1
|
Ranga V, Dakal TC, Maurya PK, Johnson MS, Sharma NK, Kumar A. Role of RGD-binding Integrins in ovarian cancer progression, metastasis and response to therapy. Integr Biol (Camb) 2025; 17:zyaf003. [PMID: 39916547 DOI: 10.1093/intbio/zyaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/12/2024] [Accepted: 01/29/2025] [Indexed: 05/08/2025]
Abstract
Integrins are transmembrane receptors that play a crucial role in cell adhesion and signaling by connecting the extracellular environment to the intracellular cytoskeleton. After binding with specific ligands in the extracellular matrix (ECM), integrins undergo conformational changes that transmit signals across the cell membrane. The integrin-mediated bidirectional signaling triggers various cellular responses, such as changes in cell shape, migration and proliferation. Irregular integrin expression and activity are closely linked to tumor initiation, angiogenesis, cell motility, invasion, and metastasis. Thus, understanding the intricate regulatory mechanism is essential for slowing cancer progression and preventing carcinogenesis. Among the four classes of integrins, the arginine-glycine-aspartic acid (RGD)-binding integrins stand out as the most crucial integrin receptor subfamily in cancer and its metastasis. Dysregulation of almost all RGD-binding integrins promotes ECM degradation in ovarian cancer, resulting in ovarian carcinoma progression and resistance to therapy. Preclinical studies have demonstrated that targeting these integrins with therapeutic antibodies and ligands, such as RGD-containing peptides and their derivatives, can enhance the precision of these therapeutic agents in treating ovarian cancer. Therefore, the development of novel therapeutic agents is essential for treating ovarian cancer. This review mainly discusses genes and their importance across different ovarian cancer subtypes, the involvement of RGD motif-containing ECM proteins in integrin-mediated signaling in ovarian carcinoma, ongoing, completed, partially completed, and unsuccessful clinical trials of therapeutic agents, as well as existing limitations and challenges, advancements made so far, potential strategies, and directions for future research in the field. Insight Box Integrin-mediated signaling regulates cell migration, proliferation and differentiation. Dysregulated integrin expression and activity promote tumor growth and dissemination. Thus, a proper understanding of this complex regulatory mechanism is essential to delay cancer progression and prevent carcinogenesis. Notably, integrins binding to RGD motifs play an important role in tumor initiation, evolution, and metastasis. Preclinical studies have demonstrated that therapeutic agents, such as antibodies and small molecules with RGD motifs, target RGD-binding integrins and disrupt their interactions with the ECM, thereby inhibiting ovarian cancer proliferation and migration. Altogether, this review highlights the potential of RGD-binding integrins in providing new insights into the progression and metastasis of ovarian cancer and how these integrins have been utilized to develop effective treatment plans.
Collapse
Affiliation(s)
- Vipin Ranga
- DBT-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Agriculture University Road, Jorhat, Assam 785013, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Laboratory, Department of Biotechnology, Mohanlal Sukhadia University, University Road, Udaipur, Rajasthan 313001, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Central University of Haryana Road, Mahendergarh, Haryana 123031, India
| | - Mark S Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, Turku 20520, Finland
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Tonk, Rajasthan 304022, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Manipal, Karnataka 576104, India
- Institute of Bioinformatics, Discoverer Building, International Technology Park, Whitefield, Bangalore, Karnataka 560006, India
| |
Collapse
|
2
|
Salvi A, Li W, Dipali SS, Cologna SM, Pavone ME, Duncan FE, Burdette JE. Follicular fluid aids cell adhesion, spreading in an age independent manner and shows an age-dependent effect on DNA damage in fallopian tube epithelial cells. Heliyon 2024; 10:e27336. [PMID: 38501015 PMCID: PMC10945186 DOI: 10.1016/j.heliyon.2024.e27336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Ovarian cancer (OC) is deadly, and likely arises from the fallopian tube epithelium (FTE). Despite the association of OC with ovulation, OC typically presents in post-menopausal women who are no longer ovulating. The goal of this study was to understand how ovulation and aging interact to impact OC progression from the FTE. Follicular fluid released during ovulation induces DNA damage in the FTE, however, the role of aging on FTE exposure to follicular fluid is unexplored. Follicular fluid samples were collected from 14 women and its effects on FTE cells was assessed. Follicular fluid caused DNA damage and lipid oxidation in an age-dependent manner, but instead induced cell proliferation in a dose-dependent manner, independent of age in FTE cells. Follicular fluid regardless of age disrupted FTE spheroid formation and stimulated attachment and growth on ultra-low attachment plates. Proteomics analysis of the adhesion proteins in the follicular fluid samples identified vitronectin, a glycoprotein responsible for FTE cell attachment and spreading.
Collapse
Affiliation(s)
- Amrita Salvi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Shweta S. Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Mary Ellen Pavone
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
3
|
Ren L, Deng H, Jiang Y, Liu C. Dual-Regulated Mechanism of EZH2 and KDM6A on SALL4 Modulates Tumor Progression via Wnt/β-Catenin Pathway in Gastric Cancer. Dig Dis Sci 2023; 68:1292-1305. [PMID: 36877334 DOI: 10.1007/s10620-022-07790-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/06/2022] [Indexed: 03/07/2023]
Abstract
BACKGROUND SALL4 has been demonstrated in many cancers and participated in tumorigenesis and tumor progression, however, its expression and function still remain ambiguous in GC, especially its upstream mechanistic modulators. PURPOSE We explored whether the dual mediation of EZH2 and KDM6A could be involved in upstream regulation of SALL4, which promotes GC cell progression via the Wnt/β-catenin pathway. METHOD Analysis of discrepant gene expression in GC and normal gastric tissues from The Cancer Genome Atlas (TCGA) dataset. GC cell lines were transfected by siEZH2 and siKDM6A, the transduction molecules of KDM6A/EZH2-SALL4-β-catenin signaling were quantified in the GC cells. RESULTS Here, we showed that only SALL4 levels of SALL family members were upregulated in nonpaired and paired GC tissues than those in corresponding normal tissues and were associated with its histological types, pathological stages, TNM stages including T stage (local invasion), N stage (lymph node metastasis), M stage (distant metastasis), and overall survival from the TCGA dataset. SALL4 level was elevated in GC cells compared to normal gastric epithelial cell line (GES-1) and was correlated to cancer cell progression and invasion through the Wnt/β-catenin pathway in GC, which levels would be separately upregulated or downregulated by KDM6A or EZH2. CONCLUSION We first proposed and demonstrated that SALL4 promoted GC cell progression via the Wnt/β-catenin pathway, which was mediated by the dual regulation of EZH2 and KDM6A on SALL4. This mechanistic pathway in gastric cancer represents a novel targetable pathway.
Collapse
Affiliation(s)
- Lei Ren
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Surgery, Klinikum Rechts Der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Hong Deng
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Jiang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Taiping Str. 25, Luzhou, 646000, China
| | - Chunfeng Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Taiping Str. 25, Luzhou, 646000, China.
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Taiping Str. 25, Luzhou, 646000, China.
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Str. 36, 80337, Munich, Germany.
| |
Collapse
|
4
|
Dhaliwal D, Shepherd TG. Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: a review. Clin Exp Metastasis 2021; 39:291-301. [PMID: 34822024 PMCID: PMC8971148 DOI: 10.1007/s10585-021-10136-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy in the developed world. EOC metastasis is unique since malignant cells detach directly from the primary tumor site into the abdominal fluid and form multicellular aggregates, called spheroids, that possess enhanced survival mechanisms while in suspension. As such, altered cell adhesion properties are paramount to EOC metastasis with cell detachment from the primary tumor, dissemination as spheroids, and reattachment to peritoneal surfaces for secondary tumor formation. The ability for EOC cells to establish and maintain cell–cell contacts in spheroids is critical for cell survival in suspension. Integrins are a family of cell adhesion receptors that play a crucial role in cell–cell and cell-extracellular matrix interactions. These glycoprotein receptors regulate diverse functions in tumor cells and are implicated in multiple steps of cancer progression. Altered integrin expression is detected in numerous carcinomas, where they play a role in cell migration, invasion, and anchorage-independent survival. Like that observed for other carcinomas, epithelial-mesenchymal transition (EMT) occurs during metastasis and integrins can function in this process as well. Herein, we provide a review of the evidence for integrin-mediated cell adhesion mechanisms impacting steps of EOC metastasis. Taken together, targeting integrin function may represent a potential therapeutic strategy to inhibit progression of advanced EOC.
Collapse
Affiliation(s)
- Dolly Dhaliwal
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Trevor G Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,London Regional Cancer Program, 790 Commissioners Rd E, Room A4-836, London, ON, N6A 4L6, Canada.
| |
Collapse
|
5
|
Dzobo K. Integrins Within the Tumor Microenvironment: Biological Functions, Importance for Molecular Targeting, and Cancer Therapeutics Innovation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:417-430. [PMID: 34191612 DOI: 10.1089/omi.2021.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cellular functions important for solid tumor initiation and progression are mediated by members of the integrin family, a diverse family of cell attachment receptors. With recent studies emphasizing the role of the tumor microenvironment (TME) in tumor initiation and progression, it is not surprising that considerable attention is being paid to integrins. Several integrin antagonists are under clinical trials, with many demonstrating promising activity in patients with different cancers. A deeper knowledge of the functions of integrins within the TME is still required and might lead to better inhibitors being discovered. Integrin expression is commonly dysregulated in many tumors with integrins playing key roles in signaling as well as promotion of tumor cell invasion and migration. Integrins also play a major role in adhesion of circulating tumor cells to new sites and the resulting formation of secondary tumors. Furthermore, integrins have demonstrated the ability to promoting stem cell-like properties in tumor cells as well as drug resistance. Anti-integrin therapies rely heavily on the doses or concentrations used as these determine whether the drugs act as antagonists or as integrin agonists. This expert review offers the latest synthesis in terms of the current knowledge of integrins functions within the TME and as potential molecular targets for cancer therapeutics innovation.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Han X, Caron JM, Lary CW, Sathyanarayana P, Vary C, Brooks PC. An RGDKGE-Containing Cryptic Collagen Fragment Regulates Phosphorylation of Large Tumor Suppressor Kinase-1 and Controls Ovarian Tumor Growth by a Yes-Associated Protein-Dependent Mechanism. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:527-544. [PMID: 33307038 PMCID: PMC7927278 DOI: 10.1016/j.ajpath.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/28/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
The growth and spread of malignant tumors, such as ovarian carcinomas, are governed in part by complex interconnected signaling cascades occurring between stromal and tumor cells. These reciprocal cross-talk signaling networks operating within the local tissue microenvironment may enhance malignant tumor progression. Understanding how novel bioactive molecules generated within the tumor microenvironment regulate signaling pathways in distinct cellular compartments is critical for the development of more effective treatment paradigms. Herein, we provide evidence that blocking cellular interactions with an RGDKGE-containing collagen peptide that selectively binds integrin β3 on ovarian tumor cells enhances the phosphorylation of the hippo effector kinase large tumor suppressor kinase-1 and reduces nuclear accumulation of yes-associated protein and its target gene c-Myc. Selectively targeting this RGDKGE-containing collagen fragment inhibited ovarian tumor growth and the development of ascites fluid in vivo. These findings suggest that this bioactive collagen fragment may represent a previously unknown regulator of the hippo effector kinase large tumor suppressor kinase-1 and regulate ovarian tumor growth by a yes-associated protein-dependent mechanism. Taken together, these data not only provide new mechanistic insight into how a unique collagen fragment may regulate ovarian cancer, but in addition may help provide a useful new alternative strategy to control ovarian tumor progression based on selectively disrupting a previously unappreciated signaling cascade.
