1
|
Tonutti A, Pugliese N, Ceribelli A, Isailovic N, De Santis M, Colapietro F, De Nicola S, Polverini D, Selmi C, Aghemo A. The autoimmune landscape of Porto-sinusoidal vascular disorder: What the rheumatologist needs to know. Semin Arthritis Rheum 2024; 67:152467. [PMID: 38805899 DOI: 10.1016/j.semarthrit.2024.152467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Porto-sinusoidal vascular disorder (PSVD) encompasses a group of vascular disorders characterized by lesions of the portal venules and sinusoids with clinical manifestations ranging from non-specific abnormalities in serum liver enzymes to clinically overt portal hypertension and related complications. Several reports have documented cases of PSVD in patients with systemic autoimmune conditions, such as systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. It is of note that these diseases share specific pathophysiological features with PSVD, including endothelial dysfunction, vascular inflammation, and molecular signatures. This narrative review aims to summarize the current knowledge on the association between PSVD and systemic autoimmune diseases, emphasizing the importance of promptly recognizing this condition in the rheumatological practice, and highlighting the key aspects where further research is necessary from both pathogenic and clinical perspectives.
Collapse
Affiliation(s)
- Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Nicola Pugliese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Francesca Colapietro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stella De Nicola
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Davide Polverini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy.
| | - Alessio Aghemo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
2
|
Campreciós G, Bartrolí B, Montironi C, Belmonte E, García-Pagán JC, Hernández-Gea V. Porto-sinusoidal vascular disorder. SINUSOIDAL CELLS IN LIVER DISEASES 2024:445-464. [DOI: 10.1016/b978-0-323-95262-0.00022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
The Interaction of Apelin and FGFR1 Ameliorated the Kidney Fibrosis through Suppression of TGF β-Induced Endothelial-to-Mesenchymal Transition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5012474. [PMID: 36785790 PMCID: PMC9922196 DOI: 10.1155/2023/5012474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 02/06/2023]
Abstract
Both epithelial-to-mesenchymal (EMT) and endothelial-to-mesenchymal (EndMT) transitions have shown to contribute to the development and progression of kidney fibrosis. It has been reported that apelin, a regulatory peptide, alleviates EMT by inhibiting the transforming growth factor β (TGFβ) pathway in renal diseases. Additionally, fibroblast growth factor receptor 1 (FGFR1) has been shown to be a key inhibitor of EndMT through suppression of the TGFβ/Smad pathway. In this study, we found that apelin and FGFR1 were spatially close to each other and that the apelin and FGFR1 complex displayed inhibitory effects on TGFβ/Smad signaling as well as associated EndMT in diabetic kidney fibrosis. In cultured human dermal microvascular endothelial cells (HMVECs), we found that the anti-EndMT and anti-TGFβ/Smad effects of apelin were dampened in FGFR1-deficient cells. Either siRNA- or an inhibitor-mediated deficiency of apelin induced the Smad3 phosphorylation and EndMT. Streptozotocin-induced CD-1 diabetic mice displayed EndMT and associated kidney fibrosis, which were restored by apelin treatment. The medium from apelin-deficient endothelial cells stimulated TGFβ/Smad-dependent EMT in cultured HK2 cells. In addition, depletion of apelin and the FGFR1 complex impaired CEBPA expression, and TGFβ-induced repression of CEBPA expression contributed to the initiation of EndMT in the endothelium. Collectively, these findings revealed that the interaction between apelin and FGFR1 displayed renoprotective potential through suppression of the TGFβ/Smad/CEBPA-mediated EndMT/EMT pathways.
Collapse
|
4
|
Chen F, Yue LL, Ntsobe TE, Qin LL, Zeng Y, Xie MF, Huang HJ, Peng W, Zeng LS, Liu HJ, Liu Q. Endothelial mesenchymal transformation and relationship with vascular abnormalities. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Nintedanib Inhibits Endothelial Mesenchymal Transition in Bleomycin-Induced Pulmonary Fibrosis via Focal Adhesion Kinase Activity Reduction. Int J Mol Sci 2022; 23:ijms23158193. [PMID: 35897764 PMCID: PMC9332002 DOI: 10.3390/ijms23158193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD). Pulmonary fibroblasts play an important role in the development of IPF. Emerging evidence indicates that pulmonary endothelial cells could be the source of pulmonary fibroblasts through endothelial mesenchymal transition (EndoMT), which contributes to pulmonary fibrosis. EndoMT is a complex process in which endothelial cells lose their expression of endothelial markers and give rise to the characteristics of mesenchymal cells, including morphological fibroblast-like change and the expression of mesenchymal markers, which result in cardiac, renal, and dermal fibroses. Furthermore, EndoMT inhibition attenuates pulmonary fibrosis. Herein, we demonstrate that nintedanib, a tyrosine kinase receptor inhibitor, ameliorated murine bleomycin (BLM)-induced pulmonary fibrosis and suppressed the in vivo and in vitro models of EndoMT. We demonstrated that the activity of focal adhesion kinase (FAK), a key EndoMT regulator, increased in murine lung tissues and human pulmonary microvascular endothelial cells after BLM stimulation. Nintedanib treatment inhibited BLM-induced FAK activation and thus suppressed both in vivo and in vitro BLM-induced EndoMT. Importantly, we found that the VEGF/FAK signaling pathway was involved in nintedanib regulating EndoMT. These novel findings help us understand the mechanism and signaling pathway of EndoMT to further develop more efficacious drugs for IPF treatment.
Collapse
|
6
|
Porto-Sinusoidal Vascular Disease: A Pediatric Study of 30 Patients. J Pediatr Gastroenterol Nutr 2022; 74:e132-e137. [PMID: 35258501 DOI: 10.1097/mpg.0000000000003445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Porto-sinusoidal vascular disease (PSVD) refers to a broad spectrum of histological lesions and phenotypic expressions. There are only a few reported pediatric cases in the literature. The primary outcomes of this study were to describe the phenotype of children with PSVD, to specify their mode of presentation and their clinical, biological, histological, and radiological characteristics as well as to identify their underlying etiologies. METHODS This is a descriptive, retrospective, and monocentric study of children followed at our reference center for rare vascular liver diseases. RESULTS Our study included 30 children ages 2months to 17.4years at the time of diagnosis. in most cases, the diagnosis was made incidentally without manifestation of any clinical symptom but rather on the finding of splenomegaly on physical examination (n = 9) or biological abnormalities (n = 13). In the other cases, the main presenting symptom was an upper gastrointestinal bleeding (n = 6). At the first visit, liver laboratory values were either normal (37%) or slightly disturbed. Anemia and/or thrombocytopenia associated with hypersplenism were found in 60% of patients. Liver biopsy was necessary for diagnosis. A total of 80% of cases had no identified etiology. After a median follow-up of 4.5 years, 33% had not developed portal hypertension (PHT) and we reported the first pediatric case of hepatocellular carcinoma in PSVD children. CONCLUSIONS PSVD is responsible for nonspecific symptomatology with variable evolution sometimes marked by serious complications requiring invasive treatments or even liver transplantation. Regular monitoring is essential to prevent, detect, and treat complications.
Collapse
|
7
|
Wang S, Xu L, Wu Y, Shen H, Lin Z, Fang Y, Zhang L, Shen B, Liu Y, Wu K. Parathyroid Hormone Promotes Human Umbilical Vein Endothelial Cell Migration and Proliferation Through Orai1-Mediated Calcium Signaling. Front Cardiovasc Med 2022; 9:844671. [PMID: 35369318 PMCID: PMC8965836 DOI: 10.3389/fcvm.2022.844671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Parathyroid hormone is the main endocrine regulator of extracellular calcium and phosphorus levels. Secondary hyperparathyroidism–induced endothelial dysfunction may be related to calcium homeostasis disorders. Here, we investigated the effects of parathyroid hormone on human umbilical vein endothelial cells (HUVECs) and characterized the involvement of store-operated Ca2+ entry (SOCE) and the nuclear factor of activated T cells (NFAT) signaling pathway. We used immunoblot experiments to find that parathyroid hormone significantly enhanced the expression of the Orai1 channel, a type of channel mediating SOCE, SOCE activity, and Orai1-mediated proliferation of HUVECs but did not increase Orai2 and Orai3. RNA-seq was utilized to identify 1,655 differentially expressed genes (823 upregulated and 832 downregulated) in parathyroid hormone–treated HUVECs as well as enhanced focal adhesion signaling and expression levels of two key genes, namely, COL1A1 and NFATC1. Increased protein and mRNA expression levels of COL1A1 and NFATC1 were confirmed by immunoblotting and quantitative RT-PCR, respectively. Cytosol and nuclei fractionation experiments and immunofluorescence methods were used to show that parathyroid hormone treatment increased NFATC1 nuclear translocation, which was inhibited by a calcineurin inhibitor (CsA), a selective calmodulin antagonist (W7), an Orai channel inhibitor (BTP2), or Orai1 small interfering RNA (siRNA) transfection. Parathyroid hormone also increased COL1A1 expression, cell migration, and proliferation of HUVECs. The PTH-induced increase in HUVEC migration and proliferation were inhibited by CsA, W7, BTP2, or COL1A1 siRNA transfection. These findings indicated that PTH increased Orai1 expression and Orai1-mediated SOCE, causing the nuclear translocation of NFATC1 to increase COL1A1 expression and COL1A1-mediated HUVEC migration and proliferation. These results suggest potential key therapeutic targets of Orai1 and the downstream calmodulin/calcineurin/NFATC1/COL1A1 signaling pathway in parathyroid hormone–induced endothelial dysfunction and shed light on underlying mechanisms that may be altered to prevent or treat secondary hyperparathyroidism–associated cardiovascular disease.
Collapse
Affiliation(s)
- Shuhao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijie Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yv Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Otorhinolaryngology, General Hospital of Anhui Wanbei Coal Power Group, Suzhou, China
| | - Hailong Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhangying Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Fang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Lesha Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Yehai Liu
| | - Kaile Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Kaile Wu
| |
Collapse
|
8
|
Li R, Yin H, Wang J, He D, Yan Q, Lu L. Dihydroartemisinin alleviates skin fibrosis and endothelial dysfunction in bleomycin-induced skin fibrosis models. Clin Rheumatol 2021; 40:4269-4277. [PMID: 34013490 DOI: 10.1007/s10067-021-05765-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/31/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The present study was to investigate whether dihydroartemisinin (DHA), which is a highly effective and safe drug in the treatment of malaria, could be repurposed for the treatment of skin fibrosis and vascular dysfunction in systemic sclerosis (SSc). METHODS The value of DHA was determined using a bleomycin-induced model of skin fibrosis. mRNA transcriptome analysis was performed, and the targets of DHA on fibroblasts were identified. Immunofluorescence staining was used to identify dermal vessels undergoing endothelial-to-mesenchymal transition (EndoMT). Autophagic flux was detected by western blot and mRFP-GFP-LC3 adenovirus vector transfection. RESULTS Both systemic and topical administration of DHA decreased dermal thickness and collagen deposition and alleviated EndoMT in bleomycin-induced skin fibrosis mice model. Treatment of human umbilical vein endothelial cells (HUVECs) with TGF-β1 resulted in the acquisition of the activation marker (α-SMA) and loss of endothelial markers (CD31 and VE-cadherin), a process that was restored by DHA. DHA significantly suppressed skin fibroblast activation and collagen-1 production mainly through regulating PI3K-Akt pathway. DHA also induced fibroblast autophagic flux and that autophagy dependently suppressed collagen-1 production. CONCLUSION The results of the present study revealed that oral and topical DHA administration ameliorated tissue fibrosis and protected dermal blood vessels from bleomycin-induced EndoMT. Our study has elucidated the value of repurposing DHA for the treatment of SSc. Key Points • Oral or topical usage of DHA alleviated dermal fibrosis and EndoMT in bleomycin-induced skin fibrosis mice models. • DHA autophagy dependently inhibited fibroblast activation and collagen deposition via PI3K-ATK pathway. • DHA inhibited EndoMT of HUVECs induced by TGF-β1 by the downregulation of α-SMA and the upregulation of CD31 and VE-cadherin.
