1
|
Padhan P, Simran, Kumar N, Verma S. Glutathione S-transferase: A keystone in Parkinson's disease pathogenesis and therapy. Mol Cell Neurosci 2025; 132:103981. [PMID: 39644945 DOI: 10.1016/j.mcn.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that predominantly affects motor function due to the loss of dopaminergic neurons in the substantia nigra. It presents significant challenges, impacting millions worldwide with symptoms such as tremors, rigidity, bradykinesia, and postural instability, leading to decreased quality of life and increased morbidity. The pathogenesis of Parkinson's disease is multifaceted, involving complex interactions between genetic susceptibility, environmental factors, and aging, with oxidative stress playing a central role in neuronal degeneration. Glutathione S-Transferase enzymes are critical in the cellular defense mechanism against oxidative stress, catalysing the conjugation of the antioxidant glutathione to various toxic compounds, thereby facilitating their detoxification. Recent research underscores the importance of Glutathione S-Transferase in the pathophysiology of Parkinson's disease, revealing that genetic polymorphisms in Glutathione S-Transferase genes influence the risk and progression of the disease. These genetic variations can affect the enzymatic activity of Glutathione S-Transferase, thereby modulating an individual's capacity to detoxify reactive oxygen species and xenobiotics, which are implicated in Parkinson's disease neuropathological processes. Moreover, biochemical studies have elucidated the role of Glutathione S-Transferase in not only maintaining cellular redox balance but also in modulating various cellular signalling pathways, highlighting its neuroprotective potential. From a therapeutic perspective, targeting Glutathione S-Transferase pathways offers promising avenues for the development of novel treatments aimed at enhancing neuroprotection and mitigating disease progression. This review explores the evident and hypothesized roles of Glutathione S-Transferase in Parkinson's disease, providing a comprehensive overview of its importance and potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Pratyush Padhan
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simran
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Yulug B, Altay O, Li X, Hanoglu L, Cankaya S, Velioglu HA, Lam S, Yang H, Coskun E, Idil E, Bayraktaroglu Z, Nogaylar R, Ozsimsek A, Yildirim S, Bolat I, Kiliclioglu M, Bayram C, Yuksel N, Tozlu OO, Arif M, Shoaie S, Hacimuftuoglu A, Zhang C, Nielsen J, Turkez H, Borén J, Uhlén M, Mardinoglu A. Multi-omics characterization of improved cognitive functions in Parkinson's disease patients after the combined metabolic activator treatment: a randomized, double-blinded, placebo-controlled phase II trial. Brain Commun 2025; 7:fcae478. [PMID: 39816194 PMCID: PMC11733689 DOI: 10.1093/braincomms/fcae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/07/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Parkinson's disease is primarily marked by mitochondrial dysfunction and metabolic abnormalities. We recently reported that the combined metabolic activators improved the immunohistochemical parameters and behavioural functions in Parkinson's disease and Alzheimer's disease animal models and the cognitive functions in Alzheimer's disease patients. These metabolic activators serve as the precursors of nicotinamide adenine dinucleotide and glutathione, and they can be used to activate mitochondrial metabolism and eventually treat mitochondrial dysfunction. Here, we designed a randomized, double-blinded, placebo-controlled phase II study in Parkinson's disease patients with 84 days combined metabolic activator administration. A single dose of combined metabolic activator contains L-serine (12.35 g), N-acetyl-L-cysteine (2.55 g), nicotinamide riboside (1 g) and L-carnitine tartrate (3.73 g). Patients were administered either one dose of combined metabolic activator or a placebo daily for the initial 28 days, followed by twice-daily dosing for the next 56 days. The main goal of the study was to evaluate the clinical impact on motor functions using the Unified Parkinson's Disease Rating Scale and to determine the safety and tolerability of combined metabolic activator. A secondary objective was to assess cognitive functions utilizing the Montreal Cognitive Assessment and to analyse brain activity through functional MRI. We also performed comprehensive plasma metabolomics and proteomics analysis for detailed characterization of Parkinson's disease patients who participated in the study. Although no improvement in motor functions was observed, cognitive function was shown to be significantly improved (P < 0.0000) in Parkinson's disease patients treated with the combined metabolic activator group over 84 days, whereas no such improvement was noted in the placebo group (P > 0.05). Moreover, a significant reduction (P = 0.001) in Montreal Cognitive Assessment scores was observed in the combined metabolic activator group, with no decline (P > 0.05) in the placebo group among severe Parkinson's disease patients with lower baseline Montreal Cognitive Assessment scores. We showed that improvement in cognition was associated with critical brain network alterations based on functional MRI analysis, especially relevant to areas with cognitive functions in the brain. Finally, through a comprehensive multi-omics analysis, we elucidated the molecular mechanisms underlying cognitive improvements observed in Parkinson's disease patients. Our results show that combined metabolic activator administration leads to enhanced cognitive function and improved metabolic health in Parkinson's disease patients as recently shown in Alzheimer's disease patients. The trial was registered in ClinicalTrials.gov NCT04044131 (17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131).
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul 34815, Turkey
| | - Seyda Cankaya
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Halil A Velioglu
- Department of Women’s and Children’s Health, Karolinska Institute, Neuroimaging Lab, Stockholm 17177, Sweden
- Functional Imaging and Cognitive-Affective Neuroscience Lab, Istanbul Medipol University, Istanbul 34815, Turkey
| | - Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Hong Yang
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Ebru Coskun
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul 34815, Turkey
| | - Ezgi Idil
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab, Istanbul Medipol University, Istanbul 34815, Turkey
| | - Rahim Nogaylar
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07070, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Metin Kiliclioglu
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Nursena Yuksel
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - Ozlem O Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
| | - Muhammad Arif
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Ahmet Hacimuftuoglu
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Cheng Zhang
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Jens Nielsen
- BioInnovation Institute, Copenhagen DK-2200, Denmark
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg 41345, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm 17165, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
3
|
Lv N, Huang C, Huang H, Dong Z, Chen X, Lu C, Zhang Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants (Basel) 2023; 12:1970. [PMID: 38001822 PMCID: PMC10668987 DOI: 10.3390/antiox12111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.
Collapse
Affiliation(s)
- Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Zhiqiang Dong
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chengcan Lu
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
- Jiangning Clinical Medical College, Jiangsu University, Nanjing 211100, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| |
Collapse
|
4
|
Choi YJ, Yeo HJ, Shin MJ, Youn GS, Park JH, Yeo EJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Kim SM, Kim DW, Jung HY, Kwon OS, Lee CH, Park JK, Lee KW, Han KH, Park J, Eum WS, Choi SY. Tat-GSTpi Inhibits Dopaminergic Cells against MPP+-Induced Cellular Damage via the Reduction of Oxidative Stress and MAPK Activation. Biomedicines 2023; 11:biomedicines11030836. [PMID: 36979816 PMCID: PMC10045456 DOI: 10.3390/biomedicines11030836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Glutathione S-transferase pi (GSTpi) is a member of the GST family and plays many critical roles in cellular processes, including anti-oxidative and signal transduction. However, the role of anti-oxidant enzyme GSTpi against dopaminergic neuronal cell death has not been fully investigated. In the present study, we investigated the roles of cell permeable Tat-GSTpi fusion protein in a SH-SY5Y cell and a Parkinson’s disease (PD) mouse model. In the 1-methyl-4-phenylpyridinium (MPP+)-exposed cells, Tat-GSTpi protein decreased DNA damage and reactive oxygen species (ROS) generation. Furthermore, this fusion protein increased cell viability by regulating MAPKs, Bcl-2, and Bax signaling. In addition, Tat-GSTpi protein delivered into the substantia nigra (SN) of mice brains protected dopaminergic neuronal cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model. Our results indicate that the Tat-GSTpi protein inhibited cell death from MPP+- and MPTP-induced damage, suggesting that it plays a protective role during the loss of dopaminergic neurons in PD and that it could help to identify the mechanism responsible for neurodegenerative diseases, including PD.
