1
|
Khan SA, Nidhi F, Leal AF, Celik B, Herreño-Pachón AM, Saikia S, Benincore-Flórez E, Ago Y, Tomatsu S. Glycosaminoglycans in mucopolysaccharidoses and other disorders. Adv Clin Chem 2024; 122:1-52. [PMID: 39111960 DOI: 10.1016/bs.acc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Glycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM). The deficiency of one or more lysosomal enzyme(s) results in the accumulation of undegraded GAGs, causing cell, tissue, and organ dysfunction. Accumulation of GAGs in various tissues and ECM results in secretion into the circulation and then excretion in urine. GAGs are biomarkers of certain metabolic disorders, such as mucopolysaccharidoses (MPS) and mucolipidoses. GAGs are also elevated in patients with various conditions such as respiratory and renal disorders, fatty acid metabolism disorders, viral infections, vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. MPS are a group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade GAGs in the lysosome. Eight types of MPS are categorized based on lack or defect in one of twelve specific lysosomal enzymes and are described as MPS I through MPS X (excluding MPS V and VIII). Clinical features vary with the type of MPS and clinical severity of the disease. This chapter addresses the historical overview, synthesis, degradation, distribution, biological role, and method for measurement of GAGs.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours Children's Health, Wilmington, DE, United States
| | - Fnu Nidhi
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | - Andrés Felipe Leal
- Nemours Children's Health, Wilmington, DE, United States; Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Betul Celik
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Sampurna Saikia
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Yasuhiko Ago
- Nemours Children's Health, Wilmington, DE, United States
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
2
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Zhang Q, Jing Y, Gong Q, Cai L, Wang R, Yang D, Wang L, Qu M, Chen H, Tang Y, Tian H, Ding J, Xu Z. Endorepellin downregulation promotes angiogenesis after experimental traumatic brain injury. Neural Regen Res 2024; 19:1092-1097. [PMID: 37862213 PMCID: PMC10749628 DOI: 10.4103/1673-5374.382861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 10/22/2023] Open
Abstract
Endorepellin plays a key role in the regulation of angiogenesis, but its effects on angiogenesis after traumatic brain injury are unclear. This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice. Mice were randomly divided into four groups: sham, controlled cortical impact only, adeno-associated virus (AAV)-green fluorescent protein, and AAV-shEndorepellin-green fluorescent protein groups. In the controlled cortical impact model, the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+ proliferating endothelial cells and the functional microvessel density in mouse brain. These changes resulted in improved neurological function compared with controlled cortical impact mice. Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein. Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization, which may further improve neurobehavioral outcomes. Furthermore, an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control. Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor- and angiopoietin-1-related signaling pathways.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Jing
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyuan Gong
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Wang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianxu Yang
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Meijie Qu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hao Chen
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hengli Tian
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiming Xu
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
5
|
Davis GE, Kemp SS. Extracellular Matrix Regulation of Vascular Morphogenesis, Maturation, and Stabilization. Cold Spring Harb Perspect Med 2023; 13:a041156. [PMID: 35817544 PMCID: PMC10578078 DOI: 10.1101/cshperspect.a041156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.
Collapse
Affiliation(s)
- George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida 33612, USA
| |
Collapse
|
6
|
Chen CG, Kapoor A, Xie C, Moss A, Vadigepalli R, Ricard-Blum S, Iozzo RV. Conditional expression of endorepellin in the tumor vasculature attenuates breast cancer growth, angiogenesis and hyaluronan deposition. Matrix Biol 2023; 118:92-109. [PMID: 36907428 PMCID: PMC10259220 DOI: 10.1016/j.matbio.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The tumor stroma of most solid malignancies is characterized by a pathological accumulation of pro-angiogenic and pro-tumorigenic hyaluronan driving tumorigenesis and metastatic potential. Of all three hyaluronan synthase isoforms, HAS2 is the primary enzyme that promotes the build-up of tumorigenic HA in breast cancer. Previously, we discovered that endorepellin, the angiostatic C-terminal fragment of perlecan, evokes a catabolic mechanism targeting endothelial HAS2 and hyaluronan via autophagic induction. To explore the translational implications of endorepellin in breast cancer, we created a double transgenic, inducible Tie2CreERT2;endorepellin(ER)Ki mouse line that expresses recombinant endorepellin specifically from the endothelium. We investigated the therapeutic effects of recombinant endorepellin overexpression in an orthotopic, syngeneic breast cancer allograft mouse model. First, adenoviral delivery of Cre evoking intratumor expression of endorepellin in ERKi mice suppressed breast cancer growth, peritumor hyaluronan and angiogenesis. Moreover, tamoxifen-induced expression of recombinant endorepellin specifically from the endothelium in Tie2CreERT2;ERKi mice markedly suppressed breast cancer allograft growth, hyaluronan deposition in the tumor proper and perivascular tissues, and tumor angiogenesis. These results provide insight into the tumor suppressing activity of endorepellin at the molecular level and implicate endorepellin as a promising cancer protein therapy that targets hyaluronan in the tumor microenvironment.
Collapse
Affiliation(s)
- Carolyn G Chen
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Aastha Kapoor
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher Xie
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alison Moss
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sylvie Ricard-Blum
- Institute of Molecular and Supramolecular Chemistry and Biochemistry, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
7
|
Hunter EJ, Hamaia SW, Kim PSK, Malcor JDM, Farndale RW. The effects of inhibition and siRNA knockdown of collagen-binding integrins on human umbilical vein endothelial cell migration and tube formation. Sci Rep 2022; 12:21601. [PMID: 36517525 PMCID: PMC9751114 DOI: 10.1038/s41598-022-25937-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Blood vessels in the body are lined with endothelial cells which have vital roles in numerous physiological and pathological processes. Collagens are major constituents of the extracellular matrix, and many adherent cells express several collagen-binding adhesion receptors. Here, we study the endothelium-collagen interactions mediated by the collagen-binding integrins, α1β1, α2β1, α10β1 and α11β1 expressed in human umbilical vein endothelial cells (HUVECs). Using qPCR, we found expression of the α10 transcript of the chondrocyte integrin, α10β1, along with the more abundant α2, and low-level expression of α1. The α11 transcript was not detected. Inhibition or siRNA knockdown of the α2-subunit resulted in impaired HUVEC adhesion, spreading and migration on collagen-coated surfaces, whereas inhibition or siRNA knockdown of α1 had no effect on these processes. In tube formation assays, inhibition of either α1 or α2 subunits impaired the network complexity, whereas siRNA knockdown of these integrins had no such effect. Knockdown of α10 had no effect on cell spreading, migration or tube formation in these conditions. Overall, our results indicate that the collagen-binding integrins, α1β1 and α2β1 play a central role in endothelial cell motility and self-organisation.
Collapse
Affiliation(s)
- Emma J Hunter
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
- Stem Cell and Brain Research Institute, Université Lyon 1, INSERM U1208, 18 Avenue Doyen Lépine, 69500, Bron, France
| | - Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
| | - Peter S-K Kim
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
| | - Jean-Daniel M Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMS3444 BioSciences Gerland-Lyon Sud, UMR5305, CNRS/Université Lyon 1, Lyon, France
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, CB2 1QW, UK.
- CambCol Laboratories Ltd, 18 Oak Lane, Littleport, Ely, CB6 1QZ, UK.
| |
Collapse
|
8
|
Kemp SS, Lin PK, Sun Z, Castaño MA, Yrigoin K, Penn MR, Davis GE. Molecular basis for pericyte-induced capillary tube network assembly and maturation. Front Cell Dev Biol 2022; 10:943533. [PMID: 36072343 PMCID: PMC9441561 DOI: 10.3389/fcell.2022.943533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Here we address the functional importance and role of pericytes in capillary tube network assembly, an essential process that is required for vascularized tissue development, maintenance, and health. Healthy capillaries may be directly capable of suppressing human disease. Considerable advances have occurred in our understanding of the molecular and signaling requirements controlling EC lumen and tube formation in 3D extracellular matrices. A combination of SCF, IL-3, SDF-1α, FGF-2 and insulin ("Factors") in conjunction with integrin- and MT1-MMP-induced signaling are required for EC sprouting behavior and tube formation under serum-free defined conditions. Pericyte recruitment to the abluminal EC tube surface results in elongated and narrow tube diameters and deposition of the vascular basement membrane. In contrast, EC tubes in the absence of pericytes continue to widen and shorten over time and fail to deposit basement membranes. Pericyte invasion, recruitment and proliferation in 3D matrices requires the presence of ECs. A detailed analysis identified that EC-derived PDGF-BB, PDGF-DD, ET-1, HB-EGF, and TGFβ1 are necessary for pericyte recruitment, proliferation, and basement membrane deposition. Blockade of these individual factors causes significant pericyte inhibition, but combined blockade profoundly interferes with these events, resulting in markedly widened EC tubes without basement membranes, like when pericytes are absent.