Collapse
Affiliation(s)
- Rui Li
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China
| | - Hanlin Yin
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China
| | - Juan Wang
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China. .,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, China.
| | - Qingran Yan
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China.
| | - Liangjing Lu
- Department of Rheumatology, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 2000001, China.
| |
Collapse
|
9
|
Lin FY, Lin YW, Shih CM, Lin SJ, Tung YT, Li CY, Chen YH, Lin CY, Tsai YT, Huang CY. A Novel Relative High-Density Lipoprotein Index to Predict the Structural Changes in High-Density Lipoprotein and Its Ability to Inhibit Endothelial-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22105210. [PMID: 34069162 PMCID: PMC8157136 DOI: 10.3390/ijms22105210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic elevation of high-density lipoprotein (HDL) is thought to minimize atherogenesis in subjects with dyslipidemia. However, this is not the case in clinical practice. The function of HDL is not determined by its concentration in the plasma but by its specific structural components. We previously identified an index for the prediction of HDL functionality, relative HDL (rHDL) index, and preliminarily explored that dysfunctional HDL (rHDL index value > 2) failed to rescue the damage to endothelial progenitor cells (EPCs). To confirm the effectiveness of the rHDL index for predicting HDL functions, here we evaluated the effects of HDL from patients with different rHDL index values on the endothelial–mesenchymal transition (EndoMT) of EPCs. We also analyzed the lipid species in HDL with different rHDL index values and investigated the structural differences that affect HDL functions. The results indicate that HDL from healthy adults and subjects with an rHDL index value < 2 protected transforming growth factor (TGF)-β1-stimulated EndoMT by modulating Smad2/3 and Snail activation. HDL from subjects with an rHDL index value > 2 failed to restore the functionality of TGF-β1-treated EPCs. Lipidomic analysis demonstrated that HDL with different rHDL index values may differ in the composition of triglycerides, phosphatidylcholine, and phosphatidylinositol. In conclusion, we confirmed the applicability of the rHDL index value to predict HDL function and found structural differences that may affect the function of HDL, which warrants further in-depth studies.
Collapse
Affiliation(s)
- Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Shing-Jong Lin
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 238, Taiwan;
| | - Chi-Yuan Li
- Department of Anesthesiology and Graduate Institute of Clinical Medical Science, China Medical University and Hospital, Taichung 406, Taiwan;
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 406, Taiwan;
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Cheng-Yen Lin
- Healthcare Information and Management Department, Ming Chuan University, Taoyuan 333, Taiwan;
| | - Yi-Ting Tsai
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan
- Correspondence: (Y.-T.T.); (C.-Y.H.)
| | - Chun-Yao Huang
- Taipei Heart Institute, Taipei Medical University, Taipei 110, Taiwan; (F.-Y.L.); (C.-M.S.); (S.-J.L.)
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (Y.-T.T.); (C.-Y.H.)
| |
Collapse
|
10
|
Zhang C, Lu W, Luo X, Liu S, Li Y, Zheng Q, Liu W, Wu X, Chen Y, Jiang Q, Zhang Z, Gu G, Chen J, Chen H, Liao J, Liu C, Hong C, Tang H, Sun D, Yang K, Wang J. Mitomycin C induces pulmonary vascular endothelial-to-mesenchymal transition and pulmonary veno-occlusive disease via Smad3-dependent pathway in rats. Br J Pharmacol 2020; 178:217-235. [PMID: 33140842 DOI: 10.1111/bph.15314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary veno-occlusive disease (PVOD) is a rare disease characterized by the obstruction of small pulmonary veins leading to pulmonary hypertension. However, the mechanisms underlying pulmonary vessel occlusion remain largely unclear. EXPERIMENTAL APPROACH A mitomycin C (MMC)-induced PVOD rat model was used as in vivo animal model, and primarily cultured rat pulmonary microvascular endothelial cells (PMVECs) were used as in vitro cell model. KEY RESULTS Our data suggested an endothelial-to-mesenchymal transition (EndoMT) may be present in the pulmonary microvessels isolated from either PVOD patients or MMC-induced PVOD rats. In comparison to the control vessels, vessels from both PVOD patients and PVOD rats had co-localized staining of specific endothelial marker von Willebrand factor (vWF) and mesenchymal marker α-smooth muscle actin (α-SMA), suggesting the presence of cells that co-express endothelial and mesenchymal markers. In both the lung tissues of MMC-induced PVOD rats and MMC-treated rat PMVECs there were decreased levels of endothelial markers (e.g. VE-cadherin and CD31) and increased mesenchymal markers (e.g. vimentin, fibronectin and α-SMA) were detected indicating EndoMT. Moreover, MMC-induced activation of the TGFβ/Smad3/Snail axis, while blocking this pathway with either selective Smad3 inhibitor (SIS3) or small interfering RNA (siRNA) against Smad3, dramatically abolished the MMC-induced EndoMT. Notably, treatment with SIS3 remarkably prevented the pathogenesis of MMC-induced PVOD in rats. CONCLUSIONS AND IMPLICATIONS Our data indicated that targeted inhibition of Smad3 leads to a potential, novel strategy for PVOD therapy, likely by inhibiting the EndoMT in pulmonary microvasculature.
Collapse
Affiliation(s)
- Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wenyan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China
| | - Xuefen Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zizhou Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guoping Gu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haixia Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dejun Sun
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China.,Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
11
|
Wang S, Li P, Jiang G, Guan J, Chen D, Zhang X. Long non-coding RNA LOC285194 inhibits proliferation and migration but promoted apoptosis in vascular smooth muscle cells via targeting miR-211/PUMA and TGF-β1/S100A4 signal. Bioengineered 2020; 11:718-728. [PMID: 32619136 PMCID: PMC8291892 DOI: 10.1080/21655979.2020.1788354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNA LOC285194 (LOC285194) has reported to regulate vascular smooth muscle cells (VSMCs) proliferation and apoptosis in vitro and in vivo. Here we aimed to determine the role of LOC285194 in the proliferation, migration and apoptosis of VSMCs and its underlying mechanisms. A7r5 cells were transfected with Lv-LOC285194 or control Lv-NC for 24-72 h, or small interfering RNA targeting S100A4 (S100A4 siRNA) for 24-48 h, or co-transfected with Lv-LOC285194 and PUMA siRNA for 72 h, or treated with miR-211 inhibitor or co-transfected with Lv-LOC285194 and miR-211 mimics for 72 h. A7r5 cells were also treated with transforming growth factor - β(TGF-β) (5 ng/ml) after Lv-LOC285194 transfection for 24 h. The relationship between LOC285194 and TGF-β was confirmed using luciferase reporter assay. Cell proliferation and cell apoptosis were analyzed by Cell Counting Kit-8 (CCK-8) assay, ELISA and TUNEL staining. LOC285194 and miR-211 expression were detected by qPCR assay. S100A4, pro-apoptotic and anti-apoptotic protein were detected by Western blot assay. LOC285194 inhibited cell proliferation, invasion and migration and promoted cell apoptosis accompanied by upregulation of PUMA and downregulation of miR-211 and S100A4. Targeting PUMA reversed the effect of LOC285194 on cell apoptosis and proliferation. miR-211 mimic inhibited LOC285194-induced PUMA upregulation and decreased LOC285194-induced cell apoptosis. TGF-β (5 ng/ml) treatment reversed S100A4 siRNA or LOC285194-induced S100A4 expression. Luciferase reporter assay showed that TGF-β was the target of LOC285194. LOC285194 inhibits proliferation and promoted apoptosis in vascular smooth muscle cells via targeting miR-211/PUMA signal; In addition, LOC285194 decreased cell invasion and migration by targeting TGF-β1/S100A4 signal.
Collapse
Affiliation(s)
- Shaochun Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Li
- Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Gang Jiang
- Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jinping Guan
- Emergency Surgery, Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dong Chen
- General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoying Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
12
|
Caporarello N, Meridew JA, Aravamudhan A, Jones DL, Austin SA, Pham TX, Haak AJ, Moo Choi K, Tan Q, Haresi A, Huang SK, Katusic ZS, Tschumperlin DJ, Ligresti G. Vascular dysfunction in aged mice contributes to persistent lung fibrosis. Aging Cell 2020; 19:e13196. [PMID: 32691484 PMCID: PMC7431829 DOI: 10.1111/acel.13196] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/28/2020] [Accepted: 06/21/2020] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease thought to result from impaired lung repair following injury and is strongly associated with aging. While vascular alterations have been associated with IPF previously, the contribution of lung vasculature during injury resolution and fibrosis is not well understood. To compare the role of endothelial cells (ECs) in resolving and non-resolving models of lung fibrosis, we applied bleomycin intratracheally to young and aged mice. We found that injury in aged mice elicited capillary rarefaction, while injury in young mice resulted in increased capillary density. ECs from the lungs of injured aged mice relative to young mice demonstrated elevated pro-fibrotic and reduced vascular homeostasis gene expression. Among the latter, Nos3 (encoding the enzyme endothelial nitric oxide synthase, eNOS) was transiently upregulated in lung ECs from young but not aged mice following injury. Young mice deficient in eNOS recapitulated the non-resolving lung fibrosis observed in aged animals following injury, suggesting that eNOS directly participates in lung fibrosis resolution. Activation of the NO receptor soluble guanylate cyclase in human lung fibroblasts reduced TGFβ-induced pro-fibrotic gene and protein expression. Additionally, loss of eNOS in human lung ECs reduced the suppression of TGFβ-induced lung fibroblast activation in 2D and 3D co-cultures. Altogether, our results demonstrate that persistent lung fibrosis in aged mice is accompanied by capillary rarefaction, loss of EC identity, and impaired eNOS expression. Targeting vascular function may thus be critical to promote lung repair and fibrosis resolution in aging and IPF.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey A Meridew
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Aja Aravamudhan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Dakota L Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Susan A Austin
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Tho X Pham
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew J Haak
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyoung Moo Choi
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Qi Tan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Adil Haresi
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Nicoară-Farcău O, Rusu I, Stefănescu H, Tanțău M, Badea RI, Procopeț B. Diagnostic challenges in non-cirrhotic portal hypertension - porto sinusoidal vascular disease. World J Gastroenterol 2020; 26:3000-3011. [PMID: 32587444 PMCID: PMC7304099 DOI: 10.3748/wjg.v26.i22.3000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Non-cirrhotic portal hypertension consists of a group of diseases characterized by signs and complications of portal hypertension, which differ from cirrhosis through histological alterations, hemodynamic characterization and, clinical outcome. Because of the similarities in clinical presentation and imaging signs, frequently these patients, and particularly those with porto-sinusoidal vascular disease (PSVD), are misdiagnosed as having liver cirrhosis and thus raising difficulties in their diagnosis. The most challenging differentiation to be considered is between PSVD and cirrhosis and, although not pathognomonic, liver biopsy is still the standard of diagnosis. Although they still require extended validation before being broadly used, new non-invasive methods for the diagnosis of porto-sinusoidal vascular disease, like transient elastography, contrast-enhanced ultrasound or metabolomic profiling, have shown promising results. Another issue is the differentiation between PSVD and chronic extrahepatic portal vein obstruction, especially now when it is known that 40% of patients suffering from PSVD develop portal vein thrombosis. In this particular case, once the portal vein thrombosis occurred, the diagnosis of PSVD is impossible according to the current guidelines. Moreover, so far, the differentiation between PSVD and sinusoidal obstruction syndrome has not been clear so far in particular circumstances. In this review we highlighted the diagnostic challenges regarding the PSVD, as well as the current techniques used in the evaluation of these patients.