Collapse
Affiliation(s)
- Yeon Joo Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Gi Soo Youn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jung Hwan Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Ji Yeo
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Lee Re Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Yeon Kwon
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su Min Kim
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Taegu 41566, Republic of Korea
| | - Chan Hee Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Keun Wook Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu Hyung Han
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-(33)-2483221 (W.S.E.); +82-(33)-2482112 (S.Y.C.); Fax: +82-(33)-2483202 (W.S.E. & S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: (W.S.E.); (S.Y.C.); Tel.: +82-(33)-2483221 (W.S.E.); +82-(33)-2482112 (S.Y.C.); Fax: +82-(33)-2483202 (W.S.E. & S.Y.C.)
| |
Collapse
|
5
|
Antioxidant Genetic Profile Modifies Probability of Developing Neurological Sequelae in Long-COVID. Antioxidants (Basel) 2022; 11:antiox11050954. [PMID: 35624818 PMCID: PMC9138155 DOI: 10.3390/antiox11050954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the sequelae of COVID-19 is of utmost importance. Neuroinflammation and disturbed redox homeostasis are suggested as prevailing underlying mechanisms in neurological sequelae propagation in long-COVID. We aimed to investigate whether variations in antioxidant genetic profile might be associated with neurological sequelae in long-COVID. Neurological examination and antioxidant genetic profile (SOD2, GPXs and GSTs) determination, as well as, genotype analysis of Nrf2 and ACE2, were conducted on 167 COVID-19 patients. Polymorphisms were determined by the appropriate PCR methods. Only polymorphisms in GSTP1AB and GSTO1 were independently associated with long-COVID manifestations. Indeed, individuals carrying GSTP1 Val or GSTO1 Asp allele exhibited lower odds of long-COVID myalgia development, both independently and in combination. Furthermore, the combined presence of GSTP1 Ile and GSTO1 Ala alleles exhibited cumulative risk regarding long-COVID myalgia in carriers of the combined GPX1 LeuLeu/GPX3 CC genotype. Moreover, individuals carrying combined GSTM1-null/GPX1LeuLeu genotype were more prone to developing long-COVID “brain fog”, while this probability further enlarged if the Nrf2 A allele was also present. The fact that certain genetic variants of antioxidant enzymes, independently or in combination, affect the probability of long-COVID manifestations, further emphasizes the involvement of genetic susceptibility when SARS-CoV-2 infection is initiated in the host cells, and also months after.
Collapse
|
6
|
Schechter M, Sharon R. An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1725-1750. [PMID: 34151859 PMCID: PMC8609718 DOI: 10.3233/jpd-212684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent data support an involvement of defects in homeostasis of phosphoinositides (PIPs) in the pathophysiology of Parkinson’s disease (PD). Genetic mutations have been identified in genes encoding for PIP-regulating and PIP-interacting proteins, that are associated with familial and sporadic PD. Many of these proteins are implicated in vesicular membrane trafficking, mechanisms that were recently highlighted for their close associations with PD. PIPs are phosphorylated forms of the membrane phospholipid, phosphatidylinositol. Their composition in the vesicle’s membrane of origin, as well as membrane of destination, controls vesicular membrane trafficking. We review the converging evidence that points to the involvement of PIPs in PD. The review describes PD- and PIP-associated proteins implicated in clathrin-mediated endocytosis and autophagy, and highlights the involvement of α-synuclein in these mechanisms.
Collapse
Affiliation(s)
- Meir Schechter
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| | - Ronit Sharon
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
7
|
Silva-Adaya D, Garza-Lombó C, Gonsebatt ME. Xenobiotic transport and metabolism in the human brain. Neurotoxicology 2021; 86:125-138. [PMID: 34371026 DOI: 10.1016/j.neuro.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Organisms have metabolic pathways responsible for eliminating endogenous and exogenous toxicants. Generally, we associate the liver par excellence as the organ in charge of detoxifying the body; however, this process occurs in all tissues, including the brain. Due to the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), the Central Nervous System (CNS) is considered a partially isolated organ, but similar to other organs, the CNS possess xenobiotic transporters and metabolic pathways associated with the elimination of xenobiotic agents. In this review, we describe the different systems related to the detoxification of xenobiotics in the CNS, providing examples in which their association with neurodegenerative processes is suspected. The CNS detoxifying systems include carrier-mediated, active efflux and receptor-mediated transport, and detoxifying systems that include phase I and phase II enzymes, as well as those enzymes in charge of neutralizing compounds such as electrophilic agents, reactive oxygen species (ROS), and free radicals, which are products of the bioactivation of xenobiotics. Moreover, we discuss the differential expression of these systems in different regions of the CNS, showing the different detoxifying needs and the composition of each region in terms of the cell type, neurotransmitter content, and the accumulation of xenobiotics and/or reactive compounds.
Collapse
Affiliation(s)
- Daniela Silva-Adaya
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico; Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Carla Garza-Lombó
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB, Indianapolis, IN, 46202, USA
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
8
|
Zou L, Tian Y, Zhang Z. Dysfunction of Synaptic Vesicle Endocytosis in Parkinson's Disease. Front Integr Neurosci 2021; 15:619160. [PMID: 34093144 PMCID: PMC8172812 DOI: 10.3389/fnint.2021.619160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. It is a chronic and progressive disorder estimated to affect at least 4 million people worldwide. Although the etiology of PD remains unclear, it has been found that the dysfunction of synaptic vesicle endocytosis (SVE) in neural terminal happens before the loss of dopaminergic neurons. Recently, accumulating evidence reveals that the PD-linked synaptic genes, including DNAJC6, SYNJ1, and SH3GL2, significantly contribute to the disruptions of SVE, which is vital for the pathogenesis of PD. In addition, the proteins encoded by other PD-associated genes such as SNCA, LRRK2, PRKN, and DJ-1 also play key roles in the regulation of SVE. Here we present the facts about SVE-related genes and discussed their potential relevance to the pathogenesis of PD.
Collapse
Affiliation(s)
- Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Rotunno MS, Lane M, Zhang W, Wolf P, Oliva P, Viel C, Wills AM, Alcalay RN, Scherzer CR, Shihabuddin LS, Zhang K, Sardi SP. Cerebrospinal fluid proteomics implicates the granin family in Parkinson's disease. Sci Rep 2020; 10:2479. [PMID: 32051502 PMCID: PMC7015906 DOI: 10.1038/s41598-020-59414-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 12/25/2022] Open
Abstract
Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Better understanding of the underlying disease mechanism(s) is an urgent need for the development of disease-modifying therapeutics. Limited studies have been performed in large patient cohorts to identify protein alterations in cerebrospinal fluid (CSF), a proximal site to pathology. We set out to identify disease-relevant protein changes in CSF to gain insights into the etiology of Parkinson's disease and potentially assist in disease biomarker identification. In this study, we used liquid chromatography-tandem mass spectrometry in data-independent acquisition (DIA) mode to identify Parkinson's-relevant biomarkers in cerebrospinal fluid. We quantified 341 protein groups in two independent cohorts (n = 196) and a longitudinal cohort (n = 105 samples, representing 40 patients) consisting of Parkinson's disease and healthy control samples from three different sources. A first cohort of 53 Parkinson's disease and 72 control samples was analyzed, identifying 53 proteins with significant changes (p < 0.05) in Parkinson's disease relative to healthy control. We established a biomarker signature and multiple protein ratios that differentiate Parkinson's disease from healthy controls and validated these results in an independent cohort. The second cohort included 28 Parkinson's disease and 43 control samples. Independent analysis of these samples identified 41 proteins with significant changes. Evaluation of the overlapping changes between the two cohorts identified 13 proteins with consistent and significant changes (p < 0.05). Importantly, we found the extended granin family proteins as reduced in disease, suggesting a potential common mechanism for the biological reduction in monoamine neurotransmission in Parkinson's patients. Our study identifies several novel protein changes in Parkinson's disease cerebrospinal fluid that may be exploited for understanding etiology of disease and for biomarker development.
Collapse
Affiliation(s)
- Melissa S Rotunno
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA.,Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Monica Lane
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Wenfei Zhang
- Translational Medicine, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Pavlina Wolf
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,Editas Medicine, Cambridge, MA, 02141, USA
| | - Petra Oliva
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,ARCHIMED Life Sciences GmbH, Leberstraße 20/2, 1110, Vienna, Austria
| | - Catherine Viel
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University, New York, NY, 10032-3784, USA
| | - Clemens R Scherzer
- Precision Neurology Program, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,APDA Center for Advance Parkinson Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Lamya S Shihabuddin
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA
| | - Kate Zhang
- Biomarkers and Bioanalytics, Translational Sciences, Sanofi, Inc., Framingham, MA, 01701, USA.,Editas Medicine, Cambridge, MA, 02141, USA
| | - S Pablo Sardi
- Rare and Neurologic Diseases Therapeutic Area, Sanofi, Inc., Framingham, MA, 01701, USA.
| |
Collapse
|
10
|
Phosphoproteomic and Kinomic Signature of Clinically Aggressive Grade I (1.5) Meningiomas Reveals RB1 Signaling as a Novel Mediator and Biomarker. Clin Cancer Res 2019; 26:193-205. [PMID: 31615938 DOI: 10.1158/1078-0432.ccr-18-0641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/17/2018] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
|
11
|
Bereczki E, Branca RM, Francis PT, Pereira JB, Baek JH, Hortobágyi T, Winblad B, Ballard C, Lehtiö J, Aarsland D. Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain 2019; 141:582-595. [PMID: 29324989 DOI: 10.1093/brain/awx352] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/30/2017] [Indexed: 01/12/2023] Open
Abstract
See Attems and Jellinger (doi:10.1093/brain/awx360) for a scientific commentary on this article.Cognitive changes occurring throughout the pathogenesis of neurodegenerative diseases are directly linked to synaptic loss. We used in-depth proteomics to compare 32 post-mortem human brains in the prefrontal cortex of prospectively followed patients with Alzheimer's disease, Parkinson's disease with dementia, dementia with Lewy bodies and older adults without dementia. In total, we identified 10 325 proteins, 851 of which were synaptic proteins. Levels of 25 synaptic proteins were significantly altered in the various dementia groups. Significant loss of SNAP47, GAP43, SYBU (syntabulin), LRFN2, SV2C, SYT2 (synaptotagmin 2), GRIA3 and GRIA4 were further validated on a larger cohort comprised of 92 brain samples using ELISA or western blot. Cognitive impairment before death and rate of cognitive decline significantly correlated with loss of SNAP47, SYBU, LRFN2, SV2C and GRIA3 proteins. Besides differentiating Parkinson's disease dementia, dementia with Lewy bodies, and Alzheimer's disease from controls with high sensitivity and specificity, synaptic proteins also reliably discriminated Parkinson's disease dementia from Alzheimer's disease patients. Our results suggest that these particular synaptic proteins have an important predictive and discriminative molecular fingerprint in neurodegenerative diseases and could be a potential target for early disease intervention.
