1
|
Kim J, Tadros B, Liang YH, Kim Y, Lasagna-Reeves C, Sonn JY, Chung DEC, Hyman B, Holtzman DM, Zoghbi HY. TYK2 regulates tau levels, phosphorylation and aggregation in a tauopathy mouse model. Nat Neurosci 2024; 27:2417-2429. [PMID: 39528671 PMCID: PMC11614740 DOI: 10.1038/s41593-024-01777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/28/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease is one of at least 26 diseases characterized by tau-positive accumulation in neurons, glia or both. However, it is still unclear what modifications cause soluble tau to transform into insoluble aggregates. We previously performed genetic screens that identified tyrosine kinase 2 (TYK2) as a candidate regulator of tau levels. Here we verified this finding and found that TYK2 phosphorylates tau at tyrosine 29 (Tyr29) leading to its stabilization and promoting its aggregation in human cells. We discovered that TYK2-mediated Tyr29 phosphorylation interferes with autophagic clearance of tau. We also show that TYK2-mediated phosphorylation of Tyr29 facilitates pathological tau accumulation in P301S tau-transgenic mice. Furthermore, knockdown of Tyk2 reduced total tau and pathogenic tau levels and rescued gliosis in a tauopathy mouse model. Collectively, these data suggest that partial inhibition of TYK2 could thus be a strategy to reduce tau levels and toxicity.
Collapse
Affiliation(s)
- Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Bakhos Tadros
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Yan Hong Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Youngdoo Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Cristian Lasagna-Reeves
- Stark Neurosciences Research Institute and Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Young Sonn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Dah-Eun Chloe Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Bradley Hyman
- Neurology at Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimers' Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Departments of Neuroscience, Pediatrics, and Neurology, Baylor College of Medicine, Houston, TX, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Qian Z, Wang Z, Li B, Meng X, Kuang Z, Li Y, Yang Y, Ye K. Thy1-ApoE4/C/EBPβ double transgenic mice act as a sporadic model with Alzheimer's disease. Mol Psychiatry 2024; 29:3040-3055. [PMID: 38658772 PMCID: PMC11449781 DOI: 10.1038/s41380-024-02565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Early onset familial Alzheimer's disease (FAD) with APP, PS1/2 (presenilins) mutation accounts for only a small portion of AD cases, and most are late-onset sporadic. However, majority of AD mouse models are developed to mimic the genetic cause of human AD by overexpressing mutated forms of human APP, PS1/2, and/or Tau protein, though there is no Tau mutation in AD, and no single mouse model recapitulates all aspects of AD pathology. Here, we report Thy1-ApoE4/C/EBPβ double transgenic mouse model that demonstrates key AD pathologies in an age-dependent manner in absence of any human APP or PS1/2 mutation. Using the clinical diagnosis criteria, we show that this mouse model exhibits tempo-spatial features in AD patient brains, including progressive cognitive decline associated with brain atrophy, which is accompanied with extensive neuronal degeneration. Remarkably, the mice display gradual Aβ aggregation and neurofibrillary tangles formation in the brain validated by Aβ PET and Tau PET. Moreover, the mice reveal widespread neuroinflammation as shown in AD brains. Hence, Thy1-ApoE4/C/EBPβ mouse model acts as a sporadic AD mouse model, reconstituting the major AD pathologies.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - ZhiHao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong Province, 518055, China
| | - Xin Meng
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanjiao Li
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
3
|
Granzotto A, Vissel B, Sensi SL. Lost in translation: Inconvenient truths on the utility of mouse models in Alzheimer's disease research. eLife 2024; 13:e90633. [PMID: 39329365 PMCID: PMC11434637 DOI: 10.7554/elife.90633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The recent, controversial approval of antibody-based treatments for Alzheimer's disease (AD) is fueling a heated debate on the molecular determinants of this condition. The discussion should also incorporate a critical revision of the limitations of preclinical mouse models in advancing our understanding of AD. We critically discuss the limitations of animal models, stressing the need for careful consideration of how experiments are designed and results interpreted. We identify the shortcomings of AD models to recapitulate the complexity of the human disease. We dissect these issues at the quantitative, qualitative, temporal, and context-dependent levels. We argue that these models are based on the oversimplistic assumptions proposed by the amyloid cascade hypothesis (ACH) of AD and fail to account for the multifactorial nature of the condition. By shedding light on the constraints of current experimental tools, this review aims to foster the development and implementation of more clinically relevant tools. While we do not rule out a role for preclinical models, we call for alternative approaches to be explored and, most importantly, for a re-evaluation of the ACH.
Collapse
Affiliation(s)
- Alberto Granzotto
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
| | - Bryce Vissel
- St Vincent’s Hospital Centre for Applied Medical Research, St Vincent’s HospitalDarlinghurstAustralia
- School of Clinical Medicine, UNSW Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyAustralia
| | - Stefano L Sensi
- Center for Advanced Studies and Technology – CAST, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute for Advanced Biomedical Technologies – ITAB, University G. d’Annunzio of Chieti-PescaraChietiItaly
- Institute of Neurology, SS Annunziata University Hospital, University G. d’Annunzio of Chieti-PescaraChietiItaly
| |
Collapse
|
4
|
Aranda-Abreu GE, Rojas-Durán F, Hernández-Aguilar ME, Herrera-Covarrubias D, Chí-Castañeda LD, Toledo-Cárdenas MR, Suárez-Medellín JM. Alzheimer's Disease: Cellular and Pharmacological Aspects. Geriatrics (Basel) 2024; 9:86. [PMID: 39051250 PMCID: PMC11270425 DOI: 10.3390/geriatrics9040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease was described more than 100 years ago and despite the fact that several molecules are being tested for its treatment, which are in phase III trials, the disease continues to progress. The main problem is that these molecules function properly in healthy neurons, while neuronal pathology includes plasma membrane disruption, malfunction of various organelles, and hyperphosphorylation of Tau and amyloid plaques. The main objective of this article is the discussion of a neuronal restoration therapy, where molecules designed for the treatment of Alzheimer's disease would probably be more effective, and the quality of life of people would be better.
Collapse
Affiliation(s)
- Gonzalo Emiliano Aranda-Abreu
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa 91192, Mexico; (F.R.-D.); (M.E.H.-A.); (D.H.-C.); (L.D.C.-C.); (M.R.T.-C.); (J.M.S.-M.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Morroni F, Caccamo A. Advances and Challenges in Gene Therapy for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S417-S431. [PMID: 39422937 DOI: 10.3233/jad-230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and behavioral impairments. Despite extensive research efforts, effective treatment options for AD remain limited. Recently, gene therapy has emerged as a promising avenue for targeted intervention in the pathogenesis of AD. This review will provide an overview of clinical and preclinical studies where gene therapy techniques have been utilized in the context of AD, highlighting their potential as novel therapeutic strategies. While challenges remain, ongoing research and technological advancement continue to enhance the potential of gene therapy as a targeted and personalized therapeutic approach for AD.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Canet G, Rocaboy E, Diego-Diàz S, Whittington RA, Julien C, Planel E. Methods for Biochemical Isolation of Insoluble Tau in Rodent Models of Tauopathies. Methods Mol Biol 2024; 2754:323-341. [PMID: 38512674 DOI: 10.1007/978-1-0716-3629-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The intracellular accumulation of microtubule-associated protein tau is a characteristic feature of tauopathies, a group of neurodegenerative diseases including Alzheimer's disease. Formation of insoluble tau aggregates is initiated by the abnormal hyperphosphorylation and oligomerization of tau. Over the past decades, multiple transgenic rodent models mimicking tauopathies have been develop, showcasing this neuropathological hallmark. The biochemical analysis of insoluble tau in these models has served as a valuable tool to understand the progression of tau-related pathology. In this chapter, we provide a comprehensive review of the two primary methods for isolating insoluble tau, namely, sarkosyl and formic acid extraction (and their variants), which are employed for biochemical analysis in transgenic mouse models of tauopathy. We also analyze the strengths and limitations of these methods.