Collapse
Affiliation(s)
- Oana Nicoară-Farcău
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca 400000, Romania
- Gastroenterology Department, Regional Institute of Gastroenterology and Hepatology “O. Fodor”, Cluj-Napoca 400000, Romania
| | - Ioana Rusu
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca 400000, Romania
- Pathology Department, Regional Institute of Gastroenterology and Hepatology “O. Fodor”, Cluj-Napoca 400000, Romania
| | - Horia Stefănescu
- Gastroenterology Department, Regional Institute of Gastroenterology and Hepatology “O. Fodor”, Cluj-Napoca 400000, Romania
| | - Marcel Tanțău
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca 400000, Romania
- Gastroenterology Department, Regional Institute of Gastroenterology and Hepatology “O. Fodor”, Cluj-Napoca 400000, Romania
| | - Radu Ion Badea
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca 400000, Romania
- Imagistic Department, Regional Institute of Gastroenterology and Hepatology “O. Fodor”, Cluj-Napoca 400000, Romania
| | - Bogdan Procopeț
- University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca 400000, Romania
- Gastroenterology Department, Regional Institute of Gastroenterology and Hepatology “O. Fodor”, Cluj-Napoca 400000, Romania
| |
Collapse
|
14
|
Han G, Xia X, Pan Z, Lin Y, Li L, Jiao Y, Zhou C, Ding S. Different influence of sulfated chitosan with different sulfonic acid group sites on HUVECs behaviors. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1237-1253. [PMID: 32493148 DOI: 10.1080/09205063.2019.1702764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The vascularization within the scaffold is still a significant challenge in tissue engineering applications. Sulfated chitosan (SCS) as an amazing substance have been used in tissue engineering to stimulate angiogenesis. However, it is not clear whether they have difference in the ability to promote vascularization of SCS with different sulfonic acid group sites. The aim of this study was to evaluate human umbilical vein endothelial cells (HUVECs) viability and differentiation in vitro, affected by three types of sulfated chitosan' i.e. 2-N-6-O-sulfated chitosan (2,6-SCS), 3'6-O-sulfated chitosan (3,6-SCS) and 6-O-sulfated chitosan (6-SCS). The results are showed that all the SCS possesses excellent biological properties to promote HUVECs viability and proliferation. Especially, 2,6-SCS promotes desirable intracellular nitric oxide secretion and capillary tube formation. Meanwhile, 2,6-SCS up-regulate the related gene and protein expression compared with other sulfonic acid group sites SCS and heparin. Therefore, 2,6-SCS is a promising substitute material for angiogenesis and as aqueous formulation can be employed to fabrication functionalization scaffold surface with promoted angiogenesis.
Collapse
Affiliation(s)
- Guijuan Han
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China.,Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou, P. R. China
| | - Xiaohui Xia
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China.,Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou, P. R. China
| | - Zhicheng Pan
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China.,Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou, P. R. China
| | - Yucheng Lin
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China.,Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou, P. R. China
| | - Lihua Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China.,Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou, P. R. China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China.,Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou, P. R. China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China.,Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou, P. R. China
| | - Shan Ding
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China.,Engineering Research Centre of Artificial Organs & Materials, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
15
|
Srivastava SP, Goodwin JE. Cancer Biology and Prevention in Diabetes. Cells 2020; 9:cells9061380. [PMID: 32498358 PMCID: PMC7349292 DOI: 10.3390/cells9061380] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
The available evidence suggests a complex relationship between diabetes and cancer. Epidemiological data suggest a positive correlation, however, in certain types of cancer, a more complex picture emerges, such as in some site-specific cancers being specific to type I diabetes but not to type II diabetes. Reports share common and differential mechanisms which affect the relationship between diabetes and cancer. We discuss the use of antidiabetic drugs in a wide range of cancer therapy and cancer therapeutics in the development of hyperglycemia, especially antineoplastic drugs which often induce hyperglycemia by targeting insulin/IGF-1 signaling. Similarly, dipeptidyl peptidase 4 (DPP-4), a well-known target in type II diabetes mellitus, has differential effects on cancer types. Past studies suggest a protective role of DPP-4 inhibitors, but recent studies show that DPP-4 inhibition induces cancer metastasis. Moreover, molecular pathological mechanisms of cancer in diabetes are currently largely unclear. The cancer-causing mechanisms in diabetes have been shown to be complex, including excessive ROS-formation, destruction of essential biomolecules, chronic inflammation, and impaired healing phenomena, collectively leading to carcinogenesis in diabetic conditions. Diabetes-associated epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndMT) contribute to cancer-associated fibroblast (CAF) formation in tumors, allowing the epithelium and endothelium to enable tumor cell extravasation. In this review, we discuss the risk of cancer associated with anti-diabetic therapies, including DPP-4 inhibitors and SGLT2 inhibitors, and the role of catechol-o-methyltransferase (COMT), AMPK, and cell-specific glucocorticoid receptors in cancer biology. We explore possible mechanistic links between diabetes and cancer biology and discuss new therapeutic approaches.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, Yale University, New Haven, CT 06520-8064, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520-8066, USA
- Correspondence: (S.P.S.); (J.E.G.)
| |
Collapse
|
16
|
Cao T, Jiang Y, Li D, Sun X, Zhang Y, Qin L, Tellides G, Taylor HS, Huang Y. H19/TET1 axis promotes TGF-β signaling linked to endothelial-to-mesenchymal transition. FASEB J 2020; 34:8625-8640. [PMID: 32374060 PMCID: PMC7364839 DOI: 10.1096/fj.202000073rrrrr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
While emerging evidence suggests the link between endothelial activation of TGF-β signaling, induction of endothelial-to-mesenchymal transition (EndMT), and cardiovascular disease (CVD), the molecular underpinning of this connection remains enigmatic. Here, we report aberrant expression of H19 lncRNA and TET1 in endothelial cells (ECs) of human atherosclerotic coronary arteries. Using primary human umbilical vein endothelial cells (HUVECs) and aortic endothelial cells (HAoECs) we show that TNF-α, a known risk factor for endothelial dysfunction and CVD, induces H19 expression which in turn activates TGF-β signaling and EndMT via a TET1-dependent epigenetic mechanism. We also show that H19 regulates TET1 expression at the posttranscriptional level. Further, we provide evidence that this H19/TET1-mediated regulation of TGF-β signaling and EndMT occurs in mouse pulmonary microvascular ECs in vivo under hyperglycemic conditions. We propose that endothelial activation of the H19/TET1 axis may play an important role in EndMT and perhaps CVD.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ying Jiang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Da Li
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoli Sun
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanyuan Zhang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Sun X, Harris EN. New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2020; 318:C1200-C1213. [PMID: 32374676 DOI: 10.1152/ajpcell.00062.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The liver is the central metabolic hub for carbohydrate, lipid, and protein metabolism. It is composed of four major types of cells, including hepatocytes, endothelial cells (ECs), Kupffer cells, and stellate cells. Hepatic ECs are highly heterogeneous in both mice and humans, representing the second largest population of cells in liver. The majority of them line hepatic sinusoids known as liver sinusoidal ECs (LSECs). The structure and biology of LSECs and their roles in physiology and liver disease were reviewed recently. Here, we do not give a comprehensive review of LSEC structure, function, or pathophysiology. Instead, we focus on the recent progress in LSEC research and other hepatic ECs in physiology and nonalcoholic fatty liver disease and other hepatic fibrosis-related conditions. We discuss several current areas of interest, including capillarization, scavenger function, autophagy, cellular senescence, paracrine effects, and mechanotransduction. In addition, we summarize the strengths and weaknesses of evidence for the potential role of endothelial-to-mesenchymal transition in liver fibrosis.
Collapse
Affiliation(s)
- Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, Lincoln, Nebraska.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska.,Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, Lincoln, Nebraska.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
18
|
Ma J, Sanchez-Duffhues G, Goumans MJ, ten Dijke P. TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Front Cell Dev Biol 2020; 8:260. [PMID: 32373613 PMCID: PMC7187792 DOI: 10.3389/fcell.2020.00260] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Endothelial to mesenchymal transition (EndMT) is a complex biological process that gives rise to cells with multipotent potential. EndMT is essential for the formation of the cardiovascular system during embryonic development. Emerging results link EndMT to the postnatal onset and progression of fibrotic diseases and cancer. Moreover, recent reports have emphasized the potential for EndMT in tissue engineering and regenerative applications by regulating the differentiation status of cells. Transforming growth factor β (TGF-β) engages in many important physiological processes and is a potent inducer of EndMT. In this review, we first summarize the mechanisms of the TGF-β signaling pathway as it relates to EndMT. Thereafter, we discuss the pivotal role of TGF-β-induced EndMT in the development of cardiovascular diseases, fibrosis, and cancer, as well as the potential application of TGF-β-induced EndMT in tissue engineering.