Collapse
Affiliation(s)
- Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm, Sweden
| | - Rui M Branca
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Paul T Francis
- King's College London, Wolfson Centre for Age-Related Diseases, London SE1 1UL, UK
| | - Joana B Pereira
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Novum, 14186 Stockholm, Sweden
| | - Jean-Ha Baek
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm, Sweden
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, Debrecen, Hungary.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm, Sweden
| | - Clive Ballard
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Dag Aarsland
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Novum, Stockholm, Sweden.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
12
|
Saisawang C, Wongsantichon J, Robinson RC, Ketterman AJ. Glutathione transferase Omega 1‐1 (GSTO1‐1) modulates Akt and MEK1/2 signaling in human neuroblastoma cell SH‐SY5Y. Proteins 2019; 87:588-595. [DOI: 10.1002/prot.25683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Chonticha Saisawang
- Institute of Molecular BiosciencesMahidol University Salaya Nakhon Pathom Thailand
| | - Jantana Wongsantichon
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) Singapore Singapore
- Mahidol‐Oxford Tropical Medicine Research Unit (MORU) Bangkok Thailand
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) Singapore Singapore
- Research Institute for Interdisciplinary ScienceOkayama University Okayama Japan
| | - Albert J. Ketterman
- Institute of Molecular BiosciencesMahidol University Salaya Nakhon Pathom Thailand
| |
Collapse
|
13
|
Dasari S, Gonuguntla S, Ganjayi MS, Bukke S, Sreenivasulu B, Meriga B. Genetic polymorphism of glutathione S-transferases: Relevance to neurological disorders. PATHOPHYSIOLOGY 2018; 25:285-292. [DOI: 10.1016/j.pathophys.2018.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/08/2018] [Accepted: 06/10/2018] [Indexed: 02/06/2023] Open
|
14
|
Sajja RK, Kaisar MA, Vijay V, Desai VG, Prasad S, Cucullo L. In Vitro Modulation of Redox and Metabolism Interplay at the Brain Vascular Endothelium: Genomic and Proteomic Profiles of Sulforaphane Activity. Sci Rep 2018; 8:12708. [PMID: 30139948 PMCID: PMC6107504 DOI: 10.1038/s41598-018-31137-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Sulforaphane (SFN) has been shown to protect the brain vascular system and effectively reduce ischemic injuries and cognitive deficits. Given the robust cerebrovascular protection afforded by SFN, the objective of this study was to profile these effects in vitro using primary mouse brain microvascular endothelial cells and focusing on cellular redox, metabolism and detoxification functions. We used a mouse MitoChip array developed and validated at the FDA National Center for Toxicological Research (NCTR) to profile a host of genes encoded by nuclear and mt-DNA following SFN treatment (0-5 µM). Corresponding protein expression levels were assessed (ad hoc) by qRT-PCR, immunoblots and immunocytochemistry (ICC). Gene ontology clustering revealed that SFN treatment (24 h) significantly up-regulated ~50 key genes (>1.5 fold, adjusted p < 0.0001) and repressed 20 genes (<0.7 fold, adjusted p < 0.0001) belonging to oxidative stress, phase 1 & 2 drug metabolism enzymes (glutathione system), iron transporters, glycolysis, oxidative phosphorylation (OXPHOS), amino acid metabolism, lipid metabolism and mitochondrial biogenesis. Our results show that SFN stimulated the production of ATP by promoting the expression and activity of glucose transporter-1, and glycolysis. In addition, SFN upregulated anti-oxidative stress responses, redox signaling and phase 2 drug metabolism/detoxification functions, thus elucidating further the previously observed neurovascular protective effects of this compound.
Collapse
Affiliation(s)
- Ravi K Sajja
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Mohammad A Kaisar
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Shikha Prasad
- Department of Neurology, Northwestern University - The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
15
|
Chauhan AK, Mittra N, Singh BK, Singh C. Inhibition of glutathione S-transferase-pi triggers c-jun N-terminal kinase-dependent neuronal death in Zn-induced Parkinsonism. Mol Cell Biochem 2018; 452:95-104. [PMID: 30076580 DOI: 10.1007/s11010-018-3415-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress is recognized as one of the major wrongdoers in Parkinson's disease (PD) while glutathione S-transferase (GST), an endogenous antioxidant, protects from oxidative stress-induced neurodegeneration. Despite GST-pi (GST-π) encounters the toxic manifestations in PD, its role in zinc (Zn)-induced nigrostriatal dopaminergic neurodegeneration remains elusive. The study aimed to explore the role of GST-π in Zn-induced Parkinsonism and its underlying molecular mechanism. Male Wistar rats were treated intraperitoneally with zinc (zinc sulfate), twice a week, for 2-12 weeks. GST-π inducer, benzyl isothiocyanate (BITC) was also administered in a few sets of experiments along with respective vehicle. Catalytic activity and expression of GST-π protein, total GST activity, neurobehavioral indexes, striatal dopamine and its metabolites, nigral tyrosine hydroxylase (TH)-positive neurons and expression of TH and B-cell lymphoma-2 (Bcl-2) proteins were reduced in Zn-treated rats. Conversely, oxidative stress indicators, c-jun N-terminal kinase (JNK) activation, c-jun phosphorylation, cytochrome c release, Bcl-2-associated X protein (Bax) translocation, and procaspase 3/9 to caspase 3/9 conversion were significantly increased in Zn-exposed rats. BITC ameliorated GST-π activity/expression and normalized Zn-induced changes in neurodegenerative indicators, oxidative stress, JNK activation, c-jun phosphorylation and apoptotic indexes. The results demonstrate that Zn inhibits GST-π expression leading to increased oxidative stress and JNK activation, which induce apoptosis thereby degeneration of the nigrostriatal dopaminergic neurons.
Collapse
Affiliation(s)
- Amit Kumar Chauhan
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Namrata Mittra
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Brajesh Kumar Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Chetna Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| |
Collapse
|
16
|
Rostosky CM, Milosevic I. Gait Analysis of Age-dependent Motor Impairments in Mice with Neurodegeneration. J Vis Exp 2018:57752. [PMID: 29985360 PMCID: PMC6101764 DOI: 10.3791/57752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motor behavior tests are commonly used to determine the functional relevance of a rodent model and to test newly developed treatments in these animals. Specifically, gait analysis allows recapturing disease relevant phenotypes that are observed in human patients, especially in neurodegenerative diseases that affect motor abilities such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and others. In early studies along this line, the measurement of gait parameters was laborious and depended on factors that were hard to control (e.g., running speed, continuous running). The development of ventral plane imaging (VPI) systems made it feasible to perform gait analysis at a large scale, making this method a useful tool for the assessment of motor behavior in rodents. Here, we present an in-depth protocol of how to use kinematic gait analysis to examine the age-dependent progression of motor deficits in mouse models of neurodegeneration; mouse lines with decreased levels of endophilin, in which neurodegenerative damage progressively increases with age, are used as an example.
Collapse
Affiliation(s)
| | - Ira Milosevic
- European Neuroscience Institute (ENI); University Medical Center Göttigen (UMG);
| |
Collapse
|
17
|
Perera VR, Lapek JD, Newton GL, Gonzalez DJ, Pogliano K. Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis. PLoS One 2018; 13:e0192977. [PMID: 29451913 PMCID: PMC5815605 DOI: 10.1371/journal.pone.0192977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathione, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacillithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 putative members, including bacillithiol transferases. Proteins in this family are extremely divergent and are related by structural rather than sequence similarity, leaving it unclear if all share the same biochemical activity. Bacillus subtilis encodes eight predicted STL superfamily members, only one of which has been shown to be a bacillithiol transferase. Here we find that the seven remaining proteins show varying levels of metal dependent bacillithiol transferase activity. We have renamed the eight enzymes BstA-H. Mass spectrometry and gene expression studies revealed that all of the enzymes are produced to varying levels during growth and sporulation, with BstB and BstE being the most abundant and BstF and BstH being the least abundant. Interestingly, several bacillithiol transferases are induced in the mother cell during sporulation. A strain lacking all eight bacillithiol transferases showed normal growth in the presence of stressors that adversely affect growth of bacillithiol-deficient strains, such as paraquat and CdCl2. Thus, the STL bacillithiol transferases represent a new group of proteins that play currently unknown, but potentially significant roles in bacillithiol-dependent reactions. We conclude that these enzymes are highly divergent, perhaps to cope with an equally diverse array of endogenous or exogenous toxic metabolites and oxidants.
