worldwide. We report in an emphysema model of mice chronically exposed to tobacco smoke that pulmonary vascular dysfunction, vascular remodeling, and pulmonary hypertension (PH) precede development of alveolar destruction. We provide evidence for a causative role of inducible nitric oxide synthase (iNOS) and peroxynitrite in this context. Mice lacking iNOS were protected against emphysema and PH. Treatment of wild-type mice with the iNOS inhibitor N(6)-(1-iminoethyl)-L-lysine (L-NIL) prevented structural and functional alterations of both the lung vasculature and alveoli and also reversed established disease. In chimeric mice lacking iNOS in bone marrow (BM)-derived cells, PH was dependent on iNOS from BM-derived cells, whereas emphysema development was dependent on iNOS from non-BM-derived cells. Similar regulatory and structural alterations as seen in mouse lungs were found in lung tissue from humans with end-stage COPD.
Collapse
Affiliation(s)
- Michael Seimetz
- University of Giessen Lung Center, Excellence Cluster Cardiopulmonary System, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Siow YL, Sarna L, O K. Redox regulation in health and disease — Therapeutic potential of berberine. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.12.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Heo KS, Lee H, Nigro P, Thomas T, Le NT, Chang E, McClain C, Reinhart-King CA, King MR, Berk BC, Fujiwara K, Woo CH, Abe JI. PKCζ mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. ACTA ACUST UNITED AC 2011; 193:867-84. [PMID: 21624955 PMCID: PMC3105539 DOI: 10.1083/jcb.201010051] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disturbed flow-mediated PKCζ–PIASy association is critical for p53 SUMOylation and induces p53 nuclear export and endothelial cell apoptosis. Atherosclerosis is readily observed in regions of blood vessels where disturbed blood flow (d-flow) is known to occur. A positive correlation between protein kinase C ζ (PKCζ) activation and d-flow has been reported, but the exact role of d-flow–mediated PKCζ activation in atherosclerosis remains unclear. We tested the hypothesis that PKCζ activation by d-flow induces endothelial cell (EC) apoptosis by regulating p53. We found that d-flow–mediated peroxynitrite (ONOO−) increased PKCζ activation, which subsequently induced p53 SUMOylation, p53–Bcl-2 binding, and EC apoptosis. Both d-flow and ONOO− increased the association of PKCζ with protein inhibitor of activated STATy (PIASy) via the Siz/PIAS-RING domain (amino acids 301–410) of PIASy, and overexpression of this domain of PIASy disrupted the PKCζ–PIASy interaction and PKCζ-mediated p53 SUMOylation. En face confocal microscopy revealed increases in nonnuclear p53 expression, nitrotyrosine staining, and apoptosis in aortic EC located in d-flow areas in wild-type mice, but these effects were significantly decreased in p53−/− mice. We propose a novel mechanism for p53 SUMOylation mediated by the PKCζ–PIASy interaction during d-flow–mediated EC apoptosis, which has potential relevance to early events of atherosclerosis.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Spasojević I. Free radicals and antioxidants at a glance using EPR spectroscopy. Crit Rev Clin Lab Sci 2011; 48:114-42. [DOI: 10.3109/10408363.2011.591772] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Maes M, Ruckoanich P, Chang YS, Mahanonda N, Berk M. Multiple aberrations in shared inflammatory and oxidative & nitrosative stress (IO&NS) pathways explain the co-association of depression and cardiovascular disorder (CVD), and the increased risk for CVD and due mortality in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:769-83. [PMID: 20561554 DOI: 10.1016/j.pnpbp.2010.06.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/24/2010] [Accepted: 06/09/2010] [Indexed: 11/19/2022]
Abstract
There is evidence that there is a bidirectional relationship between major depression and cardiovascular disorder (CVD): depressed patients are a population at risk for increased cardiac morbidity and mortality, and depression is more frequent in patients who suffer from CVD. There is also evidence that inflammatory and oxidative and nitrosative stress (IO&NS) pathways underpin the common pathophysiology of both CVD and major depression. Activation of these pathways may increase risk for both disorders and contribute to shared risk. The shared IO&NS pathways that may contribute to CVD and depression comprise the following: increased levels of pro-inflammatory cytokines, like interleukin-1β (IL-1β), IL-2, IL-6, IL-8, IL-12, tumor necrosis factor-α, and interferon-γ; T cell activation; increased acute phase proteins, like C-reactive protein, haptoglobin, fibrinogen and α1-antitrypsin; complement factors; increased LPS load through bacterial translocation and subsequent gut-derived inflammation; induction of indoleamine 2,3-dioxygenase with increased levels of tryptophan catabolites; decreased levels of antioxidants, like coenzyme Q10, zinc, vitamin E, glutathione and glutathione peroxidase; increased O&NS characterized by oxidative damage to low density lipoprotein (LDL) and phospholipid inositol, increased malondialdehyde, and damage to DNA and mitochondria; increased nitrosative stress; and decreased ω3 polyunsaturated fatty acids (PUFAs). The complex interplay between the abovementioned IO&NS pathways in depression results in pro-atherogenic effects and should be regarded as a risk factor to future clinical CVD and due mortality. We suggest that major depression should be added as a risk factor to the Charlson "comorbidity" index. It is advised that patients with (sub)chronic or recurrent major depression should routinely be assessed by serology tests to predict if they have an increased risk to cardiovascular disorders.