Collapse
Affiliation(s)
- Scott S Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Maria A Castaño
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Ksenia Yrigoin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - Marlena R Penn
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL, United States
| |
Collapse
|
9
|
Hunter EJ, Hamaia SW, Gullberg D, Malcor JD, Farndale RW. Selectivity of the collagen-binding integrin inhibitors, TC-I-15 and obtustatin. Toxicol Appl Pharmacol 2021; 428:115669. [PMID: 34363821 PMCID: PMC8444087 DOI: 10.1016/j.taap.2021.115669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
Integrins are a family of 24 adhesion receptors which are both widely-expressed and important in many pathophysiological cellular processes, from embryonic development to cancer metastasis. Hence, integrin inhibitors are valuable research tools which may have promising therapeutic uses. Here, we focus on the four collagen-binding integrins α1β1, α2β1, α10β1 and α11β1. TC-I-15 is a small molecule inhibitor of α2β1 that inhibits platelet adhesion to collagen and thrombus deposition, and obtustatin is an α1β1-specific disintegrin that inhibits angiogenesis. Both inhibitors were applied in cellular adhesion studies, using synthetic collagen peptide coatings with selective affinity for the different collagen-binding integrins and testing the adhesion of C2C12 cells transfected with each. Obtustatin was found to be specific for α1β1, as described, whereas TC-I-15 is shown to be non-specific, since it inhibits both α1β1 and α11β1 as well as α2β1. TC-I-15 was 100-fold more potent against α2β1 binding to a lower-affinity collagen peptide, suggestive of a competitive mechanism. These results caution against the use of integrin inhibitors in a therapeutic or research setting without testing for cross-reactivity.
Collapse
Affiliation(s)
- Emma J Hunter
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Jean-Daniel Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK.
| |
Collapse
|
10
|
Huang CW, Chuang CP, Chen YJ, Wang HY, Lin JJ, Huang CY, Wei KC, Huang FT. Integrin α 2β 1-targeting ferritin nanocarrier traverses the blood-brain barrier for effective glioma chemotherapy. J Nanobiotechnology 2021; 19:180. [PMID: 34120610 PMCID: PMC8201891 DOI: 10.1186/s12951-021-00925-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ferritin, the natural iron storage protein complex, self-assembles into a uniform cage-like structure. Human H-ferritin (HFn) has been shown to transverse the blood-brain barrier (BBB) by binding to transferrin receptor 1 (TfR1), which is abundant in endothelial cells and overexpressed in tumors, and enters cells via endocytosis. Ferritin is easily genetically modified with various functional molecules, justifying that it possesses great potential for development into a nanocarrier drug delivery system. RESULTS In this study, a unique integrin α2β1-targeting H-ferritin (2D-HFn)-based drug delivery system was developed that highlights the feasibility of receptor-mediated transcytosis (RMT) for glioma tumor treatment. The integrin targeting α2β1 specificity was validated by biolayer interferometry in real time monitoring and followed by cell binding, chemo-drug encapsulation stability studies. Compared with naïve HFn, 2D-HFn dramatically elevated not only doxorubicin (DOX) drug loading capacity (up to 458 drug molecules/protein cage) but also tumor targeting capability after crossing BBB in an in vitro transcytosis assay (twofold) and an in vivo orthotopic glioma model. Most importantly, DOX-loaded 2D-HFn significantly suppressed subcutaneous and orthotopic U-87MG tumor progression; in particular, orthotopic glioma mice survived for more than 80 days. CONCLUSIONS We believe that this versatile nanoparticle has established a proof-of-concept platform to enable more accurate brain tumor targeting and precision treatment arrangements. Additionally, this unique RMT based ferritin drug delivery technique would accelerate the clinical development of an innovative drug delivery strategy for central nervous system diseases with limited side effects in translational medicine.
Collapse
Affiliation(s)
- Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation (CAMIT), Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Pao Chuang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Yan-Jun Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Hsu-Yuan Wang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Jia-Jia Lin
- Center for Advanced Molecular Imaging and Translation (CAMIT), Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Feng-Ting Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan.
| |
Collapse
|
11
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
12
|
Chen QL, Yan Q, Feng KL, Xie CF, Fang CK, Wang JN, Liu LH, Li Y, Zhong C. Using Integrated Bioinformatics Analysis to Identify Abnormally Methylated Differentially Expressed Genes in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:805-823. [PMID: 33732011 PMCID: PMC7956867 DOI: 10.2147/ijgm.s294505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Objective For the identification of abnormally methylated differentially expressed genes (MDEGs) in hepatocellular carcinoma (HCC), this study integrated four microarray datasets to investigate the fundamental mechanisms of tumorigenesis. Methods We obtained the expression (GSE76427, GSE57957) and methylation (GSE89852, GSE54503) profiles from Gene Expression Omnibus (GEO). The abnormally MDEGs were identified by using R software. We used the clusterProfiler package for the functional and pathway enrichment analysis. The String database was used to build the protein–protein interaction (PPI) network and visualize it in Cytoscape. MCODE was employed in the module analysis. Additionally, Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) were employed to validate results. Lastly, we used cBioPortal software to examine the hub genetic alterations. Results We identified 162 hypermethylated, down-regulated genes and 190 hypomethylated, up-regulated genes. Up-regulated genes with low methylation were enriched in biological processes, such as keratinocyte proliferation, and calcium homeostasis. Pathway analysis was enriched in the AMPK and PI3K-Akt signaling pathways. The PPI network identified PTK2, VWF, and ITGA2 as hypomethylated, high-expressing hub genes. Down-regulated genes with high methylation were related to responses to peptide hormones and estradiol, multi-multicellular organism process. Pathway analysis indicated enrichment in camp, oxytocin signaling pathways. The PPI network identified CFTR, ESR1, and CXCL12 as hypermethylated, low-expressing hub genes. Upon verification in TCGA databases, we found that the expression and methylation statuses of the hub genes changed significantly, and it was consistent with our results. Conclusion The novel abnormally MDEGs and pathways in HCC were identified. These results helped us further understand the molecular mechanisms underlying HCC invasion, metastasis, and development. Hub genes can serve as biomarkers for an accurate diagnosis and treatment of HCC, and PTK2, VWF, ITGA2, CFTR, ESR1, and CXCL12 are included.
Collapse
Affiliation(s)
- Qing-Lian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Qian Yan
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Kun-Liang Feng
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chun-Feng Xie
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chong-Kai Fang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Ji-Nan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Li-Hua Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Ya Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| |
Collapse
|
13
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
14
|
Tang VW. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol Biol Cell 2020; 31:1823-1834. [PMID: 32730166 PMCID: PMC7525820 DOI: 10.1091/mbc.e19-12-0709] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of collagen I in vertebrates resulted in a dramatic increase in the stiffness of the extracellular environment, supporting long-range force propagation and the development of low-compliant tissues necessary for the development of vertebrate traits including pressurized circulation and renal filtration. Vertebrates have also evolved integrins that can bind to collagens, resulting in the generation of higher tension and more efficient force transmission in the extracellular matrix. The stiffer environment provides an opportunity for the vertebrates to create new structures such as the stress fibers, new cell types such as endothelial cells, new developmental processes such as neural crest delamination, and new tissue organizations such as the blood-brain barrier. Molecular players found only in vertebrates allow the modification of conserved mechanisms as well as the design of novel strategies that can better serve the physiological needs of the vertebrates. These innovations collectively contribute to novel morphogenetic behaviors and unprecedented increases in the complexities of tissue mechanics and functions.
Collapse
Affiliation(s)
- Vivian W. Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
15
|
Dos Santos PK, Altei WF, Danilucci TM, Lino RLB, Pachane BC, Nunes ACC, Selistre-de-Araujo HS. Alternagin-C (ALT-C), a disintegrin-like protein, attenuates alpha2beta1 integrin and VEGF receptor 2 signaling resulting in angiogenesis inhibition. Biochimie 2020; 174:144-158. [PMID: 32360415 DOI: 10.1016/j.biochi.2020.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
Abstract
Angiogenesis, a crucial process in tumor progression, is mainly regulated by vascular endothelial growth factor (VEGF) and its receptor, VEGFR2. Studies have shown the interaction between α2β1 integrin, a collagen receptor, and VEGFR2 in VEGF-driven angiogenesis in vitro and in vivo. Alternagin-C (ALT-C), an ECD-disintegrin-like protein from Bothrops alternatus snake venom, has high affinity for α2β1 integrin and shows antiangiogenic activity in concentrations higher than 100 nM. Despite previous results, its mechanism of action on angiogenic signaling pathways has not been addressed. Here we evaluate the antiangiogenic activity of ALT-C in human umbilical vein endothelial cells (HUVECs) associated or not with VEGF, as well as its interference in the α2β1/VEGFR2 crosstalk. ALT-C (1000 nM) affected actin cytoskeleton, decreased the number of cell filopodia, and strongly inhibited HUVEC tube formation, adhesion to type I collagen and cell migration. Down-regulation of α2β1/VEGFR2 crosstalk by ALT-C decreased the protein content and phosphorylation of VEGFR2 and β1 integrin subunit, inhibited ERK 1/2 and PI3K signaling and regulated FAK/Src and paxillin pathways. Furthermore, ALT-C increased the content of the autophagic markers LC3B and Beclin-1 in the presence of VEGF, which is associated with decreased angiogenesis. In conclusion, we suggest that ALT-C, after binding to α2β1 integrin, inhibits VEGF/VEGFR2 signaling, which results in impaired angiogenesis. These results demonstrate that ALT-C may be a potential candidate for the development of antiangiogenic therapies for tumor and metastasis treatment and help to understand the complexity and fundamental role of integrin inhibition in the tumor microenvironment.
