1
|
Endo-Umeda K, Makishima M. Exploring the Roles of Liver X Receptors in Lipid Metabolism and Immunity in Atherosclerosis. Biomolecules 2025; 15:579. [PMID: 40305368 PMCID: PMC12024750 DOI: 10.3390/biom15040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Hypercholesterolemia causes atherosclerosis by inducing immune cell migration and chronic inflammation in arterial walls. Recent single-cell analyses reveal the presence of lipid-enriched foamy macrophages, as well as other macrophage subtypes, neutrophils, T cells, and B cells, in atherosclerotic plaques in both animal models and humans. These cells interact with each other and other cells, including non-immune cells such as endothelial cells and smooth muscle cells. They thereby regulate metabolic, inflammatory, phagocytic, and cell death processes, thus affecting the progression and stability of atherosclerotic plaques. The nuclear receptors liver X receptor (LXR)α and LXRβ are transcription factors that are activated by oxysterols and regulate lipid metabolism and immune responses. LXRs regulate cholesterol homeostasis by controlling cholesterol's transport, absorption, synthesis, and breakdown in the liver and intestine. LXRs are also highly expressed in tissue-resident and monocyte-derived macrophages and other immune cells, including both myeloid cells and lymphocytes, and they regulate both innate and adaptive immune responses. Interestingly, LXRs have immunosuppressive and immunoregulatory functions that are cell-type-dependent. In animal models of atherosclerosis, LXRs have been shown to be involved in both progression and regression phases. The pharmacological activation of LXR enhances cholesterol efflux from macrophages and promotes atherosclerosis progression. Deleting LXR in immune cells, especially myeloid cells, accelerates atherosclerosis by increasing monocyte migration, macrophage proliferation and activation, and neutrophil extracellular traps (NETs); furthermore, the deletion of hematopoietic LXRs impairs the regression of atherosclerotic plaques. Therefore, LXRs in immune cells may be a potent therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan;
| | | |
Collapse
|
2
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Jyothi SR, Kundlas M, Joshi KK, Rakhmatullaev A, Taher WM, Alwan M, Jawad MJ, Ali Al-Nuaimi AM. Inflammasomes and Cardiovascular Disease: Linking Inflammation to Cardiovascular Pathophysiology. Scand J Immunol 2025; 101:e70020. [PMID: 40170223 DOI: 10.1111/sji.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/15/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of global mortality, driven by risk factors such as dyslipidemia, hypertension and diabetes. Recent research has highlighted the critical role of inflammasomes, particularly the NLRP3 inflammasome, in the pathogenesis of various CVDs, including hypertension, atherosclerosis, myocardial infarction and heart failure. Inflammasomes are intracellular protein complexes that activate inflammatory responses through the production of pro-inflammatory cytokines such as IL-1β and IL-18, contributing to endothelial dysfunction, plaque formation and myocardial injury. This review provides a comprehensive overview of the structure, activation mechanisms and pathways of inflammasomes, with a focus on their involvement in cardiovascular pathology. Key activation pathways include ion fluxes (K+ efflux and Ca2+ signalling), endoplasmic reticulum (ER) stress, mitochondrial dysfunction and lysosomal destabilisation. The review also explores the therapeutic potential of targeting inflammasomes to mitigate inflammation and improve outcomes in CVDs. Emerging strategies include small-molecule inhibitors, biologics and RNA-based therapeutics, with a particular emphasis on NLRP3 inhibition. Additionally, the integration of artificial intelligence (AI) in cardiovascular research offers promising avenues for identifying novel biomarkers, predicting disease risk and developing personalised treatment strategies. Future research directions should focus on understanding the interactions between inflammasomes and other immune components, as well as genetic regulators, to uncover new therapeutic targets. By elucidating the complex role of inflammasomes in CVDs, this review underscores the potential for innovative therapies to address inflammation-driven cardiovascular pathology, ultimately improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Akmal Rakhmatullaev
- Department of Faculty Pediatric Surgery, Tashkent Pediatric Medical Institute, Tashkent, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
3
|
Lian Y, Lai X, Wu C, Wang L, Shang J, Zhang H, Jia S, Xing W, Liu H. The roles of neutrophils in cardiovascular diseases. Front Cardiovasc Med 2025; 12:1526170. [PMID: 40176832 PMCID: PMC11961988 DOI: 10.3389/fcvm.2025.1526170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The immune response plays a vital role in the development of cardiovascular diseases (CVDs). As a crucial component of the innate immune system, neutrophils are involved in the initial inflammatory response following cardiovascular injury, thereby inducing subsequent damage and promoting recovery. Neutrophils exert their functional effects in tissues through various mechanisms, including activation and the formation of neutrophil extracellular traps (NETs). Once activated, neutrophils are recruited to the site of injury, where they release inflammatory mediators and cytokines. This study discusses the main mechanisms associated with neutrophil activity and proposes potential new therapeutic targets. In this review, we systematically summarize the diverse phenotypes of neutrophils in disease regulatory mechanisms, different modes of cell death, and focus on the relevance of neutrophils to various CVDs, including atherosclerosis, acute coronary syndrome, myocardial ischemia/reperfusion injury, hypertension, atrial fibrillation, heart failure, and viral myocarditis. Finally, we also emphasize the preclinical/clinical translational significance of neutrophil-targeted strategies.