Collapse
Affiliation(s)
- Jin Ma
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Peter ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
Zhang M, Weng H, Zheng J. NAD + repletion inhibits the endothelial-to-mesenchymal transition induced by TGF-β in endothelial cells through improving mitochondrial unfolded protein response. Int J Biochem Cell Biol 2019; 117:105635. [PMID: 31626975 DOI: 10.1016/j.biocel.2019.105635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/03/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT) plays an important role in the progression of cardiac fibrosis but its mechanism and treatment need to be further understood. Herein, we have found that mitochondrial unfolded protein response (mtUPR) played a critical role in transforming growth factor beta 1 (TGF-β1)-induced EndMT in endothelial cells (ECs). MtUPR was repressed in endothelial cells after exposure to TGF-β1. NAD + precursor nicotinamide riboside (NR) could attenuate TGF-β1-induced EndMT and improve the levels of mtUPR. Significantly, prohibitin proteins (PHB and PHB2) was also regulated by nicotinamide riboside. Moreover, we found that inhibition of prohibitin proteins could prevent the protective effect of nicotinamide riboside on mtUPR and TGF-β1-induced EndMT. Overexpression of prohibitin proteins could alleviate mitochondrial function and TGF-β1-induced EndMT through improving mtUPR. In vivo, The EndMT of ECs induced by Transverse aortic constriction (TAC) in mouse was inhibited by NR. In conclusion, our results indicate that nicotinamide riboside improved the expression of prohibitin proteins to ameliorate EndMT via promotion of mtUPR. Nicotinamide riboside is a potential therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Minxue Zhang
- Departments of Cardiology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, PR China
| | - Haixu Weng
- ICU, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, PR China
| | - Juke Zheng
- Departments of Cardiology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, PR China.
| |
Collapse
|
20
|
Srivastava SP, Hedayat AF, Kanasaki K, Goodwin JE. microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney. Front Pharmacol 2019; 10:904. [PMID: 31474862 PMCID: PMC6707424 DOI: 10.3389/fphar.2019.00904] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
microRNAs (miRNAs) are small, non-coding nucleotides that regulate diverse biological processes. Altered microRNA biosynthesis or regulation contributes to pathological processes including kidney fibrosis. Kidney fibrosis is characterized by deposition of excess extracellular matrix (ECM), which is caused by infiltration of immune cells, inflammatory cells, altered chemokines, and cytokines as well as activation and accumulation of fibroblasts in the kidney. These activated fibroblasts can arise from epithelial cells via epithelial-to-mesenchymal transition (EMT), from bone marrow-derived M2 phenotype macrophages via macrophage-to-mesenchymal transition (MMT), from endothelial cells via endothelial-to-mesenchymal transition (EndMT), from resident fibroblasts, and from bone marrow-derived monocytes and play a crucial role in fibrotic events. Disrupted microRNA biosynthesis and aberrant regulation contribute to the activation of mesenchymal programs in the kidney. miR-29 regulates the interaction between dipeptidyl peptidase-4 (DPP-4) and integrin β1 and the associated active transforming growth factor β (TGFβ) and pro-EndMT signaling; however, miR-let-7 targets transforming growth factor β receptors (TGFβRs) to inhibit TGFβ signaling. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous anti-fibrotic peptide, which is associated with fibroblast growth factor receptor 1 (FGFR1) phosphorylation and subsequently responsible for the production of miR-let-7. miR-29 and miR-let-7 family clusters participate in crosstalk mechanisms, which are crucial for endothelial cell homeostasis. The physiological level of AcSDKP is vital for the activation of anti-fibrotic mechanisms including restoration of anti-fibrotic microRNA crosstalk and suppression of profibrotic signaling by mitigating DPP-4-associated mesenchymal activation in the epithelial cells, endothelial cells, and M2 phenotype macrophages. The present review highlights recent advancements in the understanding of both the role of microRNAs in the development of kidney disease and their potential as novel therapeutic targets for fibrotic disease states.
Collapse
Affiliation(s)
| | - Ahmad Fahim Hedayat
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
Piera-Velazquez S, Jimenez SA. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol Rev 2019; 99:1281-1324. [PMID: 30864875 DOI: 10.1152/physrev.00021.2018] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Sartor C, Bachelot L, Godard C, Lager F, Renault G, Gonzalez FJ, Perret C, Gougelet A, Colnot S. The concomitant loss of APC and HNF4α in adult hepatocytes does not contribute to hepatocarcinogenesis driven by β-catenin activation. Liver Int 2019; 39:727-739. [PMID: 30721564 PMCID: PMC7387933 DOI: 10.1111/liv.14068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Loss of hepatocyte nuclear factor-4α (HNF4α), a critical factor driving liver development and differentiation, is frequently associated with hepatocellular carcinoma (HCC). Our recent data revealed that HNF4α level was decreased in mouse and human HCCs with activated β-catenin signalling. In addition, increasing HNF4α level by miR-34a inhibition slowed tumour progression of β-catenin-activated HCC in mice. METHODS We generated a Hnf4aflox/flox/ Apcflox/flox /TTR-CreERT2 (Hnf4a/Apc∆Hep ) mouse line and evaluated the impact of Hnf4a disruption on HCC development and liver homoeostasis. RESULTS There was no significant impact of Hnf4a disruption on tumour onset and progression in Apc∆Hep model. However, we observed an unexpected phenotype in 28% of Hnf4a∆Hep mice maintained in a conventional animal facility, which presented disorganized portal triads, characterized by stenosis of the portal vein and increased number and size of hepatic arteries and bile ducts. These abnormal portal structures resemble the human idiopathic non-cirrhotic portal hypertension syndrome. We correlated the presence of portal remodelling with a higher expression of protein and mRNA levels of TGFβ and BMP7, a key regulator of the TGFβ-dependent endothelial-to-mesenchymal transition. CONCLUSION These data demonstrate that HNF4α does not play a major role during β-catenin-driven HCC, thus revealing that the tumour suppressor role of HNF4α is far more complex and dependent probably on its temporal expression and tumour context. However, HNF4α loss in adult hepatocytes could induce abnormal portal structures resembling the human idiopathic non-cirrhotic portal hypertension syndrome, which may result from endothelial- and epithelial-to-mesenchymal transitions.
Collapse
Affiliation(s)
- Chiara Sartor
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Equipe labellisée LNCC, Paris, France
| | - Laura Bachelot
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Equipe labellisée LNCC, Paris, France
| | - Cécile Godard
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Equipe labellisée LNCC, Paris, France
| | - Franck Lager
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Plateforme Imageries du Vivant – PIV, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Gilles Renault
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Plateforme Imageries du Vivant – PIV, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | - Christine Perret
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Equipe labellisée LNCC, Paris, France
| | - Angélique Gougelet
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Equipe labellisée LNCC, Paris, France
| | - Sabine Colnot
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Equipe labellisée LNCC, Paris, France
| |
Collapse
|
23
|
Hao YM, Yuan HQ, Ren Z, Qu SL, Liu LS, Dang-HengWei, Yin K, Fu M, Jiang ZS. Endothelial to mesenchymal transition in atherosclerotic vascular remodeling. Clin Chim Acta 2018; 490:34-38. [PMID: 30571947 DOI: 10.1016/j.cca.2018.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Abstract
Endothelial cells are the main components of the heart, blood vessels, and lymphatic vessels, which play an important role in regulating the physiological functions of the cardiovascular system. Endothelial dysfunction is involved in a variety of acute and chronic cardiovascular diseases. As a special type of epithelial-mesenchymal transition (EMT), endothelium to mesenchymal transition (EndMT) regulates the transformation of endothelial cells into mesenchymal cells accompanied by changes in the expression of various transcription factors and cytokines, which is closely related to vascular endothelial injury, vascular remodeling, myocardial fibrosis and valvar disease. Endothelial cells undergoing EndMT lose their endothelial characteristics and undergo a transition toward a more mesenchymal-like phenotype. However, the molecular mechanism of EndMT remains unclear. EndMT, as a type of endothelial dysfunction, can cause vascular remodeling which is a major determinant of atherosclerotic luminal area. Therefore, exploring the important signaling pathways in the process of EndMT may provide novel therapeutic strategies for treating atherosclerotic diseases.
Collapse
Affiliation(s)
- Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Dang-HengWei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China
| | - Kai Yin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China; Research Lab of Translational Medicine, Medical School, University of South China, Hengyang 421001, PR China
| | - Mingui Fu
- Department of Biomedical Science, Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
24
|
Kondo R, Kage M, Iijima H, Fujimoto J, Nishimura T, Aizawa N, Akiba J, Naito Y, Kusano H, Nakayama M, Mihara Y, Tanigawa M, Yano H. Pathological findings that contribute to tissue stiffness in the spleen of liver cirrhosis patients. Hepatol Res 2018; 48:1000-1007. [PMID: 29766631 DOI: 10.1111/hepr.13195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
AIM Spleen stiffness is increased in liver cirrhosis (LC). We attempted to characterize the pathological features of spleen in LC. METHODS We compared pathological findings of resected spleen tissues of 28 LC patients and those of six healthy controls. In addition, we measured spleen stiffness before splenectomy by shear wave elastography in nine LC patients. After splenectomy, we examined the relationship between spleen stiffness and pathological findings. RESULTS Passive congestion of the spleen was more frequently observed in LC patients than in controls (P < 0.01). The sinus was wider in LC patients than in controls (P < 0.01). In the spleens of the LC patients, diffuse α-smooth muscle actin (αSMA) expression of sinusoidal mesenchymal cells and deposition of collagen fibers on the perisinusoidal wall were observed. In nine LC patients whose spleen stiffness was examined, the width of the sinus increased along with spleen stiffness (r = 0.89, P < 0.01). Spleen stiffness was higher in the spleen tissues with diffuse αSMA expression of sinusoidal mesenchymal cells than in those with partial αSMA expression of sinusoidal mesenchymal cells (P = 0.01). The degree of fibrosis was higher in the LC patients with diffuse αSMA expression of the red pulp than in those with partial αSMA expression of the red pulp (P = 0.03). CONCLUSION In the LC patients, spleen tissues showed passive congestion with a dilated sinus, diffuse αSMA expression of sinusoidal mesenchymal cells, and deposition of collagen fibers on the perisinusoidal wall. This contributed to spleen stiffness.
Collapse
Affiliation(s)
- Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Masayoshi Kage
- Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Hiroko Iijima
- Ultrasound Imaging Center, Division of Hepatobiliary and Pancreatic Disease, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Fujimoto
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takashi Nishimura
- Ultrasound Imaging Center, Division of Hepatobiliary and Pancreatic Disease, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nobuhiro Aizawa
- Ultrasound Imaging Center, Division of Hepatobiliary and Pancreatic Disease, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Yoshiki Naito
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | - Hironori Kusano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Masamichi Nakayama
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Yutaro Mihara
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Masahiko Tanigawa
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
25
|
Rol N, Kurakula KB, Happé C, Bogaard HJ, Goumans MJ. TGF-β and BMPR2 Signaling in PAH: Two Black Sheep in One Family. Int J Mol Sci 2018; 19:ijms19092585. [PMID: 30200294 PMCID: PMC6164161 DOI: 10.3390/ijms19092585] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Knowledge pertaining to the involvement of transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling in pulmonary arterial hypertension (PAH) is continuously increasing. There is a growing understanding of the function of individual components involved in the pathway, but a clear synthesis of how these interact in PAH is currently lacking. Most of the focus has been on signaling downstream of BMPR2, but it is imperative to include the role of TGF-β signaling in PAH. This review gives a state of the art overview of disturbed signaling through the receptors of the TGF-β family with respect to vascular remodeling and cardiac effects as observed in PAH. Recent (pre)-clinical studies in which these two pathways were targeted will be discussed with an extended view on cardiovascular research fields outside of PAH, indicating novel future perspectives.