Collapse
Affiliation(s)
- XiangHua Han
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Jennifer M Caron
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Christine W Lary
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Pradeep Sathyanarayana
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Calvin Vary
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Peter C Brooks
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine.
| |
Collapse
|
7
|
Modeling the Early Steps of Ovarian Cancer Dissemination in an Organotypic Culture of the Human Peritoneal Cavity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:75-94. [PMID: 34339031 DOI: 10.1007/978-3-030-73359-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The majority of ovarian cancer patients present clinically with wide-spread metastases throughout the peritoneal cavity, metastasizing to the mesothelium-lined peritoneum and visceral adipose depots within the abdomen. This unique metastatic tumor microenvironment is comprised of multiple cell types, including mesothelial cells, fibroblasts, adipocytes, macrophages, neutrophils, and T lymphocytes. Modeling advancements, including complex 3D systems and organoids, coupled with 2D cocultures, in vivo mouse models, and ex vivo human tissue cultures have greatly enhanced our understanding of the tumor-stroma interactions that are required for successful metastasis of ovarian cancer cells. However, advanced multifaceted model systems that incorporate frequency and spatial distribution of all cell types present in the tumor microenvironment of ovarian cancer are needed to enhance our knowledge of ovarian cancer biology in order to identify methods for preventing and treating metastatic disease. This review highlights the utility of recently developed modeling approaches, summarizes some of the resulting progress using these techniques, and suggests how these strategies may be implemented to elucidate signaling processes among cell types of the tumor microenvironment that promote ovarian cancer metastasis.
Collapse
|
8
|
Wu A, Zhang S, Liu J, Huang Y, Deng W, Shu G, Yin G. Integrated Analysis of Prognostic and Immune Associated Integrin Family in Ovarian Cancer. Front Genet 2020; 11:705. [PMID: 32765584 PMCID: PMC7379341 DOI: 10.3389/fgene.2020.00705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Human integrin receptors are important for cell-cell and cell-matrix adhesion in normal epithelial cells. Emerging evidences have indicated integrin members are involved in cancer development and progression as well. However, the expression patterns and clinical significance of the whole integrin family in ovarian cancer (OC) have not yet been well understood. In the present study, we utilized the public datasets including GEPIA, GEO, ONCOMINE, cBioPortal, Kaplan-Meier Plotter, TIMER databases, to analyze the expression and prognostic value of integrin members in OC. We found ITGA3/B4/B6/B7/B8 were abnormally overexpressed in OC; ITGA6 was good prognosis predictor in OC; ITGA3/ B4/B8 were poor prognosis predictor specially in advanced OC patients; elevated ITGA3/B4 might promote metastasis and elevated ITGA3/B8 might promote platinum resistance of OC; ITGA3 and ITGB4 might synergistically or independently regulate cell adhesion and proliferation; ITGA4/AL/AM/AX/B2/B7 showed strong correlations with various tumor immune infiltrates (TILs), especially with pro-tumor immunes cell types like monocyte, M2 macrophage and exhaustion T cells infiltration; ITGAL/AM/B2/B7 and residing memory CD8+ T cells marker ITGAE were specially associated with early OC patients outcome. Our results implied that ITGA3/B4 were important prognostic markers of advanced OC, ITGAL/AM/ B2/B7 were immune associated prognosis markers of early OC, together they might render important therapeutic targets for OC.
Collapse
Affiliation(s)
- Anqi Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Sai Zhang
- Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Jiaqi Liu
- Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Yifeng Huang
- Department of Anesthesia, School of Medicine, Central South University, Changsha, China
| | - Wenyu Deng
- Departmemt of Nursing, School of Nursing, Central South University, Changsha, China
| | - Guang Shu
- Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| |
Collapse
|
9
|
Zhang Y, Liu Z. Oncolytic Virotherapy for Malignant Tumor: Current Clinical Status. Curr Pharm Des 2020; 25:4251-4263. [PMID: 31682207 DOI: 10.2174/1381612825666191104090544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Oncolytic viruses, as novel biological anti-tumor agents, provide anti-tumor therapeutic effects by different mechanisms including directly selective tumor cell lysis and secondary systemic anti-tumor immune responses. Some wide-type and genetically engineered oncolytic viruses have been applied in clinical trials. Among them, T-Vec has a significant therapeutic effect on melanoma patients and received the approval of the US Food and Drug Administration (FDA) as the first oncolytic virus to treat cancer in the US. However, the mechanisms of virus interaction with tumor and immune systems have not been clearly elucidated and there are still no "gold standards" for instructions of virotherapy in clinical trials. This Review collected the recent clinical trials data from 2005 to summarize the basic oncolytic viruses biology, describe the application in recent clinical trials, and discuss the challenges in the application of oncolytic viruses in clinical trials.
Collapse
Affiliation(s)
- Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Zhuoming Liu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
10
|
Mitra S, Tiwari K, Podicheti R, Pandhiri T, Rusch DB, Bonetto A, Zhang C, Mitra AK. Transcriptome Profiling Reveals Matrisome Alteration as a Key Feature of Ovarian Cancer Progression. Cancers (Basel) 2019; 11:cancers11101513. [PMID: 31600962 PMCID: PMC6826756 DOI: 10.3390/cancers11101513] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of comprehensive investigation of disease initiation and progression, including gene expression changes during early metastatic colonization. METHODS RNA-sequencing (RNA-seq) was done with matched primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors (n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional (3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis, including early metastatic colonization. RESULTS 2987 genes were significantly deregulated in primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis compared to primary tumors and 304 genes were common to both. An assessment of patient metastasis and 3D omental culture model of early metastatic colonization revealed 144 common genes that were altered during early colonization and remain deregulated even in the fully developed metastasis. Deregulation of the matrisome was a key process in early and late metastasis. CONCLUSION These findings will help in understanding the key pathways involved in ovarian cancer progression and eventually targeting those pathways for therapeutic interventions.
Collapse
Affiliation(s)
- Sumegha Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kartikeya Tiwari
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Taruni Pandhiri
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Andrea Bonetto
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Kenny HA, Lal-Nag M, Shen M, Kara B, Nahotko DA, Wroblewski K, Fazal S, Chen S, Chiang CY, Chen YJ, Brimacombe KR, Marugan J, Ferrer M, Lengyel E. Quantitative High-Throughput Screening Using an Organotypic Model Identifies Compounds that Inhibit Ovarian Cancer Metastasis. Mol Cancer Ther 2019; 19:52-62. [PMID: 31562255 DOI: 10.1158/1535-7163.mct-19-0052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/31/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
The tumor microenvironment (TME) is a key determinant of metastatic efficiency. We performed a quantitative high-throughput screen (qHTS) of diverse medicinal chemistry tractable scaffolds (44,420 compounds) and pharmacologically active small molecules (386 compounds) using a layered organotypic, robust assay representing the ovarian cancer metastatic TME. This 3D model contains primary human mesothelial cells, fibroblasts, and extracellular matrix, to which fluorescently labeled ovarian cancer cells are added. Initially, 100 compounds inhibiting ovarian cancer adhesion/invasion to the 3D model in a dose-dependent manner were identified. Of those, eight compounds were confirmed active in five high-grade serous ovarian cancer cell lines and were further validated in secondary in vitro and in vivo biological assays. Two tyrosine kinase inhibitors, PP-121 and milciclib, and a previously unreported compound, NCGC00117362, were selected because they had potency at 1 μmol/L in vitro Specifically, NCGC00117362 and PP-121 inhibited ovarian cancer adhesion, invasion, and proliferation, whereas milciclib inhibited ovarian cancer invasion and proliferation. Using in situ kinase profiling and immunoblotting, we found that milciclib targeted Cdk2 and Cdk6, and PP-121 targeted mTOR. In vivo, all three compounds prevented ovarian cancer adhesion/invasion and metastasis, prolonged survival, and reduced omental tumor growth in an intervention study. To evaluate the clinical potential of NCGC00117362, structure-activity relationship studies were performed. Four close analogues of NCGC00117362 efficiently inhibited cancer aggressiveness in vitro and metastasis in vivo Collectively, these data show that a complex 3D culture of the TME is effective in qHTS. The three compounds identified have promise as therapeutics for prevention and treatment of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Hilary A Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois.
| | - Madhu Lal-Nag
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Min Shen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Betul Kara
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Dominik A Nahotko
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Kristen Wroblewski
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois
| | - Sarah Fazal
- Cellular Screening Center, University of Chicago, Chicago, Illinois
| | - Siquan Chen
- Cellular Screening Center, University of Chicago, Chicago, Illinois
| | - Chun-Yi Chiang
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Yen-Ju Chen
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Kyle R Brimacombe
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Juan Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Li J, Zhou P, Xu H, Tian S, Liu W, Zhao Y, Hu Z. Antitumor activity of integrin α Vβ 3 antibody conjugated-cationic microbubbles in liver cancer. Transl Cancer Res 2019; 8:899-908. [PMID: 35116829 PMCID: PMC8799305 DOI: 10.21037/tcr.2019.05.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Background The overexpression of integrin αVβ3 in hepatocarcinoma (HCC) promotes tumor progression, metastasis, and clinical staging. Thus, the inhibition of integrin αVβ3 might be potentially effective as an anti-cancer agent in HCC. Methods In this study, we aimed to investigate the antitumor effect of integrin αVβ3 antibody conjugated cationic microbubbles (CMBs) in HCC model. By conjugating with integrin αVβ3 antibody with non-targeting CMBs, CMBsαvβ3 was constructed. The antitumor effect of CMBsαvβ3 was evaluated in HepG2 cells in vitro and in HepG2 xenograft mice models. Bcl-2, p53 and CD31 mRNA level, and caspase-3 activity were examined in xenograft tumors. Cell proliferation assay and scratch test were performed to evaluate the anti-migrant effect of CMBsαvβ3in vitro. Results CMBsαvβ3 could specifically target to HCC HepG2 cells and improve pEGFP-KDRP-CD/TK plasmid transfection efficiency. In HepG2 xenograft mice models, CMBsαvβ3 treatment significantly suppressed tumor weights and volumes. CMBsαvβ3 treatment suppressed Bcl-2 and p53 mRNA level in tumors. In HepG2 cells, CMBsαvβ3 significantly impaired wound healing and inhibited cell proliferation. Moreover, when combined with CD/TK double suicide gene transfection and 5-FC/GCV treatment, caspase-3 was activated and the cell proliferation was tremendously inhibited. Conclusions CMBsαvβ3 not only suppresses cell migration and proliferation, but also facilitates 5-FC/GCV plus CD/TK double suicide gene-induced apoptotic cell death. CMBsαvβ3 is a promising gene delivery agent with potential anti-tumor activity itself.