Collapse
Affiliation(s)
- Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Huairou Hospital, Beijing, China
| | - Li Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JuJu Shang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Heyi Zhang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sihan Jia
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongxu Liu
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Shi Z, Gong S, Li Y, Yan K, Bao Y, Ning K. Neutrophil Extracellular Traps in Atherosclerosis: Research Progress. Int J Mol Sci 2025; 26:2336. [PMID: 40076955 PMCID: PMC11900999 DOI: 10.3390/ijms26052336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/15/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Atherosclerosis (AS) is a disease characterised by the accumulation of atherosclerotic plaques on the inner walls of blood vessels, resulting in their narrowing. In its early stages, atherosclerosis remains asymptomatic and undetectable by conventional pathological methods. However, as the disease progresses, it can lead to a series of cardiovascular diseases, which are a leading cause of mortality among middle-aged and elderly populations worldwide. Neutrophil extracellular traps (NETs) are composed of chromatin and granular proteins released by neutrophils. Upon activation by external stimuli, neutrophils undergo a series of reactions, resulting in the release of NETs and subsequent cell death, a process termed NETosis. Research has demonstrated that NETosis is a means by which neutrophils contribute to immune responses. However, studies on neutrophil extracellular traps have identified NETs as the primary cause of various inflammation-induced diseases, including cystic fibrosis, systemic lupus erythematosus, and rheumatoid arthritis. Consequently, the present review will concentrate on the impact of neutrophil extracellular traps on atherosclerosis formation, analysing it from a molecular biology perspective. This will involve a systematic dissection of their proteomic components and signal pathways.
Collapse
Affiliation(s)
- Zhonghong Shi
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Sihe Gong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yanni Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Kaijie Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Preston Research Building, Room 359, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Barbhuyan T, Patel RB, Budnik I, Chauhan AK. Genetic ablation of myeloid integrin α9 attenuates early atherosclerosis. J Leukoc Biol 2024; 116:1208-1214. [PMID: 39036986 PMCID: PMC11531806 DOI: 10.1093/jleuko/qiae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
Integrin α9β1 is known to stabilize leukocyte adhesion to the activated endothelium. We determined the role of myeloid cell α9β1 in early atherosclerosis in two models: α9Mye-KOApoe-/- or the Ldlr-/- mice transplanted with bone marrow (BM) from α9Mye-KO mice fed a high-fat "Western" diet for 4 wk. α9Mye-KOApoe-/- mice exhibited reduced early lesions in the aortae and aortic sinuses (P < 0.05 vs α9WT Apoe-/- mice). Similar results were obtained in α9Mye-KO BM→Ldlr-/- mice (P < 0.05 vs α9WT BM→Ldlr-/- mice). Reduced early atherosclerosis in α9Mye-KOApoe-/- mice was associated with decreased neutrophil and neutrophil extracellular traps (NETs) content in the aortic lesions (P < 0.05 vs α9WTApoe-/-). Vascular cell adhesion molecule-1-stimulated neutrophils from α9Mye-KO mice exhibited reduced adhesion, transmigration, and NETs formation (NETosis) (P < 0.05 vs α9WT neutrophils). Reduced NETosis was associated with decreased extracellular signal-regulated kinase phosphorylation, peptidyl arginine deiminase 4, and citrullinated histone H3 expression. In summary, genetic ablation of myeloid cell-specific α9 reduces early atherosclerosis, most likely by reducing neutrophil adhesion, transmigration, and NETosis.
Collapse
Affiliation(s)
- Tarun Barbhuyan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, 3160 Medical Labs, Iowa City, IA 52242, United States
| | - Rakesh B Patel
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, 3160 Medical Labs, Iowa City, IA 52242, United States
| | - Ivan Budnik
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, 3160 Medical Labs, Iowa City, IA 52242, United States
| | - Anil K Chauhan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Iowa, 3160 Medical Labs, Iowa City, IA 52242, United States
| |
Collapse
|
6
|
Wang Y, Shou X, Wu Y, Li D. Immuno-inflammatory pathogenesis in ischemic heart disease: perception and knowledge for neutrophil recruitment. Front Immunol 2024; 15:1411301. [PMID: 39050842 PMCID: PMC11266024 DOI: 10.3389/fimmu.2024.1411301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Ischemic heart disease (IHD) can trigger responses from the innate immune system, provoke aseptic inflammatory processes, and result in the recruitment and accumulation of neutrophils. Excessive recruitment of neutrophils is a potential driver of persistent cardiac inflammation. Once recruited, neutrophils are capable of secreting a plethora of inflammatory and chemotactic agents that intensify the inflammatory cascade. Additionally, neutrophils may obstruct microvasculature within the inflamed region, further augmenting myocardial injury in the context of IHD. Immune-related molecules mediate the recruitment process of neutrophils, such as immune receptors and ligands, immune active molecules, and immunocytes. Non-immune-related molecular pathways represented by pro-resolving lipid mediators are also involved in the regulation of NR. Finally, we discuss novel regulating strategies, including targeted intervention, agents, and phytochemical strategies. This review describes in as much detail as possible the upstream molecular mechanism and external intervention strategies for regulating NR, which represents a promising therapeutic avenue for IHD.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Traditional Chinese Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xintian Shou
