1
|
Peng W, Shi M, Hu B, Jia J, Li X, Wang N, Man S, Ye S, Ma L. Nanotechnology-leveraged CRISPR/Cas systems: icebreaking in trace cancer-related nucleic acids biosensing. Mol Cancer 2025; 24:78. [PMID: 40087758 PMCID: PMC11908094 DOI: 10.1186/s12943-024-02222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/31/2024] [Indexed: 03/17/2025] Open
Abstract
As promising noninvasive biomarkers, nucleic acids provide great potential to innovate cancer early detection methods and promote subsequent diagnosis to improve the survival rates of patient. Accurate, straightforward and sensitive detection of such nucleic acid-based cancer biomarkers in complex biological samples holds significant clinical importance. However, the low abundance creates huge challenges for their routine detection. As the next-generation diagnostic tool, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) with their high programmability, sensitivity, fidelity, single-base resolution, and precise nucleic acid positioning capabilities are extremely attractive for trace nucleic acid-based cancer biomarkers (NABCBs), permitting rapid, ultra-sensitive and specific detection. More importantly, by combing with nanotechnology, it can solve the long-lasting problems of poor sensitivity, accuracy and simplicity, as well as to achieve integrated miniaturization and portable point-of-care testing (POCT) detection. However, existing literature lacks specific emphasis on this topic. Thus, we intend to propose a timely one for the readers. This review will bridge this gap by providing insights for CRISPR/Cas-based nano-biosensing development and highlighting the current state-of-art, challenges, and prospects. We expect that it can provide better understanding and valuable insights for trace NABCBs detection, thereby facilitating advancements in early cancer screening/detection/diagnostics and win practical applications in the foreseeable future.
Collapse
Affiliation(s)
- Weipan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Mengting Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jingyu Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xinyue Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Tianjin, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Tianjin Key Laboratory of Industry Microbiology, International China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Ministry of Education, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
2
|
Sajid M, Siddiqui H, Atif M, Sharif R, Zafar H, Threadgill MD, Choudhary MI. Synthesis, Aromatase Inhibition, Cytotoxicity and Molecular Docking Studies of New Fluorinated and Non-Fluorinated Thiourea Derivatives of Desloratadine. Chem Biodivers 2025; 22:e202402117. [PMID: 39463305 DOI: 10.1002/cbdv.202402117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Aromatase inhibitors are among the most effective treatment of the breast cancer. Aromatase catalyzes estrogen biosynthesis, which is a long-term cause of breast cancer. Current study describes the synthesis, purification of 26 new fluorinated and non-fluorinated thiourea derivatives of desloratadine (5), and their aromatase inhibition activity, cytotoxicity against cancer cell line (MDA-MB-231). Compounds 7 v and 7 l exhibited a significant anti-aromatase activity, while compounds 7 a, 7 g-h, 7 m and 7 u were also significant active against MDA-MB-231 cell line. Furthermore, the molecular docking studies revealed that active compounds form key interactions with the crucial amino acid of aromatase active site including TRP224, LEU477, CYS437, ALA438, MET374, ARG115, ILE305, and PHE221, which are responsible for the binding interactions of aromatase. All analogues were new, except 7 b and 7 k and also lacked cytotoxicity against BJ human fibroblasts, with the exception of 5 and 7 x. This selectivity makes this series particularly interesting for further studies.
Collapse
Affiliation(s)
- Muhammad Sajid
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Muhammad Atif
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ruby Sharif
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Michael D Threadgill
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3FL, UK
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Biochemistry, King Abdulaziz University, Jeddah, 21452, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Campus C, Surabaya, 60115, Indonesia
| |
Collapse
|
3
|
Chakraborty C, Bhattacharya M, Das A, Saha A. Regulation of miRNA in Cytokine Storm (CS) of COVID-19 and Other Viral Infection: An Exhaustive Review. Rev Med Virol 2025; 35:e70026. [PMID: 40032584 DOI: 10.1002/rmv.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
In the initial stage of the COVID-19 pandemic, high case fatality was noted. The case fatality during this was associated with the cytokine storm (CS) or cytokine storm syndrome (CSS). Sometimes, virus infections are due to the excessive secretion of pro-inflammatory cytokines, leading to cytokine storms, which might be directed to ARDS, multi-organ failure, and death. However, it was noted that several miRNAs are involved in regulating cytokines during SARS-CoV-2 and other viruses such as IFNs, ILs, GM-CSF, TNF, etc. The article spotlighted several miRNAs involved in regulating cytokines associated with the cytokine storm caused by SARS-CoV-2 and other viruses (influenza virus, MERS-CoV, SARS-CoV, dengue virus). Targeting those miRNAs might help in the discovery of novel therapeutics, considering CS or CSS associated with different virus infections.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | | | - Arpita Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Abinit Saha
- Deparment of Zoology, J.K. College, Purulia, India
| |
Collapse
|
4
|
Lee CY, Jeong JY, Nam HJ, Hong CA. Simultaneous and Ultraspecific Optical Detection of Multiple miRNAs Using a Liquid Flow-Based Microfluidic Assay. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5813-5822. [PMID: 39818696 DOI: 10.1021/acsami.4c17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Recent studies have reported that the cause and progression of many diseases are closely related to complex and diverse gene regulation involving multiple microRNAs (miRNAs). However, most existing methods for miRNA detection typically deal with one sample at a time, which limits the achievement of high diagnostic accuracy for diseases associated with multiple gene dysregulations. Herein, we develop a liquid flow-based microfluidic optical assay for the simple and reliable detection of two different target miRNAs simultaneously at room temperature without any enzymatic reactions. This assay utilizes the catalytic hairpin assembly cycling reaction in a mixture containing four types of hairpin DNAs to amplify two different dimeric DNA probes, each of which specifically recognizes one of the two different target miRNAs. The resultant two dimeric DNA probes effectively hybridize with anchor DNA grafted into two outlet channels of a microfluidic device, thus enabling i-motif-driven compact DNA hydrogels to form in the channels under acidic conditions. With this setup, the presence of two target miRNAs can be confirmed by the naked-eye observation of red-colored gold nanoparticles encountering a flow blockage in the two outlet channels. Notably, the developed assay demonstrates sensitive and sequence-specific detection that can precisely distinguish a single base mismatch mutant miRNA within 1.5 h. Our assay thus has the potential to serve as a powerful sensing platform for the simple and simultaneous detection of multiple miRNAs in clinical diagnostics at room temperature without analytic equipment or enzymatic reactions.
Collapse
Affiliation(s)
- Chan Yeol Lee
- Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Ji Yun Jeong
- Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Hye Jeong Nam
- Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - Cheol Am Hong
- Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| |
Collapse
|
5
|
Wu H, Lyu X, Xu M, Chen Y, Liao S, Zhang G, Lin Y, Cai X. A Multifunctional miRNA Delivery System Based on Tetrahedral Framework Nucleic Acids for Regulating Inflammatory Periodontal Ligament Stem Cells and Attenuating Periodontitis Bone Loss. ACS APPLIED MATERIALS & INTERFACES 2025; 17:560-571. [PMID: 39679863 DOI: 10.1021/acsami.4c17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Periodontitis is a chronic inflammatory disease that leads to periodontal tissue damage and tooth loss. Therefore, controlling inflammatory bone loss and promoting osteogenesis is a crucial challenge clinically. MicroRNA (miRNA) based gene therapy has shown substantial prospects in recent years, but its application has been limited due to structural instability and easy degradation by enzymes. Research has shown that miRNA-200c is regarded as a key miRNA by regulating multiple signaling pathways during the process of bone resorption. Tetrahedral framework nucleic acid (tFNA) can be considered an ideal carrier of miRNA due to its good tissue permeability, cell uptake efficiency, and biocompatibility. This study developed a tFNA system carrying miR-200c, named T-200c, to exert various biological effects in human periodontal ligament stem cells (PDLSCs). The activation of the NF-κB pathway is diminished, whereas the Akt/β-catenin pathway is enhanced, resulting in a notable decrease in the release of diverse inflammatory mediators and cellular reactive oxygen species. This modulation fosters cell proliferation and osteogenic differentiation, thereby rejuvenating the functionality of PDLSCs. These changes offer a viable alternative for the treatment of periodontitis and the regeneration of periodontal tissues.
Collapse
Affiliation(s)
- Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengzhuo Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengnan Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Uno H, Takeuchi H, Abe I, Yoshino T, Taguchi T, Hirakawa Y, Matsunaga T, Tanaka T. PCR- and wash-free detection of serum miRNA via signaling probe hybridization. Biotechnol Bioeng 2025; 122:159-166. [PMID: 39397338 DOI: 10.1002/bit.28859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Detection of microRNAs (miRNAs) in the serum is an effective liquid biopsy technique for cancer diagnosis. However, conventional diagnostic methods are time-consuming and complex. Therefore, in this study, we established a signaling probe-based DNA microarray system for miRNA detection. PCR, fluorescence labeling, and washing are not necessary for signaling probes. Four probes were designed using different miRNAs as diagnostic cancer markers. The developed system is useful for various miRNAs, regardless of their target lengths (18-26-mer) and GC content (36%-89%). Here, all the assays were performed within 40 min. Overall, our signaling probe-based DNA hybridization system facilitates the simple and rapid detection of serum miRNAs without the need for gene amplification, fluorescence labeling and washing.
Collapse
Affiliation(s)
- Haruka Uno
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiyori Takeuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ishin Abe
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Yuko Hirakawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Yokogawa Electric Corporation, Tokyo, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Helen H, Gunawan MC, Halim P, Dinata MR, Ahmed A, Dalimunthe A, Marianne M, Ribeiro RIMDA, Hasibuan PAZ, Nurkolis F, Hey-Hawkins E, Park MN, Harahap U, Kim SH, Kim B, Syahputra RA. Flavonoids as modulators of miRNA expression in pancreatic cancer: Pathways, Mechanisms, And Therapeutic Potential. Biomed Pharmacother 2024; 179:117347. [PMID: 39241569 DOI: 10.1016/j.biopha.2024.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Pancreatic cancer (PC) is a complex malignancy, distinguished by its aggressive characteristics and unfavorable prognosis. Recent developments in understanding the molecular foundations of this disease have brought attention to the noteworthy involvement of microRNAs (miRNAs) in disease development, advancement, and treatment resistance. The anticancer capabilities of flavonoids, which are a wide range of phytochemicals present in fruits and vegetables, have attracted considerable interest because of their ability to regulate miRNA expression. This review provides the effects of flavonoids on miRNA expression in PC, explains the underlying processes, and explores the possible therapeutic benefits of flavonoid-based therapies. Flavonoids inhibit PC cell proliferation, induce apoptosis, and enhance chemosensitivity via the modulation of miRNAs involved in carcinogenesis. Additionally, this review emphasizes the significance of certain miRNAs as targets of flavonoid action. These miRNAs have a role in regulating important signaling pathways such as the phosphoinositide-3-kinase-protein kinase B/Protein kinase B (Akt), mitogen activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK/STAT), and Wnt/β-catenin pathways. This review aims to consolidate current knowledge on the interaction between flavonoids and miRNAs in PC, providing a comprehensive analysis of how flavonoid-mediated modulation of miRNA expression could influence cancer progression and therapy. It highlights the use of flavonoid nanoformulations to enhance stability, increase absorption, and maximize anti-PC activity, improving patient outcomes. The review calls for further research to optimize the use of flavonoid nanoformulations in clinical trials, leading to innovative treatment strategies and more effective approaches for PC.