Collapse
Affiliation(s)
- Nina Rol
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Konda Babu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands.
| | - Chris Happé
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Harm Jan Bogaard
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands.
| |
Collapse
|
26
|
Nguyen EH, Murphy WL. Customizable biomaterials as tools for advanced anti-angiogenic drug discovery. Biomaterials 2018; 181:53-66. [PMID: 30077137 DOI: 10.1016/j.biomaterials.2018.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
The inhibition of angiogenesis is a critical element of cancer therapy, as cancer vasculature contributes to tumor expansion. While numerous drugs have proven to be effective at disrupting cancer vasculature, patient survival has not significantly improved as a result of anti-angiogenic drug treatment. Emerging evidence suggests that this is due to a combination of unintended side effects resulting from the application of anti-angiogenic compounds, including angiogenic rebound after treatment and the activation of metastasis in the tumor. There is currently a need to better understand the far-reaching effects of anti-angiogenic drug treatments in the context of cancer. Numerous innovations and discoveries in biomaterials design and tissue engineering techniques are providing investigators with tools to develop physiologically relevant vascular models and gain insights into the holistic impact of drug treatments on tumors. This review examines recent advances in the design of pro-angiogenic biomaterials, specifically in controlling integrin-mediated cell adhesion, growth factor signaling, mechanical properties and oxygen tension, as well as the implementation of pro-angiogenic materials into sophisticated co-culture models of cancer vasculature.
Collapse
Affiliation(s)
- Eric H Nguyen
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Human Models for Analysis of Pathways (Human MAPs) Center, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA; Human Models for Analysis of Pathways (Human MAPs) Center, University of Wisconsin, Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
27
|
Chen Y, Yang Q, Zhan Y, Ke J, Lv P, Huang J. The role of miR-328 in high glucose-induced endothelial-to-mesenchymal transition in human umbilical vein endothelial cells. Life Sci 2018; 207:110-116. [PMID: 29859985 DOI: 10.1016/j.lfs.2018.05.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/19/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
AIMS Endothelial-to-mesenchymal transition (EndMT) contribute to diabetic cardiac fibrosis, the underlying mechanisms are poorly understood. In the study, we aimed to investigate the role of miR-328 in EndMT mediated by high glucose (HG) and the signaling pathways implicated in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS EndMT of HUVECs was determined by immunofluorescent staining and western blot of the markers CD31 and α-SMA. Real-time polymerase chain reaction was used to detect mRNA expression of miR-328 and transforming growth factor β1 (TGF-β1). SB431542 was used to study the relation of miR-328 and TGF-β1 during EndMT induced by HG. Over-expression and inhibition of miR-328 were achieved by transduction of miR-328 and antagomiR-328. The effects of miR-328 on expression of type I and III collagen, p-MEK1/2, p-ERK1/2 were examined by Western blot. KEY FINDINGS The level of miR-328 was significantly up-regulated in HG-induced EndMT. MiR-328 showed the independent capability of inducing EndMT, which was not related to TGF-β1, and this effect was abrogated by antagomiR-328. MiR-328 affected type I collagen in a time- and dose-dependent manner and enhanced protein expression of type I and III collagens. Further investigation displayed that a significantly higher expression of p-MEK1/2 and p-ERK1/2 in HUVECs transduced with miR-328, and a lower expression of p-MEK1/2 and p-ERK1/2 in cells transduced with antagomiR-328. SIGNIFICANCE These results suggest a novel role for miR-328 in HG-induced EndMT, MEK1/2-ERK1/2 pathway is likely to be involved in the associated effects. Our findings may suggest antagomiR-328 as an alternative agent in prevention of HG-induced EndMT.
Collapse
Affiliation(s)
- Yunxiao Chen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qin Yang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuliang Zhan
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Junsong Ke
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ping Lv
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jun Huang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
28
|
Wesseling M, Sakkers TR, de Jager SCA, Pasterkamp G, Goumans MJ. The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascul Pharmacol 2018; 106:1-8. [PMID: 29471141 DOI: 10.1016/j.vph.2018.02.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 12/26/2022]
Abstract
Cell transdifferentiation occurs during cardiovascular development or remodeling either as a pathologic feature in the progression of disease or as a response to injury. Endothelial-to-Mesenchymal Transition (EndMT) is a process that is classified as a specialized form of Epithelial-to-Mesenchymal Transition (EMT), in which epithelial cells lose their epithelial characteristics and gain a mesenchymal phenotype. During transdifferentiation, cells lose both cell-cell contacts and their attachment to the basement membrane. Subsequently, the shape of the cells changes from a cuboidal to an elongated shape. A rearrangement of actin filaments facilitates the cells to become motile and prime their migration into the underlying tissue. EMT is a key process during embryonic development, wound healing and tissue regeneration, but has also been implicated in pathophysiological processes, such organ fibrosis and tumor metastases. EndMT has been associated with additional pathophysiological processes in cardiovascular related diseases, including atherosclerosis. Recent studies prove a significant role for EndMT in the progression and destabilization of atherosclerotic plaques, as a consequence of EndMT-derived fibroblast infiltration and the increased secretion of matrix metalloproteinase respectively. In this review we will discuss the essential molecular and morphological mechanisms of EMT and EndMT, along with their common denominators and key differences. Finally, we will discuss the role of EMT/EndMT in developmental and pathophysiological processes, focusing on the potential role of EndMT in atherosclerosis in more depth.
Collapse
Affiliation(s)
- M Wesseling
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Clinical Chemistry and Histology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T R Sakkers
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S C A de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G Pasterkamp
- Laboratory of Clinical Chemistry and Histology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Goumans
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
29
|
Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res 2018; 114:565-577. [DOI: 10.1093/cvr/cvx253] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Martin C Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| |
Collapse
|
30
|
Zhang H, Liu Y, Yan L, Du W, Zhang X, Zhang M, Chen H, Zhang Y, Zhou J, Sun H, Zhu D. Bone morphogenetic protein-7 inhibits endothelial-mesenchymal transition in pulmonary artery endothelial cell under hypoxia. J Cell Physiol 2017; 233:4077-4090. [PMID: 28926108 DOI: 10.1002/jcp.26195] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
Pulmonary artery hypertension (PAH) is characterized by structural changes in pulmonary arteries. Increased numbers of cells expressing α-smooth muscle actin (α-SMA) is a nearly universal finding in the remodeled artery. It has been confirmed endothelial-to-mesenchymal transition (EndoMT) may be a source of those α-SMA-expressing cells. In addition, the EndoMT is reversible. Here, we show that under hypoxia, the expression of bone morphogenetic protein 7 (BMP-7) was decreased both in vivo and in vitro. We also found that under normoxia, BMP-7 deficiency induced spontaneous EndoMT and cell migration. The hypoxia-induced EndoMT and cell migration were markedly attenuated after pretreatment with rh-BMP-7. Moreover, m-TOR phosphorylation was involved in EndoMT and BMP-7 suppressed hypoxia-induced m-TORC1 phosphorylation in pulmonary artery endothelial cells. Our results demonstrate that BMP-7 attenuates the hypoxia-induced EndoMT and cell migration by suppressing the m-TORC1 signaling pathway. Our study revealed a novel mechanism underlying the hypoxia-induced EndoMT in pulmonary artery endothelial cells and suggested a new therapeutic strategy targeting EndoMT for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Hongyue Zhang
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| | - Ying Liu
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| | - Lixin Yan
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| | - Wei Du
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang Province, China
| | - Xiaodan Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang Province, China
| | - Min Zhang
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| | - He Chen
- Department of Obstetrics and gynecology, The Second affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yafeng Zhang
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Jianqiu Zhou
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Hanliang Sun
- Medical Laboratory Technology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, China
| | - Daling Zhu
- Department of Biopharmaceutical Sciences, Harbin Medical University-Daqing, Daqing, Heilongjiang, China.,Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, China
| |
Collapse
|
31
|
Sánchez-Duffhues G, García de Vinuesa A, Ten Dijke P. Endothelial-to-mesenchymal transition in cardiovascular diseases: Developmental signaling pathways gone awry. Dev Dyn 2017; 247:492-508. [PMID: 28891150 DOI: 10.1002/dvdy.24589] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
The process named endothelial-to-mesenchymal transition (EndMT) was observed for the first time during the development of the chicken embryo several decades ago. Of interest, accumulating evidence suggests that EndMT plays a critical role in the onset and progression of multiple postnatal cardiovascular diseases. EndMT is controlled by a set of developmental signaling pathways, very similar to the process of epithelial-to-mesenchymal transition, which determine the activity of several EndMT transcriptional effectors. Once activated, these EndMT effectors regulate the expression of endothelial- and mesenchymal-specific genes, in part by interacting with specific motifs in promoter regions, eventually leading to the down-regulation of endothelial-specific features and acquisition of a fibroblast-like phenotype. Important technical advances in lineage tracing methods combined with experimental mouse models demonstrated the pathophysiological importance of EndMT for human diseases. In this review, we discuss the major signal transduction pathways involved in the activation and regulation of the EndMT program. Furthermore, we will review the latest discoveries on EndMT, focusing on cardiovascular diseases, and in particular on its role in vascular calcification, pulmonary arterial hypertension, and organ fibrosis. Developmental Dynamics 247:492-508, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| | - Amaya García de Vinuesa
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| |
Collapse
|
32
|
Li M, Hong W, Hao C, Li L, Wu D, Shen A, Lu J, Zheng Y, Li P, Xu Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. FASEB J 2017; 32:500-511. [PMID: 28970250 DOI: 10.1096/fj.201700612r] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
Abstract
Hepatic stellate cells (HSCs) are a major source of fibrogenesis in the liver, contributing to cirrhosis. When activated, HSCs transdifferentiate into myofibroblasts and undergo profound functional alterations paralleling an overhaul of the transcriptome, the mechanism of which remains largely undefined. We investigated the involvement of the class III deacetylase sirtuin [silent information regulator 1 (SIRT1)] in HSC activation and liver fibrosis. SIRT1 levels were down-regulated in the livers in mouse models of liver fibrosis, in patients with cirrhosis, and in activated HSCs as opposed to quiescent HSCs. SIRT1 activation halted, whereas SIRT1 inhibition promoted, HSC transdifferentiation into myofibroblasts. Liver fibrosis was exacerbated in mice with HSC-specific deletion of SIRT1 [conditional knockout (cKO)], receiving CCl4 (1 mg/kg) injection or subjected to bile duct ligation, compared to wild-type littermates. SIRT1 regulated peroxisome proliferator activated receptor γ (PPARγ) transcription by deacetylating enhancer of zeste homolog 2 (EZH2) in quiescent HSCs. Finally, EZH2 inhibition or PPARγ activation ameliorated fibrogenesis in cKO mice. In summary, our data suggest that SIRT1 plays an essential role guiding the transition of HSC phenotypes.-Li, M., Hong, W., Hao, C., Li, L., Wu, D., Shen, A., Lu, J., Zheng, Y., Li, P., Xu, Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice.