Collapse
Affiliation(s)
- Patty K Dos Santos
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil.
| | - Wanessa F Altei
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Taís M Danilucci
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Rafael L B Lino
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Bianca C Pachane
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Ana C C Nunes
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Heloisa S Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| |
Collapse
|
16
|
Ma L, Sun Y, Li D, Li H, Jin X, Ren D. Overexpressed ITGA2 contributes to paclitaxel resistance by ovarian cancer cells through the activation of the AKT/FoxO1 pathway. Aging (Albany NY) 2020; 12:5336-5351. [PMID: 32202508 PMCID: PMC7138566 DOI: 10.18632/aging.102954] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Ovarian cancer is one of the most malignant tumors of the female reproductive system, with high invasiveness. The disease is a severe threat to women's health. The ITGA2 gene, which codes for integrin subunit α2, is involved in the proliferation, invasion, and metastasis of cancer cells. Although previous studies have shown that ITGA2 increases in ovarian cancer, the specific molecular mechanism of how ITGA2 promotes ovarian cancer proliferation and metastasis is still unclear. In this study, we confirmed that ITGA2 was elevated in ovarian cancer, which led to poor prognosis and survival. Overexpressed ITGA2 promoted the proliferation of ovarian cancer cells. We also found that ITGA2 regulated the phosphorylation of forkhead box O1 (FoxO1) by mediating AKT phosphorylation, which provided a reasonable explanation for ITGA2's role in ovarian cancer's resistance to albumin paclitaxel. In summary, ITGA2 could be used as a new therapeutic target and prognostic indicator in ovarian cancer.
Collapse
Affiliation(s)
- Linlin Ma
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, R.P. China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Li
- Cardiovascular Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hansong Li
- Department of Obstetrics and Gynecology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, R.P. China
| | - Xin Jin
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Turner KR, Adams C, Staelens S, Deckmyn H, San Antonio J. Crucial Role for Endothelial Cell α2β1 Integrin Receptor Clustering in Collagen-Induced Angiogenesis. Anat Rec (Hoboken) 2019; 303:1604-1618. [PMID: 31581346 DOI: 10.1002/ar.24277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 11/07/2022]
Abstract
Angiogenesis is a crucial mechanism of vascular growth and regeneration that requires biosynthesis and cross-linking of collagens in vivo and is induced by collagen in vitro. Here, we use an in vitro model in which apical Type I collagen gels rapidly induce angiogenesis in endothelial monolayers. We extend previous studies demonstrating the importance of the endothelial α2β1 integrin, a key collagen receptor, in angiogenesis by investigating the roles of receptor clustering and conformational activation. Immunocytochemical localization of α2β1 integrins in endothelial monolayers showed a concentration of integrins along cell-cell borders. After inducing angiogenesis with collagen, the receptors redistributed to apical cell surfaces, aligning with collagen fibers, which were also redistributed during angiogenesis. Levels of conformationally activated α2β1 integrins were unchanged during angiogenesis and undetected on endothelial cells binding collagen in suspension. We mimicked the polyvalency of collagen fibrils using antibody-coated polystyrene beads to cluster endothelial cell surface α2β1 integrins, which induced rapid angiogenesis in the absence of collagen gels. Clustering of αvβ3 integrins and PECAM-1 but not of α1 integrins also induced angiogenesis. Soluble antibodies alone had no effect. Thus, the angiogenic property of collagen may reside in its ability to ligate and cluster cell surface receptors such as α2β1 integrins. Furthermore, synthetic substrates that promote the clustering of select endothelial cell surface receptors mimic the angiogenic properties of Type I collagen and may have applications in promoting vascularization of engineered tissues. Anat Rec, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Kevin R Turner
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Christopher Adams
- Department of Anatomy, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | - Stephanie Staelens
- Agrosavfe NV, Ghent, Zwijnaarde, Belgium.,Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - James San Antonio
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Lazarovici P, Marcinkiewicz C, Lelkes PI. From Snake Venom's Disintegrins and C-Type Lectins to Anti-Platelet Drugs. Toxins (Basel) 2019; 11:toxins11050303. [PMID: 31137917 PMCID: PMC6563238 DOI: 10.3390/toxins11050303] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/16/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Snake venoms are attractive natural sources for drug discovery and development, with a number of substances either in clinical use or in research and development. These drugs were developed based on RGD-containing snake venom disintegrins, which efficiently antagonize fibrinogen activation of αIIbβ3 integrin (glycoprotein GP IIb/IIIa). Typical examples of anti-platelet drugs found in clinics are Integrilin (Eptifibatide), a heptapeptide derived from Barbourin, a protein found in the venom of the American Southeastern pygmy rattlesnake and Aggrastat (Tirofiban), a small molecule based on the structure of Echistatin, and a protein found in the venom of the saw-scaled viper. Using a similar drug discovery approach, linear and cyclic peptides containing the sequence K(R)TS derived from VP12, a C-type lectin protein found in the venom of Israeli viper venom, were used as a template to synthesize Vipegitide, a novel peptidomimetic antagonist of α2β1 integrin, with anti-platelet activity. This review focus on drug discovery of these anti-platelet agents, their indications for clinical use in acute coronary syndromes and percutaneous coronary intervention based on several clinical trials, as well as their adverse effects.
Collapse
Affiliation(s)
- Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
19
|
Morshed A, Abbas AB, Hu J, Xu H. Shedding New Light on The Role of ανβ3 and α5β1 Integrins in Rheumatoid Arthritis. Molecules 2019; 24:E1537. [PMID: 31003546 PMCID: PMC6515208 DOI: 10.3390/molecules24081537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
ανβ3 and α5β1 are essential glycoproteins involved in the pathogenesis of rheumatoid arthritis (RA). Understanding of the role these integrins play in disease have been analyzed via description of cells-expressing ανβ3 and α5β1 and their mediators to trigger inflammation. ανβ3 and α5β1 facilitate cells-ECM and cell-cell communication, producing pro-inflammatory factors. Pro-inflammatory factors are essential for the building of undesirable new blood vessels termed angiogenesis which can further lead to destruction of bones and joints. Despite many attempts to target these glycoproteins, there are still some problems, therefore, there is still interest in understanding the synergistic role these integrins play in the pathogenesis of RA. The purpose of this review is to gain insights into the biological effects of ανβ3 and α5β1 in synovial tissues that are relevant to pathogenesis and therapy of RA.
Collapse
Affiliation(s)
- Arwa Morshed
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Abdul Baset Abbas
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Jialiang Hu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
- Nanjing Anji Biotechnology Co. Ltd., Nanjing 210046, China.
| |
Collapse
|
20
|
de Souza Junior DA, Santana C, Vieira GV, Oliver C, Jamur MC. Mast Cell Protease 7 Promotes Angiogenesis by Degradation of Integrin Subunits. Cells 2019; 8:cells8040349. [PMID: 31013764 PMCID: PMC6523500 DOI: 10.3390/cells8040349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies from our laboratory have shown that during angiogenesis in vitro, rmMCP-7 (recombinant mouse mast cell protease-7) stimulates endothelial cell spreading and induces their penetration into the matrix. The ability of rmMCP-7 to induce angiogenesis in vivo was assessed in the present study using a directed in vivo angiogenesis assay (DIVAA™). Vessel invasion of the angioreactor was observed in the presence of rmMCP-7 but was not seen in the control. Since integrins are involved in endothelial cell migration, the relationship between rmMCP-7 and integrins during angiogenesis was investigated. Incubation with rmMCP-7 resulted in a reduction in the levels of integrin subunits αv and β1 on SVEC4-10 endothelial cells during angiogenesis in vitro. Furthermore, the degradation of integrin subunits occurs both through the direct action of rmMCP-7 and indirectly via the ubiquitin/proteasome system. Even in the presence of a proteasome inhibitor, incubation of endothelial cells with rmMCP-7 induced cell migration and tube formation as well as the beginning of loop formation. These data indicate that the direct degradation of the integrin subunits by rmMCP-7 is sufficient to initiate angiogenesis. The results demonstrate, for the first time, that mMCP-7 acts in angiogenesis through integrin degradation.
Collapse
Affiliation(s)
- Devandir A de Souza Junior
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| | - Carolina Santana
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| | - Gabriel V Vieira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| | - Maria Celia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14.049-900, Brazil.
| |
Collapse
|
21
|
Abstract
A growing body of research demonstrates modulation of autophagy by a variety of matrix constituents, including decorin, endorepellin, and endostatin. These matrix proteins are both pro-autophagic and anti-angiogenic. Here, we detail a series of methods to monitor matrix-induced autophagy and its concurrent effects on angiogenesis. We first discuss cloning and purifying proteoglycan fragment and core proteins in the laboratory and review relevant techniques spanning from cell culture to treatment with these purified proteoglycans in vitro and ex vivo. Further, we cover protocols in monitoring autophagic progression via morphological and microscopic characterization, biochemical western blot analysis, and signaling pathway investigation. Downstream angiogenic effects using in vivo approaches are then discussed using wild-type mice and the GFP-LC3 transgenic mouse model. Finally, we explore matrix-induced mitophagy via monitoring changes in mitochondrial DNA and permeability.