Collapse
Affiliation(s)
- Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Amer Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Marianne Marianne
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Rosy Iara Maciel De Azambuja Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | | | - Fahrul Nurkolis
- Biological Sciences, Faculty of Sciences and Technology, UIN Sunan Kalijaga, Yogyakarta, Indonesia
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Centre for Biotechnology and Biomedicine (BBZ), Institute of Bioanalytical Chemistry, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia
| | - Sung-Hoon Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 05253, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Sumatera Utara, Indonesia.
| |
Collapse
|
8
|
Wang T, Zheng J, Pan Y, Zhuang Z, Zeng Y. Investigation of key miRNAs and Target-mRNA in Kaposi's sarcoma using bioinformatic methods. Heliyon 2024; 10:e29502. [PMID: 38660282 PMCID: PMC11041027 DOI: 10.1016/j.heliyon.2024.e29502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Kaposi's sarcoma (KS) is the second most common tumor in human immunodeficiency virus (HIV) infected patients worldwide. While many miRNAs have been confirmed to be involved in KS biological processes, no relevant studies have combined miRNA and mRNA expression profiles using KS patient tissue biopsies. In this study, we performed transcriptome sequencing on tumor and normal tissues from four KS patients and identified differentially expressed mRNA and miRNA, further performed target gene prediction and enrichment analysis. 19,551 target-mRNAs were identified by predicting 106 miRNAs, with 553 overlapping with 571 significantly differentially expressed mRNAs. Enrichment analysis showed significant involvement of the Ubiquitin-mediated proteolysis pathway. Additionally, the miRNA-mRNA interaction network was established, and the topological score of Cytohubba's algorithm was calculated for comparison with three other datasets. The Mutual Clustering Coefficient (MCC) scoring ranking placed ZBTB34, NFIB, and RORA as the top three mRNAs, while hsa-miR-16-5p, hsa-miR-27a-3p, hsa-miR-340-5p, hsa-miR-182-5p, and hsa-miR-186-5p ranked as the top five miRNAs. Hsa-miR-101-3p is the only miRNA that appears both in the top 10 MCC scores and at the intersection of the other two datasets. Finally, qRT-PCR was used to validate the findings at the cellular level. In summary, the miRNA analysis results indicated that hsa-miR-101-3p could be used as a potential diagnostic or therapeutic marker in future studies. Moreover, the mRNA analysis results suggested that the histone binding pathways involved in mRNAs and ubiquitin-related biological processes were closely associated with KS and could serve as promising biomarkers for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Tianye Wang
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Jun Zheng
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yangyang Pan
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zhaowei Zhuang
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Zeng
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
9
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
10
|
Khalaji A, Mehrtabar S, Jabraeilipour A, Doustar N, Rahmani Youshanlouei H, Tahavvori A, Fattahi P, Alavi SMA, Taha SR, Fazlollahpour-Naghibi A, Shariat Zadeh M. Inhibitory effect of microRNA-21 on pathways and mechanisms involved in cardiac fibrosis development. Ther Adv Cardiovasc Dis 2024; 18:17539447241253134. [PMID: 38819836 PMCID: PMC11143841 DOI: 10.1177/17539447241253134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Cardiac fibrosis is a pivotal cardiovascular disease (CVD) process and represents a notable health concern worldwide. While the complex mechanisms underlying CVD have been widely investigated, recent research has highlighted microRNA-21's (miR-21) role in cardiac fibrosis pathogenesis. In this narrative review, we explore the molecular interactions, focusing on the role of miR-21 in contributing to cardiac fibrosis. Various signaling pathways, such as the RAAS, TGF-β, IL-6, IL-1, ERK, PI3K-Akt, and PTEN pathways, besides dysregulation in fibroblast activity, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs cause cardiac fibrosis. Besides, miR-21 in growth factor secretion, apoptosis, and endothelial-to-mesenchymal transition play crucial roles. miR-21 capacity regulatory function presents promising insights for cardiac fibrosis. Moreover, this review discusses numerous approaches to control miR-21 expression, including antisense oligonucleotides, anti-miR-21 compounds, and Notch signaling modulation, all novel methods of cardiac fibrosis inhibition. In summary, this narrative review aims to assess the molecular mechanisms of cardiac fibrosis and its essential miR-21 function.
Collapse
Affiliation(s)
- Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nadia Doustar
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Amir Tahavvori
- Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Payam Fattahi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Andarz Fazlollahpour-Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
11
|
Tomanelli M, Florio T, Vargas GC, Pagano A, Modesto P. Domestic Animal Models of Central Nervous System Tumors: Focus on Meningiomas. Life (Basel) 2023; 13:2284. [PMID: 38137885 PMCID: PMC10744527 DOI: 10.3390/life13122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Intracranial primary tumors (IPTs) are aggressive forms of malignancies that cause high mortality in both humans and domestic animals. Meningiomas are frequent adult IPTs in humans, dogs, and cats, and both benign and malignant forms cause a decrease in life quality and survival. Surgery is the primary therapeutic approach to treat meningiomas, but, in many cases, it is not resolutive. The chemotherapy and targeted therapy used to treat meningiomas also display low efficacy and many side effects. Therefore, it is essential to find novel pharmacological approaches to increase the spectrum of therapeutic options for meningiomas. This review analyzes the similarities between human and domestic animal (dogs and cats) meningiomas by evaluating the molecular and histological characteristics, diagnosis criteria, and treatment options and highlighting possible research areas to identify novel targets and pharmacological approaches, which are useful for the diagnosis and therapy of this neoplasia to be used in human and veterinary medicine.
Collapse
Affiliation(s)
- Michele Tomanelli
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Tullio Florio
- Pharmacology Section, Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gabriela Coronel Vargas
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (G.C.V.); (A.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology, Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy
| |
Collapse
|
12
|
Ramesh S, Almeida SD, Hammigi S, Radhakrishna GK, Sireesha G, Panneerselvam T, Vellingiri S, Kunjiappan S, Ammunje DN, Pavadai P. A Review of PARP-1 Inhibitors: Assessing Emerging Prospects and Tailoring Therapeutic Strategies. Drug Res (Stuttg) 2023; 73:491-505. [PMID: 37890514 DOI: 10.1055/a-2181-0813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Eukaryotic organisms contain an enzyme family called poly (ADP-ribose) polymerases (PARPs), which is responsible for the poly (ADP-ribosylation) of DNA-binding proteins. PARPs are members of the cell signaling enzyme class. PARP-1, the most common isoform of the PARP family, is responsible for more than 90% of the tasks carried out by the PARP family as a whole. A superfamily consisting of 18 PARPs has been found. In order to synthesize polymers of ADP-ribose (PAR) and nicotinamide, the DNA damage nick monitor PARP-1 requires NAD+ as a substrate. The capability of PARP-1 activation to boost the transcription of proinflammatory genes, its ability to deplete cellular energy pools, which leads to cell malfunction and necrosis, and its involvement as a component in the process of DNA repair are the three consequences of PARP-1 activation that are of particular significance in the process of developing new drugs. As a result, the pharmacological reduction of PARP-1 may result in an increase in the cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Soundarya Ramesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Shannon D Almeida
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Sameerana Hammigi
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Govardan Katta Radhakrishna
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Golla Sireesha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Theivendren Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tamil Nadu, India
| | - Shangavi Vellingiri
- Department of Pharmacy Practice, Swamy Vivekananda College of Pharmacy, Elayampalayam, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M S R Nagar, Bengaluru, India
| |
Collapse
|
13
|
Martínez-Illescas NG, Leal S, González P, Graña-Castro O, Muñoz-Oliveira JJ, Cortés-Peña A, Gómez-Gil M, Vega Z, Neva V, Romero A, Quintela-Fandino M, Ciruelos E, Sanz C, Aragón S, Sotolongo L, Jiménez S, Caleiras E, Mulero F, Sánchez C, Malumbres M, Salazar-Roa M. miR-203 drives breast cancer cell differentiation. Breast Cancer Res 2023; 25:91. [PMID: 37542268 PMCID: PMC10401798 DOI: 10.1186/s13058-023-01690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
A hallmark of many malignant tumors is dedifferentiated (immature) cells bearing slight or no resemblance to the normal cells from which the cancer originated. Tumor dedifferentiated cells exhibit a higher capacity to survive to chemo and radiotherapies and have the ability to incite tumor relapse. Inducing cancer cell differentiation would abolish their self-renewal and invasive capacity and could be combined with the current standard of care, especially in poorly differentiated and aggressive tumors (with worst prognosis). However, differentiation therapy is still in its early stages and the intrinsic complexity of solid tumor heterogeneity demands innovative approaches in order to be efficiently translated into the clinic. We demonstrate here that microRNA 203, a potent driver of differentiation in pluripotent stem cells (ESCs and iPSCs), promotes the differentiation of mammary gland tumor cells. Combining mouse in vivo approaches and both mouse and human-derived tridimensional organoid cultures, we report that miR-203 influences the self-renewal capacity, plasticity and differentiation potential of breast cancer cells and prevents tumor cell growth in vivo. Our work sheds light on differentiation-based antitumor therapies and offers miR-203 as a promising tool for directly confronting the tumor-maintaining and regeneration capability of cancer cells.