Collapse
Affiliation(s)
- Jiale Li
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ping Zhou
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hongbo Xu
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shuangming Tian
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wengang Liu
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yongfeng Zhao
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zheyu Hu
- Department of Breast Medical Oncology and Central Laboratory, the Affiliated Caner Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
13
|
He J, Liu Y, Zhang L, Zhang H. Integrin Subunit beta 8 (ITGB8) Upregulation Is an Independent Predictor of Unfavorable Survival of High-Grade Serous Ovarian Carcinoma Patients. Med Sci Monit 2018; 24:8933-8940. [PMID: 30531684 PMCID: PMC6299792 DOI: 10.12659/msm.911518] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background ITGB8 encodes a β subunit of integrin (integrin β8), which is upregulated in some types of cancer. In the current study, we examined the expression profile of ITGB8 in serous ovarian cancer (SOVC) and investigated its potential as an independent prognostic indicator for overall survival (OS) and recurrence-free survival (RFS) in high-grade SOVC. Material/Methods A secondary study was conducted based on genomic and survival data in large online databases, including the Gene Expression Omnibus (GEO), the Human Protein Atlas (HPA), and the Cancer Genome Atlas-Ovarian cancer (TCGA-OV). Kaplan-Meier curves were generated to evaluate the association between ITGB8 expression and OS/RFS. Univariate and multivariate analysis were performed with the Cox regression model. Results ITGB8 was significantly upregulated in ovarian cancer tissues compared to that in normal ovary tissues. High-grade SOVC patients with high ITGB8 expression had significantly shorter OS and RFS compared to their low-expression counterparts. Increased ITGB8 expression might be an independent prognostic indicator of unfavorable OS (HR: 1.424, 95%CI: 1.228–1.653, p<0.001) and RFS (HR: 2.167, 95%CI: 1.507–3.114, p<0.001) in high-grade SOVC. DNA amplification was frequent (149/509, 29.3%) in high-grade SOVC patients and was associated with increased ITGB8 expression compared to the copy-neutral cases. Conclusions ITGB8 expression might be a valuable prognostic biomarker in high-grade SOVC, the expression of which might be regulated by its DNA copy numbers.
Collapse
Affiliation(s)
- Jing He
- Gynecologic Oncology Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Yan Liu
- Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Lixia Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Hongwei Zhang
- Anesthesia Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
14
|
Wu GJ. METCAM/MUC18 Decreases the Malignant Propensity of Human Ovarian Carcinoma Cells. Int J Mol Sci 2018; 19:E2976. [PMID: 30274262 PMCID: PMC6213002 DOI: 10.3390/ijms19102976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/24/2022] Open
Abstract
METCAM/MUC18 is an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family. It can carry out common functions of CAMs which is to perform intercellular interactions and interaction of cell with extracellular matrix in tumor microenvironment, to interact with various signaling pathways and to regulate general behaviors of cells. We and other two groups previously suggested that METCAM/MUC18 probably be utilized as a biomarker for predicting the malignant tendency of clinical ovarian carcinomas, since METAM/MUC18 expression appears to associate with the carcinoma at advanced stages. It has been further postulated to promote the malignant tendency of the carcinoma. However, our recent research results appear to support the conclusion that the above positive correlation is fortuitous; actually METCAM/MUC18 acts as a tumor and metastasis suppressor for the ovarian carcinoma cells. We also suggest possible mechanisms in the METCAM/MUC18-mediated early tumor development and metastasis of ovarian carcinoma. Moreover, we propose to employ recombinant METCAM/MUC18 proteins and other derived products as therapeutic agents to treat the ovarian cancer patients by decreasing the malignant potential of ovarian carcinoma.
Collapse
Affiliation(s)
- Guang-Jer Wu
- Department of Bioscience Technology and Center for Biomedical Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan.
- Department of Microbiology & Immunology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
15
|
Nwani NG, Sima LE, Nieves-Neira W, Matei D. Targeting the Microenvironment in High Grade Serous Ovarian Cancer. Cancers (Basel) 2018; 10:E266. [PMID: 30103384 PMCID: PMC6115937 DOI: 10.3390/cancers10080266] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer⁻stroma interactions play a key role in cancer progression and response to standard chemotherapy. Here, we provide a summary of the mechanisms by which the major cellular components of the ovarian cancer (OC) tumor microenvironment (TME) including cancer-associated fibroblasts (CAFs), myeloid, immune, endothelial, and mesothelial cells potentiate cancer progression. High-grade serous ovarian cancer (HGSOC) is characterized by a pro-inflammatory and angiogenic signature. This profile is correlated with clinical outcomes and can be a target for therapy. Accumulation of malignant ascites in the peritoneal cavity allows for secreted factors to fuel paracrine and autocrine circuits that augment cancer cell proliferation and invasiveness. Adhesion of cancer cells to the mesothelial matrix promotes peritoneal tumor dissemination and represents another attractive target to prevent metastasis. The immunosuppressed tumor milieu of HGSOC is permissive for tumor growth and can be modulated therapeutically. Results of emerging preclinical and clinical trials testing TME-modulating therapeutics for the treatment of OC are highlighted.
Collapse
Affiliation(s)
- Nkechiyere G Nwani
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Livia E Sima
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | - Wilberto Nieves-Neira
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| |
Collapse
|
16
|
Mangeolle T, Yakavets I, Marchal S, Debayle M, Pons T, Bezdetnaya L, Marchal F. Fluorescent Nanoparticles for the Guided Surgery of Ovarian Peritoneal Carcinomatosis. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E572. [PMID: 30050022 PMCID: PMC6116267 DOI: 10.3390/nano8080572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 01/07/2023]
Abstract
Complete surgical resection is the ideal cure for ovarian peritoneal carcinomatosis, but remains challenging. Fluorescent guided surgery can be a promising approach for precise cytoreduction when appropriate fluorophore is used. In the presence paper, we review already developed near- and short-wave infrared fluorescent nanoparticles, which are currently under investigation for peritoneal carcinomatosis fluorescence imaging. We also highlight the main ways to improve the safety of nanoparticles, for fulfilling prerequisites of clinical application.
Collapse
Affiliation(s)
- Tristan Mangeolle
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
| | - Sophie Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Manon Debayle
- LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Thomas Pons
- LPEM, ESPCI Paris, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Frédéric Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Surgical Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
17
|
Zhang Y, Liu Z, Thackray BD, Bao Z, Yin X, Shi F, Wu J, Ye J, Di W. Intraoperative Raman-Guided Chemo-Photothermal Synergistic Therapy of Advanced Disseminated Ovarian Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801022. [PMID: 29974621 DOI: 10.1002/smll.201801022] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Indexed: 05/24/2023]
Abstract
Abdominal miliary spread and metastasis is one of the most aggressive features in advanced ovarian cancer patients. The current standard treatment of advanced ovarian cancer is cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC). However, most patients cannot receive optimal CRS outcomes due to the extreme difficulty of completely excising all microtumors during operation. Though HIPEC can improve prognosis, treatment is untargeted and may damage healthy organs and cause complications. New strategies for precise detection and complete elimination of disseminated microtumors without side effects are therefore highly desirable. Here, cisplatin-loaded gap-enhanced Raman tags (C-GERTs) are designed specifically for the intraoperative detection and elimination of unresectable disseminated advanced ovarian tumors. With unique and strong Raman signals, good biocompatibility, decent plasmonic photothermal conversion, and good drug loading capacity, C-GERTs enable detection and specific elimination of microtumors with a minimum diameter of 1 mm via chemo-photothermal synergistic therapy, causing minimal side effects and significantly prolonging survival in mice. The results demonstrate that C-GERTs-based chemo-photothermal synergistic therapy can effectively control the spread of disseminated tumors in mice and has potential as a safe and powerful method for treatment of advanced ovarian cancers, to improve survival and life quality of patients.
Collapse
Affiliation(s)
- Yuqing Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhiyang Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Benjamin D Thackray
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xia Yin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Fenglei Shi
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Ye
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
18
|
Jahan R, Macha MA, Rachagani S, Das S, Smith LM, Kaur S, Batra SK. Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-β1/FAK/ERK pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2538-2549. [PMID: 29777904 DOI: 10.1016/j.bbadis.2018.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Alternative splicing is evolving as an eminent player of oncogenic signaling for tumor development and progression. Mucin 4 (MUC4), a type I membrane-bound mucin, is differentially expressed in pancreatic cancer (PC) and plays a critical role in its progression and metastasis. However, the molecular implications of MUC4 splice variants during disease pathogenesis remain obscure. The present study delineates the pathological and molecular significance of a unique splice variant of MUC4, MUC4/X, which lacks the largest exon 2, along with exon 3. Exon 2 encodes for the highly glycosylated tandem repeat (TR) domain of MUC4 and its absence creates MUC4/X, which is devoid of TR. Expression analysis from PC clinical samples revealed significant upregulation of MUC4/X in PC tissues with most differential expression in poorly differentiated tumors. In vitro studies suggest that overexpression of MUC4/X in wild-type-MUC4 (WT-MUC4) null PC cell lines markedly enhanced PC cell proliferation, invasion, and adhesion to extracellular matrix (ECM) proteins. Furthermore, MUC4/X overexpression leads to an increase in the tumorigenic potential of PC cells in orthotopic transplantation studies. In line with these findings, doxycycline-induced expression of MUC4/X in an endogenous WT-MUC4 expressing PC cell line (Capan-1) also displayed enhanced cell proliferation, invasion, and adhesion to ECM, compared to WT-MUC4 alone, emphasizing its direct involvement in the aggressive behavior of PC cells. Investigation into the molecular mechanism suggested that MUC4/X facilitated PC tumorigenesis via integrin-β1/FAK/ERK signaling pathway. Overall, these findings revealed the novel role of MUC4/X in promoting and sustaining the oncogenic features of PC.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA; Department of Otolaryngology-Head and Neck Surgery, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Srustidhar Das
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Lynette M Smith
- Department of Biostatistics, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA.
| |
Collapse
|
19
|
Low density neutrophils (LDN) in postoperative abdominal cavity assist the peritoneal recurrence through the production of neutrophil extracellular traps (NETs). Sci Rep 2018; 8:632. [PMID: 29330531 PMCID: PMC5766579 DOI: 10.1038/s41598-017-19091-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Many types of immune cells appear in peritoneal cavity after abdominal surgery. In patients who underwent laparotomy due to gastric cancer, peritoneal lavages were obtained before and after surgical procedure. Cells were recovered from intermediate layer after Ficoll-Hypaque centrifugation and analyzed for phenotypes and functions, especially focused on low density neutrophils (LDN). The number of CD66b (+) LDN with mature phenotype was markedly elevated in postoperative as compared with preoperative lavages. Short term culture of the purified LDN produced many threadlike structures positive for SYTOX, nucleic acid staining, as well as histone and myeloperoxidase, suggesting the NETs formation. Human gastric cancer cells, MKN45, OCUM-1 and NUGC-4, were selectively attached on the NETs, which was totally abolished by the pretreatment of DNAse I. Intraperitoneal (IP) co-transfer of the LDN with MKN45 in nude mice strongly augments the metastasis formation on peritoneum, which was strongly suppressed by the following IP administration of DNAse I. Many NETs-like structures were detected on the surface of human omental tissue resected by gastrectomy. NETs on peritoneal surface can assist the clustering and growth of free tumor cells disseminated in abdomen. Disruption of the NETs by DNAse might be useful to prevent the peritoneal recurrence after abdominal surgery.