Collapse
Affiliation(s)
- Carolyn Chen
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Lian XY, Zhang W, Wu DH, Ma JC, Zhou JD, Zhang ZH, Wen XM, Xu ZJ, Lin J, Qian J. Methylation-independent ITGA2 overexpression is associated with poor prognosis in de novo acute myeloid leukemia. J Cell Physiol 2018; 233:9584-9593. [PMID: 30132837 DOI: 10.1002/jcp.26866] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
Previous studies have been indicated that integrin α2 (ITGA2) may be important in cell migration, invasion, survival, and angiogenesis. However, the correlation between ITGA2 expression and acute myeloid leukemia (AML) is still unclear. Real-time quantitative polymerase chain reaction was carried out to analyze ITGA2 messenger RNA level. Methylation-specific polymerase chain reaction (PCR) and bisulfite sequencing PCR were performed to detect the methylation of ITGA2 promoter. ITGA2 expression was significantly upregulated in 134 de novo AML patients compared with 33 controls (p = 0.007). ITGA2high group had markedly lower complete remission (CR) rate than ITGA2low group (p = 0.011). Furthermore, the overall survival in ITGA2high patients was significantly shorter than ITGA2low patients throughout AML cohort, non-acute promyelocytic leukemia (APL) and cytogenetic normal-AML (p = 0.001, 0.002, and 0.044, respectively). Multivariate analysis confirmed that ITGA2 overexpression served as an independent prognostic factor in both whole-cohort AML patients (p = 0.018) and non-APL AML patients (p = 0.021). Besides, ITGA2 expression level was significantly decreased in AML patients after CR (p = 0.011), and was returned at the time of relapse phase (p = 0.021). Moreover, unmethylated ITGA2 promoter was identified in normal controls, leukemia cell lines, and primary leukemia cells with low or high ITGA2 expression. In conclusions, methylation-independent ITGA2 overexpression is associated with poor prognosis in AML.
Collapse
Affiliation(s)
- Xin-Yue Lian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - Wei Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - De-Hong Wu
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Department of Hematology, The Third People's Hospital of Kunshan City, Kunshan, China
| | - Ji-Chun Ma
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - Zhi-Hui Zhang
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - Xiang-Mei Wen
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zi-Jun Xu
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Qian
- Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| |
Collapse
|
23
|
Chuang YC, Wu HY, Lin YL, Tzou SC, Chuang CH, Jian TY, Chen PR, Chang YC, Lin CH, Huang TH, Wang CC, Chan YL, Liao KW. Blockade of ITGA2 Induces Apoptosis and Inhibits Cell Migration in Gastric Cancer. Biol Proced Online 2018; 20:10. [PMID: 29743821 PMCID: PMC5928594 DOI: 10.1186/s12575-018-0073-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 12/19/2022] Open
Abstract
Background Gastric cancer is currently the fourth leading cause of cancer-related death worldwide. Gastric cancer is often diagnosed at advanced stages and the outcome of the treatment is often poor. Therefore, identifying new therapeutic targets for this cancer is urgently needed. Integrin alpha 2 (ITGA2) subunit and the beta 1 subunit form a heterodimer for a transmembrane receptor for extracellular matrix, is an important molecule involved in tumor cell proliferation, survival and migration. Integrin α2β1 is over-expressed on a variety of cancer cells, but is low or absent in most normal organs and resting endothelial cells. Results In this report, we assessed the ITGA2 as the potential therapeutic target with the bioinformatics tools from the TCGA dataset in which composed of 375 gastric cancer tissues and 32 gastric normal tissues. According to the information from the Cancer Cell Line Encyclopedia (CCLE) database, the AGS cell line with ITGA2 high expression and the SUN-1 cell line with low expression were chosen for the further investigation. Interestingly, the anti-ITGA2 antibody (at 3 μg/ml) inhibited approximately 50% survival of the AGS cells (over-expressed ITGA2), but had no effect in SNU-1 cells (ITGA2 negative). The extents of antibody-mediated cancer inhibition positively correlated with the expression levels of the ITGA2. We further showed that the anti-ITGA2 antibody induced apoptosis by up-regulating the RhoA-p38 MAPK signaling to promote the expressions of Bim, Apaf-1 and Caspase-9, whereas the expressions of Ras and Bax/Bcl-2 were not affected. Moreover, blocking ITGA2 by the specific antibody at lower doses also inhibited cell migration of gastric cancer cells. Blockade of ITGA2 by a specific antibody down-regulated the expression of N-WASP, PAK and LIMK to impede actin organization and cell migration of gastric cancer cells. Conclusions Here, we showed that the mRNA expression levels of ITGA2 comparing to normal tissues significantly increased. In addition, the results revealed that targeting integrin alpha 2 subunit by antibodies did not only inhibit cell migration, but also induce apoptosis effect on gastric cancer cells. Interestingly, higher expression level of ITGA2 led to significant effects on apoptosis progression during anti-ITGA2 antibody treatment, which indicated that ITGA2 expression levels directly correlate with their functionality. Our findings suggest that ITGA2 is a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yu-Chang Chuang
- 1Departmet of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Hsin-Yi Wu
- 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Yu-Ling Lin
- 1Departmet of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China.,3Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Shey-Cherng Tzou
- 1Departmet of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China.,2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Cheng-Hsun Chuang
- 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Ting-Yan Jian
- 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Pin-Rong Chen
- 2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China
| | - Yuan-Ching Chang
- 4Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China
| | - Chi-Hsin Lin
- 5Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, Republic of China
| | - Tse-Hung Huang
- 6Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China.,7School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China.,8School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, Republic of China
| | - Chao-Ching Wang
- 6Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan, Republic of China
| | - Yi-Lin Chan
- 9Department of Life Science, Chinese Culture University, 55, Hwa-Kang Rd., Yang-Ming-Shan, Taipei, 11114 Taiwan, Republic of China
| | - Kuang-Wen Liao
- 1Departmet of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China.,2Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, 300 Taiwan, Republic of China.,10College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.,11Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.,12Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|
24
|
Injury- and inflammation-driven skin fibrosis: The paradigm of epidermolysis bullosa. Matrix Biol 2018; 68-69:547-560. [PMID: 29391280 DOI: 10.1016/j.matbio.2018.01.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Genetic or acquired destabilization of the dermal extracellular matrix evokes injury- and inflammation-driven progressive soft tissue fibrosis. Dystrophic epidermolysis bullosa (DEB), a heritable human skin fragility disorder, is a paradigmatic disease to investigate these processes. Studies of DEB have generated abundant new information on cellular and molecular mechanisms at play in skin fibrosis which are not only limited to intractable diseases, but also applicable to some of the most common acquired conditions. Here, we discuss recent advances in understanding the biological and mechanical mechanisms driving the dermal fibrosis in DEB. Much of this progress is owed to the implementation of cell and tissue omics studies, which we pay special attention to. Based on the novel findings and increased understanding of the disease mechanisms in DEB, translational aspects and future therapeutic perspectives are emerging.
Collapse
|
25
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
26
|
Parkin JD, San Antonio JD, Persikov AV, Dagher H, Dalgleish R, Jensen ST, Jeunemaitre X, Savige J. The collαgen III fibril has a "flexi-rod" structure of flexible sequences interspersed with rigid bioactive domains including two with hemostatic roles. PLoS One 2017; 12:e0175582. [PMID: 28704418 PMCID: PMC5509119 DOI: 10.1371/journal.pone.0175582] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023] Open
Abstract
Collagen III is critical to the integrity of blood vessels and distensible organs, and in hemostasis. Examination of the human collagen III interactome reveals a nearly identical structural arrangement and charge distribution pattern as for collagen I, with cell interaction domains, fibrillogenesis and enzyme cleavage domains, several major ligand-binding regions, and intermolecular crosslink sites at the same sites. These similarities allow heterotypic fibril formation with, and substitution by, collagen I in embryonic development and wound healing. The collagen III fibril assumes a "flexi-rod" structure with flexible zones interspersed with rod-like domains, which is consistent with the molecule's prominence in young, pliable tissues and distensible organs. Collagen III has two major hemostasis domains, with binding motifs for von Willebrand factor, α2β1 integrin, platelet binding octapeptide and glycoprotein VI, consistent with the bleeding tendency observed with COL3A1 disease-causing sequence variants.
Collapse
Affiliation(s)
- J. Des Parkin
- From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia
| | - James D. San Antonio
- Operations, Stryker Global Quality and Operations, Malvern, PA, United States of America
| | - Anton V. Persikov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Lab, Princeton, NJ, United States of America
| | - Hayat Dagher
- From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia
| | - Raymond Dalgleish
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Shane T. Jensen
- Wharton Business School, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Xavier Jeunemaitre
- INSERM U970 Paris Cardiovascular Research Centre, Paris France
- University Paris Descartes, Paris Sorbonne Cite, Paris, France
| | - Judy Savige
- From the University of Melbourne Department of Medicine (Northern Health), Melbourne, VIC, Australia
- * E-mail:
| |
Collapse
|
27
|
Gubbiotti MA, Neill T, Iozzo RV. A current view of perlecan in physiology and pathology: A mosaic of functions. Matrix Biol 2016; 57-58:285-298. [PMID: 27613501 DOI: 10.1016/j.matbio.2016.09.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 01/06/2023]
Abstract
Perlecan, a large basement membrane heparan sulfate proteoglycan, is expressed in a wide array of tissues where it regulates diverse cellular processes including bone formation, inflammation, cardiac development, and angiogenesis. Here we provide a contemporary review germane to the biology of perlecan encompassing its genetic regulation as well as an analysis of its modular protein structure as it pertains to function. As perlecan signaling from the extracellular matrix converges on master regulators of autophagy, including AMPK and mTOR, via a specific interaction with vascular endothelial growth factor receptor 2, we specifically focus on the mechanism of action of perlecan in autophagy and angiogenesis and contrast the role of endorepellin, the C-terminal fragment of perlecan, in these cellular and morphogenic events.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
28
|
Poluzzi C, Iozzo RV, Schaefer L. Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv Drug Deliv Rev 2016; 97:156-73. [PMID: 26518982 DOI: 10.1016/j.addr.2015.10.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/17/2022]
Abstract
Traditional cancer therapy typically targets the tumor proper. However, newly-formed vasculature exerts a major role in cancer development and progression. Autophagy, as a biological mechanism for clearing damaged proteins and oxidative stress products released in the tumor milieu, could help in tumor resolution by rescuing cells undergoing modifications or inducing autophagic-cell death of tumor blood vessels. Cleaved fragments of extracellular matrix proteoglycans are emerging as key players in the modulation of angiogenesis and endothelial cell autophagy. An essential characteristic of cancer progression is the remodeling of the basement membrane and the release of processed forms of its constituents. Endostatin, generated from collagen XVIII, and endorepellin, the C-terminal segment of the large proteoglycan perlecan, possess a dual activity as modifiers of both angiogenesis and endothelial cell autophagy. Manipulation of these endogenously-processed forms, located in the basement membrane within tumors, could represent new therapeutic approaches for cancer eradication.