Collapse
Affiliation(s)
- Nuria G Martínez-Illescas
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, CNIO, Madrid, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), San Pablo-CEU University, Madrid, Spain
| | | | - Alfonso Cortés-Peña
- Flow Cytometry and Fluorescence Microscopy Unit (CAI), Complutense University, Madrid, Spain
| | | | - Zaira Vega
- Histopathology Unit, CNIO, Madrid, Spain
| | | | | | | | - Eva Ciruelos
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Consuelo Sanz
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Sofía Aragón
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Leisy Sotolongo
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | - Sara Jiménez
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain
- Hospital 12 de Octubre, Madrid, Spain
| | | | | | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- Cancer Cell Cycle Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
- ICREA, Passeig Lluís Companys 23, Barcelona, Spain.
| | - María Salazar-Roa
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Breast and Gynecologic Cancer Group, Research Institute i+12, Madrid, Spain.
- Cell Division and Cancer Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
14
|
Chakkaravarthi K, Ramesh R, Palaniyandi T, Baskar G, Viswanathan S, Wahab MRA, Surendran H, Ravi M, Sivaji A. Prospectives of mirna gene signaling pathway in triple-negative breast cancer. Pathol Res Pract 2023; 248:154658. [PMID: 37421840 DOI: 10.1016/j.prp.2023.154658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is one of the destructive breast cancer subtypes which cannot be treated by current therapies, which is characterized by the lack of estrogen (ER), Progesterone (PR), and Human epidermal receptor (HER2). The treatment for this chemotherapy or radiotherapy and surgery are such treatments and also novel biomarkers or treatment targets can quickly require to improve the outcome of the disease. MicroRNAs are the most popular and offer prospects for TNBC diagnosis and therapy. Some of the miRNAs implicated in THBCs are miR-17-5p, miR-221-3p, miR-26a, miR-136-5p, miR-1296, miR-145, miR-4306, miR-508-5p, miR-448, miR-539, miR-211-5p and miR-218. Potential MiRNAs and their signaling pathways that can be utilized for the diagnosis of TNBC are miR-155, miR-182-5p, miR-9-1-5p, miR-200b, miR-200a, miR-429, miR-195, miR-145-5p, miR-506, and miR-22-3p. miRNAs with known functions as tumor suppressors include miR-1-3p, miR-133a-3p, miR-655, miR-206, miR-136, miR-770, miR-148a, miR-197-3p, miR-137, and miR-127-3p. Analysis of genetic biomarkers, such as miRNAs in TNBC, upholds the pertinence in the diagnosis of the disease. The aim of the review was to clarify the different types of miRNAs characters in TNBC. Recent reports suggest an important role of miRNAs in tumor metastasis. We review here the important miRNAs and their signaling pathways implicated in the oncogenesis, progression, and metastasis of TNBCs.
Collapse
Affiliation(s)
- Kamali Chakkaravarthi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Rajashree Ramesh
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra University, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM college for women, Vellore, India
| |
Collapse
|
15
|
Aveta A, Cilio S, Contieri R, Spena G, Napolitano L, Manfredi C, Franco A, Crocerossa F, Cerrato C, Ferro M, Del Giudice F, Verze P, Lasorsa F, Salonia A, Nair R, Walz J, Lucarelli G, Pandolfo SD. Urinary MicroRNAs as Biomarkers of Urological Cancers: A Systematic Review. Int J Mol Sci 2023; 24:10846. [PMID: 37446024 DOI: 10.3390/ijms241310846] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
MicroRNAs (miRNAs) are emerging as biomarkers for the detection and prognosis of cancers due to their inherent stability and resilience. To summarize the evidence regarding the role of urinary miRNAs (umiRNAs) in the detection, prognosis, and therapy of genitourinary cancers, we performed a systematic review of the most important scientific databases using the following keywords: (urinary miRNA) AND (prostate cancer); (urinary miRNA) AND (bladder cancer); (urinary miRNA) AND (renal cancer); (urinary miRNA) AND (testicular cancer); (urinary miRNA) AND (urothelial cancer). Of all, 1364 articles were screened. Only original studies in the English language on human specimens were considered for inclusion in our systematic review. Thus, a convenient sample of 60 original articles was identified. UmiRNAs are up- or downregulated in prostate cancer and may serve as potential non-invasive molecular biomarkers. Several umiRNAs have been identified as diagnostic biomarkers of urothelial carcinoma and bladder cancer (BC), allowing us to discriminate malignant from nonmalignant forms of hematuria. UmiRNAs could serve as therapeutic targets or recurrence markers of non-muscle-invasive BC and could predict the aggressivity and prognosis of muscle-invasive BC. In renal cell carcinoma, miRNAs have been identified as predictors of tumor detection, aggressiveness, and progression to metastasis. UmiRNAs could play an important role in the diagnosis, prognosis, and therapy of urological cancers.
Collapse
Affiliation(s)
- Achille Aveta
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138 Naples, Italy
- Department of Urology, Institut Paoli-Calmettes Cancer Centre, 13055 Marseille, France
| | - Simone Cilio
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138 Naples, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Roberto Contieri
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Gianluca Spena
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138 Naples, Italy
| | - Luigi Napolitano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138 Naples, Italy
| | - Celeste Manfredi
- Unit of Urology, Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Antonio Franco
- Department of Urology, Sant'Andrea Hospital, "La Sapienza" University, 00189 Rome, Italy
| | - Fabio Crocerossa
- Department of Urology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Clara Cerrato
- Urology Unit, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, 20122 Milan, Italy
| | | | - Paolo Verze
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081 Fisciano, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Rajesh Nair
- The Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Jochen Walz
- Department of Urology, Institut Paoli-Calmettes Cancer Centre, 13055 Marseille, France
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138 Naples, Italy
- Department of Medicine and Surgery, Scuola Medica Salernitana, University of Salerno, 84081 Fisciano, Italy
| |
Collapse
|
16
|
Li S, Meng W, Guo Z, Liu M, He Y, Li Y, Ma Z. The miR-183 Cluster: Biogenesis, Functions, and Cell Communication via Exosomes in Cancer. Cells 2023; 12:1315. [PMID: 37174715 PMCID: PMC10177187 DOI: 10.3390/cells12091315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is one of the leading causes of human death. MicroRNAs have been found to be closely associated with cancer. The miR-183 cluster, comprising miR-183, miR-96, and miR-182, is transcribed as a polycistronic miRNA cluster. Importantly, in most cases, these clusters promote cancer development through different pathways. Exosomes, as extracellular vesicles, play an important role in cellular communication and the regulation of the tissue microenvironment. Interestingly, the miR-183 cluster can be detected in exosomes and plays a functional regulatory role in tumor development. Here, the biogenesis and functions of the miR-183 cluster in highly prevalent cancers and their relationship with other non-coding RNAs are summarized. In addition, the miR-183 cluster in exosomes has also been discussed. Finally, we discuss the miR-183 cluster as a promising target for cancer therapy. This review is expected to provide a new direction for cancer treatment.
Collapse
Affiliation(s)
- Shuhui Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Meng
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Min Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanyun He
- Experimental Center of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Shahin RK, Midan HM, Sallam AAM, Elbadry AM, Mohamed AK, Ishak NW, Hassan KA, Ayoub AM, Shalaby RE, Elrebehy MA. miRNAs as potential game-changers in bone diseases: Future medicinal and clinical uses. Pathol Res Pract 2023; 245:154440. [PMID: 37031531 DOI: 10.1016/j.prp.2023.154440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
MicroRNAs (miRNAs), short, highly conserved non-coding RNA, influence gene expression by sequential mechanisms such as mRNA breakdown or translational repression. Many biological processes depend on these regulating substances, thus changes in their expression have an impact on the maintenance of cellular homeostasis and result in the emergence of a variety of diseases. Relevant studies have shown in recent years that miRNAs are involved in many stages of bone development and growth. Additionally, abnormal production of miRNA in bone tissues has been closely associated with the development of numerous bone disorders, such as osteonecrosis, bone cancer, and bone metastases. Many pathological processes, including bone loss, metastasis, the proliferation of osteosarcoma cells, and differentiation of osteoblasts and osteoclasts, are under the control of miRNAs. By bringing together the most up-to-date information on the clinical relevance of miRNAs in such diseases, this study hopes to further the study of the biological features of miRNAs in bone disorders and explore their potential as a therapeutic target.
Collapse
|
18
|
Saliyeva S, Boranbayeva R, Konoplya N, Bulegenova M, Blau O, Belousov V, Granica J, Mukushkina D, Altynbayeva G. Pediatric Extracranial Germ Cell Tumors: Expression of microRNA. J Pediatr Hematol Oncol 2023; 45:e174-e179. [PMID: 35700382 DOI: 10.1097/mph.0000000000002495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Germ cell tumors (GCTs) may occur from the neonatal period to late adulthood, characterized by extensive clinical and pathologic heterogeneity. MicroRNAs are a family of small noncoding RNAs that regulate a wide array of biological processes including carcinogenesis. MicroRNAs may be used for many purposes in clinical diagnostics. Numerous studies have proven the diagnostic value of microRNA371-373 and microRNA302/367 expression in malignant GCT. The diagnostic value of microRNA375 is disputable, because while its value is confirmed by some research data, there are still others denying it. METHODS The results of our own research on the relative expression of 10 microRNAs, including microRNA375, associated with GCT in the tumor tissues of 84 children and adolescents are presented. RESULTS In our research, overexpression of microRNA 371-373, 302/367 detected in the group of malignant GCT subtypes. Statistically significant expression of microRNA375 have been defined not only in the group of malignant GCT subtypes, but also in the group of immature teratomas. Among malignant GCTs, high expression of microRNA375 is specific for yolk sac tumors. In the group of seminomas, embryonic carcinomas, and mature teratomas expression of microRNA375 was observed imperceptible, even so the results were statistically insignificant. CONCLUSION Expression of microRNA 371-373, 302/367 is representative of malignant GCT subtypes. Statistically significant and high expression of microRNA375 attributable for yolk sac tumors and immature teratomas.