Collapse
|
38
|
The ethanolamide metabolite of DHA, docosahexaenoylethanolamine, shows immunomodulating effects in mouse peritoneal and RAW264.7 macrophages: evidence for a new link between fish oil and inflammation. Br J Nutr 2011; 105:1798-807. [DOI: 10.1017/s0007114510005635] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Several mechanisms have been proposed for the positive health effects associated with dietary consumption of long-chain n-3 PUFA (n-3 LC-PUFA) including DHA (22 : 6n-3) and EPA (20 : 5n-3). After dietary intake, LC-PUFA are incorporated into membranes and can be converted to their corresponding N-acylethanolamines (NAE). However, little is known on the biological role of these metabolites. In the present study, we tested a series of unsaturated NAE on the lipopolysaccharide (LPS)-induced NO production in RAW264.7 macrophages. Among the compounds tested, docosahexaenoylethanolamine (DHEA), the ethanolamide of DHA, was found to be the most potent inhibitor, inducing a dose-dependent inhibition of NO release. Immune-modulating properties of DHEA were further studied in the same cell line, demonstrating that DHEA significantly suppressed the production of monocyte chemotactic protein-1 (MCP-1), a cytokine playing a pivotal role in chronic inflammation. In LPS-stimulated mouse peritoneal macrophages, DHEA also reduced MCP-1 and NO production. Furthermore, inhibition was also found to take place at a transcriptional level, as gene expression of MCP-1 and inducible NO synthase was inhibited by DHEA. To summarise, in the present study, we showed that DHEA, a DHA-derived NAE metabolite, modulates inflammation by reducing MCP-1 and NO production and expression. These results provide new leads in molecular mechanisms by which DHA can modulate inflammatory processes.
Collapse
|
39
|
AMES PAULR, BATUCA JOANAR, CIAMPA ANTONIO, IANNACCONE LUIGI, DELGADO ALVES JOSE. Clinical Relevance of Nitric Oxide Metabolites and Nitrative Stress in Thrombotic Primary Antiphospholipid Syndrome. J Rheumatol 2010; 37:2523-30. [DOI: 10.3899/jrheum.100494] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective.To assess the role of nitrite (NO2−), nitrate (NO3−), and nitrative stress in thrombotic primary antiphospholipid syndrome (PAPS).Methods.We investigated 46 patients with PAPS: 21 asymptomatic but persistent carriers of antiphospholipid antibodies (PCaPL), 38 patients with inherited thrombophilia (IT), 33 patients with systemic lupus erythematosus (SLE), and 29 healthy controls (CTR). IgG anticardiolipin (aCL), IgG anti-beta2-glycoprotein I (anti-ß2-GPI), IgG anti-high density lipoprotein (aHDL), IgG anti-apolipoprotein A-I (aApoA-I), crude nitrotyrosine (NT) (an indicator of nitrative stress), and high sensitivity C-reactive protein (CRP) were measured by immunoassays. Plasma nitrite (NO2−), nitrate (NO3−), and total antioxidant capacity (TAC) were measured by colorimetric spectroscopic assays.Results.Average plasma NO2−was lower in PAPS, PCaPL, and IT (p < 0.0001); average NO3−was highest in SLE (p < 0.0001), whereas average NT was higher in PAPS and SLE (p = 0.01). In thrombotic PAPS, IgG aCL titer and number of vascular occlusions negatively predicted NO2−(p = 0.03 and p = 0.001, respectively), whereas arterial occlusions and smoking positively predicted NO3−(p = 0.05 and p = 0.005), and CRP positively predicted NT (p = 0.004). In the PCaPL group IgG aCL negatively predicted NO3−(p = 0.03). In the SLE group IgG aCL negatively predicted NO2−(p = 0.03) and NO3−(p = 0.02).Conclusion.PAPS is characterized by decreased NO2−in relation to type and number of vascular occlusions and to aPL titers. Nitrative stress and low grade inflammation are linked phenomena in PAPS and may have implications for thrombosis and atherosclerosis.