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Geng S, Zhang Y, Lu R, Irimia D, Li L. Resolving neutrophils through genetic deletion of TRAM attenuate atherosclerosis pathogenesis. iScience 2024; 27:110097. [PMID: 38883832 PMCID: PMC11179630 DOI: 10.1016/j.isci.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Systemic neutrophil dysregulation contributes to atherosclerosis pathogenesis, and restoring neutrophil homeostasis may be beneficial for treating atherosclerosis. Herein, we report that a homeostatic resolving subset of neutrophils exists in mice and humans characterized by the low expression of TRAM, correlated with reduced expression of inflammatory mediators (leukotriene B4 [LTB4] and elastase) and elevated expression of anti-inflammatory resolving mediators (resolvin D1 [RvD1] and CD200R). TRAM-deficient neutrophils can potently improve vascular integrity and suppress atherosclerosis pathogenesis when adoptively transfused into recipient atherosclerotic animals. Mechanistically, we show that TRAM deficiency correlates with reduced expression of 5-lipoxygenase (LOX5) activating protein (LOX5AP), dislodges nuclear localization of LOX5, and switches the lipid mediator secretion from pro-inflammatory LTB4 to pro-resolving RvD1. TRAM also serves as a stress sensor of oxidized low-density lipoprotein (oxLDL) and/or free cholesterol and triggers inflammatory signaling processes that facilitate elastase release. Together, our study defines a unique neutrophil population characterized by reduced TRAM, capable of homeostatic resolution and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Ran Lu
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Daniel Irimia
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02114, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| |
Collapse
|
8
|
Thazhathveettil J, Kumawat AK, Demirel I, Sirsjö A, Paramel GV. Vascular smooth muscle cells in response to cholesterol crystals modulates inflammatory cytokines release and promotes neutrophil extracellular trap formation. Mol Med 2024; 30:42. [PMID: 38519881 PMCID: PMC10960408 DOI: 10.1186/s10020-024-00809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The formation and accumulation of cholesterol crystals (CC) at the lesion site is a hallmark of atherosclerosis. Although studies have shown the importance of vascular smooth muscle cells (VSMCs) in the disease atherosclerosis, little is known about the molecular mechanism behind the uptake of CC in VSMCs and their role in modulating immune response. METHODS Human aortic smooth muscle cells were cultured and treated with CC. CC uptake and CC mediated signaling pathway and protein induction were studied using flow cytometry, confocal microscopy, western blot and Olink proteomics. Conditioned medium from CC treated VSMCs was used to study neutrophil adhesion, ROS production and phagocytosis. Neutrophil extracellular traps (NETs) formations were visualized using confocal microscopy. RESULTS VSMCs and macrophages were found around CC clefts in human carotid plaques. CC uptake in VSMCs are largely through micropinocytosis and phagocytosis via PI3K-AkT dependent pathway. The uptake of CC in VSMCs induce the release inflammatory proteins, including IL-33, an alarming cytokine. Conditioned medium from CC treated VSMCs can induce neutrophil adhesion, neutrophil reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) formation. IL-33 neutralization in conditioned medium from CC treated VSMCs inhibited neutrophil ROS production and NETs formation. CONCLUSION We demonstrate that VSMCs due to its vicinity to CC clefts in human atherosclerotic lesion can modulate local immune response and we further reveal that the interaction between CC and VSMCs impart an inflammatory milieu in the atherosclerotic microenvironment by promoting IL-33 dependent neutrophil influx and NETs formation.
Collapse
Affiliation(s)
- Jishamol Thazhathveettil
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Ashok Kumar Kumawat
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Allan Sirsjö
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Geena Varghese Paramel
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden.
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden.
| |
Collapse
|
9
|
Geng S, Wu Y, Li L. Immune Homeostasis Maintenance Through Advanced Immune Therapeutics to Target Atherosclerosis. Methods Mol Biol 2024; 2782:25-37. [PMID: 38622390 DOI: 10.1007/978-1-0716-3754-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Atherosclerosis remains the leading cause of coronary heart disease (CHD) with enormous health and societal tolls. Traditional drug development approaches have been focused on small molecule-based compounds that aim to lower plasma lipids and reduce systemic inflammation, two primary causes of atherosclerosis. However, despite the widely available lipid-lowering and anti-inflammatory small compounds and biologic agents, CHD prevalence still remains high. Based on recent advances revealing disrupted immune homeostasis during atherosclerosis pathogenesis, novel strategies aimed at rejuvenating immune homeostasis with engineered immune leukocytes are being developed. This chapter aims to assess basic and translational efforts on these emerging strategies for the effective development of atherosclerosis treatment, as well as key challenges in this important translational field.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
10
|
Rentz T, Dorighello GG, dos Santos RR, Barreto LM, Freitas IN, Lazaro CM, Razolli DS, Cazita PM, Oliveira HCF. CETP Expression in Bone-Marrow-Derived Cells Reduces the Inflammatory Features of Atherosclerosis in Hypercholesterolemic Mice. Biomolecules 2023; 13:1556. [PMID: 37892238 PMCID: PMC10605246 DOI: 10.3390/biom13101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
CETP activity reduces plasma HDL-cholesterol concentrations, a correlate of an increased risk of atherosclerotic events. However, our recent findings suggest that CETP expression in macrophages promotes an intracellular antioxidant state, reduces free cholesterol accumulation and phagocytosis, and attenuates pro-inflammatory gene expression. To determine whether CETP expression in macrophages affects atherosclerosis development, we transplanted bone marrow from transgenic mice expressing simian CETP or non-expressing littermates into hypercholesterolemic LDL-receptor-deficient mice. The CETP expression did not change the lipid-stained lesion areas but decreased the macrophage content (CD68), neutrophil accumulation (LY6G), and TNF-α aorta content of young male transplanted mice and decreased LY6G, TNF-α, iNOS, and nitrotyrosine (3-NT) in aged female transplanted mice. These findings suggest that CETP expression in bone-marrow-derived cells reduces the inflammatory features of atherosclerosis. These novel mechanistic observations may help to explain the failure of CETP inhibitors in reducing atherosclerotic events in humans.