Collapse
Affiliation(s)
- Symbat Saliyeva
- "Scientific Center of Pediatrics and Pediatric Surgery"
- "Kazakh National Medical University named after S.D. Asfendiyarov"
| | - Riza Boranbayeva
- "Scientific Center of Pediatrics and Pediatric Surgery"
- "Kazakh National Medical University named after S.D. Asfendiyarov"
| | - Natalya Konoplya
- "N. N. Alexandrov National Cancer Centre of Belarus", Minsk, Belarus
| | | | - Olga Blau
- Clinic for Hematology, Oncology and Tumorimmunology, Charite University Berlin, Berlin, Germany
| | | | | | | | - Gulmira Altynbayeva
- "Scientific Center of Pediatrics and Pediatric Surgery"
- "Kazakh National Medical University named after S.D. Asfendiyarov"
| |
Collapse
|
19
|
Hatam S. MicroRNAs Improve Cancer Treatment Outcomes Through Personalized Medicine. Microrna 2023; 12:92-98. [PMID: 36733205 DOI: 10.2174/2211536612666230202113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that repress or degrade mRNA targets to downregulate genes. In cancer occurrence, the expression of miRNAs is altered. Depending on the involvement of a certain miRNA in the pathogenetic growth of a tumor, It may be up or downregulated. The "oncogenic" action of miRNAs corresponds with upregulation, which leads to tumor proliferation and spread meanwhile the miRNAs that have been downregulated bring tumorsuppressive outcomes. Oncogenes and tumor suppressor genes are among the genes whose expression is under their control, demonstrating that classifying them solely as oncogenes or tumor suppressor genes alone is not only hindering but also incorrect. Apart from basic tumors, miRNAs may be found in nearly all human fluids and can be used for cancer diagnosis as well as clinical outcome prognostics and better response to treatment strategies. The overall variance of these tiny noncoding RNAs influences patient-specific pharmacokinetics and pharmacodynamics of anti-cancer medicines, driving a growing demand for personalized medicine. By now, microRNAs from tumor biopsies or blood are being widely investigated as substantial biomarkers for cancer in time diagnosis, prognosis, and, progression. With the rise of COVID-19, this paper also attempts to study recent research on miRNAs involved with deaths in lung cancer COVID patients. With the discovery of single nucleotide polymorphisms, personalized treatment via microRNAs has lately become a reality. The present review article describes the highlights of recent knowledge of miRNAs in various cancers, with a focus on miRNA translational applications as innovative potential diagnostic and prognostic indicators that expand person-to-person therapy options.
Collapse
Affiliation(s)
- Saeid Hatam
- Department of Innovation and Industry, Science and Technology Park of Fars, ExirBitanic Co., Shiraz, Iran
- Department of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
- Department of Biological Sciences, Azad University, Zarghan Branch, Shiraz, Iran
| |
Collapse
|
20
|
Heydari Z, Moudi E, Sadeghi F, Hajiahmadi M, Rezatabar S, Neamati N, Parsian H. Circulating plasma miR222-3P status and its potential diagnostic performance in prostate cancer. J Gene Med 2022; 24:e3459. [PMID: 36279183 DOI: 10.1002/jgm.3459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Accepted: 10/16/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although studies suggest that miR222-3p is dysregulated in prostate cancer (PC) cells and tissues, the possible changes in the level of miR222-3p in the plasma samples of PC patients remained unclear. The present study aimed to evaluate the diagnostic value of the plasma miR222-3p expression level as a potential biomarker in PC, benign prostatic hyperplasia (BPH) and healthy people. METHODS Blood samples were collected from 100 adult males (54 patients with PC, 27 patients with BPH and 19 healthy individuals) referred to our affiliated hospital. The expression level of miR222-3p was evaluated using a quantitative reverse transcription-polymerase chain reaction. Receiver operating characteristic curves were used to evaluate miR222-3p diagnostic accuracy for discriminating between the PC, BPH and healthy individuals. RESULTS The expression level of miR222-3p was significantly higher in PC patients compared to healthy individuals as a fold change of 5.3 (p = 0.009), but not for BPH individuals. The diagnostic value of the plasma miR222-3p for discrimination of the PC patients from healthy individuals was reasonable [cut-off value (fold change relative to miR16-5p) = 1.69, area under the curve = 0.73, sensitivity = 0.75 and specificity = 0.74]. CONCLUSIONS Circulating plasma miR-222-3p significantly upregulated in PC patients, but not in BPH ones. Besides these preliminary results showed that miR222-3p has the potential to discriminate PC patients from healthy ones. Addittional studies with a larger sample size are required to confirm these data.
Collapse
Affiliation(s)
- Zohreh Heydari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Emadoddin Moudi
- Department of Urology, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol, Iran.,Cancer Research Center, Health Research Institute, Babol Univbersity of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmoud Hajiahmadi
- Department of Epidemiology, Babol University of Medical Sciences, Babol, Iran
| | - Setareh Rezatabar
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Nahid Neamati
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
21
|
Qin Y, Liang R, Lu P, Lai L, Zhu X. Depicting the Implication of miR-378a in Cancers. Technol Cancer Res Treat 2022; 21:15330338221134385. [PMID: 36285472 PMCID: PMC9608056 DOI: 10.1177/15330338221134385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-378a (miR-378a), including miR-378a-3p and miR-378a-5p, are encoded in PPARGC1B gene. miR-378a is essential for tumorigenesis and is an independent prognostic biomarker for various malignant tumors. Aberrant expression of miR-378a affects several physiological and pathological processes, including proliferation, apoptosis, tumorigenesis, cancer invasion, metastasis, and therapeutic resistance. Interestingly, miR-378a has a dual functional role in either promoting or inhibiting tumorigenesis, independent of the cancer type. In this review, we comprehensively summarized the role and regulatory mechanisms of miR-378a in cancer development, hoping to provide a direction for its potential use in cancer therapy.
Collapse
Affiliation(s)
- Yuelan Qin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Renba Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lin Lai
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, People's Republic of China,Affiliated Wuming Hospital of Guangxi Medical University, Nanning, People's Republic of China,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, People's Republic of China,Xiaodong Zhu, Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, 22 Shuang Yong Road, Nanning 530021, People's Republic of China.
| |
Collapse
|
22
|
Nersisyan S, Gorbonos A, Makhonin A, Zhiyanov A, Shkurnikov M, Tonevitsky A. isomiRTar: a comprehensive portal of pan-cancer 5'-isomiR targeting. PeerJ 2022; 10:e14205. [PMID: 36275459 PMCID: PMC9583861 DOI: 10.7717/peerj.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 01/24/2023] Open
Abstract
Inaccurate cleavage of pri- and pre-miRNA hairpins by Drosha and Dicer results in the generation of miRNA isoforms known as isomiRs. isomiRs with 5'-end variations (5'-isomiRs) create a new dimension in miRNA research since they have different seed regions and distinct targetomes. We developed isomiRTar (https://isomirtar.hse.ru)-a comprehensive portal that allows one to analyze expression profiles and targeting activity of 5'-isomiRs in cancer. Using the Cancer Genome Atlas sequencing data, we compiled the list of 1022 5'-isomiRs expressed in 9282 tumor samples across 31 cancer types. Sequences of these isomiRs were used to predict target genes with miRDB and TargetScan. The putative interactions were then subjected to the co-expression analysis in each cancer type to identify isomiR-target pairs supported by significant negative correlations. Downstream analysis of the data deposited in isomiRTar revealed both cancer-specific and cancer-conserved 5'-isomiR expression landscapes. Pairs of isomiRs differing in one nucleotide shift from 5'-end had poorly overlapping targetomes with the median Jaccard index of 0.06. The analysis of colorectal cancer 5'-isomiR-mediated regulatory networks revealed promising candidate tumor suppressor isomiRs: hsa-miR-203a-3p-+1, hsa-miR-192-5p-+1 and hsa-miR-148a-3p-0. In summary, we believe that isomiRTar will help researchers find novel mechanisms of isomiR-mediated gene silencing in different types of cancer.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia,Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia,Armenian Bioinformatics Institute (ABI), Yerevan, Armenia,Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | | - Alexey Makhonin
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Anton Zhiyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia,Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia,Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
23
|
Karabegović I, Abozaid Y, Maas SCE, Labrecque J, Bos D, De Knegt RJ, Ikram MA, Voortman T, Ghanbari M. Plasma MicroRNA Signature of Alcohol Consumption: The Rotterdam Study. J Nutr 2022; 152:2677-2688. [PMID: 36130258 PMCID: PMC9839997 DOI: 10.1093/jn/nxac216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) represent a class of noncoding RNAs that regulate gene expression and are implicated in the pathogenesis of different diseases. Alcohol consumption might affect the expression of miRNAs, which in turn could play a role in risk of diseases. OBJECTIVES We investigated whether plasma concentrations of miRNAs are altered by alcohol consumption. Given the existing evidence showing the link between alcohol and liver diseases, we further explored the extent to which these associations are mediated by miRNAs. METHODS Profiling of plasma miRNAs was conducted using the HTG EdgeSeq miRNA Whole Transcriptome Assay in 1933 participants of the Rotterdam Study. Linear regression was implemented to explore the link between alcohol consumption (glasses/d) and miRNA concentrations, adjusted for age, sex, cohort, BMI, and smoking. Sensitivity analysis for alcohol categories (nondrinkers, light drinkers, and heavy drinkers) was performed, where light drinkers corresponded to 0-2 glasses/d in men and 0-1 glasses/d in women, and heavy drinkers to >2 glasses/d in men and >1 glass/d in women. Moreover, we utilized the alcohol-associated miRNAs to explore their potential mediatory role between alcohol consumption and liver-related traits. Finally, we retrieved putative target genes of identified miRNAs to gain an understanding of the molecular pathways concerning alcohol consumption. RESULTS Plasma concentrations of miR-193b-3p, miR-122-5p, miR-3937, and miR-4507 were significantly associated with alcohol consumption surpassing the Bonferroni-corrected P < 8.46 × 10-5. The top significant association was observed for miR-193b-3p (β = 0.087, P = 2.90 × 10-5). Furthermore, a potential mediatory role of miR-3937 and miR-122-5p was observed between alcohol consumption and liver traits. Pathway analysis of putative target genes revealed involvement in biological regulation and cellular processes. CONCLUSIONS This study indicates that alcohol consumption is associated with plasma concentrations of 4 miRNAs. We outline a potential mediatory role of 2 alcohol-associated miRNAs (miR-3937 and miR-122-5p), laying the groundwork for further exploration of miRNAs as potential mediators between lifestyle factors and disease development.