Collapse
|
40
|
Serum paraoxonase 1 activity and oxidant/antioxidant status in Saudi women with polycystic ovary syndrome. PATHOPHYSIOLOGY 2010; 17:189-96. [DOI: 10.1016/j.pathophys.2009.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/15/2009] [Accepted: 11/17/2009] [Indexed: 12/12/2022] Open
|
41
|
Liu Y, He R. Fasting induces a high level of 3-nitrotyrosine in the brain of rats. Neurosci Lett 2010; 472:204-9. [PMID: 20149840 DOI: 10.1016/j.neulet.2010.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 11/26/2022]
Abstract
Although the relationship between hyperglycemia (using diabetic animal model) and plasma nitrotyrosine level has been studied, the effect of hypoglycemia on nitrotyrosine level in the brain has not been addressed. Here, we evaluated nitration of protein, the colocalization of nitration with alpha-synuclein, activity of inducible nitric oxide synthase, and nitric oxide content using fasting and diabetic animal models. The results showed that signals of alpha-synuclein were widely distributed in most parts of the pallium, midbrain, hippocampus and cerebellum, as indicated by immunohistochemistry. Most signals of the 3-nitrotyrosine were colocalized with those of alpha-synuclein in the midbrain of fasting rats. The level of proteins containing 3-nitrotyrosine was significantly increased in the brain of fasting rats in Western blotting, especially in the midbrain, compared with control rats. In addition, the 3-nitrotyrosine signals increased in hippocampus of diabetic rats. Immunoprecipitation showed that alpha-synuclein was nitrated in the fasting rats. The iNOS activity and nitric oxide levels were significantly increased in both fasting and diabetic animals. The enhanced 3-nitrotyrosine level in the brain of fasting rats suggests that nitration of protein including alpha-synuclein in the midbrain is more affected by hypoglycemia in fasting than hyperglycemia in diabetic rats.
Collapse
Affiliation(s)
- Yanying Liu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | |
Collapse
|
42
|
Judkins CP, Diep H, Broughton BRS, Mast AE, Hooker EU, Miller AA, Selemidis S, Dusting GJ, Sobey CG, Drummond GR. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am J Physiol Heart Circ Physiol 2009; 298:H24-32. [PMID: 19837950 DOI: 10.1152/ajpheart.00799.2009] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Nox family NADPH oxidases are reactive oxygen species (ROS)-generating enzymes that are strongly implicated in atherogenesis. However, no studies have examined which Nox isoform(s) are involved. Here we investigated the role of the Nox2-containing NADPH oxidase in atherogenesis in apolipoprotein E-null (ApoE(-/-)) mice. Wild-type (C57Bl6/J), ApoE(-/-), and Nox2(-/y)/ApoE(-/-) mice were maintained on a high-fat (21%) diet from 5 wk of age until they were 12 or 19 wk old. Mice were euthanized and their aortas removed for measurement of Nox2 expression (Western blot analysis and immunohistochemistry), ROS production (L012-enhanced chemiluminescence), nitric oxide (NO) bioavailability (contractions to N(omega)-nitro-L-arginine), and atherosclerotic plaque development along the aorta and in the aortic sinus. Nox2 expression was upregulated in the aortic endothelium of ApoE(-/-) mice before the appearance of lesions, and this was associated with elevated ROS levels. Within developing plaques, macrophages were also a prominent source of Nox2. The absence of Nox2 in Nox2(-/y)/ApoE(-/-) double-knockout mice had minimal effects on plasma lipids or lesion development in the aortic sinus in animals up to 19 wk of age. However, an en face examination of the aorta from the arch to the iliac bifurcation revealed a 50% reduction in lesion area in Nox2(-/y)/ApoE(-/-) versus ApoE(-/-) mice, and this was associated with a marked decrease in aortic ROS production and an increased NO bioavailability. In conclusion, this is the first demonstration of a role for Nox2-NADPH oxidase in vascular ROS production, reduced NO bioavailability, and early lesion development in ApoE(-/-) mice, highlighting this Nox isoform as a potential target for future therapies for atherosclerosis.
Collapse
Affiliation(s)
- Courtney P Judkins
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|