Collapse
Affiliation(s)
- Geoffrey Canet
- Faculté de Médecine, Département de Psychiatrie et Neurosciences, Université Laval, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada
| | - Emma Rocaboy
- Faculté de Médecine, Département de Psychiatrie et Neurosciences, Université Laval, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada
| | - Sofia Diego-Diàz
- Faculté de Médecine, Département de Psychiatrie et Neurosciences, Université Laval, Quebec, QC, Canada
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada
| | - Robert A Whittington
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carl Julien
- Centre de Recherche en Sciences Animales de Deschambault, Deschambault, QC, Canada
- Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec, QC, Canada
| | - Emmanuel Planel
- Faculté de Médecine, Département de Psychiatrie et Neurosciences, Université Laval, Quebec, QC, Canada.
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Quebec, QC, Canada.
| |
Collapse
|
7
|
Zhao X, Zeng W, Xu H, Sun Z, Hu Y, Peng B, McBride JD, Duan J, Deng J, Zhang B, Kim SJ, Zoll B, Saito T, Sasaguri H, Saido TC, Ballatore C, Yao H, Wang Z, Trojanowski JQ, Brunden KR, Lee VMY, He Z. A microtubule stabilizer ameliorates protein pathogenesis and neurodegeneration in mouse models of repetitive traumatic brain injury. Sci Transl Med 2023; 15:eabo6889. [PMID: 37703352 PMCID: PMC10787216 DOI: 10.1126/scitranslmed.abo6889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Tau pathogenesis is a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD). Although the events leading to initial tau misfolding and subsequent tau spreading in patient brains are largely unknown, traumatic brain injury (TBI) may be a risk factor for tau-mediated neurodegeneration. Using a repetitive TBI (rTBI) paradigm, we report that rTBI induced somatic accumulation of phosphorylated and misfolded tau, as well as neurodegeneration across multiple brain areas in 7-month-old tau transgenic PS19 mice but not wild-type (WT) mice. rTBI accelerated somatic tau pathology in younger PS19 mice and WT mice only after inoculation with tau preformed fibrils and AD brain-derived pathological tau (AD-tau), respectively, suggesting that tau seeds are needed for rTBI-induced somatic tau pathology. rTBI further disrupted axonal microtubules and induced punctate tau and TAR DNA binding protein 43 (TDP-43) pathology in the optic tracts of WT mice. These changes in the optic tract were associated with a decline of visual function. Treatment with a brain-penetrant microtubule-stabilizing molecule reduced rTBI-induced tau, TDP-43 pathogenesis, and neurodegeneration in the optic tract as well as visual dysfunction. Treatment with the microtubule stabilizer also alleviated rTBI-induced tau pathology in the cortices of AD-tau-inoculated WT mice. These results indicate that rTBI facilitates abnormal microtubule organization, pathological tau formation, and neurodegeneration and suggest microtubule stabilization as a potential therapeutic avenue for TBI-induced neurodegeneration.
Collapse
Affiliation(s)
- Xinyi Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zeng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Xu
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Zihan Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxin Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Beibei Peng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jennifer D McBride
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jiangtao Duan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Juan Deng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Soo-Jung Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Bryan Zoll
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Takashi Saito
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Sasaguri
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haishan Yao
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoyin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kurt R Brunden
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
8
|
Kim J, de Haro M, Al-Ramahi I, Garaicoechea LL, Jeong HH, Sonn JY, Tadros B, Liu Z, Botas J, Zoghbi HY. Evolutionarily conserved regulators of tau identify targets for new therapies. Neuron 2023; 111:824-838.e7. [PMID: 36610398 DOI: 10.1016/j.neuron.2022.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/29/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Tauopathies are neurodegenerative diseases that involve the pathological accumulation of tau proteins; in this family are Alzheimer disease, corticobasal degeneration, and chronic traumatic encephalopathy, among others. Hypothesizing that reducing this accumulation could mitigate pathogenesis, we performed a cross-species genetic screen targeting 6,600 potentially druggable genes in human cells and Drosophila. We found and validated 83 hits in cells and further validated 11 hits in the mouse brain. Three of these hits (USP7, RNF130, and RNF149) converge on the C terminus of Hsc70-interacting protein (CHIP) to regulate tau levels, highlighting the role of CHIP in maintaining tau proteostasis in the brain. Knockdown of each of these three genes in adult tauopathy mice reduced tau levels and rescued the disease phenotypes. This study thus identifies several points of intervention to reduce tau levels and demonstrates that reduction of tau levels via regulation of this pathway is a viable therapeutic strategy for Alzheimer disease and other tauopathies.
Collapse
Affiliation(s)
- Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Hyun-Hwan Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jun Young Sonn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Bakhos Tadros
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhandong Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Makdissi S, Parsons BD, Di Cara F. Towards early detection of neurodegenerative diseases: A gut feeling. Front Cell Dev Biol 2023; 11:1087091. [PMID: 36824371 PMCID: PMC9941184 DOI: 10.3389/fcell.2023.1087091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The gastrointestinal tract communicates with the nervous system through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the enteric nervous system, the vagus nerve, the immune system, endocrine signals, the microbiota, and its metabolites. Alteration of communications in the gut-brain axis is emerging as an overlooked cause of neuroinflammation. Neuroinflammation is a common feature of the pathogenic mechanisms involved in various neurodegenerative diseases (NDs) that are incurable and debilitating conditions resulting in progressive degeneration and death of neurons, such as in Alzheimer and Parkinson diseases. NDs are a leading cause of global death and disability, and the incidences are expected to increase in the following decades if prevention strategies and successful treatment remain elusive. To date, the etiology of NDs is unclear due to the complexity of the mechanisms of diseases involving genetic and environmental factors, including diet and microbiota. Emerging evidence suggests that changes in diet, alteration of the microbiota, and deregulation of metabolism in the intestinal epithelium influence the inflammatory status of the neurons linked to disease insurgence and progression. This review will describe the leading players of the so-called diet-microbiota-gut-brain (DMGB) axis in the context of NDs. We will report recent findings from studies in model organisms such as rodents and fruit flies that support the role of diets, commensals, and intestinal epithelial functions as an overlooked primary regulator of brain health. We will finish discussing the pivotal role of metabolisms of cellular organelles such as mitochondria and peroxisomes in maintaining the DMGB axis and how alteration of the latter can be used as early disease makers and novel therapeutic targets.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| | - Brendon D. Parsons
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
| | - Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS, Canada
- IWK Health Centre, Department of Pediatrics, Halifax, Canada
| |
Collapse
|
10
|
Han Y, He Z. Concomitant protein pathogenesis in Parkinson's disease and perspective mechanisms. Front Aging Neurosci 2023; 15:1189809. [PMID: 37181621 PMCID: PMC10174460 DOI: 10.3389/fnagi.2023.1189809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Comorbidity is a common phenotype in Parkinson's disease (PD). Patients with PD not only have motor deficit symptoms, but also have heterogeneous non-motor symptoms, including cognitive impairment and emotional changes, which are the featured symptoms observed in patients with Alzheimer's disease (AD), frontotemporal dementia (FTD) and cerebrovascular disease. Moreover, autopsy studies have also confirmed the concomitant protein pathogenesis, such as the co-existences of α-synuclein, amyloid-β and tau pathologies in PD and AD patients' brains. Here, we briefly summarize the recent reports regarding the comorbidity issues in PD from both clinical observations and neuropathological evidences. Furthermore, we provide some discussion about the perspective potential mechanisms underlying such comorbidity phenomenon, with a focus on PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuliang Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Zhuohao He,
| |
Collapse
|
11
|
Gorina YV, Vlasova OL, Bolshakova AV, Salmina AB. Alzheimer’s Disease: a Search for the Best Experimental Models to Decode Cellular and Molecular Mechanisms of Its Development. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
12
|
Ruffo P, De Amicis F, Giardina E, Conforti FL. Long-noncoding RNAs as epigenetic regulators in neurodegenerative diseases. Neural Regen Res 2022; 18:1243-1248. [PMID: 36453400 PMCID: PMC9838156 DOI: 10.4103/1673-5374.358615] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The growing and rapid development of high-throughput sequencing technologies have allowed a greater understanding of the mechanisms underlying gene expression regulation. Editing the epigenome and epitranscriptome directs the fate of the transcript influencing the functional outcome of each mRNA. In this context, non-coding RNAs play a decisive role in addressing the expression regulation at the gene and chromosomal levels. Long-noncoding RNAs, consisting of more than 200 nucleotides, have been shown to act as epigenetic regulators in several key molecular processes involving neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Long-noncoding RNAs are abundantly expressed in the central nervous system, suggesting that their deregulation could trigger neuronal degeneration through RNA modifications. The evaluation of their diagnostic significance and therapeutic potential could lead to new treatments for these diseases for which there is no cure.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, Italy,Department of Biomedicine & Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy,Correspondence to: Francesca Luisa Conforti, .