Collapse
Affiliation(s)
- Thiago Rentz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil; (T.R.); (G.G.D.); (L.M.B.); (I.N.F.); (C.M.L.)
| | - Gabriel G. Dorighello
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil; (T.R.); (G.G.D.); (L.M.B.); (I.N.F.); (C.M.L.)
| | - Renata R. dos Santos
- Division of Radiotherapy, Medical School Hospital, Faculty of Medical Sciences, State University of Campinas, Campinas 13083-887, SP, Brazil;
| | - Lohanna M. Barreto
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil; (T.R.); (G.G.D.); (L.M.B.); (I.N.F.); (C.M.L.)
| | - Israelle N. Freitas
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil; (T.R.); (G.G.D.); (L.M.B.); (I.N.F.); (C.M.L.)
| | - Carolina M. Lazaro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil; (T.R.); (G.G.D.); (L.M.B.); (I.N.F.); (C.M.L.)
| | - Daniela S. Razolli
- Obesity and Comorbidities Research Center, State University of Campinas, Campinas 13083-864, SP, Brazil;
| | - Patricia M. Cazita
- Laboratório de Lípides (LIM10), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil;
| | - Helena C. F. Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas 13083-862, SP, Brazil; (T.R.); (G.G.D.); (L.M.B.); (I.N.F.); (C.M.L.)
- Obesity and Comorbidities Research Center, State University of Campinas, Campinas 13083-864, SP, Brazil;
| |
Collapse
|
11
|
Zhang X, Kang Z, Yin D, Gao J. Role of neutrophils in different stages of atherosclerosis. Innate Immun 2023; 29:97-109. [PMID: 37491844 PMCID: PMC10468622 DOI: 10.1177/17534259231189195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils constitute the first line of defense in human immunity and can be attracted to inflamed and infected sites by various chemokines. As essential players in immune processes, neutrophils theoretically play integral roles in the course of chronic inflammation-induced atherosclerosis. However, because neutrophils are rarely found in atherosclerotic lesions, their involvement in the pathophysiological progression of atherosclerosis has been largely underestimated or ignored. Recent research has revealed convincing evidence showing the presence of neutrophils in atherosclerotic lesions and has revealed neutrophil contributions to different atherosclerosis stages in mice and humans. This review describes the underlying mechanisms of neutrophils in different stages of atherosclerosis and highlights potential neutrophil-targeted therapeutic strategies relevant to atherosclerosis. An in-depth understanding of neutrophils' roles in atherosclerosis pathology will promote exploration of new methods for the prevention and treatment of atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| |
Collapse
|
12
|
Cimmino G, Muscoli S, De Rosa S, Cesaro A, Perrone MA, Selvaggio S, Selvaggio G, Aimo A, Pedrinelli R, Mercuro G, Romeo F, Perrone Filardi P, Indolfi C, Coronelli M. Evolving concepts in the pathophysiology of atherosclerosis: from endothelial dysfunction to thrombus formation through multiple shades of inflammation. J Cardiovasc Med (Hagerstown) 2023; 24:e156-e167. [PMID: 37186566 DOI: 10.2459/jcm.0000000000001450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Atherosclerosis is the anatomo-pathological substrate of most cardio, cerebro and vascular diseases such as acute and chronic coronary syndromes, stroke and peripheral artery diseases. The pathophysiology of atherosclerotic plaque and its complications are under continuous investigation. In the last 2 decades our understanding on the formation, progression and complication of the atherosclerotic lesion has greatly improved and the role of immunity and inflammation is now well documented and accepted. The conventional risk factors modulate endothelial function determining the switch to a proatherosclerotic phenotype. From this point, lipid accumulation with an imbalance from cholesterol influx and efflux, foam cells formation, T-cell activation, cytokines release and matrix-degrading enzymes production occur. Lesions with high inflammatory rate become vulnerable and prone to rupture. Once complicated, the intraplaque thrombogenic material, such as the tissue factor, is exposed to the flowing blood, thus inducing coagulation cascade activation, platelets aggregation and finally intravascular thrombus formation that leads to clinical manifestations of this disease. Nonconventional risk factors, such as gut microbiome, are emerging novel markers of atherosclerosis. Several data indicate that gut microbiota may play a causative role in formation, progression and complication of atherosclerotic lesions. The gut dysbiosis-related inflammation and gut microbiota-derived metabolites have been proposed as the main working hypothesis in contributing to disease formation and progression. The current evidence suggest that the conventional and nonconventional risk factors may modulate the degree of inflammation of the atherosclerotic lesion, thus influencing its final fate. Based on this hypothesis, targeting inflammation seems to be a promising approach to further improve our management of atherosclerotic-related diseases.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
| | | | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Marco A Perrone
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, Rome
| | | | | | - Alberto Aimo
- Fondazione Toscana Gabriele Monasterio
- Institute of Life Sciences, Scuola Superiore Sant'Anna
| | - Roberto Pedrinelli
- Critical Care Medicine-Cardiology Division, Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa
| | - Giuseppe Mercuro
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi, Cagliari
| | | | - Pasquale Perrone Filardi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli 'Federico II', Napoli
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro
| | - Maurizio Coronelli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Van Avondt K, Strecker J, Tulotta C, Minnerup J, Schulz C, Soehnlein O. Neutrophils in aging and aging‐related pathologies. Immunol Rev 2022; 314:357-375. [PMID: 36315403 DOI: 10.1111/imr.13153] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the past millennia, life expectancy has drastically increased. While a mere 25 years during Bronze and Iron ages, life expectancy in many European countries and in Japan is currently above 80 years. Such an increase in life expectancy is a result of improved diet, life style, and medical care. Yet, increased life span and aging also represent the most important non-modifiable risk factors for several pathologies including cardiovascular disease, neurodegenerative diseases, and cancer. In recent years, neutrophils have been implicated in all of these pathologies. Hence, this review provides an overview of how aging impacts neutrophil production and function and conversely how neutrophils drive aging-associated pathologies. Finally, we provide a perspective on how processes of neutrophil-driven pathologies in the context of aging can be targeted therapeutically.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