Collapse
Affiliation(s)
- Irma Karabegović
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yasir Abozaid
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Silvana C E Maas
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jeremy Labrecque
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Robert J De Knegt
- Department of Gastroenterology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands,Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
24
|
Eliason S, Hong L, Sweat Y, Chalkley C, Cao H, Liu Q, Qi H, Xu H, Zhan F, Amendt BA. Extracellular vesicle expansion of PMIS-miR-210 expression inhibits colorectal tumour growth via apoptosis and an XIST/NME1 regulatory mechanism. Clin Transl Med 2022; 12:e1037. [PMID: 36116139 PMCID: PMC9482803 DOI: 10.1002/ctm2.1037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high mortality rate, and therapeutic approaches to treat these cancers are varied and depend on the metabolic state of the tumour. Profiles of CRC tumours have identified several biomarkers, including microRNAs. microRNA-210 (miR-210) levels are directly correlated with CRC survival. miR-210 expression is higher in metastatic colon cancer cells versus non-metastatic and normal colon epithelium. Therefore, efficient methods to inhibit miR-210 expression in CRC may provide new advances in treatments. METHODS Expression of miRs was determined in several metastatic and non-metastatic cell lines. miR-210 expression was inhibited using PMIS-miR-210 in transduced cells, which were transplanted into xenograft mice. In separate experiments, CRC tumours were allowed to grow in xenograft mice and treated with therapeutic injections of PMIS-miR-210. Molecular and biochemical experiments identified several new pathways targeted by miR-210 inhibition. RESULTS miR-210 inhibition can significantly reduce tumour growth of implanted colon cancer cells in xenograft mouse models. The direct administration of PMIS-miR-210 to existing tumours can inhibit tumour growth in both NSG and Foxn1nu/j mouse models and is more efficacious than capecitabine treatments. Tumour cells further transfer the PMIS-miR-210 inhibitor to neighbouring cells by extracellular vesicles to inhibit miR-210 throughout the tumour. miR-210 inhibition activates the cleaved caspase 3 apoptotic pathway to reduce tumour formation. We demonstrate that the long non-coding transcript XIST is regulated by miR-210 correlating with decreased XIST expression in CRC tumours. XIST acts as a competing endogenous RNA for miR-210, which reduces XIST levels and miR-210 inhibition increases XIST transcripts in the nucleus and cytoplasm. The increased expression of NME1 is associated with H3K4me3 and H3K27ac modifications in the NME1 proximal promoter by XIST. CONCLUSION Direct application of the PMIS-miR-210 inhibitor to growing tumours may be an effective colorectal cancer therapeutic.
Collapse
Affiliation(s)
- Steven Eliason
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Liu Hong
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Yan Sweat
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Camille Chalkley
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
| | - Huojun Cao
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| | - Qi Liu
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hank Qi
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
| | - Hongwei Xu
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Fenghuang Zhan
- Department of Internal MedicineUniversity of Arkansas for Medical ScienceLittle RockArkansasUSA
| | - Brad A. Amendt
- Department of Anatomy and Cell BiologyThe University of IowaIowa CityIowaUSA
- Craniofacial Anomalies Research CenterThe University of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchThe University of IowaIowa CityIowaUSA
| |
Collapse
|
25
|
Roa J, Ruiz-Cruz M, Ruiz-Pino F, Onieva R, Vazquez MJ, Sanchez-Tapia MJ, Ruiz-Rodriguez JM, Sobrino V, Barroso A, Heras V, Velasco I, Perdices-Lopez C, Ohlsson C, Avendaño MS, Prevot V, Poutanen M, Pinilla L, Gaytan F, Tena-Sempere M. Dicer ablation in Kiss1 neurons impairs puberty and fertility preferentially in female mice. Nat Commun 2022; 13:4663. [PMID: 35945211 PMCID: PMC9363423 DOI: 10.1038/s41467-022-32347-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Kiss1 neurons, producing kisspeptins, are essential for puberty and fertility, but their molecular regulatory mechanisms remain unfolded. Here, we report that congenital ablation of the microRNA-synthesizing enzyme, Dicer, in Kiss1 cells, causes late-onset hypogonadotropic hypogonadism in both sexes, but is compatible with pubertal initiation and preserved Kiss1 neuronal populations at the infantile/juvenile period. Yet, failure to complete puberty and attain fertility is observed only in females. Kiss1-specific ablation of Dicer evokes disparate changes of Kiss1-cell numbers and Kiss1/kisspeptin expression between hypothalamic subpopulations during the pubertal-transition, with a predominant decline in arcuate-nucleus Kiss1 levels, linked to enhanced expression of its repressors, Mkrn3, Cbx7 and Eap1. Our data unveil that miRNA-biosynthesis in Kiss1 neurons is essential for pubertal completion and fertility, especially in females, but dispensable for initial reproductive maturation and neuronal survival in both sexes. Our results disclose a predominant miRNA-mediated inhibitory program of repressive signals that is key for precise regulation of Kiss1 expression and, thereby, reproductive function.
Collapse
Affiliation(s)
- Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain. .,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain.
| | - Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Rocio Onieva
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Maria J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Maria J Sanchez-Tapia
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Jose M Ruiz-Rodriguez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Veronica Sobrino
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Violeta Heras
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Cecilia Perdices-Lopez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Maria Soledad Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, 59000, Lille, France
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Francisco Gaytan
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain. .,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain. .,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
26
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
27
|
Sayad A, Najafi S, Hussen BM, Abdullah ST, Movahedpour A, Taheri M, Hajiesmaeili M. The Emerging Roles of the β-Secretase BACE1 and the Long Non-coding RNA BACE1-AS in Human Diseases: A Focus on Neurodegenerative Diseases and Cancer. Front Aging Neurosci 2022; 14:853180. [PMID: 35386116 PMCID: PMC8978056 DOI: 10.3389/fnagi.2022.853180] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023] Open
Abstract
The β-Secretase (BACE1) is widely studied to be particularly involved in amyloid deposition, a process known as the pathogenic pathway in neurodegenerative diseases. Therefore, BACE1 expression is frequently reported to be upregulated in brain samples of the patients with Alzheimer’s disease (AD). BACE1 expression is regulated by BACE1-AS, a long non-coding RNA (lncRNA), which is transcribed in the opposite direction to its locus. BACE1-AS positively regulates the BACE1 expression, and their expression levels are regulated in physiological processes, such as brain and vascular homeostasis, although their roles in the regulation of amyloidogenic process have been studied further. BACE1-AS dysregulation is reported consistent with BACE1 in a number of human diseases, such as AD, Parkinson’s disease (PD), heart failure (HF), and mild cognitive impairment. BACE1 or less BACE1-AS inhibition has shown therapeutic potentials particularly in decreasing manifestations of amyloid-linked neurodegenerative diseases. Here, we have reviewed the role of lncRNA BACE1 and BACE1-AS in a number of human diseases focusing on neurodegenerative disorders, particularly, AD.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri,
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Mohammadreza Hajiesmaeili,
| |
Collapse
|
28
|
Tomesz A, Szabo L, Molnar R, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. Changes in miR-124-1, miR-212, miR-132, miR-134, and miR-155 Expression Patterns after 7,12-Dimethylbenz(a)anthracene Treatment in CBA/Ca Mice. Cells 2022; 11:cells11061020. [PMID: 35326471 PMCID: PMC8947631 DOI: 10.3390/cells11061020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Specific gene and miRNA expression patterns are potential early biomarkers of harmful environmental carcinogen exposures. The aim of our research was to develop an assay panel by using several miRNAs for the rapid screening of potential carcinogens. The expression changes of miR-124-1, miR-212, miR-132, miR-134, and miR-155 were examined in the spleen, liver, and kidneys of CBA/Ca mice, following the 20 mg/bwkg intraperitoneal 7,12-dimethylbenz(a)anthracene (DMBA) treatment. After 24 h RNA was isolated, the miRNA expressions were analyzed by a real-time polymerase chain reaction and compared to a non-treated control. DMBA induced significant changes in the expression of miR-134, miR-132, and miR-124-1 in all examined organs in female mice. Thus, miR-134, miR-132, and miR-124-1 were found to be suitable biomarkers for the rapid screening of potential chemical carcinogens and presumably to monitor the protective effects of chemopreventive agents.
Collapse
Affiliation(s)
- Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (R.M.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (A.T.); (J.L.S.); (F.B.); Tel.: +36-207-772-812 (J.L.S. & F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
29
|
An Evolutionarily Conserved AU-Rich Element in the 3' Untranslated Region of a Transcript Misannotated as a Long Noncoding RNA Regulates RNA Stability. Mol Cell Biol 2022; 42:e0050521. [PMID: 35274990 DOI: 10.1128/mcb.00505-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the primary mechanisms of post-transcriptional gene regulation is the modulation of RNA stability. We recently discovered that LINC00675, a transcript annotated as a long noncoding RNA (lncRNA), is transcriptionally regulated by FOXA1 and encodes a highly conserved small protein that localizes to the endoplasmic reticulum, hence renamed as FORCP (FOXA1-regulated conserved small protein). Here, we show that the endogenous FORCP transcript is rapidly degraded and rendered unstable as a result of 3'UTR-mediated degradation. Surprisingly, although the FORCP transcript is a canonical nonsense-mediated decay (NMD) and microRNA (miRNA) target, we found that it is not degraded by NMD or miRNAs. Targeted deletion of an evolutionarily conserved region in the FORCP 3'UTR using CRISPR/Cas9 significantly increased the stability of the FORCP transcript. Interestingly, this region requires the presence of an immediate downstream 55-nt-long sequence for transcript stability regulation. Functionally, colorectal cancer cells lacking this conserved region expressed from the endogenous FORCP locus displayed decreased proliferation and clonogenicity. These data demonstrate that the FORCP transcript is destabilized via conserved elements within its 3'UTR and emphasize the need to interrogate the function of a given 3'UTR in its native context.
Collapse
|
30
|
Dat VHX, Nhung BTH, Chau NNB, Cuong PH, Hieu VD, Linh NTM, Quoc NB. Identification of potential microRNA groups for the diagnosis of hepatocellular carcinoma (HCC) using microarray datasets and bioinformatics tools. Heliyon 2022; 8:e08987. [PMID: 35243101 PMCID: PMC8873536 DOI: 10.1016/j.heliyon.2022.e08987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third cause of cancer-related death worldwide. Potential microRNAs have been reported as biomarkers for early detection of HCC as well as novel molecular targets for HCC treatment. Various tissue expression profiles of miRNAs using three microarray datasets from groups in Asia (2), Europe, America (GSE147892, GSE21362, GSE74618, GSE40744) and multiple bioinformatics tools were integrated to determine the most significant miRNA groups to assist in the diagnosis of HCC. Statistical analyses identified at least 30 miRNAs with 17 up-regulated and 13 down-regulated in HCC-related tumor tissues. All the miRNAs also showed relevance to the hallmarks of cancer such as cell proliferation, invasion, metastasis, angiogenesis, metabolism, epithelial-mesenchymal transition and apoptosis. Expression levels of miRNAs observed in the European group showed up-regulation at 5–37% compared to both Asian and American groups. Interestingly, four miRNAs divided into two groups as miR-182-5p/miR-1269a and miR-199a/miR-422a were the most promising for diagnosis of HCC patients from healthy controls, with AUC values of 0.902 and 0.892, respectively. Results provided evidence of the correlation between potential miRNAs and HCC that could be useful for disease diagnosis based on in-depth analyses of large case numbers and cohort studies.