| |
Collapse
|
13
|
Neuronal ApoE4 stimulates C/EBPβ activation, promoting Alzheimer’s disease pathology in a mouse model. Prog Neurobiol 2022; 209:102212. [DOI: 10.1016/j.pneurobio.2021.102212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022]
|
14
|
Sierra-Fonseca JA, Rodriguez M, Themann A, Lira O, Flores-Ramirez FJ, Vargas-Medrano J, Gadad BS, Iñiguez SD. Autophagy Induction and Accumulation of Phosphorylated Tau in the Hippocampus and Prefrontal Cortex of Adult C57BL/6 Mice Subjected to Adolescent Fluoxetine Treatment. J Alzheimers Dis 2021; 83:1691-1702. [PMID: 34420960 DOI: 10.3233/jad-210475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Fluoxetine (FLX) represents the antidepressant of choice for the management of pediatric mood-related illnesses. Accumulating preclinical evidence suggests that ontogenic FLX exposure leads to deregulated affect-related phenotypes in adulthood. Mood-related symptomatology constitutes a risk-factor for various neurological disorders, including Alzheimer's disease (AD), making it possible for juvenile FLX history to exacerbate the development of neurodegenerative diseases. OBJECTIVE Because AD is characterized by the pathological accumulation of hyperphosphorylated tau, which can result from impaired function of protein degradation pathways, such as autophagy and the ubiquitin-proteasome system (UPS), we evaluated the long-term effects of adolescent FLX exposure on these pathways, using mice as a model system. METHODS We subjected C57BL/6 adolescent male mice to FLX (20 mg/kg/day) from postnatal day (PD) 35 to PD49. Twenty-one days after the last FLX injection (i.e., adulthood; PD70), mice were euthanized and, using immunoblotting analysis, we evaluated protein markers of autophagy (Beclin-1, LC3-II, p62) and the UPS (K48-pUb), as well as AD-associated forms of phosphorylated tau, within the hippocampus and prefrontal cortex. RESULTS Juvenile FLX pre-exposure mediated long-term changes in the expression of protein markers (increased LC3-II and decreased p62) that is consistent with autophagy activation, particularly in the prefrontal cortex. Furthermore, FLX history induced persistent accumulation of AD-associated variants of tau in both the hippocampus and prefrontal cortexConclusion: Adolescent FLX treatment may have enduring effects in the neuronal protein degradation machinery, which could adversely influence clearance of abnormal proteins, potentially predisposing individuals to developing AD in later life.
Collapse
Affiliation(s)
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | | | - Javier Vargas-Medrano
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Bharathi S Gadad
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
15
|
Wang ZH, Xia Y, Liu P, Liu X, Edgington-Mitchell L, Lei K, Yu SP, Wang XC, Ye K. ApoE4 activates C/EBPβ/δ-secretase with 27-hydroxycholesterol, driving the pathogenesis of Alzheimer's disease. Prog Neurobiol 2021; 202:102032. [PMID: 33716161 DOI: 10.1016/j.pneurobio.2021.102032] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/17/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
ApoE4, an apolipoprotein implicated in cholesterol transport and amyloid-β (Aβ) metabolism, is a major genetic risk determinant for Alzheimer's Disease (AD) and drives its pathogenesis via Aβ-dependent and -independent pathways. C/EBPβ, a proinflammatory cytokines-activated transcription factor, is upregulated in AD and mediates cytokines and δ-secretase expression. However, how ApoE4 contributes to AD pathogenesis remains incompletely understood. Here we show that ApoE4 and 27-hydroxycholesterol (27-OHC) co-activate C/EBPβ/δ-secretase signaling in neurons, mediating AD pathogenesis, and this effect is dependent on neuronal secreted Aβ and inflammatory cytokines. Inhibition of cholesterol metabolism with lovastatin diminishes neuronal ApoE4's stimulatory effects. Furthermore, ApoE4 and 27-OHC also mediate lysosomal δ-secretase leakage, activation, secretion and endocytosis. Notably, 27-OHC strongly activates C/EBPβ/δ-secretase pathway in human ApoE4-TR mice and triggers AD pathologies and cognitive deficits, which is blocked by C/EBPβ depletion. Hence, our findings demonstrate that ApoE4 and 27-OHC additively trigger AD pathogenesis via activating C/EBPβ/δ-secretase pathway. Lowering cholesterol levels with statins should benefit the ApoE4 AD carriers.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA; Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA; Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pai Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA; Neuroscience Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Laura Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne Victoria, 3010, Australia
| | - Kecheng Lei
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Liu M, Wang L, Gao J, Dong Q, Perry G, Ma X, Wang X. Inhibition of Calpain Protects Against Tauopathy in Transgenic P301S Tau Mice. J Alzheimers Dis 2020; 69:1077-1087. [PMID: 31156179 DOI: 10.3233/jad-190281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) and other tauopathies are characterized by intracellular accumulation of microtubule-associated tau protein leading to neurodegeneration. Calpastatin is the endogenous inhibitor of calpain, a calcium-dependent cysteine protease that has been increasingly implicated in tauopathies. In this study, we generated a neuron specific calpastatin overexpressing knock-in transgenic mouse model and crossed it with the PS19 tauopathy mouse model expressing human P301S mutant tau protein. The forced expression of calpastatin in neurons significantly alleviated tau hyperphosphorylation measured by immunocytochemistry and immunoblot. The genetic inhibition of calpain by calpastatin also greatly suppressed characteristic hippocampal neuron loss and widespread astrogliosis and microgliosis in PS19 mice. Consistently, PS19 mice with neuronal calpastatin overexpression exhibited remarkably alleviated cognitive deficits, muscle weakness, skeletal muscle atrophy, and neuromuscular denervation, together implying the neuroprotective effects of neuronal calpastatin in PS19 mice of tauopathy. In sum, this study provides additional evidence supporting the pathological role of calpain in neurodegenerative diseases associated with tau pathology, and suggests that targeting calpain is likely a promising therapeutic approach for these devastating diseases.
Collapse
Affiliation(s)
- Mengyu Liu
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China.,Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Qing Dong
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xuemei Ma
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.,Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
17
|
Role of Long Noncoding RNAs in Parkinson's Disease: Putative Biomarkers and Therapeutic Targets. PARKINSONS DISEASE 2020; 2020:5374307. [PMID: 32617144 PMCID: PMC7306067 DOI: 10.1155/2020/5374307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by bradykinesia, rigidity, and tremor. Age is the main risk factor. Long noncoding RNAs (lncRNAs) are novel RNA molecules of more than 200 nucleotides in length. They may be involved in the regulation of many pathological processes of PD. PD has a variety of pathophysiological mechanisms, including alpha-synuclein aggregate, mitochondrial dysfunction, oxidative stress, calcium homeostasis, axonal transport, and neuroinflammation. Among these, the impacts of lncRNAs on the pathogenesis and progression of PD need to be highlighted. lncRNAs may serve as putative biomarkers and therapeutic targets for the early diagnosis of PD. This study aimed to investigate the role of lncRNAs in various pathological processes of PD and the specific lncRNAs that might be used as putative diagnostic biomarkers and therapeutic targets of PD.
Collapse
|
18
|
Wen X, An P, Li H, Zhou Z, Sun Y, Wang J, Ma L, Lu B. Tau Accumulation via Reduced Autophagy Mediates GGGGCC Repeat Expansion-Induced Neurodegeneration in Drosophila Model of ALS. Neurosci Bull 2020; 36:1414-1428. [PMID: 32500377 DOI: 10.1007/s12264-020-00518-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/21/2020] [Indexed: 12/21/2022] Open
Abstract
Expansions of trinucleotide or hexanucleotide repeats lead to several neurodegenerative disorders, including Huntington disease [caused by expanded CAG repeats (CAGr) in the HTT gene], and amyotrophic lateral sclerosis [ALS, possibly caused by expanded GGGGCC repeats (G4C2r) in the C9ORF72 gene], of which the molecular mechanisms remain unclear. Here, we demonstrated that lowering the Drosophila homologue of tau protein (dtau) significantly rescued in vivo neurodegeneration, motor performance impairments, and the shortened life-span in Drosophila expressing expanded CAGr or expanded G4C2r. Expression of human tau (htau4R) restored the disease-related phenotypes that had been mitigated by the loss of dtau, suggesting an evolutionarily-conserved role of tau in neurodegeneration. We further revealed that G4C2r expression increased tau accumulation by inhibiting autophagosome-lysosome fusion, possibly due to lowering the level of BAG3, a regulator of autophagy and tau. Taken together, our results reveal a novel mechanism by which expanded G4C2r causes neurodegeneration via an evolutionarily-conserved mechanism. Our findings provide novel autophagy-related mechanistic insights into C9ORF72-ALS and possible entry points to disease treatment.