Collapse
Affiliation(s)
- Varahenage R. Perera
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - John D. Lapek
- Department of Pharmacology and Pharmacy, School of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Gerald L. Newton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - David J. Gonzalez
- Department of Pharmacology and Pharmacy, School of Medicine, University of California, San Diego, La Jolla, CA, United States of America
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Parada CA, Osbun J, Kaur S, Yakkioui Y, Shi M, Pan C, Busald T, Karasozen Y, Gonzalez-Cuyar LF, Rostomily R, Zhang J, Ferreira M. Kinome and phosphoproteome of high-grade meningiomas reveal AKAP12 as a central regulator of aggressiveness and its possible role in progression. Sci Rep 2018; 8:2098. [PMID: 29391485 PMCID: PMC5794791 DOI: 10.1038/s41598-018-19308-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/29/2017] [Indexed: 01/05/2023] Open
Abstract
There is a need to better understand meningioma oncogenesis for biomarker discovery and development of targeted therapies. Histological or genetic criteria do not accurately predict aggressiveness. Post-translational studies in meningioma progression are lacking. In the present work, we introduce a combination of mass spectrometry-based phosphoproteomics and peptide array kinomics to profile atypical and anaplastic (high-grade) meningiomas. In the discovery set of fresh-frozen tissue specimens (14), the A-kinase anchor protein 12 (AKAP12) protein was found downregulated across the grades. AKAP12 knockdown in benign meningioma cells SF4433 increases proliferation, cell cycle, migration, invasion, and confers an anaplastic profile. Differentially regulated pathways were characteristic of high-grade meningiomas. Low AKAP12 expression in a larger cohort of patients (75) characterized tumor invasiveness, recurrence, and progression, indicating its potential as a prognostic biomarker. These results demonstrate AKAP12 as a central regulator of meningioma aggressiveness with a possible role in progression.
Collapse
Affiliation(s)
- Carolina Angelica Parada
- Departments of Neurosurgery/University of Washington School of Medicine, University of Washington Medical Center, Seattle/WA, 98195, USA
| | - Joshua Osbun
- Departments of Neurosurgery/University of Washington School of Medicine, University of Washington Medical Center, Seattle/WA, 98195, USA
| | - Sumanpreet Kaur
- Departments of Neurosurgery/University of Washington School of Medicine, University of Washington Medical Center, Seattle/WA, 98195, USA
| | - Youssef Yakkioui
- Departments of Neurosurgery/University of Washington School of Medicine, University of Washington Medical Center, Seattle/WA, 98195, USA
| | - Min Shi
- Department of Pathology/University of Washington School of Medicine, Harborview Medical Center, Seattle/WA, 98104, USA
| | - Catherine Pan
- Department of Pathology/University of Washington School of Medicine, Harborview Medical Center, Seattle/WA, 98104, USA
| | - Tina Busald
- Departments of Neurosurgery/University of Washington School of Medicine, University of Washington Medical Center, Seattle/WA, 98195, USA
| | - Yigit Karasozen
- Departments of Neurosurgery/University of Washington School of Medicine, University of Washington Medical Center, Seattle/WA, 98195, USA
| | - Luis Francisco Gonzalez-Cuyar
- Department of Pathology/University of Washington School of Medicine, Harborview Medical Center, Seattle/WA, 98104, USA
| | - Robert Rostomily
- Departments of Neurosurgery/University of Washington School of Medicine, University of Washington Medical Center, Seattle/WA, 98195, USA
| | - Jing Zhang
- Department of Pathology/University of Washington School of Medicine, Harborview Medical Center, Seattle/WA, 98104, USA
| | - Manuel Ferreira
- Departments of Neurosurgery/University of Washington School of Medicine, University of Washington Medical Center, Seattle/WA, 98195, USA.
| |
Collapse
|
19
|
Azarnia Tehran D, Kuijpers M, Haucke V. Presynaptic endocytic factors in autophagy and neurodegeneration. Curr Opin Neurobiol 2018; 48:153-159. [DOI: 10.1016/j.conb.2017.12.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/01/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
|
20
|
Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 2018; 7:8. [PMID: 29362397 PMCID: PMC5833873 DOI: 10.1038/s41389-017-0025-3] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Glutathione transferase classical GSH conjugation activity plays a critical role in cellular detoxification against xenobiotics and noxious compounds as well as against oxidative stress. However, this feature is also exploited by cancer cells to acquire drug resistance and improve their survival. As a result, various members of the family were found overexpressed in a number of different cancers. Moreover several GST polymorphisms, ranging from null phenotypes to point mutations, were detected in members of the family and found to correlate with the onset of neuro-degenerative diseases. In the last decades, a great deal of research aimed at clarifying the role played by GSTs in drug resistance, at developing inhibitors to counteract this activity but also at exploiting GSTs for prodrugs specific activation in cancer cells. Here we summarize some of the most important achievements reached in this lively area of research.
Collapse
Affiliation(s)
- Nerino Allocati
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy.
| | - Michele Masulli
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Carmine Di Ilio
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy.,CESI-MET, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
21
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|
22
|
Mortiboys H, Macdonald R, Payne T, Sassani M, Jenkins T, Bandmann O. Translational approaches to restoring mitochondrial function in Parkinson's disease. FEBS Lett 2017; 592:776-792. [PMID: 29178330 DOI: 10.1002/1873-3468.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
Abstract
There is strong evidence of a key role for mitochondrial dysfunction in both sporadic and all forms of familial Parkinson's disease (PD). However, none of the clinical trials carried out with putative mitochondrial rescue agents have been successful. Firm establishment of a wet biomarker or a reliable readout from imaging studies detecting mitochondrial dysfunction and reflecting disease progression is also awaited. We will provide an overview of our current knowledge about mitochondrial dysfunction in PD and related drug screens. We will also summarise previously undertaken mitochondrial wet biomarker studies and relevant imaging studies with particular focus on 31P-MRI spectroscopy. We will conclude with an overview of clinical trials which tested putative mitochondrial rescue agents in PD patients.
Collapse
Affiliation(s)
- Heather Mortiboys
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Ruby Macdonald
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Payne
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Oliver Bandmann
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| |
Collapse
|
23
|
Mohana K, Achary A. Human cytosolic glutathione-S-transferases: quantitative analysis of expression, comparative analysis of structures and inhibition strategies of isozymes involved in drug resistance. Drug Metab Rev 2017; 49:318-337. [DOI: 10.1080/03602532.2017.1343343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Krishnamoorthy Mohana
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, Virudhunagar, India
| | - Anant Achary
- Department of Biotechnology, Centre for Research, Kamaraj College of Engineering and Technology, Virudhunagar, India
| |
Collapse
|
24
|
Lin CY, Fu RH, Chou RH, Chen JH, Wu CR, Chang SW, Tsai CW. Inhibition of JNK by pi class of glutathione S -transferase through PKA/CREB pathway is associated with carnosic acid protection against 6-hydroxydopamine-induced apoptosis. Food Chem Toxicol 2017; 103:194-202. [DOI: 10.1016/j.fct.2017.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
|
25
|
Dominiak A, Wilkaniec A, Wroczyński P, Adamczyk A. Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr Neuropharmacol 2016; 14:282-99. [PMID: 26549649 PMCID: PMC4857624 DOI: 10.2174/1570159x14666151223100011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income.
Collapse
Affiliation(s)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
26
|
Kumar A, Dhull DK, Gupta V, Channana P, Singh A, Bhardwaj M, Ruhal P, Mittal R. Role of Glutathione-S-transferases in neurological problems. Expert Opin Ther Pat 2016; 27:299-309. [PMID: 27785931 DOI: 10.1080/13543776.2017.1254192] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Role of Glutathione-S-transferases (GSTs) has been well explored in the cellular detoxification process, regulation of redox homeostasis and S-glutothionylation of target proteins like JNK, ASK1 etc. However, altered levels or functions of this enzyme or their subtypes have emerged in the development of several pathologies diseases such as Alzheimer's disease, Parkinson's disease, cancer and related conditions. Oxidative stress is one of the possible pathological events that contributes significantly to activation of degenerating cascades inside neuronal cells. The central nervous system is highly sensitive to oxidative stress because of low levels or capacities of antioxidant enzymes. The brain is highly metabolic in nature making it susceptible to oxidative stress. Areas covered: The present review provides a comprehensive overview of the multiple connections of GSTs within diverse neurological diseases including cancer. Furthermore, the authors have made significant efforts to discuss the regulation of different GST isoforms that have been associated with various pathological processes such as glioblastoma, Alzheimer's disease, Parkinson's disease, stroke and epilepsy. Expert opinion: Though GSTs have been one of the key areas of scientific research over the last few decades, much remains to be elucidated about their physiological functions as well as pathological involvement of GSTs and their polymorphic variants.