Collapse
|
20
|
Kobayashi M, Sawada K, Kimura T. Potential of Integrin Inhibitors for Treating Ovarian Cancer: A Literature Review. Cancers (Basel) 2017; 9:E83. [PMID: 28698469 PMCID: PMC5532619 DOI: 10.3390/cancers9070083] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 01/25/2023] Open
Abstract
Epithelial ovarian cancer is a fatal disease, with a cure rate of only 30%. Several recent studies have targeted integrins for cancer treatment. Preclinical studies have shown the effectiveness of several integrin inhibitors for blocking cancer progression, especially by blocking angiogenesis. Because the initial critical step in ovarian cancer metastasis is the attachment of cancer cells to the peritoneum or omentum and because clinical trials have provided positive results for anti-angiogenic therapy, therapies targeting integrins may be the most feasible approach for treating cancer. This review summarizes the current understanding of integrin biology in ovarian cancer metastasis and various therapeutic approaches involving integrin inhibitors. However, no integrin inhibitor has shown favorable results thus far. However, conjugates of cytotoxic agents with the triplet sequence arginine-glycine-aspartate (RGD) peptides targeting α5β1-, αvβ3-, and αvβ6-integrins may be promising integrin-targeting therapies for further clinical investigation.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka Suita, Osaka 5650871, Japan.
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka Suita, Osaka 5650871, Japan.
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka Suita, Osaka 5650871, Japan.
| |
Collapse
|
21
|
Chang PY, Liao YP, Wang HC, Chen YC, Huang RL, Wang YC, Yuan CC, Lai HC. An epigenetic signature of adhesion molecules predicts poor prognosis of ovarian cancer patients. Oncotarget 2017; 8:53432-53449. [PMID: 28881822 PMCID: PMC5581121 DOI: 10.18632/oncotarget.18515] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is a promising biomarker for cancer. The epigenetic effects of cell adhesion molecules may affect the therapeutic outcome and the present study examined their effects on survival in ovarian cancer. We integrated methylomics and genomics datasets in The Cancer Genome Atlas (n = 391) and identified 106 highly methylated adhesion-related genes in ovarian cancer tissues. Univariate analysis revealed the methylation status of eight genes related to progression-free survival. In multivariate Cox regression analysis, four highly methylated genes (CD97, CTNNA1, DLC1, HAPLN2) and three genes (LAMA4, LPP, MFAP4) with low methylation were significantly associated with poor progression-free survival. Low methylation of VTN was an independent poor prognostic factor for overall survival after adjustment for age and stage. Patients who carried any two of CTNNA1, DLC1 or MFAP4 were significantly associated with poor progression-free survival (hazard ratio: 1.59; 95% confidence interval: 1.23, 2.05). This prognostic methylation signature was validated in a methylomics dataset generated in our lab (n = 37, hazard ratio: 16.64; 95% confidence interval: 2.68, 103.14) and in another from the Australian Ovarian Cancer Study (n = 91, hazard ratio: 2.43; 95% confidence interval: 1.11, 5.36). Epigenetics of cell adhesion molecules is related to ovarian cancer prognosis. A more comprehensive methylomics of cell adhesion molecules is needed and may advance personalized treatment with adhesion molecule-related drugs.
Collapse
Affiliation(s)
- Ping-Ying Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Republic of China.,Division of Hematology & Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Republic of China
| | - Yu-Ping Liao
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Republic of China
| | - Hui-Chen Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Republic of China
| | - Yu-Chih Chen
- Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Republic of China
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Republic of China
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Republic of China
| | - Chiou-Chung Yuan
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Republic of China
| | - Hung-Cheng Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Republic of China.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Republic of China.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Republic of China.,Translational Epigenetic Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Republic of China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| |
Collapse
|
22
|
Torchiaro E, Lorenzato A, Olivero M, Valdembri D, Gagliardi PA, Gai M, Erriquez J, Serini G, Di Renzo MF. Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism. Oncotarget 2016; 7:712-28. [PMID: 26625210 PMCID: PMC4808028 DOI: 10.18632/oncotarget.6412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms orchestrating peritoneal and hematogenous metastases of ovarian cancer cells are assumed to be distinct. We studied the p90RSK family of serine/threonine kinases that lie downstream the RAS-ERK/MAPK pathway and modulate a variety of cellular processes including cell proliferation, survival, motility and invasiveness. We found the RSK1 and RSK2 isoforms expressed in a number of human ovarian cancer cell lines, where they played redundant roles in sustaining in vitro motility and invasiveness. In vivo, silencing of both RSK1 and RSK2 almost abrogated short-term and long-term metastatic engraftment of ovarian cancer cells in the peritoneum. In addition, RSK1/RSK2 silenced cells failed to colonize the lungs after intravenous injection and to form hematogenous metastasis from subcutaneous xenografts. RSK1/RSK2 suppression resulted in lessened ovarian cancer cell spreading on endogenous fibronectin (FN). Mechanistically, RSK1/RSK2 knockdown diminished FN transcription, α5β1 integrin activation and TGF-β1 translation. Reduced endogenous FN deposition and TGF-β1 secretion depended on the lack of activating phosphorylation of the transcription/translation factor YB-1 by p90RSK. Altogether data show how p90RSK activates a self-reinforcing cell autonomous pro-adhesive circuit necessary for metastatic seeding of ovarian cancer cells. Thus, p90RSK inhibitors might hinder both the hematogenous and the peritoneal metastatic spread of human ovarian cancer.
Collapse
Affiliation(s)
- Erica Torchiaro
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Annalisa Lorenzato
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Martina Olivero
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Paolo Armando Gagliardi
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Marta Gai
- Department of Molecular Biotechnologies and Health Sciences, University of Turin at the Molecular Biotechnology Center, Torino, Italy
| | - Jessica Erriquez
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| | - Maria Flavia Di Renzo
- Department of Oncology, University of Torino School of Medicine, Turin, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Italy
| |
Collapse
|
23
|
Rahman N, Dhadi SR, Deshpande A, Ramakrishna W. Rice callus suspension culture inhibits growth of cell lines of multiple cancer types and induces apoptosis in lung cancer cell line. Altern Ther Health Med 2016; 16:427. [PMID: 27806706 PMCID: PMC5093976 DOI: 10.1186/s12906-016-1423-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022]
Abstract
Background Cancer is one of the leading cause of mortality. Even though efficient drugs are being produced to treat cancer, conventional medicines are costly and have adverse effects. As a result, alternative treatments are being tried due to their low cost and little or no adverse effects. Our previous study identified one such alternative in rice callus suspension culture (RCSC) which was more efficient than Taxol® and Etoposide, in reducing the viability of human colon and renal cancer cells in culture with minimal or no effect on a normal cell line. Methods In this study, we tested the effect of RCSC by studying the dynamics of lactate dehydrogenase (LDH) in lung cancer cell lines (NCI-H460 and A549), breast cancer cell lines (MDA-MB-231 and MCF-7) and colorectal cancer cell lines (SW620 and Caco-2) as well as their normal-prototypes. Complementary analysis for evaluating membrane integrity was performed by estimating LDH release in non-lysed cells and cell viability with WST-1 assay. Fluorescence microscopy with stains targeting nucleus and cell membrane as well as caspase 3/7 and Annexin V assays were performed. Real-time quantitative RT-PCR was performed to evaluate expression of 92 genes associated with molecular mechanisms of cancer in RCSC treated ling cancer cell line, NCI-H460 and its normal prototype, MRC-5. High performance liquid chromatography (HPLC) was used to collect RCSC fractions, which were evaluated on NCI-H460 for their anti-cancer activity. Results Lower dilutions of RCSC showed maximum reduction in total LDH indicating reduced viability in majority of the cancer cell lines tested with minimal or no effect on normal cell lines compared to the control. Complementary analysis based on LDH release in non-lysed cells and WST-1 assay mostly supported total LDH results. RCSC showed the best effect on the lung non-small carcinoma cell line, NCI-H460. Fluorescence microscopy analyses suggested apoptosis as the most likely event in NCI-H460 treated with RCSC. Gene expression analysis identified significant upregulation of cJUN, NF-κB2 and ITGA2B in NCI-H460 which resulted most likely in the arrest of cell cycle progression and induction of apoptotic process. Further, HPLC-derived RCSC fractions were less effective in reducing cell viability than whole RCSC suggesting that a holistic approach of using RCSC is a better approach in inhibiting cancer cell proliferation. Conclusions RCSC was found to be an effective anti-cancer agent on cell lines of multiple cancer types with the best effect on lung cancer cell lines. A possible mechanism for the anticancer activity of RCSC is through induction of apoptosis as observed in the lung cancer cell line, NCI-H460. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1423-3) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Chen WC, Hsu HP, Li CY, Yang YJ, Hung YH, Cho CY, Wang CY, Weng TY, Lai MD. Cancer stem cell marker CD90 inhibits ovarian cancer formation via β3 integrin. Int J Oncol 2016; 49:1881-1889. [PMID: 27633757 PMCID: PMC5063452 DOI: 10.3892/ijo.2016.3691] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cell (CSC) markers have been identified for CSC isolation and proposed as therapeutic targets in various types of cancers. CD90, one of the characterized markers in liver and gastric cancer, is shown to promote cancer formation. However, the underexpression level of CD90 in ovarian cancer cells and the evidence supporting the cellular mechanism have not been investigated. In the present study, we found that the DNA copy number of CD90 is correlated with mRNA expression in ovarian cancer tissue and the ovarian cancer patients with higher CD90 have good prognosis compared to the patients with lower CD90. Although the expression of CD90 in human ovarian cancer SKOV3 cells enhances the cell proliferation by MTT and anchorage-dependent growth assay, CD90 inhibits the anchorage-independent growth ability in vitro and tumor formation in vivo. CD90 overexpression suppresses the sphere-forming ability and ALDH activity and enhances the cell apoptosis, indicating that CD90 may reduce the cell growth by the properties of CSC and anoikis. Furthermore, CD90 reduces the expression of other CSC markers, including CD133 and CD24. The inhibition of CD133 is attenuated by the mutant CD90, which is replaced with RLE domain into RLD domain. Importantly, the CD90-regulated inhibition of CD133 expression, anchorage-independent growth and signal transduction of mTOR and AMPK are restored by the β3 integrin shRNA. Our results provide evidence that CD90 mediates the antitumor formation by interacting with β3 integrin, which provides new insight that can potentially be applied in the development of therapeutic strategies in ovarian cancer.
Collapse
Affiliation(s)
- Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Hui-Ping Hsu
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Chung-Yen Li
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Ya-Ju Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yu-Hsuan Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Chien-Yu Cho
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| |
Collapse
|
25
|
García JR, Clark AY, García AJ. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. J Biomed Mater Res A 2016; 104:889-900. [PMID: 26662727 DOI: 10.1002/jbm.a.35626] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/26/2015] [Accepted: 12/10/2015] [Indexed: 02/03/2023]
Abstract
Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 β1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv β3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration.