Collapse
Affiliation(s)
- Min Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Wenxuan Hong
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chenzhi Hao
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Luyang Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Dongmei Wu
- Key Laboratory of Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Aiguo Shen
- Key Laboratory of Inflammation and Molecular Targets, Nantong University College of Medicine, Nantong, China
| | - Jun Lu
- Key Laboratory of Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China;
| | - Yuanlin Zheng
- Key Laboratory of Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ping Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Innovative Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China;
| |
Collapse
|
33
|
Pathology of idiopathic non-cirrhotic portal hypertension. Hepatol Int 2017; 11:409-411. [DOI: 10.1007/s12072-017-9823-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023]
|
34
|
Li J, Shi S, Srivastava SP, Kitada M, Nagai T, Nitta K, Kohno M, Kanasaki K, Koya D. FGFR1 is critical for the anti-endothelial mesenchymal transition effect of N-acetyl-seryl-aspartyl-lysyl-proline via induction of the MAP4K4 pathway. Cell Death Dis 2017; 8:e2965. [PMID: 28771231 PMCID: PMC5596544 DOI: 10.1038/cddis.2017.353] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been shown to contribute to organ fibrogenesis, and we have reported that the anti-EndMT effect of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is associated with restoring expression of diabetes-suppressed fibroblast growth factor receptor (FGFR), the key anti-EndMT molecule. FGFR1 is the key inhibitor of EndMT via the suppression of the transforming growth factor β (TGFβ) signaling pathway, and mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) inhibits integrin β1, a key factor in activating TGFβ signaling and EndMT. Here, we showed that the close proximity between AcSDKP and FGFR1 was essential for the suppression of TGFβ/smad signaling and EndMT associated with MAP4K4 phosphorylation (P-MAP4K4) in endothelial cells. In cultured human dermal microvascular endothelial cells (HMVECs), the anti-EndMT and anti-TGFβ/smad effects of AcSDKP were lost following treatment with a neutralizing FGFR1 antibody (N-FGFR1) or transfection of FRS2 siRNA. The physical interaction between FGFR1 and P-MAP4K4 in HMVECs was confirmed by proximity ligation analysis and an immunoprecipitation assay. AcSDKP induced P-MAP4K4 in HMVECs, which was significantly inhibited by treatment with either N-FGFR1 or FRS2 siRNA. Furthermore, MAP4K4 knockdown using specific siRNAs induced smad3 phosphorylation and EndMT in HMVECs, which was not suppressed by AcSDKP. Streptozotocin-induced diabetic CD-1 mice exhibited suppression of both FGFR1 and P-MAP4K4 expression levels associated with the induction of TGFβ/smad3 signaling and EndMT in their hearts and kidneys; those were restored by AcSDKP treatment. These data demonstrate that the AcSDKP-FGFR1-MAP4K4 axis has an important role in combating EndMT-associated fibrotic disorders.
Collapse
Affiliation(s)
- Jinpeng Li
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Sen Shi
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | | | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Takako Nagai
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Kyoko Nitta
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
| | - Miyuki Kohno
- Department of Pediatric Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
35
|
Manetti M, Romano E, Rosa I, Guiducci S, Bellando-Randone S, De Paulis A, Ibba-Manneschi L, Matucci-Cerinic M. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann Rheum Dis 2017; 76:924-934. [PMID: 28062404 DOI: 10.1136/annrheumdis-2016-210229] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/15/2016] [Accepted: 12/17/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) features multiorgan fibrosis orchestrated predominantly by activated myofibroblasts. Endothelial-to-mesenchymal transition (EndoMT) is a transdifferentiation by which endothelial cells (ECs) lose their specific morphology/markers and acquire myofibroblast-like features. Here, we determined the possible contribution of EndoMT to the pathogenesis of dermal fibrosis in SSc and two mouse models. METHODS Skin sections were immunostained for endothelial CD31 or vascular endothelial (VE)-cadherin in combination with α-smooth muscle actin (α-SMA) myofibroblast marker. Dermal microvascular ECs (dMVECs) were prepared from SSc and healthy skin (SSc-dMVECs and H-dMVECs). H-dMVECs were treated with transforming growth factor-β1 (TGFβ1) or SSc and healthy sera. Endothelial/mesenchymal markers were assessed by real-time PCR, immunoblotting and immunofluorescence. Cell contractile phenotype was assayed by collagen gel contraction. RESULTS Cells in intermediate stages of EndoMT were identified in dermal vessels of either patients with SSc or bleomycin-induced and urokinase-type plasminogen activator receptor (uPAR)-deficient mouse models. At variance with H-dMVECs, SSc-dMVECs exhibited a spindle-shaped appearance, co-expression of lower levels of CD31 and VE-cadherin with myofibroblast markers (α-SMA+ stress fibres, S100A4 and type I collagen), constitutive nuclear localisation of the EndoMT driver Snail1 and an ability to effectively contract collagen gels. Treatment of H-dMVECs either with SSc sera or TGFβ1 resulted in the acquisition of a myofibroblast-like morphology and contractile phenotype and downregulation of endothelial markers in parallel with the induction of mesenchymal markers. Matrix metalloproteinase-12-dependent uPAR cleavage was implicated in the induction of EndoMT by SSc sera. CONCLUSIONS In SSc, EndoMT may be a crucial event linking endothelial dysfunction and development of dermal fibrosis.
Collapse
Affiliation(s)
- Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Rheumatology Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Rheumatology Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Rheumatology Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Rheumatology Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Lidia Ibba-Manneschi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, Rheumatology Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), University of Florence, Florence, Italy
| |
Collapse
|
36
|
Xiao L, Dudley AC. Fine-tuning vascular fate during endothelial-mesenchymal transition. J Pathol 2017; 241:25-35. [PMID: 27701751 PMCID: PMC5164846 DOI: 10.1002/path.4814] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
In the heart and other organs, endothelial-mesenchymal transition (EndMT) has emerged as an important developmental process that involves coordinated migration, differentiation, and proliferation of the endothelium. In multiple disease states including cancer angiogenesis and cardiovascular disease, the processes that regulate EndMT are recapitulated, albeit in an uncoordinated and dysregulated manner. Members of the transforming growth factor beta (TGFβ) superfamily are well known to impart cellular plasticity during EndMT by the timely activation (or repression) of transcription factors and miRNAs in addition to epigenetic regulation of gene expression. On the other hand, fibroblast growth factors (FGFs) are reported to augment or oppose TGFβ-driven EndMT in specific contexts. Here, we have synthesized the currently understood roles of TGFβ and FGF signalling during EndMT and have provided a new, comprehensive paradigm that delineates how an autocrine and paracrine TGFβ/FGF axis coordinates endothelial cell specification and plasticity. We also provide new guidelines and nomenclature that considers factors such as endothelial cell heterogeneity to better define EndMT across different vascular beds. This perspective should therefore help to clarify why TGFβ and FGF can both cooperate with or oppose one another during the complex process of EndMT in both health and disease. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew C. Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, VA 22908, USA
- Emily Couric Cancer Center, The University of Virginia
| |
Collapse
|
37
|
Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH, Jain MK, Owens GK, Schwartz M, Lampugnani MG, Dejana E. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 2016; 8:6-24. [PMID: 26612856 PMCID: PMC4718159 DOI: 10.15252/emmm.201505433] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular malformations located within the central nervous system often resulting in cerebral hemorrhage. Pharmacological treatment is needed, since current therapy is limited to neurosurgery. Familial CCM is caused by loss‐of‐function mutations in any of Ccm1, Ccm2, and Ccm3 genes. CCM cavernomas are lined by endothelial cells (ECs) undergoing endothelial‐to‐mesenchymal transition (EndMT). This switch in phenotype is due to the activation of the transforming growth factor beta/bone morphogenetic protein (TGFβ/BMP) signaling. However, the mechanism linking Ccm gene inactivation and TGFβ/BMP‐dependent EndMT remains undefined. Here, we report that Ccm1 ablation leads to the activation of a MEKK3‐MEK5‐ERK5‐MEF2 signaling axis that induces a strong increase in Kruppel‐like factor 4 (KLF4) in ECs in vivo. KLF4 transcriptional activity is responsible for the EndMT occurring in CCM1‐null ECs. KLF4 promotes TGFβ/BMP signaling through the production of BMP6. Importantly, in endothelial‐specific Ccm1 and Klf4 double knockout mice, we observe a strong reduction in the development of CCM and mouse mortality. Our data unveil KLF4 as a therapeutic target for CCM.
Collapse
Affiliation(s)
| | - Noemi Rudini
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Luca Bravi
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Monica Corada
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Costanza Giampietro
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy Department of Biosciences, University of Milan, Milan, Italy
| | - Eleanna Papa
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy on leave of absence at Department of Neurology, Laboratory for Molecular Neuro-Oncology University Hospital Zurich, Zurich, Switzerland
| | - Marco Francesco Morini
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy on leave of absence at Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Luigi Maddaluno
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy on leave of absence at Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Ralf H Adams
- Department of Tissue Morphogenesis, Faculty of Medicine, Max Planck Institute for Molecular Biomedicine University of Münster, Münster, Germany
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Cleveland, OH, USA Harrington Heart & Vascular Institute, Cleveland, OH, USA Department of Medicine University Hospitals Case Medical Center, Cleveland, OH, USA Case Western Reserve University School of Medicine University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Maria Grazia Lampugnani
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy Mario Negri Institute of Pharmacological Research, Milan, Italy
| | - Elisabetta Dejana
- IFOM the FIRC Institute of Molecular Oncology, Milan, Italy Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden Department of Oncology and Oncohematology, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This article assesses the role of the mesentery in Crohn's disease. RECENT FINDINGS The mesentery is centrally positioned both anatomically and physiologically. Overlapping mesenteric and submucosal mesenchymal contributions are important in the pathobiology of Crohn's disease. Mesenteric contributions explain the topographic distribution of Crohn's disease in general and mucosal disease in particular. Operative strategies that are mesenteric based (i.e. mesocolic excision) may reduce rates of postoperative recurrence. SUMMARY The net effect of mesenteric events in Crohn's disease is pathologic. This can be targeted by operative means. VIDEO ABSTRACT http://links.lww.com/COG/A18.
Collapse
|
39
|
Lee WJ, Park JH, Shin JU, Noh H, Lew DH, Yang WI, Yun CO, Lee KH, Lee JH. Endothelial-to-mesenchymal transition induced by Wnt 3a in keloid pathogenesis. Wound Repair Regen 2016; 23:435-42. [PMID: 25845828 DOI: 10.1111/wrr.12300] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/19/2015] [Indexed: 11/27/2022]
Abstract
Endothelial-to-mesenchymal transition is a phenotypic conversion characterized by down-regulation of vascular endothelial markers and the acquisition of a mesenchymal phenotype. We hypothesized that keloid fibroblasts are of endothelial origin and that endothelial-to-mesenchymal transition substantially contributes to collagen accumulation during the development and progression of keloids. Wingless protein (Wnt-3a) protein expression was examined using immunohistochemistry in keloid tissues. Human dermal microvascular endothelial cells (HDMECs) were treated with Wnt-3a. mRNA and protein expression of endothelial (vascular endothelial cadherin) and mesenchymal (vimentin, snail family transcription factor [slug], and α-smooth muscle actin) cell markers were measured using real-time RT-PCR and immunocytochemistry, respectively. Additionally, coexpression of CD31 (cluster of differentiation 31), and endothelial cell marker, and vimentin in the vascular endothelium of keloid tissues was examined using immunofluorescence. Wnt-3a overexpression was observed in human keloid tissues. Wnt-3a treatment significantly reduced vascular endothelial cadherin mRNA expression and induced vimentin and slug mRNA expression in HDMECs. HDMECs became spindle-shaped and exhibited reduced expression of CD31 and increased expression of vimentin, slug, and α-smooth muscle actin. Moreover, coexpression of CD31 and vimentin was observed in the dermal vascular endothelium of keloid tissues from two patients with clinically active keloids. In conclusion, transient conversion of HDMECs to a mesenchymal phenotype may contribute to dermal fibrosis of keloid and hypertrophic scars.