Collapse
Affiliation(s)
- Vo Hoang Xuan Dat
- Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Bui Thi Huyen Nhung
- Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam
| | | | | | - Vo Duc Hieu
- Ho Chi Minh City Oncology Hospital, Viet Nam
| | | | - Nguyen Bao Quoc
- Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Viet Nam.,Research Institute of Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
31
|
The Biological Function of MicroRNAs in Bone Tumors. Int J Mol Sci 2022; 23:ijms23042348. [PMID: 35216464 PMCID: PMC8876091 DOI: 10.3390/ijms23042348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Micro ribonucleic acids (miRNAs) are small endogenous noncoding RNAs molecules that regulate gene expression post-transcriptionally. A single miRNA is able to target hundreds of specific messenger RNA (mRNAs) by binding to the 3′-untranslated regions. miRNAs regulate different biological processes such as cell proliferation, differentiation and apoptosis. Altered miRNA expression is certainly related to the development of the most common human diseases, including tumors. Osteosarcoma (OS), Ewing’s Sarcoma (ES), and Chondrosarcoma (CS) are the most common primary bone tumors which affect mainly children and adolescents. A significant dysregulation of miRNA expression, in particular of mir-34, mir-21, mir-106, mir-143, and miR-100, has been revealed in OS, ES and CS. In this context, miRNAs can act as either tumor suppressor genes or oncogenes, contributing to the initiation and progression of bone tumors. The in-depth study of these small molecules can thus help to better understand their biological functions in bone tumors. Therefore, this review aims to examine the potential role of miRNAs in bone tumors, especially OS, ES and CS, and to suggest their possible use as potential therapeutic targets for the treatment of bone tumors and as biomarkers for early diagnosis.
Collapse
|
32
|
Khajanchi N, Saha K. Controlling CRISPR with small molecule regulation for somatic cell genome editing. Mol Ther 2022; 30:17-31. [PMID: 34174442 PMCID: PMC8753294 DOI: 10.1016/j.ymthe.2021.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Biomedical research has been revolutionized by the introduction of many CRISPR-Cas systems that induce programmable edits to nearly any gene in the human genome. Nuclease-based CRISPR-Cas editors can produce on-target genomic changes but can also generate unwanted genotoxicity and adverse events, in part by cleaving non-targeted sites in the genome. Additional translational challenges for in vivo somatic cell editing include limited packaging capacity of viral vectors and host immune responses. Altogether, these challenges motivate recent efforts to control the expression and activity of different Cas systems in vivo. Current strategies utilize small molecules, light, magnetism, and temperature to conditionally control Cas systems through various activation, inhibition, or degradation mechanisms. This review focuses on small molecules that can be incorporated as regulatory switches to control Cas genome editors. Additional development of CRISPR-Cas-based therapeutic approaches with small molecule regulation have high potential to increase editing efficiency with less adverse effects for somatic cell genome editing strategies in vivo.
Collapse
Affiliation(s)
- Namita Khajanchi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
33
|
Kowluru RA, Mohammad G. Epigenetic modifications in diabetes. Metabolism 2022; 126:154920. [PMID: 34715117 DOI: 10.1016/j.metabol.2021.154920] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is now considered as a 'silent epidemic' that claims over four million lives every year, and the disease knows no socioeconomic boundaries. Despite extensive efforts by the National and International organizations, and cutting-edge research, about 11% world's population is expected to suffer from diabetes (and its complications) by year 2045. This life-long disease damages both the microvasculature and the macrovasculature of the body, and affects many metabolic and molecular pathways, altering the expression of many genes. Recent research has shown that external factors, such as environmental factors, lifestyle and pollutants can also regulate gene expression, and contribute in the disease development and progression. Many epigenetic modifications are implicated in the development of micro- and macro- vascular complications including DNA methylation and histone modifications of several genes implicated in their development. Furthermore, several noncoding RNAs, such as micro RNAs and long noncoding RNAs, are also altered, affecting many biochemical pathways. Epigenetic modifications, however, have the advantage that they could be passed to the next generation, or can be erased. They are now being explored as therapeutical target(s) in the cancer field, which opens up the possibility to use them for treating diabetes and preventing/slowing down its complications.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, USA.
| | - Ghulam Mohammad
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, USA
| |
Collapse
|
34
|
Casati G, Giunti L, Iorio AL, Marturano A, Galli L, Sardi I. Hippo Pathway in Regulating Drug Resistance of Glioblastoma. Int J Mol Sci 2021; 22:ijms222413431. [PMID: 34948224 PMCID: PMC8705144 DOI: 10.3390/ijms222413431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and malignant tumor of the Central Nervous System (CNS), affecting both children and adults. GBM is one of the deadliest tumor types and it shows a strong multidrug resistance (MDR) and an immunosuppressive microenvironment which remain a great challenge to therapy. Due to the high recurrence of GBM after treatment, the understanding of the chemoresistance phenomenon and how to stimulate the antitumor immune response in this pathology is crucial. The deregulation of the Hippo pathway is involved in tumor genesis, chemoresistance and immunosuppressive nature of GBM. This pathway is an evolutionarily conserved signaling pathway with a kinase cascade core, which controls the translocation of YAP (Yes-Associated Protein)/TAZ (Transcriptional Co-activator with PDZ-binding Motif) into the nucleus, leading to regulation of organ size and growth. With this review, we want to highlight how chemoresistance and tumor immunosuppression work in GBM and how the Hippo pathway has a key role in them. We linger on the role of the Hippo pathway evaluating the effect of its de-regulation among different human cancers. Moreover, we consider how different pathways are cross-linked with the Hippo signaling in GBM genesis and the hypothetical mechanisms responsible for the Hippo pathway activation in GBM. Furthermore, we describe various drugs targeting the Hippo pathway. In conclusion, all the evidence described largely support a strong involvement of the Hippo pathway in gliomas progression, in the activation of chemoresistance mechanisms and in the development of an immunosuppressive microenvironment. Therefore, this pathway is a promising target for the treatment of high grade gliomas and in particular of GBM.
Collapse
Affiliation(s)
- Giacomo Casati
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
- Correspondence:
| | - Laura Giunti
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Anna Lisa Iorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Arianna Marturano
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Luisa Galli
- Infectious Disease Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| |
Collapse
|
35
|
Ertürk E, Ari F, Akgün O, Ulukaya E, Küçükali Cİ, Zeybek Ü. Investigation of the efficacy of paclitaxel on some miRNAs profiles in breast cancer stem cells. Turk J Biol 2021; 45:613-623. [PMID: 34803458 PMCID: PMC8574192 DOI: 10.3906/biy-2103-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/26/2021] [Indexed: 12/09/2022] Open
Abstract
Understanding of the functions of microRNAs in breast cancer and breast cancer stem cells have been a hope for the development of new molecular targeted therapies. Here, it is aimed to investigate the differences in the expression levels of let-7a, miR-10b, miR-21, miR-125b, miR-145, miR-155, miR-200c, miR-221, miR-222 and miR-335, which associated with gene and proteins in MCF-7 (parental) and MCF-7s (Mammosphere/stem cell-enriched population/CD44+/CD24-cells) cells treated with paclitaxel. MCF-7s were obtained from parental MCF-7 cells. Cytotoxic activity of paclitaxel was determined by ATP assay. Total RNA isolation and cDNA conversion were performed from the samples. Changes in expression levels of miRNAs were examined by RT-qPCR. Identified target genes and proteins of miRNAs were analyzed with RT-qPCR and western blot analysis, respectively. miR-125b was significantly expressed (2.0946-fold; p = 0.021) in MCF-7s cells compared to control after treatment with paclitaxel. Downregulation of SMO, STAT3, NANOG, OCT4, SOX2, ERBB2 and ERBB3 and upregulation of TP53 genes were significant after 48 h treatment in MCF-7s cells. Protein expressions of SOX2, OCT4, SMAD4, SOX2 and OCT4 also decreased. Paclitaxel induces miR-125b expression in MCF-7s cells. Upregulation of miR-125b may be used as a biomarker for the prediction of response to paclitaxel treatment in breast cancer.
Collapse
Affiliation(s)
- Elif Ertürk
- Vocational School of Health Services, Bursa Uludağ University, Bursa Turkey
| | - Ferda Ari
- Department of Biology, Science and Art Faculty, Bursa Uludağ University, Bursa Turkey
| | - Oğuzhan Akgün
- Department of Biology, Science and Art Faculty, Bursa Uludağ University, Bursa Turkey
| | - Engin Ulukaya
- Department of Clinical Biochemistry, Faculty of Medicine, İstinye University, İstanbul Turkey
| | - Cem İsmail Küçükali
- Department of Neuroscience, Aziz Sancar Experimental Medicine Research Institute, İstanbul University, İstanbul Turkey
| | - Ümit Zeybek
- Department of Molecular Medicine, Aziz Sancar Experimental Medicine Research Institute, İstanbul University, İstanbul Turkey
| |
Collapse
|
36
|
Ma L, Zhang W, Jin Y, Bai X, Yu Q. miR-638 suppresses proliferation by negatively regulating high mobility group A1 in ovarian cancer cells. Exp Ther Med 2021; 22:1319. [PMID: 34630673 PMCID: PMC8495545 DOI: 10.3892/etm.2021.10754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is one of the most common gynecological diseases with high mortality rates. Previous studies have shown that microRNA (miR)-638 is associated with tumorigenesis. The present study aimed to assess the role and underlying mechanisms of miR-638 in ovarian cancer. miR-638 expression was detected in ovarian cancer tissues and miR-638 was overexpressed or knocked down in ovarian cancer OVCAR-3 and Caov-3 cells. The clinical results revealed that miR-638 expression was downregulated in ovarian cancer tissues compared with in adjacent normal tissues. miR-638 expression was also found to be relatively low in OVCAR-3 cells whilst being relatively high in Caov-3 cells among the five ovarian cancer cell lines tested. miR-638 overexpression inhibited cell viability, arrested the cell cycle at the G1 phase and promoted apoptosis in OVCAR-3 cells. By contrast, miR-638 knockdown increased Caov-3 cell viability, facilitated cell cycle progression and inhibited apoptosis. miR-638 reduced the expression of high mobility group A1 (HMGA1) by directly targeting its 3' untranslated region. HMGA1 overexpression reversed the inhibition of proliferation induced by miR-638 overexpression in OVCAR-3 cells. These results suggest that miR-638 may serve to be a suppressor of ovarian cancer by regulating HMGA1, which may provide a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Li Ma
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Zhang
- Department of Scientific Research, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaomei Bai
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qiaoling Yu
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
37
|
Szarka G, Balogh M, Tengölics ÁJ, Ganczer A, Völgyi B, Kovács-Öller T. The role of gap junctions in cell death and neuromodulation in the retina. Neural Regen Res 2021; 16:1911-1920. [PMID: 33642359 PMCID: PMC8343308 DOI: 10.4103/1673-5374.308069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Vision altering diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, myopia, retinal vascular disease, traumatic brain injuries and others cripple many lives and are projected to continue to cause anguish in the foreseeable future. Gap junctions serve as an emerging target for neuromodulation and possible regeneration as they directly connect healthy and/or diseased cells, thereby playing a crucial role in pathophysiology. Since they are permeable for macromolecules, able to cross the cellular barriers, they show duality in illness as a cause and as a therapeutic target. In this review, we take recent advancements in gap junction neuromodulation (pharmacological blockade, gene therapy, electrical and light stimulation) into account, to show the gap junction's role in neuronal cell death and the possible routes of rescuing neuronal and glial cells in the retina succeeding illness or injury.