Collapse
Affiliation(s)
- Xue Wen
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ping An
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hexuan Li
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zijian Zhou
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yimin Sun
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jian Wang
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Lixiang Ma
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
19
|
Ahmadi S, Zobeiri M, Bradburn S. Molecular mechanisms underlying actions of certain long noncoding RNAs in Alzheimer's disease. Metab Brain Dis 2020; 35:681-693. [PMID: 32185592 DOI: 10.1007/s11011-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs that have more than 200 nucleotides. LncRNAs play an important role in the regulation of protein-coding genes at the transcriptional and post-transcriptional levels. They are found in most organs, with a high prevalence in the central nervous system. Accumulating data suggests that lncRNAs are involved in various neurodegenerative disorders, including the onset and progression of Alzheimer's disease (AD). Recent insights suggest lncRNAs, such as BACE1-AS, 51A, 17A, NDM29 and AS-UCHL1, are dysregulated in AD tissues. Furthermore, there are ongoing efforts to explore the clinical usability of lncRNAs as biomarkers in the disease. In this review, we explore the mechanisms by which aberrant expressions of the most studied lncRNAs contribute to the neuropathologies associated with AD, including amyloid β plaques and neurofibrillary tangles. Understanding the molecular mechanisms of lncRNAs in patients with AD will reveal novel diagnosis strategies and more effective therapeutic targets.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Mohammad Zobeiri
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Steven Bradburn
- Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
20
|
Kosel F, Pelley JMS, Franklin TB. Behavioural and psychological symptoms of dementia in mouse models of Alzheimer's disease-related pathology. Neurosci Biobehav Rev 2020; 112:634-647. [PMID: 32070692 DOI: 10.1016/j.neubiorev.2020.02.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
Transgenic mouse models have been used extensively to model the cognitive impairments arising from Alzheimer's disease (AD)-related pathology. However, less is known about the relationship between AD-related pathology and the behavioural and psychological symptoms of dementia (BPSD) commonly presented by patients. This review discusses the BPSD-like behaviours recapitulated by several mouse models of AD-related pathology, including the APP/PS1, Tg2576, 3xTg-AD, 5xFAD, and APP23 models. Current evidence suggests that social withdrawal and depressive-like behaviours increase with progressive neuropathology, and increased aggression and sleep-wake disturbances are present even at early stages; however, there is no clear evidence to support increased anxiety-like behaviours, agitation (hyperactivity), or general apathy. Overall, transgenic mouse models of AD-related pathology recapitulate some of the BPSD-like behaviours associated with AD, but these behaviours vary by model. This reflects the patient population, where AD patients typically exhibit one or more BPSD, but rarely all symptoms at once. As a result, we suggest that transgenic mouse models are an important tool to investigate the pathology underlying BPSD in human AD patients.
Collapse
Affiliation(s)
- Filip Kosel
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Jessica M S Pelley
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Tamara B Franklin
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
21
|
Developmental Pathogenicity of 4-Repeat Human Tau Is Lost with the P301L Mutation in Genetically Matched Tau-Transgenic Mice. J Neurosci 2019; 40:220-236. [PMID: 31685653 DOI: 10.1523/jneurosci.1256-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022] Open
Abstract
Tau is a microtubule-associated protein that becomes dysregulated in a group of neurodegenerative diseases called tauopathies. Differential tau isoforms, expression levels, promoters, and disruption of endogenous genes in transgenic mouse models of tauopathy make it difficult to draw definitive conclusions about the biological role of tau in these models. We addressed this shortcoming by characterizing the molecular and cognitive phenotypes associated with the pathogenic P301L tau mutation (rT2 mice) in relation to a genetically matched transgenic mouse overexpressing nonmutant (NM) 4-repeat (4R) human tau (rT1 mice). Both male and female mice were included in this study. Unexpectedly, we found that 4R NM human tau (hTau) exhibited abnormal dynamics in young mice that were lost with the P301L mutation, including elevated protein stability and hyperphosphorylation, which were associated with cognitive impairment in 5-month-old rT1 mice. Hyperphosphorylation of NM hTau was observed as early as 4 weeks of age, and transgene suppression for the first 4 or 12 weeks of life prevented abnormal molecular and cognitive phenotypes in rT1, demonstrating that NM hTau pathogenicity is specific to postnatal development. We also show that NM hTau exhibits stronger binding to microtubules than P301L hTau, and is associated with mitochondrial abnormalities. Overall, our genetically matched mice have revealed that 4R NM hTau overexpression is pathogenic in a manner distinct from classical aging-related tauopathy, underlining the importance of assaying the effects of transgenic disease-related proteins at appropriate stages in life.SIGNIFICANCE STATEMENT Due to differences in creation of transgenic lines, the pathological properties of the P301L mutation confers to the tau protein in vivo have remained elusive, perhaps contributing to the lack of disease-modifying therapies for tauopathies. In an attempt to characterize P301L-specific effects on tau biology and cognition in novel genetically matched transgenic mouse models, we surprisingly found that nonmutant human tau has development-specific pathogenic properties of its own. Our findings indicate that overexpression of 4-repeat human tau during postnatal development is associated with excessive microtubule binding, which may disrupt important cellular processes, such as mitochondrial dynamics, leading to elevated stability and hyperphosphorylation of tau, and eventual cognitive impairments.
Collapse
|
22
|
Weldon Furr J, Morales-Scheihing D, Manwani B, Lee J, McCullough LD. Cerebral Amyloid Angiopathy, Alzheimer's Disease and MicroRNA: miRNA as Diagnostic Biomarkers and Potential Therapeutic Targets. Neuromolecular Med 2019; 21:369-390. [PMID: 31586276 DOI: 10.1007/s12017-019-08568-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The protein molecules must fold into unique conformations to acquire functional activity. Misfolding, aggregation, and deposition of proteins in diverse organs, the so-called "protein misfolding disorders (PMDs)", represent the conformational diseases with highly ordered assemblies, including oligomers and fibrils that are linked to neurodegeneration in brain illnesses such as cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Recent studies have revealed several aspects of brain pathology in CAA and AD, but both the classification and underlying mechanisms need to be further refined. MicroRNAs (miRNAs) are critical regulators of gene expression at the post-transcriptional level. Increasing evidence with the advent of RNA sequencing technology suggests possible links between miRNAs and these neurodegenerative disorders. To provide insights on the small RNA-mediated regulatory circuitry and the translational significance of miRNAs in PMDs, this review will discuss the characteristics and mechanisms of the diseases and summarize circulating or tissue-resident miRNAs associated with AD and CAA.
Collapse
Affiliation(s)
- J Weldon Furr
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Diego Morales-Scheihing
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Bharti Manwani
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Juneyoung Lee
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Louise D McCullough
- BRAINS Research Laboratory, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Joel Z, Izquierdo P, Salih DA, Richardson JC, Cummings DM, Edwards FA. Improving Mouse Models for Dementia. Are All the Effects in Tau Mouse Models Due to Overexpression? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:151-161. [PMID: 30745408 DOI: 10.1101/sqb.2018.83.037531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse models of Alzheimer's disease have commonly used transgenic overexpression of genes involved in production of amyloid β (APP and/or PSEN1/2) or Tau (MAPT) with mutations that result in familial forms of dementia. We discuss possible improvements that may create full models while avoiding the problems of overexpression and report synaptic results in APPKI models. We stress use of inappropriate controls without overexpression of the normal human protein and the mismatch between the learning deficits reported in mice with plaques but no tangles and the human condition. We focus on Tau overexpression, including new data that support previous reports of the grossly nonlinear relationship between Tau overexpression and neurofibrillary tangle load, with a twofold increase in Tau protein, resulting in a 100-fold increase in tangle density. These data also support the hypothesis that a high concentration of soluble Tau, in overexpression models, plays an important direct role in neurodegeneration, rather than only via aggregation. Finally, we hypothesize that there is an optimal concentration range over which Tau can bind to microtubules and a threshold beyond which much of the overexpressed protein is unable to bind. The excess thus causes toxicity in ways not necessarily related to the process in human dementias.