Collapse
Affiliation(s)
- Chiara Poluzzi
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Zhou Z, Pausch F, Schlötzer-Schrehardt U, Brachvogel B, Pöschl E. Induction of initial steps of angiogenic differentiation and maturation of endothelial cells by pericytes in vitro and the role of collagen IV. Histochem Cell Biol 2016; 145:511-25. [PMID: 26747274 DOI: 10.1007/s00418-015-1398-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Activation of endothelial cells and recruitment of mural cells define critical steps during the formation of stable vascular elements. Both events are reflected by cocultures of endothelial cells and isolated murine pericyte-like cells and define a versatile platform for the analysis of distinct steps during the angiogenic process in vitro. Isolated pericyte-like cells promote the survival of endothelial cells, induce the assembly of endothelial cells as well as establish direct contacts with forming endothelial alignments. More importantly, they also induce characteristic steps of maturation including the assembly of stable cell-cell junctions, deposition of basement membrane-like matrices and local formation of a central lumen. The presence of pericyte-like cells induces the secretion of extracellular matrices enriched in collagen IV by endothelial cells, which improves endothelial tube formation and provides the adhesive substrate for mural cell recruitment. Collagen-binding integrins contribute differentially to the process, with α1β1 involved in the adhesion of pericyte-like cells to collagen IV and α2β1 mainly involved in endothelial cord formation. These data indicate that pericyte-like cells are essential for the survival of endothelial cells, the efficient formation of endothelial alignments as well as initial steps of maturation of capillary-like structures.
Collapse
Affiliation(s)
- Zhigang Zhou
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Cardiovascular Medicine, Medical College, Nantong University, Nantong, China
| | - Friederike Pausch
- Department of Experimental Medicine I, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Bent Brachvogel
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Ernst Pöschl
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
30
|
Neill T, Schaefer L, Iozzo RV. Decoding the Matrix: Instructive Roles of Proteoglycan Receptors. Biochemistry 2015; 54:4583-98. [PMID: 26177309 DOI: 10.1021/acs.biochem.5b00653] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The extracellular matrix is a dynamic repository harboring instructive cues that embody substantial regulatory dominance over many evolutionarily conserved intracellular activities, including proliferation, apoptosis, migration, motility, and autophagy. The matrix also coordinates and parses hierarchical information, such as angiogenesis, tumorigenesis, and immunological responses, typically providing the critical determinants driving each outcome. We provide the first comprehensive review focused on proteoglycan receptors, that is, signaling transmembrane proteins that use secreted proteoglycans as ligands, in addition to their natural ligands. The majority of these receptors belong to an exclusive subset of receptor tyrosine kinases and assorted cell surface receptors that specifically bind, transduce, and modulate fundamental cellular processes following interactions with proteoglycans. The class of small leucine-rich proteoglycans is the most studied so far and constitutes the best understood example of proteoglycan-receptor interactions. Decorin and biglycan evoke autophagy and immunological responses that deter, suppress, or exacerbate pathological conditions such as tumorigenesis, angiogenesis, and chronic inflammatory disease. Basement membrane-associated heparan sulfate proteoglycans (perlecan, agrin, and collagen XVIII) represent a unique cohort and provide proteolytically cleaved bioactive fragments for modulating cellular behavior. The receptors that bind the genuinely multifactorial and multivalent proteoglycans represent a nexus in understanding basic biological pathways and open new avenues for therapeutic and pharmacological intervention.
Collapse
Affiliation(s)
- Thomas Neill
- †Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Liliana Schaefer
- ‡Department of Pharmacology, Goethe University, 60590 Frankfurt, Germany
| | - Renato V Iozzo
- †Department of Pathology, Anatomy and Cell Biology and Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
31
|
Nissinen L, Ojala M, Langen B, Dost R, Pihlavisto M, Käpylä J, Marjamäki A, Heino J. Sulfonamide inhibitors of α2β1 integrin reveal the essential role of collagen receptors in in vivo models of inflammation. Pharmacol Res Perspect 2015; 3:e00146. [PMID: 26171226 PMCID: PMC4492762 DOI: 10.1002/prp2.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/17/2015] [Accepted: 03/25/2015] [Indexed: 01/30/2023] Open
Abstract
Small molecule inhibitors of α2β1 integrin, a major cellular collagen receptor, have been reported to inhibit platelet function, kidney injury, and angiogenesis. Since α2β1 integrin is abundantly expressed on various inflammation-associated cells, we tested whether recently developed α2β1 blocking sulfonamides have anti-inflammatory properties. Integrin α2β1 inhibitors were shown to reduce the signs of inflammation in arachidonic acid-induced ear edema, PAF stimulated air pouch, ovalbumin-induced skin hypersensitivity, adjuvant arthritis, and collagen-induced arthritis. Thus, these sulfonamides are potential drugs for acute and allergic inflammation, hypersensitivity, and arthritis. One sulfonamide with potent anti-inflammatory activity has previously been reported to be selective for activated integrins, but not to inhibit platelet function. Thus, the experiments also revealed fundamental differences in the action of nonactivated and activated α2β1 integrins in inflammation when compared to thrombosis.
Collapse
Affiliation(s)
- Liisa Nissinen
- Department of Biochemistry, University of Turku 20014, Turku, Finland ; Biotie Therapies Corp Turku, Finland
| | | | | | - Rita Dost
- BioTie Therapies GmbH Radebeul, Germany
| | | | - Jarmo Käpylä
- Department of Biochemistry, University of Turku 20014, Turku, Finland
| | - Anne Marjamäki
- Department of Biochemistry, University of Turku 20014, Turku, Finland ; Biotie Therapies Corp Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku 20014, Turku, Finland
| |
Collapse
|
32
|
Chin SP, Marthick JR, West AC, Short AK, Chuckowree J, Polanowski AM, Thomson RJ, Holloway AF, Dickinson JL. Regulation of the ITGA2 gene by epigenetic mechanisms in prostate cancer. Prostate 2015; 75:723-34. [PMID: 25662931 DOI: 10.1002/pros.22954] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/01/2014] [Indexed: 11/11/2022]
Abstract
BACKGROUND Integrin alpha2 beta1 (α2 β1 ) plays an integral role in tumour cell invasion, metastasis and angiogenesis, and altered expression of the receptor has been linked to tumour prognosis in several solid tumours. However, the relationship is complex, with both increased and decreased expression associated with different stages of tumour metastases in several tumour types. The ITGA2 gene, which codes for the α2 subunit, was examined to investigate whether a large CpG island associated with its promoter region is involved in the differential expression of ITGA2 observed in prostate cancer. METHODS Bisulphite sequencing of the ITGA2 promoter was used to assess methylation in formalin-fixed paraffin-embedded (FFPE) prostate tumour specimens and prostate cancer cell lines, PC3, 22Rv1 and LNCaP. Changes in ITGA2 mRNA expression were measured using quantitative PCR. ITGA2 functionality was interrogated using cell migration scratch assays and siRNA knockdown experiments. RESULTS Bisulphite sequencing revealed strikingly decreased methylation at key CpG sites within the promoter of tumour samples, when compared with normal prostate tissue. Altered methylation of this CpG island is also associated with differences in expression in the non-invasive LNCaP, and the highly metastatic PC3 and 22Rv1 prostate cancer cell lines. Further bisulphite sequencing confirmed that selected CpGs were highly methylated in LNCaP cells, whilst only low levels of methylation were observed in PC3 and 22Rv1 cells, correlating with ITGA2 transcript levels. Examination of the increased expression of ITGA2 was shown to influence migratory potential via scratch assay in PC3, 22Rv1 and LNCaP cells, and was confirmed by siRNA knockdown experiments. CONCLUSIONS Taken together, our data supports the assertion that epigenetic modification of the ITGA2 promoter is a mechanism by which ITGA2 expression is regulated.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- Cell Movement/genetics
- DNA Methylation
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Humans
- Integrin alpha5beta1/biosynthesis
- Integrin alpha5beta1/genetics
- Male
- Middle Aged
- Promoter Regions, Genetic
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Suyin Paulynn Chin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 848] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Douglass S, Goyal A, Iozzo RV. The role of perlecan and endorepellin in the control of tumor angiogenesis and endothelial cell autophagy. Connect Tissue Res 2015; 56:381-91. [PMID: 26181327 PMCID: PMC4769797 DOI: 10.3109/03008207.2015.1045297] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During tumor growth and angiogenesis there is a dynamic remodeling of tissue architecture often accompanied by the release of extracellular matrix constituents full of biological activity. One of the key constituents of the tumor microenvironment is the large heparan sulfate proteoglycan perlecan. This proteoglycan, strategically located at cell surfaces and within basement membranes, is a well-defined pro-angiogenic molecule when intact. However, when partially processed by proteases released during cancer remodeling and invasion, the C-terminal fragment of perlecan, known as endorepellin, has opposite effects than its parent molecule. Endorepellin is a potent inhibitor of angiogenesis by exerting a dual receptor antagonism by simultaneously engaging VEGFR2 and α2β1 integrin. Signaling through the α2β1 integrin leads to actin disassembly and block of endothelial cell migration, necessary for capillary morphogenesis. Signaling through the VEGFR2 induces dephosphorylation of the receptor via activation of SHP-1 and suppression of downstream proangiogenic effectors, especially attenuating VEGFA expression. A novel and emerging role of endorepellin is its ability to evoke autophagy by activating Peg3 and various canonical autophagic markers. This effect is specific for endothelial cells as these are the primary cells expressing both VEGFR2 and α2β1 integrin. Thus, an endogenous fragment of a ubiquitous proteoglycan can regulate both angiogenesis and autophagy through a dual receptor antagonism. The biological properties of this natural endogenous protein place endorepellin as a potential therapeutic agent against cancer or diseases where angiogenesis is prominent.