Collapse
Affiliation(s)
- Gergely Szarka
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Márton Balogh
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Ádám J. Tengölics
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Béla Völgyi
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Retinal Electrical Synapses Research Group, National Brain Research Program (NAP 2.0), Hungarian Academy of Sciences, Budapest, Hungary
- Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
38
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
39
|
Role of microRNAs (MiRNAs) as biomarkers of cervical carcinogenesis: a systematic review. Obstet Gynecol Sci 2021; 64:419-436. [PMID: 34384196 PMCID: PMC8458608 DOI: 10.5468/ogs.21123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
We performed a systematic review to identify the role of microRNAs (miRNAs) as biomarkers in the progression of cervical precancerous lesions. A comprehensive search of the Cochrane Controlled Register of Trials, PubMed, ScienceDirect, and Embase databases was performed for articles published between January 2010 and June 2020. The following Medical Subject Headings (MeSH) terms were searched: “microRNA” and “cervical” and “lesion.” All study designs that aimed to evaluate the correlation of miRNA expression with different precancerous cervical staging and/ or cervical cancer were included, except for case reports and case series. Approximately 82 individual miRNAs were found to be significant in differentiating the stages of cervical carcinogenesis. Among the miRNAs, miR-21 is the most prevalent, and it is consistently upregulated progressively from normal cervical to worsening cervical lesion stages in both cell and serum samples. miR-205 has been shown to have a higher specificity than human papilloma virus testing in predicting the absence of high-grade squamous intraepithelial lesions (HSILs) in exfoliated cell samples. The tumor suppressor miRNAs miR-34, let-7, miR-203 miR-29, and miR-375 were significantly downregulated in low-grade squamous intraepithelial lesions, HSILs, and cervical cancer. We found significant dysregulated miRNAs in cervical carcinogenesis with their dynamic expression changes and ability to detect viral persistency, risk prediction of low-grade lesions (cervical intraepithelial neoplasia [CIN] 2) to high-grade lesions (CIN 3), and progression of CIN 3 to cancer. Their ability to discriminate HSILs from non-dysplastic lesions has potential implications in early diagnosis and reducing overtreatment of otherwise regressive early preinvasive lesions.
Collapse
|
40
|
Sharma RK, Calderon C, Vivas-Mejia PE. Targeting Non-coding RNA for Glioblastoma Therapy: The Challenge of Overcomes the Blood-Brain Barrier. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:678593. [PMID: 35047931 PMCID: PMC8757885 DOI: 10.3389/fmedt.2021.678593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant form of all primary brain tumors, and it is responsible for around 200,000 deaths each year worldwide. The standard therapy for GBM treatment includes surgical resection followed by temozolomide-based chemotherapy and/or radiotherapy. With this treatment, the median survival rate of GBM patients is only 15 months after its initial diagnosis. Therefore, novel and better treatment modalities for GBM treatment are urgently needed. Mounting evidence indicates that non-coding RNAs (ncRNAs) have critical roles as regulators of gene expression. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are among the most studied ncRNAs in health and disease. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Several dysregulated miRNAs and lncRNAs have been identified in GBM cell lines and GBM tumor samples. Some of them have been proposed as diagnostic and prognostic markers, and as targets for GBM treatment. Most ncRNA-based therapies use oligonucleotide RNA molecules which are normally of short life in circulation. Nanoparticles (NPs) have been designed to increase the half-life of oligonucleotide RNAs. An additional challenge faced not only by RNA oligonucleotides but for therapies designed for brain-related conditions, is the presence of the blood-brain barrier (BBB). The BBB is the anatomical barrier that protects the brain from undesirable agents. Although some NPs have been derivatized at their surface to cross the BBB, optimal NPs to deliver oligonucleotide RNA into GBM cells in the brain are currently unavailable. In this review, we describe first the current treatments for GBM therapy. Next, we discuss the most relevant miRNAs and lncRNAs suggested as targets for GBM therapy. Then, we compare the current drug delivery systems (nanocarriers/NPs) for RNA oligonucleotide delivery, the challenges faced to send drugs through the BBB, and the strategies to overcome this barrier. Finally, we categorize the critical points where research should be the focus in order to design optimal NPs for drug delivery into the brain; and thus move the Oligonucleotide RNA-based therapies from the bench to the clinical setting.
Collapse
Affiliation(s)
- Rohit K. Sharma
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Carlos Calderon
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
| | - Pablo E. Vivas-Mejia
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, United States
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| |
Collapse
|
41
|
Zhiyanov A, Nersisyan S, Tonevitsky A. Hairpin sequence and structure is associated with features of isomiR biogenesis. RNA Biol 2021; 18:430-438. [PMID: 34286662 DOI: 10.1080/15476286.2021.1952759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MiRNA isoforms (isomiRs) are single stranded small RNAs originating from the same pri-miRNA hairpin as a result of cleavage by Drosha and Dicer enzymes. Variations at the 5'-end of a miRNA alter the seed region of the molecule, thus affecting the targetome of the miRNA. In this manuscript, we analysed the distribution of miRNA cleavage positions across 31 different cancers using miRNA sequencing data of TCGA project. As a result, we found that the processing positions are not tissue specific and that all miRNAs could be correctly classified as ones exhibiting homogeneous or heterogeneous cleavage at one of the four cleavage sites. In 42% of cases (42 out of 100 miRNAs), we observed imprecise 5'-end Dicer cleavage, while this fraction was only 14% for Drosha (14 out of 99). To the contrary, almost all cleavage sites of 3'-ends (either Drosha or Dicer) were heterogeneous. With the use of only four nucleotides surrounding a 5'-end Dicer cleavage position we built a model which allowed us to distinguish between homogeneous and heterogeneous cleavage with the reliable quality (ROC AUC = 0.68). Finally, we showed the possible applications of the study by the analysis of two 5'-end isoforms originating from the same exogeneous shRNA hairpin. It turned out that the less expressed shRNA variant was functionally active, which led to the increased off-targeting. Thus, the obtained results could be applied to the design of shRNAs whose processing will result in a single 5'-variant.
Collapse
Affiliation(s)
- Anton Zhiyanov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | |
Collapse
|
42
|
Hsieh PL, Huang CC, Yu CC. Emerging Role of MicroRNA-200 Family in Dentistry. Noncoding RNA 2021; 7:35. [PMID: 34208375 PMCID: PMC8293310 DOI: 10.3390/ncrna7020035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs ~22 nucleotides in length, which have been shown to participate in various biological processes. As one of the most researched miRNAs, the miR-200 family has been found to regulate several factors that are associated with the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs) behavior. In this review, we briefly summarize the background of the miR-200 family and their implication in various dental diseases. We focus on the expression changes, biological functions, and clinical significance of the miR-200 family in oral cancer; periodontitis; oral potentially malignant disorder; gingival overgrowth; and other periodontal diseases. Additionally, we discuss the use of the miR-200 family as molecular biomarkers for diagnosis, prognostic, and therapeutic application.
Collapse
Affiliation(s)
- Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Chun-Chung Huang
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
43
|
Nersisyan S, Galatenko A, Chekova M, Tonevitsky A. Hypoxia-Induced miR-148a Downregulation Contributes to Poor Survival in Colorectal Cancer. Front Genet 2021; 12:662468. [PMID: 34135940 PMCID: PMC8202010 DOI: 10.3389/fgene.2021.662468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Hypoxia is an extensively investigated condition due to its contribution to various pathophysiological processes including cancer progression and metastasis formation. MicroRNAs (miRNAs) are well-known post-transcriptional gene expression regulators. However, their contribution to molecular response to hypoxia is highly dependent on cell/tissue types and causes of hypoxia. One of the most important examples is colorectal cancer, where no consensus on hypoxia-regulated miRNAs has been reached so far. In this work, we applied integrated mRNA and small RNA sequencing, followed by bioinformatics analysis, to study the landscape of hypoxia-induced miRNA and mRNA expression alterations in human colorectal cancer cell lines (HT-29 and Caco-2). A hypoxic microenvironment was chemically modeled using two different treatments: cobalt(II) chloride and oxyquinoline. Only one miRNA, hsa-miR-210-3p, was upregulated in all experimental conditions, while there were nine differentially expressed miRNAs under both treatments within the same cell line. Further bioinformatics analysis revealed a complex hypoxia-induced regulatory network: hypoxic downregulation of hsa-miR-148a-3p led to the upregulation of its two target genes, ITGA5 and PRNP, which was shown to be a factor contributing to tumor progression and poor survival in colorectal cancer patients.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexei Galatenko
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia.,Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Milena Chekova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | | |
Collapse
|
44
|
Byun YJ, Piao XM, Jeong P, Kang HW, Seo SP, Moon SK, Lee JY, Choi YH, Lee HY, Kim WT, Lee SC, Cha EJ, Yun SJ, Kim WJ. Urinary microRNA-1913 to microRNA-3659 expression ratio as a non-invasive diagnostic biomarker for prostate cancer. Investig Clin Urol 2021; 62:340-348. [PMID: 33834642 PMCID: PMC8100013 DOI: 10.4111/icu.20200488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE MicroRNAs (miRNAs) are small non-coding RNAs and are involved in the development, proliferation, and pathogenesis of prostate cancer (PCa). Urinary miRNAs are promising non-invasive biomarkers for PCa diagnosis because of their stability in urine. Here, we evaluated the diagnostic value of urinary miR-1913 to miR-3659 ratio in PCa patients and benign prostate hyperplasia (BPH) controls. MATERIALS AND METHODS Candidate miRNAs were identified from urinary microarray data and tested by real-time PCR. The urinary miR-1913 to miR-3659 expression ratio was selected and tested in 83 urine samples (44 PCa and 39 BPH) to confirm its validity as a non-invasive diagnostic biomarker for PCa. RESULTS The expression ratio of urinary miR-1913 to miR-3659 was significantly higher in PCa than in BPH (p=0.002) and showed a higher area under the receiver operating characteristic curve than prostate-specific antigen (PSA; 0.821 vs. 0.518) in patients within the PSA gray zone (tPSA: 3-10 ng/mL), with sensitivity of 75.0% and specificity of 78.6% (p=0.003). CONCLUSIONS The urinary miR-1913 to miR-3659 expression ratio was increased in PCa and may serve as a useful supplemental biomarker to PSA for the diagnosis of PCa, particularly in patients within the PSA gray zone.