Collapse
Affiliation(s)
- José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Amy Y Clark
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
26
|
Peters PN, Schryver EM, Lengyel E, Kenny H. Modeling the Early Steps of Ovarian Cancer Dissemination in an Organotypic Culture of the Human Peritoneal Cavity. J Vis Exp 2015:e53541. [PMID: 26780294 DOI: 10.3791/53541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The pattern of ovarian cancer metastasis is markedly different from that of most other epithelial tumors, because it rarely spreads hematogenously. Instead, ovarian cancer cells exfoliated from the primary tumor are carried by peritoneal fluid to metastatic sites within the peritoneal cavity. These sites, most notably the abdominal peritoneum and omentum, are organs covered by a mesothelium-lined surface. To investigate the processes of ovarian cancer dissemination, we assembled a complex three-dimensional culture system that reconstructs the lining of the peritoneal cavity in vitro. Primary human fibroblasts and mesothelial cells were isolated from human omentum. The fibroblasts were then mixed with extracellular matrix and covered with a layer of the primary human mesothelial cells to mimic the peritoneal and omental surfaces encountered by metastasizing ovarian cancer cells. The resulting organotypic model is, as shown, used to examine the early steps of ovarian cancer dissemination, including cancer cell adhesion, invasion, and proliferation. This model has been used in a number of studies to investigate the role of the microenvironment (cellular and acellular) in early ovarian cancer dissemination. It has also been successfully adapted to high throughput screening and used to identify and test inhibitors of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Pamela N Peters
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago
| | - Elizabeth M Schryver
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago
| | - Hilary Kenny
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, University of Chicago;
| |
Collapse
|
27
|
Paul NR, Allen JL, Chapman A, Morlan-Mairal M, Zindy E, Jacquemet G, Fernandez del Ama L, Ferizovic N, Green DM, Howe JD, Ehler E, Hurlstone A, Caswell PT. α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J Cell Biol 2015; 210:1013-31. [PMID: 26370503 PMCID: PMC4576860 DOI: 10.1083/jcb.201502040] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rab-coupling protein–mediated integrin trafficking promotes filopodia formation via RhoA-ROCK-FHOD3, generating non-lamellipodial actin spike protrusions that drive cancer cell migration in 3D extracellular matrix and in vivo. Invasive migration in 3D extracellular matrix (ECM) is crucial to cancer metastasis, yet little is known of the molecular mechanisms that drive reorganization of the cytoskeleton as cancer cells disseminate in vivo. 2D Rac-driven lamellipodial migration is well understood, but how these features apply to 3D migration is not clear. We find that lamellipodia-like protrusions and retrograde actin flow are indeed observed in cells moving in 3D ECM. However, Rab-coupling protein (RCP)-driven endocytic recycling of α5β1 integrin enhances invasive migration of cancer cells into fibronectin-rich 3D ECM, driven by RhoA and filopodial spike-based protrusions, not lamellipodia. Furthermore, we show that actin spike protrusions are Arp2/3-independent. Dynamic actin spike assembly in cells invading in vitro and in vivo is regulated by Formin homology-2 domain containing 3 (FHOD3), which is activated by RhoA/ROCK, establishing a novel mechanism through which the RCP–α5β1 pathway reprograms the actin cytoskeleton to promote invasive migration and local invasion in vivo.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Jennifer L Allen
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Anna Chapman
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Maria Morlan-Mairal
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Egor Zindy
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Laura Fernandez del Ama
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Nermina Ferizovic
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - David M Green
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Jonathan D Howe
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics, Cardiovascular Division, BHF Research Excellence Centre, King's College London, London SE1 1UL, England, UK
| | - Adam Hurlstone
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
28
|
Stringer-Reasor EM, Baker GM, Skor MN, Kocherginsky M, Lengyel E, Fleming GF, Conzen SD. Glucocorticoid receptor activation inhibits chemotherapy-induced cell death in high-grade serous ovarian carcinoma. Gynecol Oncol 2015; 138:656-62. [PMID: 26115975 PMCID: PMC4556542 DOI: 10.1016/j.ygyno.2015.06.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To test the hypothesis that glucocorticoid receptor (GR) activation increases resistance to chemotherapy in high-grade serous ovarian cancer (HGS-OvCa) and that treatment with a GR antagonist will improve sensitivity to chemotherapy. METHODS GR expression was assessed in OvCa cell lines by qRT-PCR and Western blot analysis and in xenografts and primary human tumors using immunohistochemistry (IHC). We also examined the effect of GR activation versus inhibition on chemotherapy-induced cytotoxicity in OvCa cell lines and in a xenograft model. RESULTS With the exception of IGROV-1 cells, all OvCa cell lines tested had detectable GR expression by Western blot and qRT-PCR analysis. Twenty-five out of the 27 human primary HGS-OvCas examined expressed GR by IHC. No cell line expressed detectable progesterone receptor (PR) or androgen receptor (AR) by Western blot analysis. In vitro assays showed that in GR-positive HeyA8 and SKOV3 cells, dexamethasone (100nM) treatment upregulated the pro-survival genes SGK1 and MKP1/DUSP1 and inhibited carboplatin/gemcitabine-induced cell death. Concurrent treatment with two GR antagonists, either mifepristone (100nM) or CORT125134 (100nM), partially reversed these effects. There was no anti-apoptotic effect of dexamethasone on chemotherapy-induced cell death in IGROV-1 cells, which did not have detectable GR protein. Mifepristone treatment alone was not cytotoxic in any cell line. HeyA8 OvCa xenograft studies demonstrated that adding mifepristone to carboplatin/gemcitabine increased tumor shrinkage by 48% compared to carboplatin/gemcitabine treatment alone (P=0.0004). CONCLUSIONS These results suggest that GR antagonism sensitizes GR+ OvCa to chemotherapy-induced cell death through inhibition of GR-mediated cell survival pathways.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Carcinoma, Ovarian Epithelial
- Cell Death/drug effects
- Cell Line, Tumor
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Drug Resistance, Neoplasm
- Female
- Humans
- Immunohistochemistry
- MCF-7 Cells
- Mice
- Mice, SCID
- Mifepristone/pharmacology
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Random Allocation
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | - Maxwell N Skor
- Department of Medicine, The University of Chicago, Chicago, IL, United States
| | | | - Ernst Lengyel
- Obstetrics and Gynecology, The University of Chicago, Chicago, IL, United States
| | - Gini F Fleming
- Department of Medicine, The University of Chicago, Chicago, IL, United States.
| | - Suzanne D Conzen
- Department of Medicine, The University of Chicago, Chicago, IL, United States; Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
29
|
Browne A, Tookman LA, Ingemarsdotter CK, Bouwman RD, Pirlo K, Wang Y, McNeish IA, Lockley M. Pharmacological Inhibition of β3 Integrin Reduces the Inflammatory Toxicities Caused by Oncolytic Adenovirus without Compromising Anticancer Activity. Cancer Res 2015; 75:2811-21. [PMID: 25977332 DOI: 10.1158/0008-5472.can-14-3761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/07/2015] [Indexed: 01/28/2023]
Abstract
Adenoviruses have been clinically tested as anticancer therapies but their utility has been severely limited by rapid, systemic cytokine release and consequent inflammatory toxicity. Here, we describe a new approach to tackling these dangerous side effects. Using human ovarian cancer cell lines as well as malignant epithelial cells harvested from the ascites of women with ovarian cancer, we show that tumor cells do not produce cytokines in the first 24 hours following in vitro infection with the oncolytic adenovirus dl922-947. In contrast, dl922-947 does induce inflammatory cytokines at early time points following intraperitoneal delivery in mice with human ovarian cancer intraperitoneal xenografts. In these animals, cytokines originate predominantly in murine tissues, especially in macrophage-rich organs such as the spleen. We use a nonreplicating adenovirus to confirm that early cytokine production is independent of adenoviral replication. Using β3 integrin knockout mice injected intraperitoneally with dl922-947 and β3 null murine peritoneal macrophages, we confirm a role for macrophage cell surface β3 integrin in this dl922-947-induced inflammation. We present new evidence that co-administration of a cyclic RGD-mimetic-specific inhibitor of β3 integrin significantly attenuates the cytokine release and inflammatory hepatic toxicity induced by dl922-947 in an intraperitoneal murine model of ovarian cancer. Importantly, we find no evidence that β3 inhibition compromises viral infectivity and oncolysis in vitro or anticancer efficacy in vivo. By enabling safe, systemic delivery of replicating adenoviruses, this novel approach could have a major impact on the future development of these effective anticancer agents.
Collapse
Affiliation(s)
- Ashley Browne
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Laura A Tookman
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Carin K Ingemarsdotter
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Russell D Bouwman
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Katrina Pirlo
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Yaohe Wang
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Iain A McNeish
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom. Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michelle Lockley
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
30
|
Seto KKY, Andrulis IL. Atypical protein kinase C zeta: potential player in cell survival and cell migration of ovarian cancer. PLoS One 2015; 10:e0123528. [PMID: 25874946 PMCID: PMC4397019 DOI: 10.1371/journal.pone.0123528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is one of the most aggressive gynaecological cancers, thus understanding the different biological pathways involved in ovarian cancer progression is important in identifying potential therapeutic targets for the disease. The aim of this study was to investigate the potential roles of Protein Kinase C Zeta (PRKCZ) in ovarian cancer. The atypical protein kinase C isoform, PRKCZ, is involved in the control of various signalling processes including cell proliferation, cell survival, and cell motility, all of which are important for cancer development and progression. Herein, we observe a significant increase in cell survival upon PRKCZ over-expression in SKOV3 ovarian cancer cells; additionally, when the cells are treated with small interference RNA (siRNA) targeting PRKCZ, the motility of SKOV3 cells decreased. Furthermore, we demonstrate that over-expression of PRKCZ results in gene and/or protein expression alterations of insulin-like growth factor 1 receptor (IGF1R) and integrin beta 3 (ITGB3) in SKOV3 and OVCAR3 cells. Collectively, our study describes PRKCZ as a potential regulatory component of the IGF1R and ITGB3 pathways and suggests that it may play critical roles in ovarian tumourigenesis.
Collapse
Affiliation(s)
- Kelly K. Y. Seto
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Irene L. Andrulis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
31
|
Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nat Commun 2015; 6:6220. [PMID: 25653139 DOI: 10.1038/ncomms7220] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/07/2015] [Indexed: 02/06/2023] Open
Abstract
The tumour microenvironment contributes to cancer metastasis and drug resistance. However, most high throughput screening (HTS) assays for drug discovery use cancer cells grown in monolayers. Here we show that a multilayered culture containing primary human fibroblasts, mesothelial cells and extracellular matrix can be adapted into a reliable 384- and 1,536-multi-well HTS assay that reproduces the human ovarian cancer (OvCa) metastatic microenvironment. We validate the identified inhibitors in secondary in vitro and in vivo biological assays using three OvCa cell lines: HeyA8, SKOV3ip1 and Tyk-nu. The active compounds directly inhibit at least two of the three OvCa functions: adhesion, invasion and growth. In vivo, these compounds prevent OvCa adhesion, invasion and metastasis, and improve survival in mouse models. Collectively, these data indicate that a complex three-dimensional culture of the tumour microenvironment can be adapted for quantitative HTS and may improve the disease relevance of assays used for drug screening.