Collapse
Affiliation(s)
- Zelah Joel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Pablo Izquierdo
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Dervis A Salih
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Jill C Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Stevenage, SG1 2NY, United Kingdom
| | - Damian M Cummings
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Frances A Edwards
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
24
|
Adalbert R, Milde S, Durrant C, Ando K, Stygelbout V, Yilmaz Z, Gould S, Brion JP, Coleman MP. Interaction between a MAPT variant causing frontotemporal dementia and mutant APP affects axonal transport. Neurobiol Aging 2018; 68:68-75. [PMID: 29729423 PMCID: PMC5998378 DOI: 10.1016/j.neurobiolaging.2018.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/27/2018] [Accepted: 03/29/2018] [Indexed: 01/28/2023]
Abstract
In Alzheimer's disease, many indicators point to a central role for poor axonal transport, but the potential for stimulating axonal transport to alleviate the disease remains largely untested. Previously, we reported enhanced anterograde axonal transport of mitochondria in 8- to 11-month-old MAPTP301L knockin mice, a genetic model of frontotemporal dementia with parkinsonism-17T. In this study, we further characterized the axonal transport of mitochondria in younger MAPTP301L mice crossed with the familial Alzheimer's disease model, TgCRND8, aiming to test whether boosting axonal transport in young TgCRND8 mice can alleviate axonal swelling. We successfully replicated the enhancement of anterograde axonal transport in young MAPTP301L/P301L knockin animals. Surprisingly, we found that in the presence of the amyloid precursor protein mutations, MAPTP301L/P3101L impaired anterograde axonal transport. The numbers of plaque-associated axonal swellings or amyloid plaques in TgCRND8 brains were unaltered. These findings suggest that amyloid-β promotes an action of mutant tau that impairs axonal transport. As amyloid-β levels increase with age even without amyloid precursor protein mutation, we suggest that this rise could contribute to age-related decline in frontotemporal dementia.
Collapse
Affiliation(s)
- Robert Adalbert
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Stefan Milde
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Claire Durrant
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Virginie Stygelbout
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Zehra Yilmaz
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Stacey Gould
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Michael P Coleman
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK; John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Rossi F, Geiszler PC, Meng W, Barron MR, Prior M, Herd-Smith A, Loreto A, Lopez MY, Faas H, Pardon MC, Conforti L. NAD-biosynthetic enzyme NMNAT1 reduces early behavioral impairment in the htau mouse model of tauopathy. Behav Brain Res 2018; 339:140-152. [PMID: 29175372 PMCID: PMC5769520 DOI: 10.1016/j.bbr.2017.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 11/04/2022]
Abstract
NAD metabolism and the NAD biosynthetic enzymes nicotinamide nucleotide adenylyltransferases (NMNATs) are thought to play a key neuroprotective role in tauopathies, including Alzheimer's disease. Here, we investigated whether modulating the expression of the NMNAT nuclear isoform NMNAT1, which is important for neuronal maintenance, influences the development of behavioral and neuropathological abnormalities in htau mice, which express non-mutant human tau isoforms and represent a model of tauopathy relevant to Alzheimer's disease. Prior to the development of cognitive symptoms, htau mice exhibit tau hyperphosphorylation associated with a selective deficit in food burrowing, a behavior reminiscent to activities of daily living which are impaired early in Alzheimer's disease. We crossed htau mice with Nmnat1 transgenic and knockout mice and tested the resulting offspring until the age of 6 months. We show that overexpression of NMNAT1 ameliorates the early deficit in food burrowing characteristic of htau mice. At 6 months of age, htau mice did not show neurodegenerative changes in both the cortex and hippocampus, and these were not induced by downregulating NMNAT1 levels. Modulating NMNAT1 levels produced a corresponding effect on NMNAT enzymatic activity but did not alter NAD levels in htau mice. Although changes in local NAD levels and subsequent modulation of NAD-dependent enzymes cannot be ruled out, this suggests that the effects seen on behavior may be due to changes in tau phosphorylation. Our results suggest that increasing NMNAT1 levels can slow the progression of symptoms and neuropathological features of tauopathy, but the underlying mechanisms remain to be established.
Collapse
Affiliation(s)
- Francesca Rossi
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK; Department of Biomedical Sciences, Cagliari University, Cagliari 09042, Italy
| | - Philippine C Geiszler
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Weina Meng
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Matthew R Barron
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Malcolm Prior
- Department of Biomedical Sciences, Cagliari University, Cagliari 09042, Italy
| | - Anna Herd-Smith
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Andrea Loreto
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| | - Maria Yanez Lopez
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Queen's Medical Centre, Medical School, Nottingham NG7 2UH, UK; Faculty of Medicine, Department of Medicine, Imperial College London, Burlington Danes, Hammersmith campus, London W12 0NN, UK
| | - Henryk Faas
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Queen's Medical Centre, Medical School, Nottingham NG7 2UH, UK
| | - Marie-Christine Pardon
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK.
| | - Laura Conforti
- School of Life Sciences, University of Nottingham, Queen's Medical Centre Medical School, Nottingham, NG7 2UH, UK
| |
Collapse
|
26
|
Ahlemeyer B, Halupczok S, Rodenberg-Frank E, Valerius KP, Baumgart-Vogt E. Endogenous Murine Amyloid-β Peptide Assembles into Aggregates in the Aged C57BL/6J Mouse Suggesting These Animals as a Model to Study Pathogenesis of Amyloid-β Plaque Formation. J Alzheimers Dis 2018; 61:1425-1450. [DOI: 10.3233/jad-170923] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Barbara Ahlemeyer
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Sascha Halupczok
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Elke Rodenberg-Frank
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Klaus-Peter Valerius
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
27
|
Physiological and pathophysiological functions of Swiprosin-1/EFhd2 in the nervous system. Biochem J 2017; 473:2429-37. [PMID: 27515255 DOI: 10.1042/bcj20160168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Synaptic dysfunction and dysregulation of Ca(2+) are linked to neurodegenerative processes and behavioural disorders. Our understanding of the causes and factors involved in behavioural disorders and neurodegeneration, especially Alzheimer's disease (AD), a tau-related disease, is on the one hand limited and on the other hand controversial. Here, we review recent data about the links between the Ca(2+)-binding EF-hand-containing cytoskeletal protein Swiprosin-1/EFhd2 and neurodegeneration. Specifically, we summarize the functional biochemical data obtained in vitro with the use of recombinant EFhd2 protein, and integrated them with in vivo data in order to interpret the emerging role of EFhd2 in synaptic plasticity and in the pathophysiology of neurodegenerative disorders, particularly involving the tauopathies. We also discuss its functions in actin remodelling through cofilin and small GTPases, thereby linking EFhd2, synapses and the actin cytoskeleton. Expression data and functional experiments in mice and in humans have led to the hypothesis that down-regulation of EFhd2, especially in the cortex, is involved in dementia.