Collapse
Affiliation(s)
- Stephen Douglass
- a Department of Pathology , Anatomy and Cell Biology and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Centre, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Atul Goyal
- a Department of Pathology , Anatomy and Cell Biology and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Centre, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Renato V Iozzo
- a Department of Pathology , Anatomy and Cell Biology and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Centre, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
35
|
Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 2014; 32:97-108. [PMID: 25533206 DOI: 10.1016/j.devcel.2014.11.018] [Citation(s) in RCA: 578] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/19/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
The widespread availability of programmable site-specific nucleases now enables targeted gene disruption in the zebrafish. In this study, we applied site-specific nucleases to generate zebrafish lines bearing individual mutations in more than 20 genes. We found that mutations in only a small proportion of genes caused defects in embryogenesis. Moreover, mutants for ten different genes failed to recapitulate published Morpholino-induced phenotypes (morphants). The absence of phenotypes in mutant embryos was not likely due to maternal effects or failure to eliminate gene function. Consistently, a comparison of published morphant defects with the Sanger Zebrafish Mutation Project revealed that approximately 80% of morphant phenotypes were not observed in mutant embryos, similar to our mutant collection. Based on these results, we suggest that mutant phenotypes become the standard metric to define gene function in zebrafish, after which Morpholinos that recapitulate respective phenotypes could be reliably applied for ancillary analyses.
Collapse
|
36
|
A 3D matrix platform for the rapid generation of therapeutic anti-human carcinoma monoclonal antibodies. Proc Natl Acad Sci U S A 2014; 111:14882-7. [PMID: 25267635 DOI: 10.1073/pnas.1410996111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efforts to develop unbiased screens for identifying novel function-blocking monoclonal antibodies (mAbs) in human carcinomatous states have been hampered by the limited ability to design in vitro models that recapitulate tumor cell behavior in vivo. Given that only invasive carcinoma cells gain permanent access to type I collagen-rich interstitial tissues, an experimental platform was established in which human breast cancer cells were embedded in 3D aldimine cross-linked collagen matrices and used as an immunogen to generate mAb libraries. In turn, cancer-cell-reactive antibodies were screened for their ability to block carcinoma cell proliferation within collagen hydrogels that mimic the in vivo environment. As a proof of principle, a single function-blocking mAb out of 15 identified was selected for further analysis and found to be capable of halting carcinoma cell proliferation, inducing apoptosis, and exerting global changes in gene expression in vitro. The ability of this mAb to block carcinoma cell proliferation and metastatic activity was confirmed in vivo, and the target antigen was identified by mass spectroscopy as the α2 subunit of the α2β1 integrin, one of the major type I collagen-binding receptors in mammalian cells. Validating the ability of the in vitro model to predict patterns of antigen expression in the disease setting, immunohistochemical analyses of tissues from patients with breast cancer verified markedly increased expression of the α2 subunit in vivo. These results not only highlight the utility of this discovery platform for rapidly selecting and characterizing function-blocking, anticancer mAbs in an unbiased fashion, but also identify α2β1 as a potential target in human carcinomatous states.
Collapse
|
37
|
Ito K, Semba T, Uenaka T, Wakabayashi T, Asada M, Funahashi Y. Enhanced anti-angiogenic effect of E7820 in combination with erlotinib in epidermal growth factor receptor-tyrosine kinase inhibitor-resistant non-small-cell lung cancer xenograft models. Cancer Sci 2014; 105:1023-31. [PMID: 24841832 PMCID: PMC4317852 DOI: 10.1111/cas.12450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/01/2014] [Accepted: 05/11/2014] [Indexed: 01/02/2023] Open
Abstract
Most non-small-cell lung cancers (NSCLCs) harboring activating mutations in the epidermal growth factor receptor (EGFR) are initially responsive to EGFR tyrosine kinase inhibitors (EGFR-TKIs); however, they invariably develop resistance to these drugs. E7820 is an angiogenesis inhibitor that decreases integrin-α2 expression and is currently undergoing clinical trials. We investigated whether E7820 in combination with erlotinib, an EGFR-TKI, could overcome EGFR-TKI-resistance in the NSCLC cell lines A549 (KRAS; G12S), H1975 (EGFR; L858R/T790M), and H1650 (PTEN; loss, EGFR; exon 19 deletion), which are resistant to erlotinib. Immunohistochemical analysis was carried out in xenografted tumors to investigate anti-angiogenesis activity and endothelial cell apoptosis levels by endothelial cell marker CD31 and TUNEL staining, respectively. Treatment with E7820 (50 mg/kg) with erlotinib (60 mg/kg) showed a synergistic antitumor effect in three xenograft models. Immunohistochemical analysis indicated that combined treatment with E7820 and erlotinib significantly decreased microvessel density and increased apoptosis of tumor-associated endothelial cells compared with use of only one of the agents. This combination increased apoptosis in HUVECs through activation of both intrinsic and extrinsic apoptosis pathways in vitro. The combination of E7820 with erlotinib is an alternative strategy to overcome erlotinib resistance in NSCLC by enhancement of the anti-angiogenic activity of E7820.
Collapse
Affiliation(s)
- Ken Ito
- Tsukuba Research Laboratory, Eisai Co., Ltd., Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Poluzzi C, Casulli J, Goyal A, Mercer TJ, Neill T, Iozzo RV. Endorepellin evokes autophagy in endothelial cells. J Biol Chem 2014; 289:16114-28. [PMID: 24737315 DOI: 10.1074/jbc.m114.556530] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, possesses angiostatic activity via dual receptor antagonism, through concurrent binding to the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2). Here, we discovered that soluble endorepellin induced autophagy in endothelial cells by modulating the expression of Beclin 1, LC3, and p62, three established autophagic markers. Moreover, endorepellin evoked expression of the imprinted tumor suppressor gene Peg3 and its co-localization with Beclin 1 and LC3 in autophagosomes, suggesting a major role for this gene in endothelial cell autophagy. Mechanistically, endorepellin induced autophagy by down-regulating VEGFR2 via the two LG1/2 domains, whereas the C-terminal LG3 domain, the portion responsible for binding the α2β1 integrin, was ineffective. Endorepellin also induced transcriptional activity of the BECN1 promoter in endothelial cells, and the VEGFR2-specific tyrosine kinase inhibitor, SU5416, blocked this effect. Finally, we found a correlation between endorepellin-evoked inhibition of capillary morphogenesis and enhanced autophagy. Thus, we have identified a new role for this endogenous angiostatic fragment in inducing autophagy through a VEGFR2-dependent but α2β1 integrin-independent pathway. This novel mechanism specifically targets endothelial cells and could represent a promising new strategy to potentiate the angiostatic effect of endorepellin and perhaps other angiostatic matrix proteins.
Collapse
Affiliation(s)
- Chiara Poluzzi
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Joshua Casulli
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Atul Goyal
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas J Mercer
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas Neill
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
39
|
Halland N, Blum H, Buning C, Kohlmann M, Lindenschmidt A. Small Macrocycles As Highly Active Integrin α2β1 Antagonists. ACS Med Chem Lett 2014; 5:193-8. [PMID: 24900800 DOI: 10.1021/ml4004556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/08/2014] [Indexed: 01/17/2023] Open
Abstract
Starting from clinical candidates Firategrast, Valategrast, and AJM-300, a series of novel macrocyclic platelet collagen receptor α2β1 antagonists were developed. The amino acid derived low molecular weight 14-18-membered macrocycles turned out to be highly active toward integrin α2β1 with IC50s in the low nanomolar range. The conformation of the macrocycles was found to be highly important for the activity, and an X-ray crystal structure was obtained to clarify this. Subsequent docking into the metal-ion-dependent adhesion site (MIDAS) of a β1 unit revealed a binding model indicating key binding features. Macrocycle 38 was selected for further in vitro and in vivo profiling.