Collapse
Affiliation(s)
- Young Joon Byun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Xuan Mei Piao
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Pildu Jeong
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ho Won Kang
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Sung Phil Seo
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Sung Kwon Moon
- Department of Food Science and Technology, Chung-Ang University, Anseong, Korea
| | | | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan, Korea
| | - Hee Youn Lee
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Won Tae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Sang Cheol Lee
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Eun Jong Cha
- Department of Biomedical Engineering, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
| | - Wun Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea.,Institute of Urotech, Cheongju, Korea.
| |
Collapse
|
45
|
Yang D, Hu Z, Zhang Y, Zhang X, Xu J, Fu H, Zhu Z, Feng D, Cai Q. CircHIPK3 Promotes the Tumorigenesis and Development of Gastric Cancer Through miR-637/AKT1 Pathway. Front Oncol 2021; 11:637761. [PMID: 33680975 PMCID: PMC7933501 DOI: 10.3389/fonc.2021.637761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNA is a kind of RNA with a covalently closed loop, which has a complex ability to modulate genes in the process of tumorigenesis and metastasis. Nevertheless, how circular RNA functions in gastric cancer (GC) remains unclear. The effect of circHIPK3 in vitro was studied here. Quantitative real-time PCR (qRT-PCR) was employed to found that circHIPK3 markedly increased in GC tissues and cell lines. And low expression of circHIPK3 suppressed the GC cells growing and metabolizing. Then the bioinformatics tool predicted the downstream target of circHIPK3, and it was proved by the dual-luciferase report experiment. According to the results of bioinformatics analysis and experimental data, it was clarified that circHIPK3 acted as a sponge of miR-637, releasing its direct target AKT1. The dual-luciferase assay revealed that mir-637 could bind circHIPK3 and AKT1. qRT-PCR data indicated that overexpression circHIPK3 led to the low level of miR-637 and overexpressed miR-637 would reduce AKT1 level. Finally, we demonstrated that the low expression of miR-637 or overexpression of AKT1 could attenuate the anti-proliferative effects of si-circHIPK3. These results suggest that the circHIPK3/miR-637/AKT1 regulatory pathway may be associated with the oncogene and growth of gastric cancer. In short, a new circular RNA circHIPK3 and its function are identified, and the regulatory pathway of circHIPK3/miR-637/AKT1 in the tumorigenesis and development of gastric cancer is discovered.
Collapse
Affiliation(s)
- Dejun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Zhenxin Zhu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Changzheng Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
46
|
Nomura K, Kitanaka A, Iwama H, Tani J, Nomura T, Nakahara M, Ohura K, Tadokoro T, Fujita K, Mimura S, Yoneyama H, Kobara H, Morishita A, Okano K, Suzuki Y, Tsutsi K, Himoto T, Masaki T. Association between microRNA-527 and glypican-3 in hepatocellular carcinoma. Oncol Lett 2021; 21:229. [PMID: 33613718 PMCID: PMC7856685 DOI: 10.3892/ol.2021.12490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/19/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to identify the specific microRNAs (miRNAs/miRs) and their corresponding target genes involved in hepatocellular carcinomas (HCCs). Microarray analysis was performed to examine the miRNA expression profiles of four paired HCC and corresponding non-cancerous (N) liver tissues using 985 miRNA probes. The Human miRNA Target database was used to identify the target genes of differentially expressed miRNAs between the HCC and N tissues. The protein expression levels of target genes in the HCC tissues and cell lines were evaluated using western blotting. miRNA-mediated suppression of target gene expression was evaluated by transiently transfecting the miRNA into the HCC cell lines. Of the 985 miRNAs evaluated, four miRNAs were differentially expressed (three upregulated and one downregulated miRNAs). Of these four miRNAs, miRNA-527 was highly downregulated in the HCC tissues. Glypican-3 (GPC-3) was predicted as a target gene of miRNA-527. Western blotting revealed that GPC-3 protein is highly expressed in the HCC tissues and HCC cell lines compared with N and normal cell lines. Transfection with miR-527 resulted in suppression of GPC-3 protein expression in the Cos7 cells. Furthermore, transfection with miR-527 also inhibited the intrinsic expression of GPC-3 in the Huh-7 cell line. This indicated that miR-527 in the HCC tissues may be an important novel miRNA that targets the GPC-3 gene expression. GPC-3, whose expression is regulated by miR-527, may be involved in the development and progression of HCC.
Collapse
Affiliation(s)
- Kei Nomura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Akira Kitanaka
- Department of Laboratory Medicine, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Hisakazu Iwama
- Information Technology Center, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Kyoko Ohura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Kunihiko Tsutsi
- Department of Healthy Science, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| | - Takashi Himoto
- Department of Clinical Examination, Faculty of Health Sciences, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa 761-0123, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa 761-0793, Japan
| |
Collapse
|
47
|
Zhang W, Wu G, Sun P, Zhu Y, Zhang H. circ_SMAD2 regulate colorectal cancer cells proliferation through targeting miR-1258/RPN2 signaling pathway. J Cancer 2021; 12:1678-1686. [PMID: 33613755 PMCID: PMC7890329 DOI: 10.7150/jca.50888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) are associated with various diseases, including cancers. However, their roles in colorectal cancer (CRC) have not been established. Hsa_circ_0000847 (circ_SMAD2) is a novel circRNA that was found to be elevated in CRC cell lines and tissues. High circ_SMAD2 levels were positively correlated with CRC clinicopathological features. Functional assays revealed that circ_SMAD2 enhanced CRC cell invasion, proliferation, and tumor growth. Mechanistically, circ_SMAD2 elevated Ribophorin II (RPN2) levels by inhibiting miR-1258. Therefore, circ_SMAD2 is a potential indicator for CRC progression.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Yuanzeng Zhu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| | - Han Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, People's Republic of China
| |
Collapse
|
48
|
Hsa-miR-3658 down-regulates OCT4 gene expression followed by suppressing SW480 cell proliferation and migration. Biochem J 2020; 477:2281-2293. [PMID: 32478824 DOI: 10.1042/bcj20190619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023]
Abstract
The pluripotency factor, OCT4 gene is a stemness marker that is involved in the tumorigenicity of different cancer types and knowing about molecular mechanisms of its regulation is crucially important. To date, a few microRNAs (miRNAs) are known to be regulators of OCT4 gene expression. Looking for the novel miRNAs which are capable of regulating OCT4 gene expression, our bioinformatics analysis introduced hsa-miR-3658 (miR-3658) as a bona fide candidate. Then, RT-qPCR results indicated that miR-3658 expression is decreased in colorectal cancer (CRC) tumor tissues, compared with normal pairs. Furthermore, RT-qPCR and western blot analysis showed that the OCT4 gene has been down-regulated following the miR-3658 overexpression. Consistently, dual-luciferase assay supported the direct interaction of miR-3658 with the 3'-UTR sequence of OCT4 gene. Unlike in HCT116 cells, overexpression of miR-3658 in SW480 cells brought about growth inhibition, cell cycle arrest and reduced cell migration, detected by flow cytometry, and scratch test assay. Overall, these findings demonstrated that miR-3658 as a tumor suppressor miRNA exerts its effect against OCT4 gene expression, and it has the potential of being used as a prognostic marker and therapeutic target against colorectal cancer.
Collapse
|
49
|
Nersisyan SA, Galatenko AV, Maltseva DV, Ushkaryov Y, Tonevitsky AG. Interrelation between miRNA and mRNA expression in HT-29 line cells under hypoxia. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxia accompanies various pathophysiological processes, including progression of tumors and metastasis. One of the mechanisms of molecular response of cells to hypoxia implies recruitment of specific miRNAs that regulate the expression of their target genes. This study aimed to evaluate the hypoxia-induced change in expression of miRNAs and their target genes in the HT-29 human colorectal adenocarcinoma cell line with the help of integrated miRNA and mRNA sequencing. To simulate hypoxia, the cells were treated with cobalt (II) chloride. We registered a significant change in expression of sixteen human miRNAs. Six of them (hsa-miR-18a-5p, hsa-miR-22-3p, hsa-miR-27a-5p, hsa-miR-182-5p, hsa-miR-215 -5p, hsa-miR-425-5p) had a significant proportion of target genes that had the expression changing in the opposite direction. Based on the bioinformatic analysis of interactions between differentially expressed transcription factors and miRNAs, we built a possible regulatory network with its main hubs being HIF-1α, p65, с-Myc, and Egr1 (encoded by the HIF1A, RELA, MYC and EGR1 genes).
Collapse
Affiliation(s)
- SA Nersisyan
- National Research University Higher School of Economics, Moscow, Russia
| | - AV Galatenko
- Lomonosov Moscow State University, Moscow, Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
| | - DV Maltseva
- National Research University Higher School of Economics, Moscow, Russia; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - YuA Ushkaryov
- National Research University Higher School of Economics, Moscow, Russia
| | - AG Tonevitsky
- National Research University Higher School of Economics, Moscow, Russia; Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
50
|
Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, Guardia MDL. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron 2020; 169:112599. [DOI: 10.1016/j.bios.2020.112599] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
|