Collapse
|
28
|
Barber KR, Tanquary J, Bush K, Shaw A, Woodson M, Sherman M, Wairkar YP. Active zone proteins are transported via distinct mechanisms regulated by Par-1 kinase. PLoS Genet 2017; 13:e1006621. [PMID: 28222093 PMCID: PMC5340405 DOI: 10.1371/journal.pgen.1006621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/07/2017] [Accepted: 02/08/2017] [Indexed: 11/24/2022] Open
Abstract
Disruption of synapses underlies a plethora of neurodevelopmental and neurodegenerative disease. Presynaptic specialization called the active zone plays a critical role in the communication with postsynaptic neuron. While the role of many proteins at the active zones in synaptic communication is relatively well studied, very little is known about how these proteins are transported to the synapses. For example, are there distinct mechanisms for the transport of active zone components or are they all transported in the same transport vesicle? Is active zone protein transport regulated? In this report we show that overexpression of Par-1/MARK kinase, a protein whose misregulation has been implicated in Autism spectrum disorders (ASDs) and neurodegenerative disorders, lead to a specific block in the transport of an active zone protein component- Bruchpilot at Drosophila neuromuscular junctions. Consistent with a block in axonal transport, we find a decrease in number of active zones and reduced neurotransmission in flies overexpressing Par-1 kinase. Interestingly, we find that Par-1 acts independently of Tau-one of the most well studied substrates of Par-1, revealing a presynaptic function for Par-1 that is independent of Tau. Thus, our study strongly suggests that there are distinct mechanisms that transport components of active zones and that they are tightly regulated. Synapses consist of pre- and postsynaptic partners. Proper function of active zones, a presynaptic component of synapse, is essential for efficacious neuronal communication. Disruption of neuronal communication is an early sign of both neurodevelopmental as well as neurodegenerative diseases. Since proteins that reside in active zones are used so frequently during the neuronal communication, they must be constantly replenished to maintain active zones. Axonal transport of these proteins plays an important role in replenishing these vital components necessary for the health of active zones. However, the mechanisms that transport components of active zones are not well understood. Our data suggest that there are distinct mechanisms that transport various active zone cargoes and this process is likely regulated by kinases. Further, our data show that disruption in the transport of one such active zone components causes reduced neuronal communication emphasizing the importance of the process of axonal transport of active zone protein(s) for neuronal communication. Understanding the processes that govern the axonal transport of active zone components will help dissect the initial stages of pathogenesis in both neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kara R. Barber
- George and Cynthia Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- Neuroscience Graduate Program, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Julia Tanquary
- Summer Undergraduate Research Program, UTMB, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Keegan Bush
- George and Cynthia Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- Neuroscience Graduate Program, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Amanda Shaw
- George and Cynthia Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- Neuroscience Graduate Program, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Michael Woodson
- Sealy Center for Structural Biology, UTMB, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Michael Sherman
- Sealy Center for Structural Biology, UTMB, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Yogesh P. Wairkar
- George and Cynthia Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- Neuroscience Graduate Program, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
29
|
Asai M, Kinjo A, Kimura S, Mori R, Kawakubo T, Shirotani K, Yagishita S, Maruyama K, Iwata N. Perturbed Calcineurin-NFAT Signaling Is Associated with the Development of Alzheimer's Disease. Biol Pharm Bull 2017; 39:1646-1652. [PMID: 27725441 DOI: 10.1248/bpb.b16-00350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Down syndrome (DS), the most common genetic disorder, is caused by trisomy 21. DS is accompanied by heart defects, hearing and vision problems, obesity, leukemia, and other conditions, including Alzheimer's disease (AD). In comparison, most cancers are rare in people with DS. Overexpression of dual specificity tyrosine-phosphorylation-regulated kinase 1A and a regulator of calcineurin 1 located on chromosome 21 leads to excessive suppression of the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, resulting in reduced expression of a critical angiogenic factor. However, it is unclear whether the calcineurin-NFAT signaling pathway is involved in AD pathology in DS patients. Here, we investigated the association between the calcineurin-NFAT signaling pathway and AD using neuronal cells. Short-term pharmacological stimulation decreased gene expression of tau and neprilysin, and long-term inhibition of the signaling pathway decreased that of amyloid precursor protein. Moreover, a calcineurin inhibitor, cyclosporine A, also decreased neprilysin activity, leading to increases in amyloid-β peptide levels. Taken together, our results suggest that a dysregulation in calcineurin-NFAT signaling may contribute to the early onset of AD in people with DS.
Collapse
Affiliation(s)
- Masashi Asai
- School of Pharmaceutical Sciences, Nagasaki University
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bhattacharyya S, Kim K, Nakazawa H, Umetsu M, Teizer W. Modulating the microtubule-tau interactions in biomotility systems by altering the chemical environment. Integr Biol (Camb) 2016; 8:1296-1300. [PMID: 27785513 DOI: 10.1039/c6ib00182c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obstacles in microtubule mediated neuronal transport can trigger dementia. We use bio-motility assays, that simulate the neuron chemistry in axonopathy, to screen chemicals, that retain the microtubule dynamics in healthy neuronal activity. Tau protein inhibits microtubule activity and leads to oligomerization. Iron(iii) untangles, whereas mono-sodium-glutamate destabilizes the microtubule oligomer.
Collapse
Affiliation(s)
- S Bhattacharyya
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - K Kim
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - H Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - M Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - W Teizer
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan and Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA. and Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
31
|
Götzl JK, Lang CM, Haass C, Capell A. Impaired protein degradation in FTLD and related disorders. Ageing Res Rev 2016; 32:122-139. [PMID: 27166223 DOI: 10.1016/j.arr.2016.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
Impaired protein degradation has been discussed as a cause or consequence of various neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's disease. More recently, evidence accumulated that dysfunctional protein degradation may play a role in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Since in almost all neurodegenerative diseases, protein aggregates are disease-defining hallmarks, it is most likely that impaired protein degradation contributes to disease onset and progression. In the majority of FTD cases, the pathological protein aggregates contain either microtubuleassociated protein tau or TAR DNA-binding protein (TDP)-43. Aggregates are also positive for ubiquitin and p62/sequestosome 1 (SQSTM1) indicating that these aggregates are targeted for degradation. FTD-linked mutations in genes encoding three autophagy adaptor proteins, p62/SQSTM1, ubiquilin 2 and optineurin, indicate that impaired autophagy might cause FTD. Furthermore, the strongest evidence for lysosomal impairment in FTD is provided by the progranulin (GRN) gene, which is linked to FTD and neuronal ceroid lipofuscinosis. In this review, we summarize the observations that have been made during the last years linking the accumulation of disease-associated proteins in FTD to impaired protein degradation pathways. In addition, we take resent findings for nucleocytoplasmic transport defects of TDP-43, as discussed for hexanucleotide repeat expansions in C9orf72 into account and provide a hypothesis how the interplay of altered nuclear transport and protein degradation leads to the accumulation of protein deposits.
Collapse
|
32
|
Tzekov R, Phifer J, Myers A, Mouzon B, Crawford F. Inflammatory changes in optic nerve after closed-head repeated traumatic brain injury: Preliminary study. Brain Inj 2016; 30:1428-1435. [DOI: 10.1080/02699052.2016.1219062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Ghosal K, Fan Q, Dawson HN, Pimplikar SW. Tau Protein Mediates APP Intracellular Domain (AICD)-Induced Alzheimer's-Like Pathological Features in Mice. PLoS One 2016; 11:e0159435. [PMID: 27459671 PMCID: PMC4961442 DOI: 10.1371/journal.pone.0159435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/01/2016] [Indexed: 11/20/2022] Open
Abstract
Amyloid precursor protein (APP) is cleaved by gamma-secretase to simultaneously generate amyloid beta (Aβ) and APP Intracellular Domain (AICD) peptides. Aβ plays a pivotal role in Alzheimer's disease (AD) pathogenesis but recent studies suggest that amyloid-independent mechanisms also contribute to the disease. We previously showed that AICD transgenic mice (AICD-Tg) exhibit AD-like features such as tau pathology, aberrant neuronal activity, memory deficits and neurodegeneration in an age-dependent manner. Since AD is a tauopathy and tau has been shown to mediate Aβ-induced toxicity, we examined the role of tau in AICD-induced pathological features. We report that ablating endogenous tau protects AICD-Tg mice from deficits in adult neurogenesis, seizure severity, short-term memory deficits and neurodegeneration. Deletion of tau restored abnormal phosphorylation of NMDA receptors, which is likely to underlie hyperexcitability and associated excitotoxicity in AICD-Tg mice. Conversely, overexpression of wild-type human tau aggravated receptor phosphorylation, impaired adult neurogenesis, memory deficits and neurodegeneration. Our findings show that tau is essential for mediating the deleterious effects of AICD. Since tau also mediates Aβ-induced toxic effects, our findings suggest that tau is a common downstream factor in both amyloid-dependent and-independent pathogenic mechanisms and therefore could be a more effective drug target for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Kaushik Ghosal
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| | - Qingyuan Fan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| | - Hana N. Dawson
- Department of Neurology, Duke University, Durham, North Carolina, 27710, United States of America
| | - Sanjay W. Pimplikar
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, United States of America
| |
Collapse
|
34
|
Coupland KG, Kim WS, Halliday GM, Hallupp M, Dobson-Stone C, Kwok JBJ. Role of the Long Non-Coding RNA MAPT-AS1 in Regulation of Microtubule Associated Protein Tau (MAPT) Expression in Parkinson's Disease. PLoS One 2016; 11:e0157924. [PMID: 27336847 PMCID: PMC4919105 DOI: 10.1371/journal.pone.0157924] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023] Open
Abstract
Studies investigating the pathogenic role of the microtubule associated protein tau (MAPT) gene in Parkinson's disease (PD) have indicated that DNA methylation of the promoter region is aberrant in disease, leading to dysregulated MAPT expression. We examined two potential regulators of MAPT gene expression in respect to PD, a promoter-associated long non-coding RNA MAPT-AS1, and DNA methyltransferases (DNMTs), enzymes responsible for new and maintenance of DNA methylation. We assessed the relationship between expression levels of MAPT and the candidate MAPT-AS1, DNMT1, DNMT3A and DNMT3B transcripts in four brain regions with varying degrees of cell loss and pathology (putamen, anterior cingulate cortex, visual cortex and cerebellum) in N = 10 PD and N = 10 controls. We found a significant decrease in MAPT-AS1 expression in PD (p = 7.154 x 10-6). The transcript levels of both MAPT-AS1 (p = 2.569 x 10-4) and DNMT1 (p = 0.001) correlated with those of MAPT across the four brain regions, but not with each other. Overexpression of MAPT-AS1 decreased MAPT promoter activity by ∼2.2 to 4.3 fold in an in vitro luciferase assay performed in two cell lines (p ≤ 2.678 x 10-4). Knock-down expression of MAPT-AS1 led to a 1.3 to 6.3 fold increase in methylation of the endogenous MAPT promoter (p ≤ 0.011) and a 1.2 to 1.5 fold increased expression of the 4-repeat MAPT isoform transcript (p ≤ 0.013). In conclusion, MAPT-AS1 and DNMT1 have been identified as potential epigenetic regulators of MAPT expression in PD across four different brain regions. Our data also suggest that increased MAPT expression could be associated with disease state, but not with PD neuropathology severity.