Collapse
Affiliation(s)
- Anil Kumar
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Dinesh K Dhull
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Varun Gupta
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Priyanka Channana
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Arti Singh
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Manveen Bhardwaj
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| | - Poonam Ruhal
- b Pharmacology Division, Department of Pharmaceutical Sciences , Guru Jambheshwar University of Science & Technology , Hisar , India
| | - Ruchika Mittal
- a Neuropharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies (UGC-CAS) , Panjab University , Chandigarh , India
| |
Collapse
|
27
|
Murdoch JD, Rostosky CM, Gowrisankaran S, Arora AS, Soukup SF, Vidal R, Capece V, Freytag S, Fischer A, Verstreken P, Bonn S, Raimundo N, Milosevic I. Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System. Cell Rep 2016; 17:1071-1086. [PMID: 27720640 PMCID: PMC5080600 DOI: 10.1016/j.celrep.2016.09.058] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/24/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
Endophilin-A, a well-characterized endocytic adaptor essential for synaptic vesicle recycling, has recently been linked to neurodegeneration. We report here that endophilin-A deficiency results in impaired movement, age-dependent ataxia, and neurodegeneration in mice. Transcriptional analysis of endophilin-A mutant mice, complemented by proteomics, highlighted ataxia- and protein-homeostasis-related genes and revealed upregulation of the E3-ubiquitin ligase FBXO32/atrogin-1 and its transcription factor FOXO3A. FBXO32 overexpression triggers apoptosis in cultured cells and neurons but, remarkably, coexpression of endophilin-A rescues it. FBXO32 interacts with all three endophilin-A proteins. Similarly to endophilin-A, FBXO32 tubulates membranes and localizes on clathrin-coated structures. Additionally, FBXO32 and endophilin-A are necessary for autophagosome formation, and both colocalize transiently with autophagosomes. Our results point to a role for endophilin-A proteins in autophagy and protein degradation, processes that are impaired in their absence, potentially contributing to neurodegeneration and ataxia. Endophilin-A is needed for autophagosome formation in mammalian neurons and brain Absence of endophilin-A upregulates the E3-ubiquitin ligase FBXO32 FBXO32-endophilin-A interaction maintains neuronal health and protein homeostasis Endophilin-A KO mice show age-dependent ataxia, motor impairments, and neurodegeneration
Collapse
Affiliation(s)
- John D Murdoch
- European Neuroscience Institute (ENI), 37077 Göttingen, Germany; Institute of Cellular Biochemistry, University Medical Center Göttingen (UMG), 37073 Göttingen, Germany
| | | | | | | | - Sandra-Fausia Soukup
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Ramon Vidal
- Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Vincenzo Capece
- Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Siona Freytag
- European Neuroscience Institute (ENI), 37077 Göttingen, Germany
| | - Andre Fischer
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Patrik Verstreken
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; KU Leuven Department of Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Stefan Bonn
- Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Göttingen (UMG), 37073 Göttingen, Germany.
| | - Ira Milosevic
- European Neuroscience Institute (ENI), 37077 Göttingen, Germany.
| |
Collapse
|
28
|
Halbgebauer S, Öckl P, Wirth K, Steinacker P, Otto M. Protein biomarkers in Parkinson's disease: Focus on cerebrospinal fluid markers and synaptic proteins. Mov Disord 2016; 31:848-60. [PMID: 27134134 DOI: 10.1002/mds.26635] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 01/06/2023] Open
Abstract
Despite extensive research, to date, no validated biomarkers for PD have been found. This review seeks to summarize studies approaching the detection of biomarker candidates for PD and introduce promising ones in more detail, with special attention to synaptic proteins. To this end, we performed a PubMed search and included studies using proteomic tools (2-dimensional difference in gel electrophoresis and/or mass spectrometry) for the comparison of samples from PD and control patients. We found 27 studies reporting more than 500 differentially expressed proteins in which a total of 28 were detected in 2 and 17 in 3 or more independent studies, including posttranslationally modified proteins. In addition, of these 500 proteins, 25 were found to be brain specific, and 14 were enriched in synapses. Special attention was given to the applicability of the biomarker regarding sampling procedures, that is, using CSF/serum material for diagnosis. Furthermore, presynaptic proteins involved in vesicle membrane fusion seem to be interesting candidates for future analyses. Nonetheless, even though such promising biomarker candidates for PD exist, validation of these biomarkers in large-scale clinical studies is necessary to evaluate the diagnostic potential. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Patrick Öckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
29
|
Womersley JS, Uys JD. S-Glutathionylation and Redox Protein Signaling in Drug Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:87-121. [PMID: 26809999 DOI: 10.1016/bs.pmbts.2015.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug addiction is a chronic relapsing disorder that comes at a high cost to individuals and society. Therefore understanding the mechanisms by which drugs exert their effects is of prime importance. Drugs of abuse increase the production of reactive oxygen and nitrogen species resulting in oxidative stress. This change in redox homeostasis increases the conjugation of glutathione to protein cysteine residues; a process called S-glutathionylation. Although traditionally regarded as a protective mechanism against irreversible protein oxidation, accumulated evidence suggests a more nuanced role for S-glutathionylation, namely as a mediator in redox-sensitive protein signaling. The reversible modification of protein thiols leading to alteration in function under different physiologic/pathologic conditions provides a mechanism whereby change in redox status can be translated into a functional response. As such, S-glutathionylation represents an understudied means of post-translational protein modification that may be important in the mechanisms underlying drug addiction. This review will discuss the evidence for S-glutathionylation as a redox-sensing mechanism and how this may be involved in the response to drug-induced oxidative stress. The function of S-glutathionylated proteins involved in neurotransmission, dendritic spine structure, and drug-induced behavioral outputs will be reviewed with specific reference to alcohol, cocaine, and heroin.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joachim D Uys
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
30
|
Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M. Glutathione transferases and neurodegenerative diseases. Neurochem Int 2015; 82:10-8. [PMID: 25661512 DOI: 10.1016/j.neuint.2015.01.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 02/08/2023]
Abstract
There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Mario Lo Bello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
31
|
Lin X, Shi M, Masilamoni JG, Dator R, Movius J, Aro P, Smith Y, Zhang J. Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:779-87. [PMID: 25617661 DOI: 10.1016/j.bbapap.2015.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023]
Abstract
Identification of reliable and robust biomarkers is crucial to enable early diagnosis of Parkinson disease (PD) and monitoring disease progression. While imperfect, the slow, chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced non-human primate animal model system of parkinsonism is an abundant source of pre-motor or early stage PD biomarker discovery. Here, we present a study of a MPTP rhesus monkey model of PD that utilizes complementary quantitative iTRAQ-based proteomic, glycoproteomics and phosphoproteomics approaches. We compared the glycoprotein, non-glycoprotein, and phosphoprotein profiles in the putamen of asymptomatic and symptomatic MPTP-treated monkeys as well as saline injected controls. We identified 86 glycoproteins, 163 non-glycoproteins, and 71 phosphoproteins differentially expressed in the MPTP-treated groups. Functional analysis of the data sets inferred the biological processes and pathways that link to neurodegeneration in PD and related disorders. Several potential biomarkers identified in this study have already been translated for their usefulness in PD diagnosis in human subjects and further validation investigations are currently under way. In addition to providing potential early PD biomarkers, this comprehensive quantitative proteomic study may also shed insights regarding the mechanisms underlying early PD development. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
Collapse
Affiliation(s)
- Xiangmin Lin
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; School of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, Fujian, China
| | - Min Shi
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Romel Dator
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - James Movius
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Patrick Aro
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
32
|
Shi M, Movius J, Dator R, Aro P, Zhao Y, Pan C, Lin X, Bammler TK, Stewart T, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Zhang J. Cerebrospinal fluid peptides as potential Parkinson disease biomarkers: a staged pipeline for discovery and validation. Mol Cell Proteomics 2015; 14:544-55. [PMID: 25556233 DOI: 10.1074/mcp.m114.040576] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Finding robust biomarkers for Parkinson disease (PD) is currently hampered by inherent technical limitations associated with imaging or antibody-based protein assays. To circumvent the challenges, we adapted a staged pipeline, starting from our previous proteomic profiling followed by high-throughput targeted mass spectrometry (MS), to identify peptides in human cerebrospinal fluid (CSF) for PD diagnosis and disease severity correlation. In this multicenter study consisting of training and validation sets, a total of 178 subjects were randomly selected from a retrospective cohort, matching age and sex between PD patients, healthy controls, and neurological controls with Alzheimer disease (AD). From ∼14,000 unique peptides displaying differences between PD and healthy control in proteomic investigations, 126 peptides were selected based on relevance and observability in CSF using bioinformatic analysis and MS screening, and then quantified by highly accurate and sensitive selected reaction monitoring (SRM) in the CSF of 30 PD patients versus 30 healthy controls (training set), followed by diagnostic (receiver operating characteristics) and disease severity correlation analyses. The most promising candidates were further tested in an independent cohort of 40 PD patients, 38 AD patients, and 40 healthy controls (validation set). A panel of five peptides (derived from SPP1, LRP1, CSF1R, EPHA4, and TIMP1) was identified to provide an area under curve (AUC) of 0.873 (sensitivity = 76.7%, specificity = 80.0%) for PD versus healthy controls in the training set. The performance was essentially confirmed in the validation set (AUC = 0.853, sensitivity = 82.5%, specificity = 82.5%). Additionally, this panel could also differentiate the PD and AD groups (AUC = 0.990, sensitivity = 95.0%, specificity = 97.4%). Furthermore, a combination of two peptides belonging to proteins TIMP1 and APLP1 significantly correlated with disease severity as determined by the Unified Parkinson's Disease Rating Scale motor scores in both the training (r = 0.381, p = 0.038)j and the validation (r = 0.339, p = 0.032) sets. The novel panel of CSF peptides, if validated in independent cohorts, could be used to assist in clinical diagnosis of PD and has the potential to help monitoring or predicting disease progression.