| | - Jan‐Kolja Strecker
- Department of Neurology with Institute of Translational Neurology University Hospital Münster Münster Germany
| | - Claudia Tulotta
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
| | - Jens Minnerup
- Department of Neurology with Institute of Translational Neurology University Hospital Münster Münster Germany
| | - Christian Schulz
- Department of Medicine I University Hospital, Ludwig Maximilian University Munich Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance Munich Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE) University of Münster Münster Germany
- Department of Physiology and Pharmacology (FyFa) Karolinska Institute Stockholm Sweden
| |
Collapse
|
14
|
Neutrophils to high-density lipoprotein cholesterol ratio as a new prognostic marker in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention: a retrospective study. BMC Cardiovasc Disord 2022; 22:434. [PMID: 36199038 PMCID: PMC9533505 DOI: 10.1186/s12872-022-02870-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neutrophils and high-density lipoprotein cholesterol (HDL-c) play critical roles in the pathogenesis of acute myocardial infarction. We aimed to investigate the value of neutrophils count to high-density lipoprotein cholesterol ratio (NHR) in predicting occurrence of in-hospital adverse events in ST-segment elevation myocardial infarction (STEMI) patients treated with primary percutaneous coronary intervention (PPCI). METHODS We retrospectively analyzed 532 patients who had been diagnosed with acute STEMI and treated with PPCI. Demographic and clinical data, admission laboratory parameters and NHR values were recorded. Major adverse cardiac events (MACE) were defined as stent thrombosis, cardiac rupture, cardiac arrest, ventricular aneurysm, malignant arrhythmia and cardiac death. Based on the receiver operating characteristic (ROC) analysis, all patients were divided into 2 groups based on the cut-off NHR value (NHR ≤ 11.28, NHR > 11.28). Cox regression analyses and the Kaplan-Meier survival curve were used to assess the prognostic ability of NHR in in-hospital MACE. RESULTS MACE was observed in 72 patients (13.5%) during in-hospital follow-up. NHR was significantly higher in MACE group compared to MACE-free group (10.93 [6.26-13.97] vs. 8.13 [5.89-11.16]; P = 0.001). The incidence of in-hospital MACE was significantly higher in the NHR > 11.28 group than in NHR ≤ 11.28 group (24.8% vs. 9.6%; P < 0.001). In multivariable Cox regression analyses, ALT, Killip III-IV and increased NHR (hazard ratio, 2.211; 95% confidence interval,1.092-4.479; P = 0.027) were identified as independent predictive factors of occurrence of in-hospital MACE. Higher NHR group had worse cumulative survival compared with the lower group. CONCLUSIONS NHR value on admission, which is an easily calculated and universally available maker, may be useful in in-hospital risk classification of STEMI patients undergoing PPCI.
Collapse
|
15
|
Looking beyond the Skin: Pathophysiology of Cardiovascular Comorbidity in Psoriasis and the Protective Role of Biologics. Pharmaceuticals (Basel) 2022; 15:ph15091101. [PMID: 36145322 PMCID: PMC9503011 DOI: 10.3390/ph15091101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a chronic systemic inflammatory disease associated with a higher incidence of cardiovascular disease, especially in patients with moderate to severe psoriasis. It has been estimated that severe psoriasis confers a 25% increase in relative risk of cardiovascular disease, regardless of traditional risk factors. Although the underlying pathogenic mechanisms relating psoriasis to increased cardiovascular risk are not clear, atherosclerosis is emerging as a possible link between skin and vascular affection. The hypothesis that the inflammatory cascade activated in psoriasis contributes to the atherosclerotic process provides the underlying basis to suggest that an anti-inflammatory therapy that improved atherosclerosis would also reduce the risk of MACEs. In this sense, the introduction of biological drugs which specifically target cytokines implicated in the inflammatory cascade have increased the expectations of control over the cardiovascular comorbidity present in psoriasis patients, however, their role in vascular damage processes remains controversial. The aim of this paper is to review the mechanistic link between psoriasis and cardiovascular disease development, as well as analyzing which of the biological treatments could also reduce the cardiovascular risk in these patients, fueling a growing debate on the modification of the general algorithm of treatment.
Collapse
|
16
|
Liu F, Mao Y, Yan J, Sun Y, Xie Z, Li F, Yan F, Zhang H, Zhang P. Bionic Microbubble Neutrophil Composite for Inflammation-Responsive Atherosclerotic Vulnerable Plaque Pluripotent Intervention. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9830627. [PMID: 35711673 PMCID: PMC9188677 DOI: 10.34133/2022/9830627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Rupture or erosion of inflammatory atherosclerotic vulnerable plaque is essential to acute coronary events, while the target intervene of vulnerable plaque is very challenging, due to the relatively small volume, high hemodynamic shear stress, and multifactorial nature of the lesion foci. Herein, we utilize the biological functionality of neutrophil and the versatility of microbubble in the acoustic field, to form Neu-balloon through CD11b antibody binding. The Neu-balloon inherits the advantage of neutrophils on firming the endothelium adhesion even at shear stress up to 16 dyne/cm2 and also maintains the acoustic enhancement property from the microbubble, to accumulate at atherosclerotic lesions under acoustic in an atherosclerotic Apo E-/- mice model. Interestingly, Neo-balloon also has high and broad drug loading capacity, which enables the delivery of indocyanine green and miR-126a-5p into vulnerable plagues in vivo. Overall, the bionic Neu-balloon holds great potential to boost on-demand drug transportation into plaques in vivo.