Collapse
Affiliation(s)
- Kirsten G. Coupland
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Woojin S. Kim
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Glenda M. Halliday
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Carol Dobson-Stone
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - John B. J. Kwok
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
35
|
Gilley J, Ando K, Seereeram A, Rodríguez-Martín T, Pooler AM, Sturdee L, Anderton BH, Brion JP, Hanger DP, Coleman MP. Mislocalization of neuronal tau in the absence of tangle pathology in phosphomutant tau knockin mice. Neurobiol Aging 2015; 39:1-18. [PMID: 26923397 DOI: 10.1016/j.neurobiolaging.2015.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 01/22/2023]
Abstract
Hyperphosphorylation and fibrillar aggregation of the microtubule-associated protein tau are key features of Alzheimer's disease and other tauopathies. To investigate the involvement of tau phosphorylation in the pathological process, we generated a pair of complementary phosphomutant tau knockin mouse lines. One exclusively expresses phosphomimetic tau with 18 glutamate substitutions at serine and/or threonine residues in the proline-rich and first microtubule-binding domains to model hyperphosphorylation, whereas its phosphodefective counterpart has matched alanine substitutions. Consistent with expected effects of genuine phosphorylation, association of the phosphomimetic tau with microtubules and neuronal membranes is severely disrupted in vivo, whereas the phosphodefective mutations have more limited or no effect. Surprisingly, however, age-related mislocalization of tau is evident in both lines, although redistribution appears more widespread and more pronounced in the phosphomimetic tau knockin. Despite these changes, we found no biochemical or immunohistological evidence of pathological tau aggregation in mice of either line up to at least 2 years of age. These findings raise important questions about the role of tau phosphorylation in driving pathology in human tauopathies.
Collapse
Affiliation(s)
- Jonathan Gilley
- Signalling Programme, The Babraham Institute, Cambridge, UK.
| | - Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Anjan Seereeram
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Teresa Rodríguez-Martín
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amy M Pooler
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Laura Sturdee
- Signalling Programme, The Babraham Institute, Cambridge, UK
| | - Brian H Anderton
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussells, Belgium
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience (PO37), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | |
Collapse
|
36
|
Abstract
Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology.
Collapse
Affiliation(s)
- Yipeng Wang
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany.,Max Planck Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany
| |
Collapse
|
37
|
Ren Y, Sahara N, Giasson B, Lewis J. Tauopathy Mouse Models. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
38
|
Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 2014; 37:721-32. [PMID: 25223701 DOI: 10.1016/j.tins.2014.08.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 12/19/2022]
Abstract
Tau is a microtubule-associated-protein that is sorted into neuronal axons in physiological conditions. In Alzheimer disease (AD) and other tauopathies, Tau sorting mechanisms fail and Tau becomes missorted into the somatodendritic compartment. In AD, aberrant amyloid-β (Aβ) production might trigger Tau missorting. The physiological axonal sorting of Tau depends on the developmental stage of the neuron, the phosphorylation state of Tau and the microtubule cytoskeleton. Disease-associated missorting of Tau is connected to increased phosphorylation and aggregation of Tau, and impaired microtubule interactions. Disease-causing mechanisms involve impaired transport, aberrant kinase activation, non-physiological interactions of Tau, and prion-like spreading. In this review we focus on the physiological and pathological (mis)sorting of Tau, the underlying mechanisms, and effects in disease.
Collapse
|
39
|
Abstract
Supplemental digital content is available in the text. Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease–like pathologies. This model demonstrates an altered immune redox state reminiscent of the human disease and capitalizes on data indicating critical differences between human and mouse immune responses, particularly in nitric oxide levels produced by immune activation of the NOS2 gene. Using the APPSwDI+/+/mNos2−/− (CVN-AD) mouse strain, we show a sequence of pathologic events leading to neurodegeneration,which include pathologically hyperphosphorylated tau in the perforant pathway at 6 weeks of age progressing to insoluble tau, early appearance of β-amyloid peptides in perivascular deposits around blood vessels in brain regions known to be vulnerable to Alzheimer disease, and progression to damage and overt loss in select vulnerable neuronal populations in these regions. The role of species differences between hNOS2 and mNos2 was supported by generating mice in which the human NOS2 gene replaced mNos2. When crossed with CVN-AD mice, pathologic characteristics of this new strain (APPSwDI+/−/HuNOS2tg+/+/mNos2−/−) mimicked the pathologic phenotypes found in the CVN-AD strain.
Collapse
|
40
|
Decision trees for the analysis of genes involved in Alzheimer׳s disease pathology. J Theor Biol 2014; 357:21-5. [DOI: 10.1016/j.jtbi.2014.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/22/2014] [Accepted: 05/01/2014] [Indexed: 01/08/2023]
|
41
|
Neurofibrillary tangle formation by introducing wild-type human tau into APP transgenic mice. Acta Neuropathol 2014; 127:685-98. [PMID: 24531886 DOI: 10.1007/s00401-014-1259-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 12/31/2022]
Abstract
Senile plaques comprised of Aβ aggregates and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau filaments are the hallmarks of Alzheimer's disease (AD). A number of amyloid precursor protein (APP) transgenic (Tg) mice harboring APP mutations have been generated as animal models of AD. These mice successfully display amyloid plaque formation and subsequent tau hyperphosphorylation, but seldom induce NFT formations. We have demonstrated that the APPOSK-Tg mice, which possess the E693Δ (Osaka) mutation in APP and thereby accumulate Aβ oligomers without plaques, exhibit tau hyperphosphorylation at 8 months, but not NFT formation even at 24 months. We assumed that APP-Tg mice, including ours, failed to form NFTs because NFT formation requires human tau. To test this hypothesis, we crossbred APPOSK-Tg mice with tau-Tg mice (tau264), which express low levels of 3-repeat and 4-repeat wild-type human tau without any pathology. The resultant double Tg mice displayed tau hyperphosphorylation at 6 months and NFT formation at 18 months in the absence of tau mutations. Importantly, these NFTs contained both 3-repeat and 4-repeat human tau, similar to those in AD. Furthermore, the double Tg mice exhibited Aβ oligomer accumulation, synapse loss, and memory impairment at 6 months and neuronal loss at 18 months, all of which appeared earlier than in the parent APPOSK-Tg mice. These results suggest that Aβ and human tau synergistically interact to accelerate each other's pathology, that the presence of human tau is critical for NFT formation, and that Aβ oligomers can induce NFTs in the absence of amyloid plaques.