Collapse
Affiliation(s)
- Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hun Park
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jung U Shin
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Noh
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Hyun Lew
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Korea
| | - Woo Ick Yang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Chae Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Kwang Hoon Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hee Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Zhao Y, Qiao X, Wang L, Tan TK, Zhao H, Zhang Y, Zhang J, Rao P, Cao Q, Wang Y, Wang Y, Wang YM, Lee VWS, Alexander SI, Harris DCH, Zheng G. Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. BMC Cell Biol 2016; 17:21. [PMID: 27130612 PMCID: PMC4850690 DOI: 10.1186/s12860-016-0101-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/22/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Endothelial-mesenchymal transition (EndoMT) is a major source of myofibroblast formation in kidney fibrosis. Our previous study showed a profibrotic role for matrix metalloproteinase 9 (MMP-9) in kidney fibrosis via induction of epithelial-mesenchymal transition (EMT). Inhibition of MMP-9 activity reduced kidney fibrosis in murine unilateral ureteral obstruction. This study investigated whether MMP-9 also plays a role in EndoMT in human glomerular endothelial cells. RESULTS TGF-β1 (10 or 20 ng/ml) induced EndoMT in HKGECs as shown by morphological changes. In addition, VE-cadherin and CD31 were significantly downregulated, whereas α-SMA, vimentin, and N-cadherin were upregulated. RT-PCR revealed that Snail, a known inducer of EMT, was upregulated. The MMP inhibitor GM6001 abrogated TGF-β1-induced EndoMT. Zymography indicated that MMP-9 was also upregulated in TGF-β1-treated HKGECs. Recombinant MMP-9 (2 μg/ml) induced EndoMT in HKGECs via Notch signaling, as evidenced by increased formation of the Notch intracellular domain (NICD) and decreased Notch 1. Inhibition of MMP-9 activity by its inhibitor showed a dose-dependent response in preventing TGF-β1-induced α-SMA and NICD in HKGECs, whereas inhibition of Notch signaling by γ-secretase inhibitor (GSI) blocked rMMP-9-induced EndoMT. CONCLUSIONS Taken together, our results demonstrate that MMP-9 plays an important role in TGF-β1-induced EndoMT via upregulation of Notch signaling in HKGECs.
Collapse
Affiliation(s)
- Ye Zhao
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
- />The School of Biomedical Sciences, Chengdu Medical College, Chengdu, 610500 PR China
| | - Xi Qiao
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
- />Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, WuYi Road 382, Taiyuan, 030001 Shanxi PR China
| | - Lihua Wang
- />Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, WuYi Road 382, Taiyuan, 030001 Shanxi PR China
| | - Tian Kui Tan
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
| | - Hong Zhao
- />Department of Biochemistry and Molecular Biology, Shanxi Medical University, Xinjian Road 56, Taiyuan, 030001 Shanxi PR China
| | - Yun Zhang
- />Experimental Centre of Science and Research, the First Clinical Hospital of Shanxi Medical University, Xinjian Road 382, Taiyuan, 030001 Shanxi PR China
| | - Jianlin Zhang
- />Department of Biochemistry and Molecular Biology, Shanxi Medical University, Xinjian Road 56, Taiyuan, 030001 Shanxi PR China
| | - Padmashree Rao
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
| | - Qi Cao
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
| | - Yiping Wang
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
| | - Ya Wang
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
| | - Yuan Min Wang
- />Centre for Kidney Research, Children’s Hospital at Westmead, 212 Hawkesbury Road, Sydney, NSW Australia
| | - Vincent W. S. Lee
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
| | - Stephen I. Alexander
- />Centre for Kidney Research, Children’s Hospital at Westmead, 212 Hawkesbury Road, Sydney, NSW Australia
| | - David C. H. Harris
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
| | - Guoping Zheng
- />Centre for Transplant and Renal Research, Westmead Institute for Medical Research, the University of Sydney, 176 Hawkesbury Road, Sydney, NSW 2145 Australia
| |
Collapse
|
41
|
Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to Mesenchymal Transition (EndoMT) in the Pathogenesis of Human Fibrotic Diseases. J Clin Med 2016; 5:jcm5040045. [PMID: 27077889 PMCID: PMC4850468 DOI: 10.3390/jcm5040045] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 02/08/2023] Open
Abstract
Fibrotic diseases encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis, sclerodermatous graft versus host disease, nephrogenic systemic fibrosis, and IgG₄-associated sclerosing disease, as well as numerous organ-specific disorders including radiation-induced fibrosis, and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrous tissue macromolecules in affected organs leading to their dysfunction and ultimate failure. The pathogenesis of fibrotic diseases is complex and despite extensive investigation has remained elusive. Numerous studies have identified myofibroblasts as the cells responsible for the establishment and progression of the fibrotic process. Tissue myofibroblasts in fibrotic diseases originate from several sources including quiescent tissue fibroblasts, circulating CD34+ fibrocytes, and the phenotypic conversion of various cell types including epithelial and endothelial cells into activated myofibroblasts. However, the role of the phenotypic transition of endothelial cells into mesenchymal cells (Endothelial to Mesenchymal Transition or EndoMT) in the pathogenesis of fibrotic disorders has not been fully elucidated. Here, we review the evidence supporting EndoMT's contribution to human fibrotic disease pathogenesis.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| |
Collapse
|
42
|
Jimenez SA, Piera-Velazquez S. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of Systemic Sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. Myth or reality? Matrix Biol 2016; 51:26-36. [PMID: 26807760 DOI: 10.1016/j.matbio.2016.01.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and multiple internal organs and severe functional and structural microvascular alterations. SSc is considered to be the prototypic systemic fibrotic disorder. Despite currently available therapeutic approaches SSc has a high mortality rate owing to the development of SSc-associated interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH), complications that have emerged as the most frequent causes of disability and mortality in SSc. The pathogenesis of the fibrotic process in SSc is complex and despite extensive investigation the exact mechanisms have remained elusive. Myofibroblasts are the cells ultimately responsible for tissue fibrosis and fibroproliferative vasculopathy in SSc. Tissue myofibroblasts in SSc originate from several sources including expansion of quiescent tissue fibroblasts and tissue accumulation of CD34+ fibrocytes. Besides these sources, myofibroblasts in SSc may result from the phenotypic conversion of endothelial cells into activated myofibroblasts, a process known as endothelial to mesenchymal transition (EndoMT). Recently, it has been postulated that EndoMT may play a role in the development of SSc-associated ILD and PAH. However, although several studies have described the occurrence of EndoMT in experimentally induced cardiac, renal, and pulmonary fibrosis and in several human disorders, the contribution of EndoMT to SSc-associated ILD and PAH has not been generally accepted. Here, the experimental evidence supporting the concept that EndoMT plays a role in the pathogenesis of SSc-associated ILD and PAH will be reviewed.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Scleroderma Center, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA.
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Scleroderma Center, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA; Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10th Street, Suite 509 BLSB, Philadelphia, PA 19107, USA
| |
Collapse
|
43
|
Shi WZ, Yan K, Song JH. Cirrhotic liver regeneration after partial hepatectomy. Shijie Huaren Xiaohua Zazhi 2016; 24:215-221. [DOI: 10.11569/wcjd.v24.i2.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver is an organ with strong regenerative ability, and its regenerative mechanism is very complex. The liver regenerative process is regulated by various kinds of factors, which coordinate highly, and is also influenced by many other factors. Studies have shown that liver cirrhosis is an important factor affecting liver regeneration, and cirrhotic liver shows significantly impaired regenerative function. Liver cancer frequently occurs following cirrhosis in China, so further definition of the regenerative mechanism after partial hepatectomy in these patients has far-reaching significance for improving their prognosis. Nowadays, most studies on the regulatory mechanism of cirrhotic liver regeneration on focused on different signaling pathways and various related cytokines. This review summarizes the findings of these studies.
Collapse
|
44
|
Chen PY, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, Tellides G, Schwartz MA, Simons M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest 2015; 125:4514-28. [PMID: 26517696 DOI: 10.1172/jci82719] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/17/2015] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanisms responsible for the development and progression of atherosclerotic lesions have not been fully established. Here, we investigated the role played by endothelial-to-mesenchymal transition (EndMT) and its key regulator FGF receptor 1 (FGFR1) in atherosclerosis. In cultured human endothelial cells, both inflammatory cytokines and oscillatory shear stress reduced endothelial FGFR1 expression and activated TGF-β signaling. We further explored the link between disrupted FGF endothelial signaling and progression of atherosclerosis by introducing endothelial-specific deletion of FGF receptor substrate 2 α (Frs2a) in atherosclerotic (Apoe(-/-)) mice. When placed on a high-fat diet, these double-knockout mice developed atherosclerosis at a much earlier time point compared with that their Apoe(-/-) counterparts, eventually demonstrating an 84% increase in total plaque burden. Moreover, these animals exhibited extensive development of EndMT, deposition of fibronectin, and increased neointima formation. Additionally, we conducted a molecular and morphometric examination of left main coronary arteries from 43 patients with various levels of coronary disease to assess the clinical relevance of these findings. The extent of coronary atherosclerosis in this patient set strongly correlated with loss of endothelial FGFR1 expression, activation of endothelial TGF-β signaling, and the extent of EndMT. These data demonstrate a link between loss of protective endothelial FGFR signaling, development of EndMT, and progression of atherosclerosis.
Collapse
|
45
|
Yung LM, Sánchez-Duffhues G, Ten Dijke P, Yu PB. Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovasc Res 2015; 108:278-87. [PMID: 26410368 DOI: 10.1093/cvr/cvv221] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 09/11/2015] [Indexed: 12/22/2022] Open
Abstract
AIMS Vascular calcification contributes to mortality and morbidity in atherosclerosis, chronic kidney disease, and diabetes. Vascular calcific lesions contain osteoblast- and chondroblast-like cells, suggesting a process of endochondral or membranous ossification thought to result from the phenotypic plasticity of vascular cells. Bone morphogenetic protein (BMP) signalling potentiates atherosclerotic calcification, whereas BMP inhibition attenuates vascular inflammation and calcification in atherogenic mice. We hypothesized endothelial cells (ECs) may undergo osteogenic differentiation in response to BMP signalling and pro-atherogenic stimuli. METHODS AND RESULTS Among various BMP ligands tested, BMP6 and BMP9 elicited the most potent signalling in bovine aortic endothelial cells (BAEC), however, only BMP6 induced osteogenic differentiation. BMP6 and oxidized low-density lipoprotein (oxLDL) independently and synergistically induced osteogenic differentiation and mineralization, in a manner consistent with endothelial-to-mesenchymal transition. Treatment of ECs with BMP6 or oxLDL individually induced osteogenic and chondrogenic transcription factors Runx2 and Msx2, whereas treatment with BMP6 and oxLDL synergistically up-regulated Osterix and Osteopontin. Production of H2O2 was necessary for oxLDL-induced regulation of Runx2, Msx2, and Osterix in BAEC, and H2O2 was sufficient by itself to up-regulate these genes. Mineralization of ECs in response to BMP6 or oxLDL was abrogated by scavenging reactive oxygen species or inhibiting BMP type I receptor kinases. Similar synergistic effects of BMP and oxLDL upon osteogenic and chondrogenic transcription and phenotypic plasticity in human aortic endothelial cells were observed. CONCLUSION These findings provide a potential mechanism for the observed interactions of BMP signalling, oxidative stress, and inflammation in recruiting vascular calcification associated with atherosclerosis.