Collapse
Affiliation(s)
- Min Shi
- From the ‡Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104
| | - James Movius
- From the ‡Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104
| | - Romel Dator
- From the ‡Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104
| | - Patrick Aro
- From the ‡Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104
| | - Yanchun Zhao
- From the ‡Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104
| | - Catherine Pan
- From the ‡Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104
| | - Xiangmin Lin
- From the ‡Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104; §School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Theo K Bammler
- ¶Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| | - Tessandra Stewart
- From the ‡Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104
| | - Cyrus P Zabetian
- ‖Geriatric and Parkinson's Disease Research, Education, and Clinical Centers, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108; **Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Elaine R Peskind
- ‡‡Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195; §§Mental Illness Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108
| | - Shu-Ching Hu
- ‖Geriatric and Parkinson's Disease Research, Education, and Clinical Centers, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108; **Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Joseph F Quinn
- ¶¶Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239
| | - Douglas R Galasko
- ‖‖Department of Neurosciences, University of California at San Diego, La Jolla, California 92093
| | - Jing Zhang
- From the ‡Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98104;
| |
Collapse
|
33
|
Licker V, Burkhard PR. Proteomics as a new paradigm to tackle Parkinson’s disease research challenges. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
34
|
Glutathione-Dependent Detoxification Processes in Astrocytes. Neurochem Res 2014; 40:2570-82. [PMID: 25428182 DOI: 10.1007/s11064-014-1481-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 01/17/2023]
Abstract
Astrocytes have a pivotal role in brain as partners of neurons in homeostatic and metabolic processes. Astrocytes also protect other types of brain cells against the toxicity of reactive oxygen species and are considered as first line of defence against the toxic potential of xenobiotics. A key component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which generate GSH conjugates that are efficiently exported from the cells by multidrug resistance proteins. Moreover, GSH reacts with the reactive endogenous carbonyls methylglyoxal and formaldehyde to intermediates which are substrates of detoxifying enzymes. In this article we will review the current knowledge on the GSH metabolism of astrocytes with a special emphasis on GSH-dependent detoxification processes.
Collapse
|
35
|
Su Z, Wang X, Gao X, Liu Y, Pan C, Hu H, Beyer RP, Shi M, Zhou J, Zhang J, Serra AL, Wüthrich RP, Mei C. Excessive activation of the alternative complement pathway in autosomal dominant polycystic kidney disease. J Intern Med 2014; 276:470-85. [PMID: 24494798 DOI: 10.1111/joim.12214] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The complement system is involved in many immune complex-mediated kidney diseases, yet its role in the pathogenesis of autosomal dominant polycystic kidney disease (ADPKD) has not been examined in detail. METHODS AND RESULTS Screening of the glycoproteome of urine samples from ADPKD patients revealed that levels of complement factor B (CFB), serpin peptidase inhibitor, complement component 1 inhibitor (SERPING1) and complement component 9 (C9) increased, whereas complement component 1, r subcomponent-like (C1RL), CD55 and CD59 levels decreased with disease progression. Immunostaining and Western blot analysis confirmed the enhanced expression of CFB and C9 in cystic kidneys from ADPKD patients. Immunostaining also showed that the expressions of CFB and C9 in renal biopsy tissues from patients with other types of chronic kidney disease were lower than in tissues from ADPKD patients. The effect of the complement inhibitor rosmarinic acid (RMA) was evaluated in Pkd1(-/-) mice and Han:SPRD Cy/+ rats. Compared with vehicle-treated Pkd1(-/-) animals, RMA-treated mice had significantly lower serum creatinine (-50%) and blood urea nitrogen (-78%) levels, two kidneys/body weight ratio (-60%) and renal cystic index (-60%). Similar results were found in Cy/+ rats. Lower numbers of Ki67-positive nuclei and inflammatory cells and reduced fibrosis were observed in both animal models upon treatment with RMA. CONCLUSIONS These results suggest that excessive activation of the alternative complement pathway is associated with ADPKD progression, probably mediated by cyst-lining epithelial cell proliferation, tubulointerstitial inflammatory cell infiltration and fibrosis. Targeting the complement system might represent a new therapeutic strategy for ADPKD.
Collapse
Affiliation(s)
- Z Su
- Kidney Institute, Department of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lin CY, Chen JH, Fu RH, Tsai CW. Induction of Pi Form of Glutathione S-Transferase by Carnosic Acid Is Mediated through PI3K/Akt/NF-κB Pathway and Protects against Neurotoxicity. Chem Res Toxicol 2014; 27:1958-66. [PMID: 25271104 DOI: 10.1021/tx5003063] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chia-Yuan Lin
- Department
of Nutrition, China Medical University, 40402 Taichung, Taiwan
| | - Jing-Hsien Chen
- School
of Nutrition, Chung Shan Medical University, 40201 Taichung, Taiwan
- Department
of Medical Research, Chung Shan Medical University Hospital, 40201 Taichung, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University, 40402 Taichung, Taiwan
- Center
for Neuropsychiatry, China Medical University Hospital, 40402 Taichung, Taiwan
| | - Chia-Wen Tsai
- Department
of Nutrition, China Medical University, 40402 Taichung, Taiwan
| |
Collapse
|
37
|
Gupta MK, Jayaram S, Madugundu AK, Chavan S, Advani J, Pandey A, Thongboonkerd V, Sirdeshmukh R. Chromosome-centric Human Proteome Project: Deciphering Proteins Associated with Glioma and Neurodegenerative Disorders on Chromosome 12. J Proteome Res 2014; 13:3178-90. [PMID: 24804578 DOI: 10.1021/pr500023p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Manoj Kumar Gupta
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Savita Jayaram
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Anil K. Madugundu
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
| | - Sandip Chavan
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Manipal University, Madhav Nagar, Manipal 576104, India
| | - Jayshree Advani
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
| | - Akhilesh Pandey
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- McKusick-Nathans
Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205 United States
| | | | - Ravi Sirdeshmukh
- Institute
of Bioinformatics, International
Tech Park, Bangalore 560066, India
- Mazumdar
Shaw Centre for Translational Research, Narayana Health, Bangalore 560099, India
| |
Collapse
|
38
|
Chang RYK, Etheridge N, Dodd P, Nouwens A. Quantitative multiple reaction monitoring analysis of synaptic proteins from human brain. J Neurosci Methods 2014; 227:189-210. [DOI: 10.1016/j.jneumeth.2014.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 01/21/2023]
|
39
|
Gebriel M, Prabhudesai S, Uleberg KE, Larssen E, Piston D, Bjørnstad AH, Møller SG. Zebrafish brain proteomics reveals central proteins involved in neurodegeneration. J Neurosci Res 2013; 92:104-15. [PMID: 24123299 DOI: 10.1002/jnr.23297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022]
Abstract
Understanding the complex biology of the brain requires analyzing its structural and functional complexity at the protein level. The large-scale analysis of the brain proteome, coupled with characterization of central brain proteins, provides insight into fundamental brain processes and processes linked to neurodegenerative diseases. Here we provide a map of the zebrafish brain proteome by using two-dimensional gel electrophoresis (2DE), followed by the identification of 95 brain proteins using mass spectrometry (LC-ESI MS/MS). Our data show extensive phosphorylation of brain proteins but less prominent glycosylation. Furthermore, ~51% of the identified proteins are predicted to have one or more ubiquitination sites whereas ~90% are predicted to have one or more SUMOylation sites. Our findings provide a valuable proteome map of the zebrafish brain and associated posttranslational modifications demonstrating that zebrafish proteomic approaches can aid in our understanding of proteins central to important neuronal processes and those associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohammed Gebriel
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | | | | | | | | | | | | |
Collapse
|
40
|
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson's disease. Free Radic Biol Med 2013; 62:13-25. [PMID: 23665395 PMCID: PMC3736736 DOI: 10.1016/j.freeradbiomed.2013.05.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 12/14/2022]
Abstract
It has been established that oxidative stress, defined as the condition in which the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson disease. Glutathione is a ubiquitous thiol tripeptide that acts alone or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals, and peroxynitrites. In this review, we examine the synthesis, metabolism, and functional interactions of glutathione and discuss how these relate to the protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson disease.