Collapse
|
32
|
Carter RZ, Micocci KC, Natoli A, Redvers RP, Paquet-Fifield S, Martin ACBM, Denoyer D, Ling X, Kim SH, Tomasin R, Selistre-de-Araújo H, Anderson RL, Pouliot N. Tumour but not stromal expression of β3 integrin is essential, and is required early, for spontaneous dissemination of bone-metastatic breast cancer. J Pathol 2015; 235:760-72. [PMID: 25430721 DOI: 10.1002/path.4490] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/09/2014] [Accepted: 11/25/2014] [Indexed: 02/04/2023]
Abstract
Although many preclinical studies have implicated β3 integrin receptors (αvβ3 and αIIbβ3) in cancer progression, β3 inhibitors have shown only modest efficacy in patients with advanced solid tumours. The limited efficacy of β3 inhibitors in patients could arise from our incomplete understanding of the precise function of β3 integrin and, consequently, inappropriate clinical application. Data from animal studies are conflicting and indicate heterogeneity with respect to the relative contributions of β3-expressing tumour and stromal cell populations in different cancers. Here we aimed to clarify the function and relative contributions to metastasis of tumour versus stromal β3 integrin in clinically relevant models of spontaneous breast cancer metastasis, with particular emphasis on bone metastasis. We show that stable down-regulation of tumour β3 integrin dramatically impairs spontaneous (but not experimental) metastasis to bone and lung without affecting primary tumour growth in the mammary gland. Unexpectedly, and in contrast to subcutaneous tumours, orthotopic tumour vascularity, growth and spontaneous metastasis were not altered in mice null for β3 integrin. Tumour β3 integrin promoted migration, protease expression and trans-endothelial migration in vitro and increased vascular dissemination in vivo, but was not necessary for bone colonization in experimental metastasis assays. We conclude that tumour, rather than stromal, β3 expression is essential and is required early for efficient spontaneous breast cancer metastasis to bone and soft tissues. Accordingly, differential gene expression analysis in cohorts of breast cancer patients showed a strong association between high β3 expression, early metastasis and shorter disease-free survival in patients with oestrogen receptor-negative tumours. We propose that β3 inhibitors may be more efficacious if used in a neoadjuvant setting, rather than after metastases are established.
Collapse
Affiliation(s)
- Rachel Zoe Carter
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Tancioni I, Uryu S, Sulzmaier FJ, Shah NR, Lawson C, Miller NLG, Jean C, Chen XL, Ward KK, Schlaepfer DD. FAK Inhibition disrupts a β5 integrin signaling axis controlling anchorage-independent ovarian carcinoma growth. Mol Cancer Ther 2014; 13:2050-61. [PMID: 24899686 DOI: 10.1158/1535-7163.mct-13-1063] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ovarian cancer ascites fluid contains matrix proteins that can impact tumor growth via integrin receptor binding. In human ovarian tumor tissue arrays, we find that activation of the cytoplasmic focal adhesion (FAK) tyrosine kinase parallels increased tumor stage, β5 integrin, and osteopontin matrix staining. Elevated osteopontin, β5 integrin, and FAK mRNA levels are associated with decreased serous ovarian cancer patient survival. FAK remains active within ovarian cancer cells grown as spheroids, and anchorage-independent growth analyses of seven ovarian carcinoma cell lines identified sensitive (HEY, OVCAR8) and resistant (SKOV3-IP, OVCAR10) cells to 0.1 μmol/L FAK inhibitor (VS-4718, formerly PND-1186) treatment. VS-4718 promoted HEY and OVCAR8 G0-G1 cell-cycle arrest followed by cell death, whereas growth of SKOV3-IP and OVCAR10 cells was resistant to 1.0 μmol/L VS-4718. In HEY cells, genetic or pharmacological FAK inhibition prevented tumor growth in mice with corresponding reductions in β5 integrin and osteopontin expression. β5 knockdown reduced HEY cell growth in soft agar, tumor growth in mice, and both FAK Y397 phosphorylation and osteopontin expression in spheroids. FAK inhibitor-resistant (SKOV3-IP, OVCAR10) cells exhibited anchorage-independent Akt S473 phosphorylation, and expression of membrane-targeted and active Akt in sensitive cells (HEY, OVCAR8) increased growth but did not create a FAK inhibitor-resistant phenotype. These results link osteopontin, β5 integrin, and FAK in promoting ovarian tumor progression. β5 integrin expression may serve as a biomarker for serous ovarian carcinoma cells that possess active FAK signaling.
Collapse
Affiliation(s)
- Isabelle Tancioni
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| | - Sean Uryu
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| | - Florian J Sulzmaier
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| | - Nina R Shah
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| | - Christine Lawson
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| | - Nichol L G Miller
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| | - Christine Jean
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| | - Xiao Lei Chen
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| | - Kristy K Ward
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| | - David D Schlaepfer
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, California
| |
Collapse
|
35
|
Zhang Y, Kenny HA, Swindell EP, Mitra AK, Hankins PL, Ahn RW, Gwin K, Mazar AP, O'Halloran TV, Lengyel E. Urokinase plasminogen activator system-targeted delivery of nanobins as a novel ovarian cancer therapy. Mol Cancer Ther 2013; 12:2628-39. [PMID: 24061648 DOI: 10.1158/1535-7163.mct-13-0204] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The urokinase system is overexpressed in epithelial ovarian cancer cells and is expressed at low levels in normal cells. To develop a platform for intracellular and targeted delivery of therapeutics in ovarian cancer, we conjugated urokinase plasminogen activator (uPA) antibodies to liposomal nanobins. The arsenic trioxide-loaded nanobins had favorable physicochemical properties and the ability to bind specifically to uPA. Confocal microscopy showed that the uPA-targeted nanobins were internalized by ovarian cancer cells, whereas both inductively coupled plasma optical mass spectrometry (ICP-MS) and fluorescence-activated cell sorting (FACS) analyses confirmed more than four-fold higher uptake of targeted nanobins when compared with untargeted nanobins. In a coculture assay, the targeted nanobins showed efficient uptake in ovarian cancer cells but not in the normal primary omental mesothelial cells. Moreover, this uptake could be blocked by either downregulating uPA receptor expression in the ovarian cancer cells using short-hairpin RNA (shRNA) or by competition with free uPA or uPA antibody. In proof-of-concept experiments, mice bearing orthotopic ovarian tumors showed a greater reduction in tumor burden when treated with targeted nanobins than with untargeted nanobins (47% vs. 27%; P < 0.001). The targeted nanobins more effectively inhibited tumor cell growth both in vitro and in vivo compared with untargeted nanobins, inducing caspase-mediated apoptosis and impairing stem cell marker, aldehyde dehydrogenase-1A1 (ALDH1A1), expression. Ex vivo fluorescence imaging of tumors and organs corroborated these results, showing preferential localization of the targeted nanobins to the tumor. These findings suggest that uPA-targeted nanobins capable of specifically and efficiently delivering payloads to cancer cells could serve as the foundation for a new targeted cancer therapy using protease receptors.
Collapse
Affiliation(s)
- Yilin Zhang
- Corresponding Author: Ernst Lengyel, Department of Obstetrics and Gynecology, University of Chicago, MC 2050, 5841 South Maryland Avenue, Chicago, IL 60637.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Juengel E, Meyer dos Santos S, Schneider T, Makarevic J, Hudak L, Bartsch G, Haferkamp A, Wiesner C, Blaheta RA. HDAC inhibition suppresses bladder cancer cell adhesion to collagen under flow conditions. Exp Biol Med (Maywood) 2013; 238:1297-304. [PMID: 24006305 DOI: 10.1177/1535370213498975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The influence of the histone deacetylase (HDAC)-inhibitor, valproic acid (VPA), on bladder cancer cell adhesion in vitro was investigated in this paper. TCCSUP and RT-112 bladder cancer cells were treated with VPA (0.5 or 1 mM) twice or thrice weekly for 14 days. Controls remained untreated. Tumour cell interaction with immobilized collagen was evaluated by a flow-based adhesion assay using a shear force of 2 or 4 dyne/cm(2). The effects of VPA on the integrin adhesion receptors α3, α5, β1, β3 and β4 were assessed by flow cytometry to determine integrin surface expression and by western blotting to determine the cytoplasmic integrin level. VPA of 0.5 mM and 1 mM significantly prevented binding of both RT-112 and TCCSUP cells to collagen, compared with the untreated controls. Adhesion was reduced to a higher extent when RT-112 (subjected to 2 dyne/cm(2)) or TCCSUP (subjected to 2 or 4 dyne/cm(2)) tumour cells were treated with VPA three times a week, compared to the two times a week protocol. VPA caused a significant up-regulation of the integrin α3, α5, β1, β3 and β4 subtypes on the TCCSUP cell surface membrane. In RT-112 cells, only integrin α5 was elevated on the cell surface following VPA exposure. Western blotting revealed an up-regulation of α3, α5, β3 and β4 integrins and down-regulation of the integrin β1 protein by VPA in TCCSUP. VPA also up-regulated α5 and down-regulated β1 integrin in RT-112 cells, but also reduced α3 and β3 in TCCSUP. VPA exerted adhesion-blocking properties on bladder cancer cells under physiologic flow conditions. The effects were accompanied by distinct modifications of the integrin expression profile, which differ depending on the cell lines used. Application of VPA might be an innovative option to prevent bladder cancer dissemination.
Collapse
Affiliation(s)
- Eva Juengel
- Department of Urology, Johann Wolfgang Goethe-University, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lengyel E, Burdette JE, Kenny HA, Matei D, Pilrose J, Haluska P, Nephew KP, Hales DB, Stack MS. Epithelial ovarian cancer experimental models. Oncogene 2013; 33:3619-33. [PMID: 23934194 DOI: 10.1038/onc.2013.321] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (OvCa) is associated with high mortality and, as the majority (>75%) of women with OvCa have metastatic disease at the time of diagnosis, rates of survival have not changed appreciably over 30 years. A mechanistic understanding of OvCa initiation and progression is hindered by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell(s) or tissue(s) of origin. Metastasis of OvCa involves direct extension or exfoliation of cells and cellular aggregates into the peritoneal cavity, survival of matrix-detached cells in a complex ascites fluid phase and subsequent adhesion to the mesothelium lining covering abdominal organs to establish secondary lesions containing host stromal and inflammatory components. Development of experimental models to recapitulate this unique mechanism of metastasis presents a remarkable scientific challenge, and many approaches used to study other solid tumors (for example, lung, colon and breast) are not transferable to OvCa research given the distinct metastasis pattern and unique tumor microenvironment (TME). This review will discuss recent progress in the development and refinement of experimental models to study OvCa. Novel cellular, three-dimensional organotypic, and ex vivo models are considered and the current in vivo models summarized. The review critically evaluates currently available genetic mouse models of OvCa, the emergence of xenopatients and the utility of the hen model to study OvCa prevention, tumorigenesis, metastasis and chemoresistance. As these new approaches more accurately recapitulate the complex TME, it is predicted that new opportunities for enhanced understanding of disease progression, metastasis and therapeutic response will emerge.