Collapse
Affiliation(s)
- Nis Halland
- Sanofi R&D, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Horst Blum
- Sanofi R&D, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Christian Buning
- Sanofi R&D, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | - Markus Kohlmann
- Sanofi R&D, Industriepark Höchst Building G838, D-65926 Frankfurt am Main, Germany
| | | |
Collapse
|
40
|
Madamanchi A, Santoro SA, Zutter MM. α2β1 Integrin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:41-60. [PMID: 25023166 DOI: 10.1007/978-94-017-9153-3_3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The α2β1 integrin, also known as VLA-2, GPIa-IIa, CD49b, was first identified as an extracellular matrix receptor for collagens and/or laminins [55, 56]. It is now recognized that the α2β1 integrin serves as a receptor for many matrix and nonmatrix molecules [35, 79, 128]. Extensive analyses have clearly elucidated the α2 I domain structural motifs required for ligand binding, and also defined distinct conformations that lead to inactive, partially active or highly active ligand binding [3, 37, 66, 123, 136, 137, 140]. The mechanisms by which the α2β1 integrin plays a critical role in platelet function and homeostasis have been carefully defined via in vitro and in vivo experiments [76, 104, 117, 125]. Genetic and epidemiologic studies have confirmed human physiology and disease states mediated by this receptor in immunity, cancer, and development [6, 20, 21, 32, 43, 90]. The role of the α2β1 integrin in these multiple complex biologic processes will be discussed in the chapter.
Collapse
Affiliation(s)
- Aasakiran Madamanchi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
41
|
Brennan M, Cox D. The therapeutic potential of I-domain integrins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:157-78. [PMID: 25023174 DOI: 10.1007/978-94-017-9153-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Due to their role in processes central to cancer and autoimmune disease I-domain integrins are an attractive drug target. Both antibodies and small molecule antagonists have been discovered and tested in the clinic. Much of the effort has focused on αLβ2 antagonists. Maybe the most successful was the monoclonal antibody efalizumab, which was approved for the treatment of psoriasis but subsequently withdrawn from the market due to the occurrence of a serious adverse effect (progressive multifocal leukoencephalopathy). Other monoclonal antibodies were tested for the treatment of reperfusion injury, post-myocardial infarction, but failed to progress due to lack of efficacy. New potent small molecule inhibitors of αv integrins are promising reagents for treating fibrotic disease. Small molecule inhibitors targeting collagen-binding integrins have been discovered and future work will focus on identifying molecules selectively targeting each of the collagen receptors and identifying appropriate target diseases for future clinical studies.
Collapse
Affiliation(s)
- Marian Brennan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | |
Collapse
|
42
|
Zeltz C, Orgel J, Gullberg D. Molecular composition and function of integrin-based collagen glues-introducing COLINBRIs. Biochim Biophys Acta Gen Subj 2013; 1840:2533-48. [PMID: 24361615 DOI: 10.1016/j.bbagen.2013.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Despite detailed knowledge about the structure and signaling properties of individual collagen receptors, much remains to be learned about how these receptors participate in linking cells to fibrillar collagen matrices in tissues. In addition to collagen-binding integrins, a group of proteins with affinity both for fibrillar collagens and integrins link these two protein families together. We have introduced the name COLINBRI (COLlagen INtegrin BRIdging) for this set of molecules. Whereas collagens are the major building blocks in tissues and defects in these structural proteins have severe consequences for tissue integrity, the mild phenotypes of the integrin type of collagen receptors have raised questions about their importance in tissue biology and pathology. SCOPE OF REVIEW We will discuss the two types of cell linkages to fibrillar collagen (direct- versus indirect COLINBRI-mediated) and discuss how the parallel existence of direct and indirect linkages to collagens may ensure tissue integrity. MAJOR CONCLUSIONS The observed mild phenotypes of mice deficient in collagen-binding integrins and the relatively restricted availability of integrin-binding sequences in mature fibrillar collagen matrices support the existence of indirect collagen-binding mechanisms in parallel with direct collagen binding in vivo. GENERAL SIGNIFICANCE A continued focus on understanding the molecular details of cell adhesion mechanisms to collagens will be important and will benefit our understanding of diseases like tissue- and tumor fibrosis where collagen dynamics are disturbed. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Joseph Orgel
- Departments of Biology, Physics and Biomedical Engineering, Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
43
|
Shirinifard A, McCollum CW, Bolin MB, Gustafsson JÅ, Glazier JA, Clendenon SG. 3D quantitative analyses of angiogenic sprout growth dynamics. Dev Dyn 2013; 242:518-26. [PMID: 23417958 DOI: 10.1002/dvdy.23946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/16/2013] [Accepted: 02/03/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Zebrafish intersegmental vessel (ISV) growth is widely used to study angiogenesis and to screen drugs and toxins that perturb angiogenesis. Most current ISV growth assays observe the presence or absence of ISVs or perturbation of ISV morphology but do not measure growth dynamics. We have developed a four-dimensional (4D, space plus time) quantitative analysis of angiogenic sprout growth dynamics for characterization of both normal and perturbed growth. RESULTS We tracked the positions of the ISV base and tip for each ISV sprout in 4D. Despite immobilization, zebrafish embryos translocated globally and non-uniformly during development. We used displacement of the ISV base and the angle between the ISV and the dorsal aorta to correct for displacement and rotation during development. From corrected tip cell coordinates, we computed average ISV trajectories. We fitted a quadratic curve to the average ISV trajectories to produce a canonical ISV trajectory for each experimental group, arsenic treated and untreated. From the canonical ISV trajectories, we computed curvature, average directed migration speed and directionality. Canonical trajectories from treated (arsenic exposed) and untreated groups differed in curvature, average directed migration speed and angle between the ISV and dorsal aorta. CONCLUSIONS 4D analysis of angiogenic sprout growth dynamics: (1) Allows quantitative assessment of ISV growth dynamics and perturbation, and (2) provides critical inputs for computational models of angiogenesis.
Collapse
Affiliation(s)
- Abbas Shirinifard
- Biocomplexity Institute and Department of Physics, Indiana University Bloomington, Bloomington, Indiana 47405-7003, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Willis CD, Poluzzi C, Mongiat M, Iozzo RV. Endorepellin laminin-like globular 1/2 domains bind Ig3-5 of vascular endothelial growth factor (VEGF) receptor 2 and block pro-angiogenic signaling by VEGFA in endothelial cells. FEBS J 2013; 280:2271-84. [PMID: 23374253 DOI: 10.1111/febs.12164] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 11/30/2022]
Abstract
Endorepellin, a processed fragment of perlecan protein core, possesses anti-angiogenic activity by antagonizing endothelial cells. Endorepellin contains three laminin G-like (LG) domains and binds simultaneously to vascular endothelial growth factor receptor 2 (VEGFR2) and α2β1 integrin, resulting in dual receptor antagonism. Treatment of endothelial cells with endorepellin inhibits transcription of VEGFA, the natural ligand for VEGFR2, attenuating the pro-survival and migratory activities of VEGFA/VEGFR2 signaling cascade. Here, we investigated the specific binding site of endorepellin within the ectodomain of VEGFR2. Full-length endorepellin was not capable of displacing VEGFA binding from VEGFR2 and LG3 domain alone did not bind VEGFR2. This suggested different binding mechanisms of the extracellular Ig domains of VEGFR2. Therefore, we hypothesized that endorepellin would bind through its proximal LG1/2 domains to VEGFR2 in a different region than VEGFA. Indeed, we found that LG1/2 did not bind Ig1-3, but did bind with high affinity to Ig3-5, distal to the known VEGFA binding site, i.e. Ig2-3. These results support a role for endorepellin as an allosteric inhibitor of VEGFR2. Moreover, we found that LG1/2 blocked the rapid VEGFA activation of VEGFR2 at Tyr1175 in endothelial cells. In contrast, LG1/2 did not result in actin cytoskeletal disassembly in endothelial cells whereas LG3 alone did induce cytoskeletal collapse. However, LG1/2 did inhibit VEGFA-dependent endothelial migration through fibrillar collagen I. These studies provide a mechanistic understanding of how the different LG domains of endorepellin signal in endothelial cells while serving as a template for protein design of receptor tyrosine kinase antagonists.
Collapse
Affiliation(s)
- Chris D Willis
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling, Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
45
|
Goyal A, Poluzzi C, Willis CD, Smythies J, Shellard A, Neill T, Iozzo RV. Endorepellin affects angiogenesis by antagonizing diverse vascular endothelial growth factor receptor 2 (VEGFR2)-evoked signaling pathways: transcriptional repression of hypoxia-inducible factor 1α and VEGFA and concurrent inhibition of nuclear factor of activated T cell 1 (NFAT1) activation. J Biol Chem 2012; 287:43543-56. [PMID: 23060442 DOI: 10.1074/jbc.m112.401786] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Endorepellin, the angiostatic C-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits angiogenesis by simultaneously binding to the α2β1 integrin and the vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) on endothelial cells. This interaction triggers the down-regulation of both receptors and the concurrent activation of the tyrosine phosphatase SHP-1, which leads to a signaling cascade resulting in angiostasis. Here, we provide evidence that endorepellin is capable of attenuating both the PI3K/PDK1/Akt/mTOR and the PKC/JNK/AP1 pathways. We show that hypoxia-inducible factor 1α (HIF-1α) transcriptional activity induced by VEGFA was inhibited by endorepellin independent of oxygen concentration and that only a combination of both PI3K and calcineurin inhibitors completely blocked the suppressive activity evoked by endorepellin on HIF1A and VEGFA promoter activity. Moreover, endorepellin inhibited the PKC/JNK/AP1 axis induced by the recruitment of phospholipase γ and attenuated the VEGFA-induced activation of NFAT1, a process dependent on calcineurin activity. Finally, endorepellin inhibited VEGFA-evoked nuclear translocation of NFAT1 and promoted NFAT1 stability. Thus, we provide evidence for a novel downstream signaling axis for an angiostatic fragment and for the key components involved in the dual antagonistic activity of endorepellin, highlighting its potential use as a therapeutic agent.