Collapse
Affiliation(s)
- Michelle Smeyne
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, 901-595-3066
| | - Richard Jay Smeyne
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, 901-595-2830
| |
Collapse
|
41
|
Longo GS, Pinhel MS, Sado CL, Gregório ML, Amorim GS, Florim GS, Mazeti CM, Martins DP, Oliveira FN, Tognola WA, Nakazone MA, Souza DRS. Exposure to pesticides and heterozygote genotype of GSTP1-Alw26I are associated to Parkinson's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 71:446-52. [DOI: 10.1590/0004-282x20130060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Indexed: 11/21/2022]
Abstract
ObjectiveThis study aimed to analyze the frequency of GSTP1-Alw26I polymorphism and to estimate its association with toxic substances in Parkinson's disease (PD).MethodsA study group with 154 patients - subdivided into familial and sporadic PD groups - and 158 elderly individuals without the disease (control group) were evaluated. GSTP1-Alw26I polymorphism was analyzed by polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP).ResultsPatients were significantly more exposed to pesticides compared with the control group (p=0.0004), and the heterozygote genotype associated to exposure to pesticides also prevailed in patients (p=0.0001). Wild homozygote genotype was related to tobacco use (p=0.043) and alcoholism (p=0.033) in familial PD patients.ConclusionExposure to pesticides is associated to PD, whose effect can be enhanced when combined with the heterozygote genotype of GSTP1-Alw26I. Also, large genetic and environmental studies considering tobacco use, alcoholism, GSTP1 and PD are necessary to confirm our findings.
Collapse
|
42
|
Maarouf CL, Beach TG, Adler CH, Shill HA, Sabbagh MN, Wu T, Walker DG, Kokjohn TA, Roher AE. Cerebrospinal fluid biomarkers of neuropathologically diagnosed Parkinson's disease subjects. Neurol Res 2013; 34:669-76. [PMID: 22889670 DOI: 10.1179/1743132812y.0000000063] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) afflicts approximately 1-2% of the population over 50 years of age. No cures or effective modifying treatments exist and clinical diagnosis is currently confounded by a lack of definitive biomarkers. We sought to discover potential biomarkers in the cerebrospinal fluid (CSF) of neuropathologically confirmed PD cases. METHODS We compared postmortem ventricular CSF (V-CSF) from PD and normal control (NC) subjects using two-dimensional difference gel electrophoresis (2D-DIGE). Spots exhibiting a 1·5-fold or greater difference in volume between PD patients and controls were excised from the two-dimensional gels, subjected to tryptic digestion and identification of peptides assigned using mass spectrometric/data bank correlation methods. RESULTS Employing this strategy six molecules: fibrinogen, transthyretin, apolipoprotein E, clusterin, apolipoprotein A-1, and glutathione-S-transferase-Pi, were found to be different between PD and NC populations. DISCUSSION These molecules have been implicated in PD pathogenesis. Combining biomarker data from multiple laboratories may create a consensus panel of proteins that may serve as a diagnostic tool for this neurodegenerative disorder.
Collapse
Affiliation(s)
- Chera L Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Settivari R, VanDuyn N, LeVora J, Nass R. The Nrf2/SKN-1-dependent glutathione S-transferase π homologue GST-1 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of manganism. Neurotoxicology 2013; 38:51-60. [PMID: 23721876 DOI: 10.1016/j.neuro.2013.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/11/2013] [Accepted: 05/20/2013] [Indexed: 12/30/2022]
Abstract
Exposure to high levels of manganese (Mn) results in a neurological condition termed manganism, which is characterized by oxidative stress, abnormal dopamine (DA) signaling, and cell death. Epidemiological evidence suggests correlations with occupational exposure to Mn and the development of the movement disorder Parkinson's disease (PD), yet the molecular determinants common between the diseases are ill-defined. Glutathione S-transferases (GSTs) of the class pi (GSTπ) are phase II detoxification enzymes that conjugate both endogenous and exogenous compounds to glutathione to reduce cellular oxidative stress, and their decreased expression has recently been implicated in PD progression. In this study we demonstrate that a Caenorhabditis elegans GSTπ homologue, GST-1, inhibits Mn-induced DA neuron degeneration. We show that GST-1 is expressed in DA neurons, Mn induces GST-1 gene and protein expression, and GST-1-mediated neuroprotection is dependent on the PD-associated transcription factor Nrf2/SKN-1, as a reduction in SKN-1 gene expression results in a decrease in GST-1 protein expression and an increase in DA neuronal death. Furthermore, decreases in gene expression of the SKN-1 inhibitor WDR-23 or the GSTπ-binding cell death activator JNK/JNK-1 result in an increase in resistance to the metal. Finally, we show that the Mn-induced DA neuron degeneration is independent of the dopamine transporter DAT, but is largely dependent on the caspases CED-3 and the novel caspase CSP-1. This study identifies a C. elegans Nrf2/SKN-1-dependent GSTπ homologue, cell death effectors of GSTπ-associated xenobiotic-induced pathology, and provides the first in vivo evidence that a phase II detoxification enzyme may modulate DA neuron vulnerability in manganism.
Collapse
Affiliation(s)
- Raja Settivari
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
44
|
Gao X, Lin H, Ray R, Ray P. Toxicogenomic studies of human neural cells following exposure to organophosphorus chemical warfare nerve agent VX. Neurochem Res 2013; 38:916-34. [PMID: 23440544 DOI: 10.1007/s11064-013-0996-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/25/2013] [Accepted: 01/31/2013] [Indexed: 02/01/2023]
Abstract
Organophosphorus (OP) compounds represent an important group of chemical warfare nerve agents that remains a significant and constant military and civilian threat. OP compounds are considered acting primarily via cholinergic pathways by binding irreversibly to acetylcholinesterase, an important regulator of the neurotransmitter acetylcholine. Many studies over the past years have suggested that other mechanisms of OP toxicity exist, which need to be unraveled by a comprehensive and systematic approach such as genome-wide gene expression analysis. Here we performed a microarray study in which cultured human neural cells were exposed to 0.1 or 10 μM of VX for 1 h. Global gene expression changes were analyzed 6, 24, and 72 h post exposure. Functional annotation and pathway analysis of the differentially expressed genes has revealed many genes, networks and canonical pathways that are related to nervous system development and function, or to neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In particular, the neuregulin pathway impacted by VX exposure has important implications in many nervous system diseases including schizophrenia. These results provide useful information valuable in developing suitable antidotes for more effective prevention and treatment of, as well as in developing biomarkers for, VX-induced chronic neurotoxicity.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | |
Collapse
|
45
|
Garcia-Garcia A, Zavala-Flores L, Rodriguez-Rocha H, Franco R. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease. Antioxid Redox Signal 2012; 17:1764-84. [PMID: 22369136 PMCID: PMC3474187 DOI: 10.1089/ars.2011.4501] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta, which has been widely associated with oxidative stress. However, the mechanisms by which redox signaling regulates cell death progression remain elusive. RECENT ADVANCES Early studies demonstrated that depletion of glutathione (GSH), the most abundant low-molecular-weight thiol and major antioxidant defense in cells, is one of the earliest biochemical events associated with PD, prompting researchers to determine the role of oxidative stress in dopaminergic cell death. Since then, the concept of oxidative stress has evolved into redox signaling, and its complexity is highlighted by the discovery of a variety of thiol-based redox-dependent processes regulating not only oxidative damage, but also the activation of a myriad of signaling/enzymatic mechanisms. CRITICAL ISSUES GSH and GSH-based antioxidant systems are important regulators of neurodegeneration associated with PD. In addition, thiol-based redox systems, such as peroxiredoxins, thioredoxins, metallothioneins, methionine sulfoxide reductases, transcription factors, as well as oxidative modifications in protein thiols (cysteines), including cysteine hydroxylation, glutathionylation, and nitrosylation, have been demonstrated to regulate dopaminergic cell loss. FUTURE DIRECTIONS In this review, we summarize major advances in the understanding of the role of thiol-redox signaling in dopaminergic cell death in experimental PD. Future research is still required to clearly understand how integrated thiol-redox signaling regulates the activation of the cell death machinery, and the knowledge generated should open new avenues for the design of novel therapeutic approaches against PD.