Collapse
Affiliation(s)
- E Lengyel
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - J E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois/Chicago, Chicago, IL, USA
| | - H A Kenny
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - D Matei
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Pilrose
- Medical Sciences, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - P Haluska
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - K P Nephew
- Medical Sciences, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - D B Hales
- Department of Physiology, Southern Illinois University, Carbondale, IL, USA
| | - M S Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| |
Collapse
|
38
|
Cai H, Xu Y. The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal 2013; 11:31. [PMID: 23618389 PMCID: PMC3655373 DOI: 10.1186/1478-811x-11-31] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The Hippo-YAP signaling pathway is altered and implicated as oncogenic in many human cancers. However, extracellular signals that regulate the mammalian Hippo pathway have remained elusive until very recently when it was shown that the Hippo pathway is regulated by G-protein-coupled receptor (GPCR) ligands including lysophosphatidic acid (LPA) and sphingosine 1-phosphophate (S1P). LPA inhibits Lats kinase activity in HEK293 cells, but the potential involvement of a protein phosphatase was not investigated. The extracellular regulators of YAP dephosphorylation (dpYAP) and nuclear translocation in epithelial ovarian cancer (EOC) are essentially unknown. RESULTS We showed here that LPA dose- and time-dependently induced dpYAP in human EOC cell lines OVCA433, OVCAR5, CAOV3, and Monty-1, accompanied by increased YAP nuclear translocation. YAP was involved in LPA-induced migration and invasion of EOC cells and LPA3 was a major LPA receptor mediating the migratory effect. We demonstrated that G13, but not or to a lesser extent G12, Gi or Gq, was necessary for LPA-induced dpYAP and its nuclear translocation and that RhoA-ROCK, but not RhoB, RhoC, Rac1, cdc42, PI3K, ERK, or AKT, were required for the LPA-dpYAP effect. In contrast to results in HEK293 cells, LPA did not inhibit Mst and Lats kinase in OVCA433 EOC cells. Instead, protein phosphatase 1A (PP1A) acted down-stream of RhoA in LPA-induction of dpYAP. In addition, we identified that amphiregulin (AREG), a down-stream target of YAP which activated EGF receptors (EGFR), mediated an LPA-stimulated and EGFR-dependent long-term (16 hr) cell migration. This process was transcription- and translation-dependent and was distinct from a transcription- and YAP-independent short-term (4 hr) cell migration. EOC tissues had reduced pYAP levels compared to normal and benign ovarian tissues, implying the involvement of dpYAP in EOC pathogenesis, as well as its potential marker and/or target values. CONCLUSIONS A novel LPA-LPA3-G13-RhoA-ROCK-PP1A-dpYAP-AREG-EGFR signaling pathway was linked to LPA-induced migration of EOC cells. Reduced pYAP levels were demonstrated in human EOC tumors as compared to both normal ovarian tissues and benign gynecologic masses. Our findings support that YAP is a potential marker and target for developing novel therapeutic strategies against EOC.
Collapse
Affiliation(s)
- Hui Cai
- First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 975 W. Walnut St. IB355A, Indianapolis, IN 46202, USA
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 975 W. Walnut St. IB355A, Indianapolis, IN 46202, USA
| |
Collapse
|
39
|
Kang KS, Choi YP, Gao MQ, Kang S, Kim BG, Lee JH, Kwon MJ, Shin YK, Cho NH. CD24⁺ ovary cancer cells exhibit an invasive mesenchymal phenotype. Biochem Biophys Res Commun 2013; 432:333-8. [PMID: 23396061 DOI: 10.1016/j.bbrc.2013.01.102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/24/2013] [Indexed: 12/16/2022]
Abstract
We recently reported that the subset of CD24(+) cells in ovarian cancer possesses various cancer stem cell properties. In this study, we further show that this subpopulation of ovarian cancer cells exhibits an epithelial-mesenchymal transition (EMT) phenotype, high invasive capacity, and CXCR4/SDF-1-mediated chemotactic migration. We evaluated CD24 expression in various ovarian cancer cell lines by flow cytometric analysis. CAOV3 and a primary ovarian cancer cell line Clone 4 were sorted into CD24(+) and CD24(-) subpopulations by FACS and Western blot, cell invasion, adhesion, and in vitro chemotaxis assays were performed with these two subpopulations. We also assessed the effects of shRNA depletion of CD24 in CAOV3 and Clone 4 cells by Western blot and cell invasion assays. CD24 expression in ovarian cancer cell lines correlated with aggressive histologic subtypes of epithelial ovarian cancer. The CD24(+) subpopulation was also more invasive than the CD24(-) subpopulation and showed higher CXCR4/SDF-1-mediated chemotactic migration. CD24(+) cells exhibited an EMT phenotype as characterized by loss of E-cadherin expression and gain of vimentin, Twist, and Snail1 expression. In addition, CD24(+) cells stimulated cell attachment to fibronectin through the activation of β1 integrin. Depletion of CD24 expression by CD24 shRNA efficiently suppressed cell invasion and induced downregulation of CXCR4 as well as loss of the EMT phenotype. In conclusion, CD24 expression in ovarian cancer may be related to tumor aggressiveness, in particular cell invasion and chemotactic migration. Therefore, CD24 may be a good candidate for a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Kyu Sub Kang
- BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li Q, Li C, Zhang YY, Chen W, Lv JL, Sun J, You QS. Silencing of integrin-linked kinase suppresses in vivo tumorigenesis of human ovarian carcinoma cells. Mol Med Rep 2013; 7:1050-4. [PMID: 23340803 DOI: 10.3892/mmr.2013.1285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/16/2013] [Indexed: 11/06/2022] Open
Abstract
Integrin-linked kinase (ILK) plays a role in the regulation of multiple cellular functions (e.g., promoting cell migration and proliferation, but inhibiting cell adhesion). This study investigated the inhibitory effects of ILK gene knockdown on the regulation of in vivo tumorigenesis of human ovarian carcinoma cells in nude mouse xenografts. HO-8910 cells were transfected with an ILK antisense oligonucleotide (ILK-ASO) to silence the ILK gene. Expression of ILK mRNA and protein was evaluated by RT-PCR and western blotting, respectively. The cell cycle was assessed by flow cytometric analysis. Cells with or without ILK-ASO transfection were subcutaneously injected into nude mice. The mouse body weight, tumor formation, tumor size and tumor weight were determined up to 30 days after inoculation. Tumor cells transfected with ILK-ASO had significantly decreased ILK mRNA and protein expression (P<0.01) when compared to the control cells. ILK gene silencing significantly increased the number of cells in the G0/G1 phase (67.61 vs. 43.29%, χ2=1197.15, P<0.01). After tumor cell inoculation, tumor cells transfected with ILK-ASO showed significantly delayed tumor formation when compared to control (9.10±0.74 vs. 5.30±0.67 days, respectively; P<0.01). In addition, tumor growth was suppressed in the 30 days following inoculation (P<0.01 compared with the controls). The average tumor weight in the ILK-ASO group was statistically lower than that of the control group (1.29±0.11 vs. 1.57±0.13 g, respectively; P<0.01). This study demonstrated that ILK-ASO transfection efficiently downregulated ILK expression in human ovarian carcinoma HO-8910 cells and that ILK gene silencing suppressed tumor growth in nude mice xenografts.
Collapse
Affiliation(s)
- Qi Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, PR China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Loessner D, Quent VMC, Kraemer J, Weber EC, Hutmacher DW, Magdolen V, Clements JA. Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance. Gynecol Oncol 2012; 127:569-78. [PMID: 22964375 DOI: 10.1016/j.ygyno.2012.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/10/2012] [Accepted: 09/02/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Chemoresistance is a critical feature of advanced ovarian cancer with only 30% of patients surviving longer than 5 years. We have previously shown that four kallikrein-related (KLK) peptidases, KLK4, KLK5, KLK6 and KLK7 (KLK4-7), are implicated in peritoneal invasion and tumour growth, but underlying mechanisms were not identified. We also reported that KLK7 overexpression confers chemoresistance to paclitaxel, and cell survival via integrins. In this study, we further explored the functional consequenses of overexpression of all four KLKs (KLK4-7) simultaneously in the ovarian cancer cell line, OV-MZ-6, and its impact on integrin expression and signalling, cell adhesion and survival as contributors to chemoresistance and metastatic progression. METHODS Quantitative gene and protein expression analyses, confocal microscopy, cell adhesion and chemosensitivity assays were performed. RESULTS Expression of α5β1/αvβ3 integrins was downregulated upon combined stable KLK4-7 overexpression in OV-MZ-6 cells. Accordingly, the adhesion of these cells to vitronectin and fibronectin, the extracellular matrix binding proteins of α5β1/αvβ3 integrins and two predominant proteins of the peritoneal matrix, was decreased. KLK4-7-transfected cells were more resistant to paclitaxel (10-100 nmol/L: 38-54%), but not to carboplatin, which was associated with decreased apoptotic stimuli. However, the KLK4-7-induced paclitaxel resistance was not blocked by the MEK1/2 inhibitor, U0126. CONCLUSIONS This study demonstrates that combined KLK4-7 expression by ovarian cancer cells promotes reduced integrin expression with consequently less cell-matrix attachment, and insensitivity to paclitaxel mediated by complex integrin and MAPK independent interactions, indicative of a malignant phenotype and disease progression suggesting a role for these KLKs in this process.
Collapse
Affiliation(s)
- Daniela Loessner
- Cancer Program, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Ko SY, Barengo N, Ladanyi A, Lee JS, Marini F, Lengyel E, Naora H. HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest 2012; 122:3603-17. [PMID: 22945634 DOI: 10.1172/jci62229] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 07/12/2012] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancers (EOCs) often exhibit morphologic features of embryonic Müllerian duct-derived tissue lineages and colonize peritoneal surfaces that overlie connective and adipose tissues. However, the mechanisms that enable EOC cells to readily adapt to the peritoneal environment are poorly understood. In this study, we show that expression of HOXA9, a Müllerian-patterning gene, is strongly associated with poor outcomes in patients with EOC and in mouse xenograft models of EOC. Whereas HOXA9 promoted EOC growth in vivo, HOXA9 did not stimulate autonomous tumor cell growth in vitro. On the other hand, expression of HOXA9 in EOC cells induced normal peritoneal fibroblasts to express markers of cancer-associated fibroblasts (CAFs) and to stimulate growth of EOC and endothelial cells. Similarly, expression of HOXA9 in EOC cells induced normal adipose- and bone marrow-derived mesenchymal stem cells (MSCs) to acquire features of CAFs. These effects of HOXA9 were due in substantial part to its transcriptional activation of the gene encoding TGF-β2 that acted in a paracrine manner on peritoneal fibroblasts and MSCs to induce CXCL12, IL-6, and VEGF-A expression. These results indicate that HOXA9 expression in EOC cells promotes a microenvironment that is permissive for tumor growth.
Collapse
Affiliation(s)
- Song Yi Ko
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Diagnosis and management of peritoneal metastases from ovarian cancer. Gastroenterol Res Pract 2012; 2012:541842. [PMID: 22888339 PMCID: PMC3408715 DOI: 10.1155/2012/541842] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/12/2012] [Indexed: 02/08/2023] Open
Abstract
The management and the outcome of peritoneal metastases or recurrence from epithelial ovarian cancer are presented. The biology and the diagnostic tools of EOC peritoneal metastasis with a comprehensive approach and the most recent literatures data are discussed. The definition and the role of surgery and chemotherapy are presented in order to focuse on the controversial points. Finally, the paper discusses the new data about the introduction of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) in the treatment of advanced epithelial ovarian cancer.