Collapse
Affiliation(s)
- Atul Goyal
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Momic T, Cohen G, Reich R, Arlinghaus FT, Eble JA, Marcinkiewicz C, Lazarovici P. Vixapatin (VP12), a c-type lectin-protein from Vipera xantina palestinae venom: characterization as a novel anti-angiogenic compound. Toxins (Basel) 2012; 4:862-77. [PMID: 23162702 PMCID: PMC3496993 DOI: 10.3390/toxins4100862] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/29/2012] [Accepted: 10/08/2012] [Indexed: 12/30/2022] Open
Abstract
A C-type lectin-like protein (CTL), originally identified as VP12 and lately named Vixapatin, was isolated and characterized from Israeli viper Vipera xantina palestinae snake venom. This CTL was characterized as a selective α2β1 integrin inhibitor with anti-melanoma metastatic activity. The major aim of the present study was to prove the possibility that this protein is also a potent novel anti-angiogenic compound. Using an adhesion assay, we demonstrated that Vixapatin selectively and potently inhibited the α2 mediated adhesion of K562 over-expressing cells, with IC(50) of 3 nM. 3 nM Vixapatin blocked proliferation of human dermal microvascular endothelial cells (HDMEC); 25 nM inhibited collagen I induced migration of human fibrosarcoma HT-1080 cells; and 50 nM rat C6 glioma and human breast carcinoma MDA-MB-231 cells. 1 µM Vixapatin reduced HDMEC tube formation by 75% in a Matrigel assay. Furthermore, 1 µM Vixapatin decreased by 70% bFGF-induced physiological angiogenesis, and by 94% C6 glioma-induced pathological angiogenesis, in shell-less embryonic quail chorioallantoic membrane assay. Vixapatin's ability to inhibit all steps of the angiogenesis process suggest that it is a novel pharmacological tool for studying α2β1 integrin mediated angiogenesis and a lead compound for the development of a novel anti-angiogenic/angiostatic/anti-cancer drug.
Collapse
Affiliation(s)
- Tatjana Momic
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (T.M.); (G.C.); (R.R.)
| | - Gadi Cohen
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (T.M.); (G.C.); (R.R.)
| | - Reuven Reich
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (T.M.); (G.C.); (R.R.)
| | - Franziska T. Arlinghaus
- Center for Molecular Medicine, Department of Vascular Matrix Biology, Excellence Cluster Cardio-Pulmonary System, Frankfurt University Hospital, Frankfurt 60590, Germany; (F.T.A.); (J.A.E.)
| | - Johannes A. Eble
- Center for Molecular Medicine, Department of Vascular Matrix Biology, Excellence Cluster Cardio-Pulmonary System, Frankfurt University Hospital, Frankfurt 60590, Germany; (F.T.A.); (J.A.E.)
| | - Cezary Marcinkiewicz
- Department of Biology, Temple University College of Science and Technology; Philadelphia, PA 19122, USA;
| | - Philip Lazarovici
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (T.M.); (G.C.); (R.R.)
| |
Collapse
|
47
|
Borza CM, Su Y, Chen X, Yu L, Mont S, Chetyrkin S, Voziyan P, Hudson BG, Billings PC, Jo H, Bennett JS, Degrado WF, Eckes B, Zent R, Pozzi A. Inhibition of integrin α2β1 ameliorates glomerular injury. J Am Soc Nephrol 2012; 23:1027-38. [PMID: 22440900 DOI: 10.1681/asn.2011040367] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mesangial cells and podocytes express integrins α1β1 and α2β1, which are the two major collagen receptors that regulate multiple cellular functions, including extracellular matrix homeostasis. Integrin α1β1 protects from glomerular injury by negatively regulating collagen production, but the role of integrin α2β1 in renal injury is unclear. Here, we subjected wild-type and integrin α2-null mice to injury with adriamycin or partial renal ablation. In both of these models, integrin α2-null mice developed significantly less proteinuria and glomerulosclerosis. In addition, selective pharmacological inhibition of integrin α2β1 significantly reduced adriamycin-induced proteinuria, glomerular injury, and collagen deposition in wild-type mice. This inhibitor significantly reduced collagen synthesis in wild-type, but not integrin α2-null, mesangial cells in vitro, demonstrating that its effects are integrin α2β1-dependent. Taken together, these results indicate that integrin α2β1 contributes to glomerular injury by positively regulating collagen synthesis and suggest that its inhibition may be a promising strategy to reduce glomerular injury and proteinuria.
Collapse
Affiliation(s)
- Corina M Borza
- Departments of Medicine and Cancer Biology, Division of Nephrology and Hypertension, Vanderbilt University, Medical Center North, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sacharidou A, Stratman AN, Davis GE. Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 2011; 195:122-43. [PMID: 21997121 DOI: 10.1159/000331410] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Considerable progress has been made toward a molecular understanding of how cells form lumen and tube structures in three-dimensional (3D) extracellular matrices (ECM). This progress has occurred through work performed with endothelial and epithelial cell models using both in vitro and in vivo approaches. Despite the apparent similarities between endothelial and epithelial cell lumen and tube formation mechanisms, there are clear distinctions that directly relate to their functional differences. This review will focus on endothelial cell (EC) lumen formation mechanisms which control blood vessel formation during development and postnatal life. Of great interest is that an EC lumen signaling complex has been identified which controls human EC lumen and tube formation in 3D matrices and which coordinates integrin-ECM contacts, cell surface proteolysis, cytoskeletal rearrangements, and cell polarity. This complex consists of the collagen-binding integrin α2β1, the collagen-degrading membrane-type 1 matrix metalloproteinase (MT1-MMP), junction adhesion molecule (Jam)C, JamB, polarity proteins Par3 and Par6b, and the Rho GTPase Cdc42-GTP. These interacting proteins are necessary to stimulate 3D matrix-specific signaling events (including activation of protein kinase cascades that regulate the actin and microtubule cytoskeletons) to control the formation of EC lumens and tube networks. Also, EC lumen formation is directly coupled to the generation of vascular guidance tunnels, enzymatically generated ECM conduits that facilitate EC tube remodeling and maturation. Mural cells such as pericytes are recruited along EC tubes within these tunnel spaces to control ECM remodeling events resulting in vascular basement membrane matrix assembly, a key step in tube maturation and stabilization.
Collapse
Affiliation(s)
- Anastasia Sacharidou
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Dalton Cardiovascular Research Center, Columbia, Mo. 65212, USA
| | | | | |
Collapse
|
49
|
Abstract
Extracellular matrix (ECM) is essential for all stages of angiogenesis. In the adult, angiogenesis begins with endothelial cell (EC) activation, degradation of vascular basement membrane, and vascular sprouting within interstitial matrix. During this sprouting phase, ECM binding to integrins provides critical signaling support for EC proliferation, survival, and migration. ECM also signals the EC cytoskeleton to initiate blood vessel morphogenesis. Dynamic remodeling of ECM, particularly by membrane-type matrix metalloproteases (MT-MMPs), coordinates formation of vascular tubes with lumens and provides guidance tunnels for pericytes that assist ECs in the assembly of vascular basement membrane. ECM also provides a binding scaffold for a variety of cytokines that exert essential signaling functions during angiogenesis. In the embryo, ECM is equally critical for angiogenesis and vessel stabilization, although there are likely important distinctions from the adult because of differences in composition and abundance of specific ECM components.
Collapse
Affiliation(s)
- Donald R Senger
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
50
|
Goyal A, Pal N, Concannon M, Paul M, Doran M, Poluzzi C, Sekiguchi K, Whitelock JM, Neill T, Iozzo RV. Endorepellin, the angiostatic module of perlecan, interacts with both the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2): a dual receptor antagonism. J Biol Chem 2011; 286:25947-62. [PMID: 21596751 PMCID: PMC3138248 DOI: 10.1074/jbc.m111.243626] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/04/2011] [Indexed: 12/21/2022] Open
Abstract
Endorepellin, the C-terminal module of perlecan, negatively regulates angiogenesis counter to its proangiogenic parental molecule. Endorepellin (the C-terminal domain V of perlecan) binds the α2β1 integrin on endothelial cells and triggers a signaling cascade that leads to disruption of the actin cytoskeleton. Here, we show that both perlecan and endorepellin bind directly and with high affinity to both VEGF receptors 1 and 2, in a region that differs from VEGFA-binding site. In both human and porcine endothelial cells, this interaction evokes a physical down-regulation of both the α2β1 integrin and VEGFR2, with concurrent activation of the tyrosine phosphatase SHP-1 and downstream attenuation of VEGFA transcription. We demonstrate that endorepellin requires both the α2β1 integrin and VEGFR2 for its angiostatic activity. Endothelial cells that express α2β1 integrin but lack VEGFR2, do not respond to endorepellin treatment. Thus, we provide a new paradigm for the activity of an antiangiogenic protein and mechanistically explain the specificity of endorepellin for endothelial cells, the only cells that simultaneously express both receptors. We hypothesize that a mechanism such as dual receptor antagonism could operate for other angiostatic fragments.
Collapse
Affiliation(s)
- Atul Goyal
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Nutan Pal
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Matthew Concannon
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Matthew Paul
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Mike Doran
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Chiara Poluzzi
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kiyotoshi Sekiguchi
- the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan, and
| | - John M. Whitelock
- the Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thomas Neill
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V. Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|