Collapse
Affiliation(s)
- Aracely Garcia-Garcia
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | | | | |
Collapse
|
46
|
Ferrer I, López-Gonzalez I, Carmona M, Dalfó E, Pujol A, Martínez A. Neurochemistry and the non-motor aspects of PD. Neurobiol Dis 2012; 46:508-26. [PMID: 22737710 DOI: 10.1016/j.nbd.2011.10.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Parkinson disease (PD) is a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment and psychiatric symptoms, in addition to the classical motor symptoms. Many non-motor symptoms appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a relationship, albeit not causal, between motor symptoms and the presence of Lewy bodies (LBs) and neurites filled with abnormal α-synuclein, other neurological alterations are independent of the amount of α-synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. This may apply to complex alterations interfering with olfactory and autonomic nervous systemfunctions, emotions, sleep regulation, and behavioral, cognitive and mental performance. Involvement of the cerebral cortex leading to impaired behavior and cognition is related to several convergent altered factors including: a. dopaminergic, noradrenergic, serotoninergic and cholinergic cortical innervation; b. synapses; c. cortical metabolism; d. mitochondrial function and energy production; e. oxidative damage; f. transcription; g. protein expression; h. lipid composition; and i. ubiquitin–proteasome system and autophagy, among others. This complex situation indicates that multiple subcellular failure in selected cell populations is difficult to reconcilewith a reductionistic scenario of a single causative cascade of events leading to non-motor symptoms in PD. Furthermore, these alterationsmay appear at early stages of the disease and may precede the appearance of substantial irreversible cell loss by years. These observations have important implications in the design of therapeutic approaches geared to prevention and treatment of PD.
Collapse
Affiliation(s)
- I Ferrer
- Institute of Neuropathology, Service of Pathology, University Hospital of Bellvitge, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Viquez OM, Caito SW, McDonald WH, Friedman DB, Valentine WM. Electrophilic adduction of ubiquitin activating enzyme E1 by N,N-diethyldithiocarbamate inhibits ubiquitin activation and is accompanied by striatal injury in the rat. Chem Res Toxicol 2012; 25:2310-21. [PMID: 22874009 DOI: 10.1021/tx300198h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have shown ubiquitin activating enzyme E1 to be sensitive to adduction through both Michael addition and SN(2) chemistry in vitro. E1 presents a biologically important putative protein target for adduction due to its role in initiating ubiquitin based protein processing and the involvement of impaired ubiquitin protein processing in two types of familial Parkinson's disease. We tested whether E1 is susceptible to xenobiotic-mediated electrophilic adduction in vivo and explored the potential contribution of E1 adduction to neurodegenerative events in an animal model. N,N-Diethyldithiocarbamate (DEDC) was administered to rats using a protocol that produces covalent cysteine modifications in vivo, and brain E1 protein adducts were characterized and mapped using shotgun LC-MS/MS. E1 activity, global and specific protein expression, and protein carbonyls were used to characterize cellular responses and injury in whole brain and dorsal striatal samples. The data demonstrate that DEDC treatment produced S-(ethylaminocarbonyl) adducts on Cys234 and Cys179 residues of E1 and decreased the levels of activated E1 and total ubiquitinated proteins. Proteomic analysis of whole brain samples identified expression changes for proteins involved in myelin structure, antioxidant response, and catechol metabolism, systems often disrupted in neurodegenerative disease. Our studies also delineated localized injury within the striatum as indicated by decreased levels of tyrosine hydroxylase, elevated protein carbonyl content, increased antioxidant enzyme and α-synuclein expression, and enhanced phosphorylation of tau and tyrosine hydroxylase. These data are consistent with E1 having similar susceptibility to adduction in vivo as previously reported in vitro and support further investigation into environmental agent adduction of E1 as a potential contributing factor to neurodegenerative disease. Additionally, this study supports the predictive value of in vitro screens for identifying sensitive protein targets that can be used to guide subsequent in vivo experiments.
Collapse
Affiliation(s)
- Olga M Viquez
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232-2561, USA
| | | | | | | | | |
Collapse
|
48
|
Gerecke KM, Jiao Y, Pagala V, Smeyne RJ. Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice. PLoS One 2012; 7:e43250. [PMID: 22912838 PMCID: PMC3422268 DOI: 10.1371/journal.pone.0043250] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/-) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.
Collapse
Affiliation(s)
- Kim M Gerecke
- Department of Psychology and Neuroscience Program, Rhodes College, Memphis, Tennessee, United States of America.
| | | | | | | |
Collapse
|
49
|
Sun HD, Ru YW, Zhang DJ, Yin SY, Yin L, Xie YY, Guan YF, Liu SQ. Proteomic analysis of glutathione S-transferase isoforms in mouse liver mitochondria. World J Gastroenterol 2012; 18:3435-42. [PMID: 22807614 PMCID: PMC3396197 DOI: 10.3748/wjg.v18.i26.3435] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To survey glutathione (GSH) S-transferase (GST) isoforms in mitochondria and to reveal the isoforms’ biological significance in diabetic mice.
METHODS: The presence of GSTs in mouse liver mitochondria was systematically screened by two proteomic approaches, namely, GSH affinity chromatography/two dimensional electrophoresis (2DE/MALDI TOF/TOF MS) and SDS-PAGE/LC ESI MS/MS. The proteomic results were further confirmed by Western blotting using monoclonal antibodies against GSTs. To evaluate the liver mitochondrial GSTs quantitatively, calibration curves were generated by the loading amounts of individual recombinant GST protein vs the relative intensities elicited from the Western blotting. An extensive comparison of the liver mitochondrial GSTs was conducted between normal and db/db diabetic mice. Student’s t test was adopted for the estimation of regression and significant difference.
RESULTS: Using GSH affinity/2DE/MALDI TOF/TOF MS, three GSTs, namely, alpha3, mu1 and pi1, were identified; whereas five GSTs, alpha3, mu1, pi1, kappa1 and zeta1, were detected in mouse liver mitochondria using SDS-PAGE/LC ESI MS/MS, of these GSTs, GST kappa1 was reported as a specific mitochondrial GST. The R2 values of regression ranged between values of about 0.86 and 0.98, which were acceptable for the quantification. Based on the measurement of the GST abundances in liver mitochondria of normal and diabetic mice, the four GSTs, alpha3, kappa1, mu1 and zeta1, were found to be almost comparable between the two sets of animals, whereas, lower GST pi1 was detected in the diabetic mice compared with normal ones, the signal of Western blotting in control and db/db diabetic mice liver mitochondria is 134.61 ± 53.84 vs 99.74 ± 46.2, with P < 0.05.
CONCLUSION: Our results indicate that GSTs exist widely in mitochondria and its abundances of mitochondrial GSTs might be tissue-dependent and disease-related.
Collapse
|
50
|
Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson C, Wolf CR, Gama MJ. Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway. Mol Neurobiol 2012; 45:466-77. [PMID: 22539231 DOI: 10.1007/s12035-012-8266-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/02/2012] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is a progressive movement disorder resulting from the death of dopaminergic neurons in the substantia nigra. Neurotoxin-based models of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recapitulate the neurological features of the disease, triggering a cascade of deleterious events through the activation of the c-Jun N-terminal kinase (JNK). The molecular mechanisms underlying the regulation of JNK activity under cellular stress conditions involve the activation of several upstream kinases along with the fine-tuning of different endogenous JNK repressors. Glutathione S-transferase pi (GSTP), a phase II detoxifying enzyme, has been shown to inhibit JNK-activated signaling by protein-protein interactions, preventing c-Jun phosphorylation and the subsequent trigger of the cell death cascade. Here, we use C57BL/6 wild-type and GSTP knockout mice treated with MPTP to evaluate the regulation of JNK signaling by GSTP in both the substantia nigra and the striatum. The results presented herein show that GSTP knockout mice are more susceptible to the neurotoxic effects of MPTP than their wild-type counterparts. Indeed, the administration of MPTP induces a progressive demise of nigral dopaminergic neurons together with the degeneration of striatal fibers at an earlier time-point in the GSTP knockout mice when compared to the wild-type mice. Also, MPTP treatment leads to increased p-JNK levels and JNK catalytic activity in both wild-type and GSTP knockout mice midbrain and striatum. Moreover, our results demonstrate that in vivo GSTP acts as an endogenous regulator of the MPTP-induced cellular stress response by controlling JNK activity through protein-protein interactions.
Collapse
Affiliation(s)
- Margarida Castro-Caldas
- Research Institute for Medicines and Pharmaceutical Sciences-iMED.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|