Collapse
|
44
|
Gamble LJ, Ugai H, Wang M, Borovjagin AV, Matthews QL. Therapeutic efficacy of an oncolytic adenovirus containing RGD ligand in minor capsid protein IX and Fiber, Δ24DoubleRGD, in an ovarian cancer model. JOURNAL OF MOLECULAR BIOCHEMISTRY 2012; 1:26-39. [PMID: 23998042 PMCID: PMC3755628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ovarian cancer is the leading cause of gynecological disease death despite advances in medicine. Therefore, novel strategies are required for ovarian cancer therapy. Conditionally replicative adenoviruses (CRAds), genetically modified as anti-cancer therapeutics, are one of the most attractive candidate agents for cancer therapy. However, a paucity of coxsackie B virus and adenovirus receptor (CAR) expression on the surface of ovarian cancer cells has impeded treatment of ovarian cancer using this approach. This study sought to engineer a CRAd with enhanced oncolytic ability in ovarian cancer cells, "Δ24DoubleRGD." Δ24DoubleRGD carries an arginine-glycine-aspartate (RGD) motif incorporated into both fiber and capsid protein IX (pIX) and its oncolytic efficacy was evaluated in ovarian cancer. In vitro analysis of cell viability showed that infection of ovarian cancer cells with Δ24DoubleRGD leads to increased cell killing relative to the control CRAds. Data from this study suggested that not only an increase in number of RGD motifs on the CRAd capsid, but also a change in the repertoir of targeted integrins could lead to enhanced oncolytic potency of Δ24DoubleRGD in ovarian cancer cells in vitro. In an intraperitoneal model of ovarian cancer, mice injected with Δ24DoubleRGD showed, however, a similar survival rate as mice treated with control CRAds.
Collapse
Affiliation(s)
- Lena J Gamble
- Division of Human Gene Therapy, Departments of Medicine, Pathology, Surgery, Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA ; University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
45
|
Integrin inhibitors as a therapeutic agent for ovarian cancer. JOURNAL OF ONCOLOGY 2011; 2012:915140. [PMID: 22235205 PMCID: PMC3253465 DOI: 10.1155/2012/915140] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/11/2011] [Accepted: 11/17/2011] [Indexed: 12/21/2022]
Abstract
Ovarian cancer is a deadly disease, with a cure rate of only 30%. Despite aggressive treatments, relapse remains almost inevitable in patients with advanced-stage disease. In recent years, great progress has been made towards targeting integrins in cancer treatment, and clinical studies with various integrin inhibitors have demonstrated their effectiveness in blocking cancer progression. Given that the initial critical step of ovarian cancer metastasis is the attachment of cancer cells onto the peritoneum or omentum, in addition to the proven positive clinical results of anti-angiogenic therapy, targeting integrins is likely to be one of the most feasible approaches. This paper summarizes the current understanding of the integrin biology in ovarian cancer metastasis and the various therapeutic approaches attempted with integrin inhibitors. Although no integrin inhibitors have shown favorable results so far, integrin-targeted therapies continue to be a promising approach to be explored for further clinical investigation.
Collapse
|
46
|
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, Romero IL, Carey MS, Mills GB, Hotamisligil GS, Yamada SD, Peter ME, Gwin K, Lengyel E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 2011; 17:1498-503. [PMID: 22037646 PMCID: PMC4157349 DOI: 10.1038/nm.2492] [Citation(s) in RCA: 1699] [Impact Index Per Article: 121.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 08/23/2011] [Indexed: 12/12/2022]
Abstract
Intra-abdominal tumors, such as ovarian cancer, have a clear predilection for metastasis to the omentum, an organ primarily composed of adipocytes. Currently, it is unclear why tumor cells preferentially home to and proliferate in the omentum, yet omental metastases typically represent the largest tumor in the abdominal cavities of women with ovarian cancer. We show here that primary human omental adipocytes promote homing, migration and invasion of ovarian cancer cells, and that adipokines including interleukin-8 (IL-8) mediate these activities. Adipocyte-ovarian cancer cell coculture led to the direct transfer of lipids from adipocytes to ovarian cancer cells and promoted in vitro and in vivo tumor growth. Furthermore, coculture induced lipolysis in adipocytes and β-oxidation in cancer cells, suggesting adipocytes act as an energy source for the cancer cells. A protein array identified upregulation of fatty acid-binding protein 4 (FABP4, also known as aP2) in omental metastases as compared to primary ovarian tumors, and FABP4 expression was detected in ovarian cancer cells at the adipocyte-tumor cell interface. FABP4 deficiency substantially impaired metastatic tumor growth in mice, indicating that FABP4 has a key role in ovarian cancer metastasis. These data indicate adipocytes provide fatty acids for rapid tumor growth, identifying lipid metabolism and transport as new targets for the treatment of cancers where adipocytes are a major component of the microenvironment.
Collapse
Affiliation(s)
- Kristin M Nieman
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Reuning U. Integrin αvβ3 promotes vitronectin gene expression in human ovarian cancer cells by implicating rel transcription factors. J Cell Biochem 2011; 112:1909-19. [PMID: 21433063 DOI: 10.1002/jcb.23111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We previously showed that integrin αvβ3 expression upon engagement by its major ligand vitronectin (VN) correlated with enhanced human ovarian cancer cell adhesion, motility, and proliferation, by triggering intracellular signaling events, ultimately leading to altered gene expression. In the present study, we characterized cellular VN expression as a function of αvβ3 and noticed significant upregulation of VN protein which was reflected by elevated VN gene transcription. In order to identify specific transcription factors involved in the αvβ3-regulatory effect on VN, we generated different VN promoter mutants. We noticed that disruption of the DNA consensus motif for Rel proteins did not only prominently reduce VN promoter activity but, moreover, led to a loss of responsiveness to αvβ3, suggesting a crucial role of Rel proteins in αvβ3-provoked VN induction. In cell migration studies, we confirmed increased cell motility as a function of αvβ3/VN which was further enhanced by raising cellular Rel transcription factor levels. Thus, the data of the present study elucidated a positive feedback regulatory loop on VN expression by αvβ3 implicating transcription factors of the Rel family. Hence by altering the composition of the extracellular matrix upon additional VN synthesis and deposition, tumor cells might be enabled to modulate their surrounding reactive microenvironment towards enhanced αvβ3/VN-interactions and, consequently, intrinsic intracellular signaling events affecting cancer progression.
Collapse
Affiliation(s)
- Ute Reuning
- Clinical Research Unit, Department of Obstetrics & Gynecology, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
48
|
Lei Y, Huang K, Gao C, Lau QC, Pan H, Xie K, Li J, Liu R, Zhang T, Xie N, Nai HS, Wu H, Dong Q, Zhao X, Nice EC, Huang C, Wei Y. Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells. Mol Cell Proteomics 2011; 10:M110.005397. [PMID: 21622897 PMCID: PMC3205852 DOI: 10.1074/mcp.m110.005397] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 05/26/2011] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in males and second in females worldwide. Unfortunately 40-50% of patients already have metastatic disease at presentation when prognosis is poor with a 5-year survival of <10%. Reactive oxygen species (ROS) have been proposed to play a crucial role in tumor metastasis. We now show that higher levels of ROS accumulation are found in a colorectal cancer-derived metastatic cell line (SW620) compared with a cell line (SW480) derived from the primary lesion from the same patient. In addition, ROS accumulation can affect both the migratory and invasive capacity of SW480 and SW620 cells. To explore the molecular mechanism underlying ROS-induced migration and invasion in CRC, we have compared protein expression patterns between SW480 and SW620 cells using a two-dimensional electrophoresis-based proteomics strategy. A total of 63 altered proteins were identified from tandem MS analysis. Cluster analysis revealed dysregulated expression of multiple redox regulative or ROS responsive proteins, implicating their functional roles in colorectal cancer metastasis. Molecular and pathological validation demonstrated that altered expression of PGAM1, GRB2, DJ-1, ITGB3, SOD-1, and STMN1 was closely correlated with the metastatic potential of CRC. Functional studies showed that ROS markedly up-regulated expression of ITGB3, which in turn promoted an aggressive phenotype in SW480 cells, with concomitant up-regulated expression of STMN1. In contrast, knockdown of ITGB3 expression could mitigate the migratory and invasive potential of SW620 or H(2)O(2)-treated SW480 cells, accompanied by down-regulated expression of STMN1. The function of ITGB3 was dependent on the surface expression of integrin αvβ3 heterodimer. Furthermore, STMN1 expression and the PI3K-Akt-mTOR pathway were found to be involved in ROS-induced and ITGB3-mediated migration and invasion of colorectal cancer cells. Taken together, these studies suggest that ITGB3 plays an important role in ROS-induced migration and invasion in CRC.
Collapse
Affiliation(s)
- Yunlong Lei
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Kai Huang
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Cong Gao
- §Department of General Surgery, Sichuan Provincial People's Hospital, Chengdu, 610041, P. R. China
| | - Quek Choon Lau
- ¶School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic. 535 Clementi Road, Republic of Singapore
| | - Hua Pan
- §Department of General Surgery, Sichuan Provincial People's Hospital, Chengdu, 610041, P. R. China
| | - Ke Xie
- §Department of General Surgery, Sichuan Provincial People's Hospital, Chengdu, 610041, P. R. China
| | - Jingyi Li
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Rui Liu
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Zhang
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Na Xie
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Huey Shan Nai
- ¶School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic. 535 Clementi Road, Republic of Singapore
| | - Hong Wu
- ‖Department of Urology and General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Qiang Dong
- ‖Department of Urology and General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xia Zhao
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Edouard C. Nice
- **Monash University, Department of Biochemistry and Molecular Biology, Clayton, Victoria 3800, Australia
| | - Canhua Huang
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuquan Wei
- From the ‡The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
49
|
Down-regulation of β3-integrin inhibits bone metastasis of small cell lung cancer. Mol Biol Rep 2011; 39:3029-35. [PMID: 21678053 DOI: 10.1007/s11033-011-1065-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
Bone is one of the most frequent targets of small cell lung cancer (SCLC) metastasis, but the molecular mechanism remains unclear. β3-integrin plays an important role in invasion of various kinds of tumors. Yet, its role in bone-metastasis of SCLC is still unknown. In this study, we first examined the expression of β3-integrin in SBC-5 and SBC-3 cells by real-time PCR, western blot and immunofluorescence. We found that, compared to none bone-metastatic SBC-3 cells, β3-integrin was highly expressed in SBC-5 cells, a specific bone-metastatic SCLC cells line characterized in our previous study. We next constructed β3-integrin siRNA and transfected SBC-5 cell line, and found that β3-integrin siRNA significantly down-regulated the β3-integrin mRNA level and protein expression in SBC-5 cell line. We further found that inhibition of β3-integrin significantly reduced tumor cell proliferation and induced apoptosis. In addition, the β3-integrin down-regulated cells presented significant decrease in cell adhesion, migration and invasion activity. Our results suggest the β3-integrin has an essential effect on tumor cell proliferation and progression, and may be a potential therapeutic target for the prevention of skeletal metastases of lung cancer.
Collapse
|
50
|
The role of β3-integrins in tumor angiogenesis: context is everything. Curr Opin Cell Biol 2011; 23:630-7. [PMID: 21565482 DOI: 10.1016/j.ceb.2011.03.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/26/2011] [Indexed: 02/07/2023]
Abstract
Integrins are a family of cell-extracellular matrix adhesion molecules that play important roles in tumor angiogenesis. αvβ3-Integrin has received much attention as a potential anti-angiogenic target because it is upregulated in tumor-associated blood vessels. Agents targeting αvβ3-integrin are now showing some success in phase III clinical trails for the treatment of glioblastoma, but the exact function of this integrin in tumor angiogenesis is still relatively unknown. This review highlights some of the recent data illustrating that β3-integrins play both pro-angiogenic and anti-angiogenic roles in tumor angiogenesis depending on the context. Specifically we will discuss how the following differentially influence β3-integrin's role in tumor angiogenesis: first, cell-matrix interactions, second, β3-integrin inhibitor doses, third, cell type, and fourth, other interacting molecules.
Collapse
|