Collapse
Affiliation(s)
- Fangfang Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yang Mao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiaqi Yan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, And Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland
| | - Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Zhihua Xie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Fei Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Fei Yan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Hongbo Zhang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, And Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku 20520, Finland
| | - Pengfei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
17
|
Abstract
Despite effective therapeutic and preventive strategies, atherosclerosis and its complications still represent a substantial health burden. Leukocytes and inflammatory mechanisms are increasingly recognized as drivers of atherosclerosis. Neutrophil granulocytes within the circulation were recently shown to undergo neutrophil extracellular trap (NET) formation, linking innate immunity with acute complications of atherosclerosis. In this chapter, we summarize mechanisms of NET formation, evidence for their involvement in atherosclerosis and thrombosis, and potential therapeutic regimens specifically targeting NET components.
Collapse
|
18
|
Burger F, Baptista D, Roth A, da Silva RF, Montecucco F, Mach F, Brandt KJ, Miteva K. NLRP3 Inflammasome Activation Controls Vascular Smooth Muscle Cells Phenotypic Switch in Atherosclerosis. Int J Mol Sci 2021; 23:340. [PMID: 35008765 PMCID: PMC8745068 DOI: 10.3390/ijms23010340] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/07/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Monocytes and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome orchestrate lipid-driven amplification of vascular inflammation promoting the disruption of the fibrous cap. The components of the NLRP3 inflammasome are expressed in macrophages and foam cells within human carotid atherosclerotic plaques and VSMCs in hypertension. Whether monocytes and NLRP3 inflammasome activation are direct triggers of VSMC phenotypic switch and plaque disruption need to be investigated. (2) Methods: The direct effect of oxLDL-activated monocytes in VSMCs co-cultured system was demonstrated via flow cytometry, qPCR, ELISA, caspase 1, and pyroptosis assay. Aortic roots of VSMCs lineage tracing mice fed normal or high cholesterol diet and human atherosclerotic plaques were used for immunofluorescence quantification of NLRP3 inflammasome activation/VSMCs phenotypic switch. (3) Results: OxLDL-activated monocytes reduced α-SMA, SM22α, Oct-4, and upregulation of KLF-4 and macrophage markers MAC2, F4/80 and CD68 expression as well as caspase 1 activation, IL-1β secretion, and pyroptosis in VSMCs. Increased caspase 1 and IL-1β in phenotypically modified VSMCs was detected in the aortic roots of VSMCs lineage tracing mice fed high cholesterol diet and in human atherosclerotic plaques from carotid artery disease patients who experienced a stroke. (4) Conclusions: Taken together, these results provide evidence that monocyte promote VSMC phenotypic switch through VSMC NLRP3 inflammasome activation with a likely detrimental role in atherosclerotic plaque stability in human atherosclerosis.
Collapse
Affiliation(s)
- Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Rafaela Fernandes da Silva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 6627, Brazil
- Swiss Institute for Translational and Entrepreneurial Medicine, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Fabrizio Montecucco
- Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy;
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Karim J. Brandt
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| |
Collapse
|
19
|
NETosis in ischemic/reperfusion injuries: An organ-based review. Life Sci 2021; 290:120158. [PMID: 34822798 DOI: 10.1016/j.lfs.2021.120158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Neutrophil extracellular trap (NETosis), the web-like structures induced by neutrophil death, is an important inflammatory mechanism of the immune system leading to reactive oxygen species production/coagulopathy, endothelial dysfunction, atherosclerosis, and ischemia. NETosis exerts its role through different mechanisms such as triggering Toll-like receptors, inflammatory cytokines, platelet aggregation, neutrophil activation/infiltration, and vascular impairment. NETosis plays a key role in the prognosis of coronary artery disease, ischemic injury of kidney, lung, gastrointestinal tract and skeletal muscles. In this review, we explored the molecular mechanisms involved in NETosis, and ischemic/reperfusion injuries in body organs.
Collapse
|
20
|
Conforti A, Wahlers T, Paunel-Görgülü A. Neutrophil extracellular traps modulate inflammatory markers and uptake of oxidized LDL by human and murine macrophages. PLoS One 2021; 16:e0259894. [PMID: 34797846 PMCID: PMC8604363 DOI: 10.1371/journal.pone.0259894] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures, which are released upon neutrophil activation. It has previously been demonstrated that NETs are present in atherosclerotic lesions of both humans and animal models thus playing a decisive role in atherosclerosis. Besides, macrophages have a crucial role in disease progression, whereby classically activated M1 macrophages sustain inflammation and alternatively activated M2 macrophages display anti-inflammatory effects. Although NETs and macrophages were found to colocalize in atherosclerotic lesions, the impact of NETs on macrophage function is not fully understood. In the present study, we aimed to investigate the effect of NETs on human and murine macrophages in respect to the expression of pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and uptake of oxidized LDL (oxLDL) in vitro. Human THP-1 and murine bone marrow-derived macrophages were cultured under M1 (LPS + IFN-γ)- and M2a (IL-4)-polarizing culture conditions and treated with NETs. To mimic intraplaque regions, cells were additionally cultured under hypoxic conditions. NETs significantly increased the expression of IL-1β, TNF-α and IL-6 in THP-M1 macrophages under normoxia but suppressed their expression in murine M1 macrophages under hypoxic conditions. Notably, NETs increased the number of oxLDL-positive M1 and M2 human and murine macrophages under normoxia, but did not influence formation of murine foam cells under hypoxia. However, oxLDL uptake did not strongly correlate with the expression of the LDL receptor CD36. Besides, upregulated MMP-9 expression and secretion by macrophages was detected in the presence of NETs. Again, hypoxic culture conditions dampened NETs effects. These results suggest that NETs may favor foam cell formation and plaque vulnerability, but exert opposite effects in respect to the inflammatory response of human and murine M1 macrophages. Moreover, effects of NETs on macrophages’ phenotype are altered under hypoxia.