Collapse
Affiliation(s)
- Lai-Ming Yung
- Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul B Yu
- Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA
| |
Collapse
|
46
|
Cipriani P, Di Benedetto P, Ruscitti P, Capece D, Zazzeroni F, Liakouli V, Pantano I, Berardicurti O, Carubbi F, Pecetti G, Turricchia S, Alesse E, Iglarz M, Giacomelli R. The Endothelial-mesenchymal Transition in Systemic Sclerosis Is Induced by Endothelin-1 and Transforming Growth Factor-β and May Be Blocked by Macitentan, a Dual Endothelin-1 Receptor Antagonist. J Rheumatol 2015; 42:1808-16. [PMID: 26276964 DOI: 10.3899/jrheum.150088] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE High endothelin-1 (ET-1) and transforming growth factor-β (TGF-β) levels may induce in healthy endothelial cells (EC) an endothelial-to-mesenchymal transition (EndMT). The same cytokines are associated with fibrosis development in systemic sclerosis (SSc). Although EndMT has not been definitively shown in SSc, this process, potentially induced by a stimulatory loop involving these 2 cytokines, overexpressed in this disease might contribute to fibroblast accumulation in affected tissues. Macitentan (MAC), an ET-1 receptor antagonist interfering with this loop, might prevent EndMT and fibroblast accumulation. METHODS EC, isolated from healthy controls (HC) and patients with SSc, were treated with ET-1 and TGF-β and successively analyzed for gene and protein expressions of endothelial and mesenchymal markers, and for Sma- and Mad-related (SMAD) phosphorylation. Further, in the supernatants, we evaluated ET-1 and TGF-β production by ELISA assay. In each assay we evaluated the ability of MAC to inhibit both the TGF-β and ET-1 effects. RESULTS We showed that both TGF-β and ET-1 treatments induced an activation of the EndMT process in SSc-EC as reported in HC cells. The ELISA assays showed a mutual TGF-β and ET-1 induction in both SSc-EC and HC-EC. A statistically significant increase of SMAD phosphorylation after treatment was observed in SSc-EC. In each assay, MAC inhibited both TGF-β and ET-1 effects. CONCLUSION Our work is the first demonstration in literature that SSc-EC, under the synergistic effect of TGF-β and ET-1, may transdifferentiate toward myofibroblasts, thus contributing to fibroblast accumulation. MAC, interfering with this process in vitro, may offer a new potential therapeutic strategy against fibrosis.
Collapse
Affiliation(s)
- Paola Cipriani
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila.
| | - Paola Di Benedetto
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Piero Ruscitti
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Daria Capece
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Francesca Zazzeroni
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Vasiliki Liakouli
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Ilenia Pantano
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Onorina Berardicurti
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Francesco Carubbi
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Gianluca Pecetti
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Stefano Turricchia
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Edoardo Alesse
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Marc Iglarz
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| | - Roberto Giacomelli
- From the Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, and the Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila, L'Aquila; Medical and Scientific Direction, Actelion Pharmaceuticals Italy, Imola, Italy; Drug Discovery Department, Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.P. Cipriani, MD, PhD; P. Di Benedetto, PhD; P. Ruscitti, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; D. Capece, PhD; F. Zazzeroni, PhD, Department of Applied Clinical Sciences and Biotechnology, General Phatology Unit, University of L'Aquila; V. Liakouli, MD, PhD; I. Pantano, MD; O. Berardicurti, MD; F. Carubbi, MD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila; G. Pecetti, MD; S. Turricchia, MD, Medical and Scientific Direction, Actelion Pharmaceuticals Italy; E. Alesse, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, General Pathology Unit, University of L'Aquila; M. Iglarz, PhD, Drug Discovery Department, Actelion Pharmaceuticals Ltd.; R. Giacomelli, MD, PhD, Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L'Aquila
| |
Collapse
|
47
|
Rao J, Brown BN, Weinbaum JS, Ofstun EL, Makaroun MS, Humphrey JD, Vorp DA. Distinct macrophage phenotype and collagen organization within the intraluminal thrombus of abdominal aortic aneurysm. J Vasc Surg 2015. [PMID: 26206580 DOI: 10.1016/j.jvs.2014.11.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Little is known about the etiologic factors that lead to the occurrence of intraluminal thrombus (ILT) during abdominal aortic aneurysm (AAA) development. Recent work has suggested that macrophages may play an important role in progression of a number of other vascular diseases, including atherosclerosis; however, whether these cells are present within the ILT of a progressing AAA is unknown. The purpose of this work was to define the presence, phenotype, and spatial distribution of macrophages within the ILT excised from six patients. We hypothesized that the ILT contains a population of activated macrophages with a distinct, nonclassical phenotypic profile. METHODS ILT samples were examined using histologic staining and immunofluorescent labeling for multiple markers of activated macrophages (cluster of differentiation [CD]45, CD68, human leukocyte antigen-DR, matrix metalloproteinase 9) and the additional markers α-smooth muscle actin, CD34, CD105, fetal liver kinase-1, and collagen I and III. RESULTS Histologic staining revealed a distinct laminar organization of collagen within the shoulder region of the ILT lumen and a spatially heterogeneous cell composition within the ILT. Most of the cellular constituents of the ILT were in the luminal region and predominantly expressed markers of activated macrophages but also concurrently expressed α-smooth muscle actin, CD105, and synthesized collagen I and III. CONCLUSIONS This report presents evidence for the presence of a distinct macrophage population within the luminal region of AAA ILT. These cells express a set of markers indicative of a unique population of activated macrophages. The exact contributions of these previously unrecognized cells to ILT formation and AAA pathobiology remains unknown.
Collapse
Affiliation(s)
- Jayashree Rao
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa
| | - Bryan N Brown
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Justin S Weinbaum
- Department of Bioengineering, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Emily L Ofstun
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pa
| | - Michel S Makaroun
- Department of Surgery, Division of Vascular Surgery, Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, Pa
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Conn
| | - David A Vorp
- Department of Bioengineering, Department of Cardiothoracic Surgery, Department of Surgery, Center for Vascular Remodeling and Regeneration, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
48
|
Good RB, Gilbane AJ, Trinder SL, Denton CP, Coghlan G, Abraham DJ, Holmes AM. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1850-8. [PMID: 25956031 DOI: 10.1016/j.ajpath.2015.03.019] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/03/2015] [Accepted: 03/03/2015] [Indexed: 12/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial cell dysfunction and vascular remodeling. Normally, the endothelium forms an integral cellular barrier to regulate vascular homeostasis. During embryogenesis endothelial cells exhibit substantial plasticity that contribute to cardiac development by undergoing endothelial-to-mesenchymal transition (EndoMT). We determined the presence of EndoMT in the pulmonary vasculature in vivo and the functional effects on pulmonary artery endothelial cells (PAECs) undergoing EndoMT in vitro. Histologic assessment of patients with systemic sclerosis-associated PAH and the hypoxia/SU5416 mouse model identified the presence von Willebrand factor/α-smooth muscle actin-positive endothelial cells in up to 5% of pulmonary vessels. Induced EndoMT in PAECs by inflammatory cytokines IL-1β, tumor necrosis factor α, and transforming growth factor β led to actin cytoskeleton reorganization and the development of a mesenchymal morphology. Induced EndoMT cells exhibited up-regulation of mesenchymal markers, including collagen type I and α-smooth muscle actin, and a reduction in endothelial cell and junctional proteins, including von Willebrand factor, CD31, occludin, and vascular endothelial-cadherin. Induced EndoMT monolayers failed to form viable biological barriers and induced enhanced leak in co-culture with PAECs. Induced EndoMT cells secreted significantly elevated proinflammatory cytokines, including IL-6, IL-8, and tumor necrosis factor α, and supported higher immune transendothelial migration compared with PAECs. These findings suggest that EndoMT may contribute to the development of PAH.
Collapse
Affiliation(s)
- Robert B Good
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Adrian J Gilbane
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Sarah L Trinder
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Christopher P Denton
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Gerry Coghlan
- National Pulmonary Hypertension Service, Royal Free Hospital National Health Service Foundation Trust, London, United Kingdom
| | - David J Abraham
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Alan M Holmes
- Division of Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
49
|
Affiliation(s)
- Mary Jo Mulligan-Kehoe
- From the Department of Surgery, Vascular Section, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.J.M.-K.); and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (M.S.)
| | - Michael Simons
- From the Department of Surgery, Vascular Section, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.J.M.-K.); and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (M.S.)
| |
Collapse
|
50
|
Lee SJ, Kim KH, Park KK. Mechanisms of fibrogenesis in liver cirrhosis: The molecular aspects of epithelial-mesenchymal transition. World J Hepatol 2014; 6:207-216. [PMID: 24799989 PMCID: PMC4009476 DOI: 10.4254/wjh.v6.i4.207] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/09/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023] Open
Abstract
Liver injuries are repaired by fibrosis and regeneration. The cause of fibrosis and diminished regeneration, especially in liver cirrhosis, is still unknown. Epithelial-mesenchymal transition (EMT) has been found to be associated with liver fibrosis. The possibility that EMT could contribute to hepatic fibrogenesis reinforced the concept that activated hepatic stellate cells are not the only key players in the hepatic fibrogenic process and that other cell types, either hepatic or bone marrow-derived cells could contribute to this process. Following an initial enthusiasm for the discovery of this novel pathway in fibrogenesis, more recent research has started to cast serious doubts upon the real relevance of this phenomenon in human fibrogenetic disorders. The debate on the authenticity of EMT or on its contribution to the fibrogenic process has become very animated. The overall result is a general confusion on the meaning and on the definition of several key aspects. The aim of this article is to describe how EMT participates to hepatic fibrosis and discuss the evidence of supporting this possibility in order to reach reasonable and useful conclusions.
Collapse
Affiliation(s)
- Sun-Jae Lee
- Sun-Jae Lee, Kyung-Hyun Kim, Kwan-Kyu Park, Department of Pathology, Catholic University of Daegu, College of Medicine, Daegu, 705-718, South Korea
| | - Kyung-Hyun Kim
- Sun-Jae Lee, Kyung-Hyun Kim, Kwan-Kyu Park, Department of Pathology, Catholic University of Daegu, College of Medicine, Daegu, 705-718, South Korea
| | - Kwan-Kyu Park
- Sun-Jae Lee, Kyung-Hyun Kim, Kwan-Kyu Park, Department of Pathology, Catholic University of Daegu, College of Medicine, Daegu, 705-718, South Korea
| |
Collapse
|