Collapse
|
42
|
A case of 17q21.31 microduplication and 7q31.33 microdeletion, associated with developmental delay, microcephaly, and mild dysmorphic features. Case Rep Genet 2014; 2014:658570. [PMID: 24649381 PMCID: PMC3932285 DOI: 10.1155/2014/658570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022] Open
Abstract
Concurrent cryptic microdeletion and microduplication syndromes have recently started to reveal themselves with the advent of microarray technology. Analysis has shown that low-copy repeats (LCRs) have allowed chromosome regions throughout the genome to become hotspots for nonallelic homologous recombination to take place. Here, we report a case of a 7.5-year-old girl who manifests microcephaly, developmental delay, and mild dysmorphic features. Microarray analysis identified a microduplication in chromosome 17q21.31, which encompasses the CRHR1, MAPT, and KANSL1 genes, as well as a microdeletion in chromosome 7q31.33 that is localised within the GRM8 gene. To our knowledge this is one of only a few cases of 17q21.31 microduplication. The clinical phenotype of patients with this microduplication is milder than of those carrying the reciprocal microdeletions, and suggests that the lower incidence of the former compared to the latter may be due to underascertainment.
Collapse
|
43
|
Atherton J, Houdusse A, Moores C. MAPping out distribution routes for kinesin couriers. Biol Cell 2013; 105:465-87. [PMID: 23796124 DOI: 10.1111/boc.201300012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022]
Abstract
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long-distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio-temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub-domain-specific microtubule (MT) tracks, sign-posted by different tubulin isoforms, tubulin post-translational modifications, tubulin GTPase activity and MT-associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that - especially for axonal cargo - alterations to the MT track can influence transport, although in vivo, it is likely that multiple track-based effects act synergistically to ensure accurate cargo distribution.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | | | | |
Collapse
|
44
|
Abstract
Tau aggregates are present in several neurodegenerative diseases and correlate with the severity of memory deficit in AD (Alzheimer's disease). However, the triggers of tau aggregation and tau-induced neurodegeneration are still elusive. The impairment of protein-degradation systems might play a role in such processes, as these pathways normally keep tau levels at a low level which may prevent aggregation. Some proteases can process tau and thus contribute to tau aggregation by generating amyloidogenic fragments, but the complete clearance of tau mainly relies on the UPS (ubiquitin-proteasome system) and the ALS (autophagy-lysosome system). In the present paper, we focus on the regulation of the degradation of tau by the UPS and ALS and its relation to tau aggregation. We anticipate that stimulation of these two protein-degradation systems might be a potential therapeutic strategy for AD and other tauopathies.
Collapse
|
45
|
Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a “P301L” tau knockin mouse. Neurobiol Aging 2012; 33:621.e1-621.e15. [DOI: 10.1016/j.neurobiolaging.2011.02.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/03/2011] [Accepted: 02/20/2011] [Indexed: 12/19/2022]
|
46
|
Julien C, Bretteville A, Planel E. Biochemical isolation of insoluble tau in transgenic mouse models of tauopathies. Methods Mol Biol 2012; 849:473-91. [PMID: 22528110 DOI: 10.1007/978-1-61779-551-0_32] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau is a highly soluble microtubule-associated protein (MAP) that is abundant in the central nervous system and expressed mainly in neuronal axons. Intracellular aggregates of insoluble tau protein are present in a group of neurodegenerative diseases called tauopathies, which include Alzheimer's disease. Numerous transgenic mouse models of tauopathies have been produced in the last decade, and analysis of insoluble tau in these animals has provided a powerful tool to understand the development of tau pathology. In this short chapter, we aim at reviewing the two main isolation methods, sarkosyl and formic acid extraction (and their variations), used for the biochemical isolation of insoluble tau in transgenic mouse models of tauopathy, and discuss their advantages and drawbacks.
Collapse
Affiliation(s)
- Carl Julien
- Axe Neurosciences, Centre Hospitalier de l'Université Laval, Québec, QC, Canada
| | | | | |
Collapse
|
47
|
Marcus JN, Schachter J. Targeting Post-translational Modifications on Tau as a Therapeutic Strategy for Alzheimer's Disease. J Neurogenet 2011; 25:127-33. [DOI: 10.3109/01677063.2011.626471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Abstract
Considering the many differences between mice and humans, it is perhaps surprising how well mice model late-onset human neurodegenerative disease. Models of Alzheimer's disease, frontotemporal dementia, Parkinson's disease and Huntington's disease show some striking similarities to the corresponding human pathologies in terms of axonal transport disruption, protein aggregation, synapse loss and some behavioural phenotypes. However, there are also major differences. To extrapolate from mouse models to human disease, we need to understand how these differences relate to intrinsic limitations of the mouse system and to the effects of transgene overexpression. In the present paper, we use examples from an amyloid-overexpression model and a mutant-tau-knockin model to illustrate what we learn from each type of approach and what the limitations are. Finally, we discuss the further contributions that knockin and similar approaches can make to understanding pathogenesis and how best to model disorders of aging in a short-lived mammal.
Collapse
|
49
|
Reversibility of Tau-related cognitive defects in a regulatable FTD mouse model. J Mol Neurosci 2011; 45:432-7. [PMID: 21822709 DOI: 10.1007/s12031-011-9604-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
The accumulation of proteins such as Tau is a hallmark of several neurodegenerative diseases, e.g., frontotemporal dementia (FTD). So far, many mouse models of tauopathies have been generated by the use of mutated or truncated human Tau isoforms in order to enhance the amyloidogenic character of Tau and to mimic pathological processes similar to those in FTD patients. Our inducible mice express the repeat domain of human Tau (Tau(RD)) carrying the FTDP-17 mutation ΔK280 in a "pro-aggregant" and an "anti-aggregant" version. Based on the enhanced tendency of Tau to aggregate, only the "pro-aggregant" Tau(RD) mice develop Tau pathology (hyperphosphorylation, coassembly of human and mouse Tau, synaptic loss, and neuronal degeneration). We have now carried out behavioral and electrophysiological analyses showing that only the pro-aggregant Tau(RD) mice have impaired learning/memory and a distinct loss of LTP. Remarkably, after suppressing the pro-aggregant human Tau(RD), memory and LTP recover, while neuronal loss persists. Aggregates persist as well but change their composition from mixed human/mouse to mouse Tau only. The rescue of cognition and synaptic plasticity is explained by a partial recovery of spine synapses in the hippocampus. These results indicate a tight relationship between the amyloidogenic character of Tau and brain malfunction, and suggest that the cognitive impairment is caused by toxic human Tau(RD) species rather than by mouse Tau aggregates.
Collapse
|
50
|
Ando K, Leroy K, Héraud C, Yilmaz Z, Authelet M, Suain V, De Decker R, Brion JP. Accelerated human mutant tau aggregation by knocking out murine tau in a transgenic mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:803-16. [PMID: 21281813 DOI: 10.1016/j.ajpath.2010.10.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/22/2010] [Accepted: 10/28/2010] [Indexed: 11/28/2022]
Abstract
Many models of human tauopathies have been generated in mice by expression of a human mutant tau with maintained expression of mouse endogenous tau. Because murine tau might interfere with the toxic effects of human mutant tau, we generated a model in which a pathogenic human tau protein is expressed in the absence of wild-type tau protein, with the aim of facilitating the study of the pathogenic role of the mutant tau and to reproduce more faithfully a human tauopathy. The Tg30 line is a tau transgenic mouse model overexpressing human 1N4R double-mutant tau (P301S and G272V) that develops Alzheimer's disease-like neurofibrillary tangles in an age-dependent manner. By crossing Tg30 mice with mice invalidated for their endogenous tau gene, we obtained Tg30xtau(-/-) mice that express only exogenous human double-mutant 1N4R tau. Although Tg30xtau(-/-) mice express less tau protein compared with Tg30, they exhibit signs of decreased survival, increased proportion of sarkosyl-insoluble tau in the brain and in the spinal cord, increased number of Gallyas-positive neurofibrillary tangles in the hippocampus, increased number of inclusions in the spinal cord, and a more severe motor phenotype. Deletion of murine tau accelerated tau aggregation during aging of this mutant tau transgenic model, suggesting that murine tau could interfere with the development of tau pathology in transgenic models of human tauopathies.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuroanatomy and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|