Collapse
Affiliation(s)
- Andreas Conforti
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
21
|
Sreejit G, Johnson J, Jaggers RM, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Neutrophils in cardiovascular disease: warmongers, peacemakers, or both? Cardiovasc Res 2021; 118:2596-2609. [PMID: 34534269 PMCID: PMC9890471 DOI: 10.1093/cvr/cvab302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophils, the most abundant of all leucocytes and the first cells to arrive at the sites of sterile inflammation/injury act as a double-edged sword. On one hand, they inflict a significant collateral damage to the tissues and on the other hand, they help facilitate wound healing by a number of mechanisms. Recent studies have drastically changed the perception of neutrophils from being simple one-dimensional cells with an unrestrained mode of action to a cell type that display maturity and complex behaviour. It is now recognized that neutrophils are transcriptionally active and respond to plethora of signals by deploying a wide variety of cargo to influence the activity of other cells in the vicinity. Neutrophils can regulate macrophage behaviour, display innate immune memory, and play a major role in the resolution of inflammation in a context-dependent manner. In this review, we provide an update on the factors that regulate neutrophil production and the emerging dichotomous role of neutrophils in the context of cardiovascular diseases, particularly in atherosclerosis and the ensuing complications, myocardial infarction, and heart failure. Deciphering the complex behaviour of neutrophils during inflammation and resolution may provide novel insights and in turn facilitate the development of potential therapeutic strategies to manage cardiovascular disease.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Amsterdam University Medical Centre, Location Academic Medical Centre Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
22
|
Alidoosti M, Yazdani S. Association between Neutrophil to Lymphocyte Ratio and the Extent of Coronary Artery Disease in Patients with STEMI Versus Patients With Stable Angina Undergoing PCI: An Idea for Investigation of Other Inflammatory Diseases. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2021. [DOI: 10.34172/ijep.2021.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Inflammation plays an important role in the pathogenesis of diseases such as atherosclerosis and other inflammatory disorders. The inflammatory markers impose a considerable cost on the health system. Recently, neutrophil to lymphocyte ratio (NLR) has been shown to be involved in the prediction of coronary artery disease (CAD). Objectives: This study was conducted to clarify the potential relationship between NLR and the inflammatory extent of CAD. Materials and Methods: Patients with ST-elevation myocardial infarction (STEMI) or stable angina who underwent primary or elective percutaneous coronary intervention (PCI), respectively, were included in this cross-sectional study. Patients with hematologic disorders, recent or active infectious or inflammatory diseases, history of malignancy, and history of treatment with immunosuppressive drugs were excluded from the study. Gensini and SYNTAX scores were calculated for each patient as an indicator of the extent of CAD. Demographic and clinical characteristics were obtained through a questionnaire and NLR was calculated using laboratory results. Results: A total of 446 patients (223 patients in each group) fulfilled the inclusion criteria. NLR had a significant relationship with Gensini score in both stable angina and STEMI patients. Gensini and SYNTAX scores correlated significantly with NLR; however, the correlation was weaker for SYNTAX score. After adjustment for confounding factors, including age and hypercholesterolemia, only one trend remained for the Gensini scores. Conclusion: NLR showed a stronger correlation with Gensini score than SYNTAX score. Our findings are in accordance with previous studies, which show that NLR has a relationship with the extent of CAD. Further studies are required for reaching a definite conclusion. The idea of this study may be useful for the investigation of other inflammatory diseases.
Collapse
Affiliation(s)
- Mohammad Alidoosti
- Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrooz Yazdani
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
23
|
Pérez-Olivares L, Soehnlein O. Contemporary Lifestyle and Neutrophil Extracellular Traps: An Emerging Link in Atherosclerosis Disease. Cells 2021; 10:1985. [PMID: 34440753 PMCID: PMC8394440 DOI: 10.3390/cells10081985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are networks of extracellular genetic material decorated with proteins of nuclear, granular and cytosolic origin that activated neutrophils expel under pathogenic inflammatory conditions. NETs are part of the host's innate immune defense system against invading pathogens. Interestingly, these extracellular structures can also be released in response to sterile inflammatory stimuli (e.g., shear stress, lipidic molecules, pro-thrombotic factors, aggregated platelets, or pro-inflammatory cytokines), as in atherosclerosis disease. Indeed, NETs have been identified in the intimal surface of diseased arteries under cardiovascular disease conditions, where they sustain inflammation via NET-mediated cell-adhesion mechanisms and promote cellular dysfunction and tissue damage via NET-associated cytotoxicity. This review will focus on (1) the active role of neutrophils and NETs as underestimated players of the inflammatory process during atherogenesis and lesion progression; (2) how these extracellular structures communicate with the main cell types present in the atherosclerotic lesion in the arterial wall; and (3) how these neutrophil effector functions interplay with lifestyle-derived risk factors such as an unbalanced diet, physical inactivity, smoking or lack of sleep quality, which represent major elements in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Laura Pérez-Olivares
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
| | - Oliver Soehnlein
- Center for Molecular Biology of Inflammation (ZMBE), Institute for Experimental Pathology (ExPat), Westfälische Wilhelms-Universität (WWU), 48149 Münster, Germany;
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, 17165 Stockholm, Sweden
| |
Collapse
|
24
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
25
|
Marchini T, Mitre LS, Wolf D. Inflammatory Cell Recruitment in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:635527. [PMID: 33681219 PMCID: PMC7930487 DOI: 10.3389/fcell.2021.635527] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, the main underlying pathology for myocardial infarction and stroke, is a chronic inflammatory disease of middle-sized to large arteries that is initiated and maintained by leukocytes infiltrating into the subendothelial space. It is now clear that the accumulation of pro-inflammatory leukocytes drives progression of atherosclerosis, its clinical complications, and directly modulates tissue-healing in the infarcted heart after myocardial infarction. This inflammatory response is orchestrated by multiple soluble mediators that enhance inflammation systemically and locally, as well as by a multitude of partially tissue-specific molecules that regulate homing, adhesion, and transmigration of leukocytes. While numerous experimental studies in the mouse have refined our understanding of leukocyte accumulation from a conceptual perspective, only a few anti-leukocyte therapies have been directly validated in humans. Lack of tissue-tropism of targeted factors required for leukocyte accumulation and unspecific inhibition strategies remain the major challenges to ultimately translate therapies that modulate leukocytes accumulation into clinical practice. Here, we carefully describe receptor and ligand pairs that guide leukocyte accumulation into the atherosclerotic plaque and the infarcted myocardium, and comment on potential future medical therapies.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Lucía Sol Mitre
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
Wang Y, Jia Q, Zhang Y, Wei J, Liu P. Amygdalin Attenuates Atherosclerosis and Plays an Anti-Inflammatory Role in ApoE Knock-Out Mice and Bone Marrow-Derived Macrophages. Front Pharmacol 2020; 11:590929. [PMID: 33192531 PMCID: PMC7658180 DOI: 10.3389/fphar.2020.590929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Amygdalin, the main component of Prunus persica (L.) Stokes, has been used to treat atherosclerosis in mouse model due to its anti-inflammatory role. However, the underlying mechanism remains poorly understood. This study aimed to evidence the influence of amygdalin on high-fat diet-induced atherosclerosis in ApoE knock-out (ApoE−/−) mice, and unravel its anti-inflammatory mechanism. ApoE−/− mice fed with high-fat diet for eight weeks were randomly divided into four groups and injected with amygdalin at the concentration of 0.08 or 0.04 mg/kg for 12 weeks. Additionally, bone marrow-derived macrophages were intervened with oxidized low-density lipoprotein (oxLDL) or lipopolysaccharide plus various concentrations of amygdalin for further exploration. Body weight, serum lipid profiles and inflammatory cytokines were detected by ELISA, gene expression by RT-PCR, plaque sizes by Oil Red O, lymphatic vessels of heart atrium and Tnfα production by immunofluorescence staining. MAPKs, AP-1 and NF-κB p65 pathways were also explored. Amygdalin decreased body weight, serum lipids, plaque size, lymphatic vessels and inflammatory cytokines (Il-6, Tnfα), Nos1 and Nos2, and increased Il-10 expression in ApoE−/− mice. In oxLDL-induced bone marrow-derived macrophages, amygdalin reduced inflammatory cytokines (Il-6, Tnfα), Nos1 and Nos2, and increased Il-10 production. These effects were associated with the decreased phosphorylation of Mapk1, Mapk8, Mapk14, Fos and Jun, and the translocation of NF-κB p65 from nucleus to cytoplasm. The results suggested that amygdalin could attenuate atherosclerosis and play an anti-inflammatory role via MAPKs, AP-1 and NF-κB p65 signaling pathways in ApoE−/− mice and oxLDL-treated bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wei
- Shanghai Xuhui Central Hospital, Shanghai, China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Haritha VH, George A, Shaji BV, Anie Y. NET-associated citrullinated histones promote LDL aggregation and foam cell formation in vitro. Exp Cell Res 2020; 396:112320. [PMID: 33058833 DOI: 10.1016/j.yexcr.2020.112320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
Neutrophils have been recently identified in the atherosclerotic lesion and they can release neutrophil extracellular trap (NET) under the pro-inflammatory conditions prevailing in the lesion. Citrullinated histones (Cit-histones) are the major type of citrullinated proteins associated with NET release. Since elevated levels of citrullinated proteins have been detected in inflammatory diseases including atherosclerosis, this study analysed the role played by NET and Cit-histones in different atherogenic events in vitro. First, neutrophil recruitment and NET release in the presence of low-density lipoprotein (LDL) and oxidised LDL (Ox-LDL) were analysed by Boyden's chamber method and microscopy respectively. Then, LDL oxidation and LDL aggregation in the presence of NET and Cit-histones were analysed spectroscopically. Foam cell formation in the presence of NET or Cit-histone was studied by both microscopic and spectroscopic methods. While neutrophil recruitment was facilitated by Ox-LDL and not by LDL, the extent of NET release was significantly increased in the presence of both LDL and Ox-LDL. In the presence of NET, LDL oxidation, aggregation and foam cell formation were found to be increased. Cit-histones were found to accelerate LDL aggregation and foam cell formation at higher citrulline levels. Altogether, the results suggest that both NET and NET-associated Cit-histone released at the lesion can play major roles as pro-atherogenic mediators. Inhibiting the action of NET or Cit-histone would, therefore, be beneficial in slowing down atherosclerotic progression.
Collapse
Affiliation(s)
- V H Haritha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Anjana George
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Binchu V Shaji
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Y Anie
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
28
|
Gallerand A, Stunault MI, Merlin J, Guinamard RR, Yvan-Charvet L, Ivanov S. Myeloid Cell Diversity and Impact of Metabolic Cues during Atherosclerosis. IMMUNOMETABOLISM 2020; 2:immunometab20200028. [PMID: 39649554 PMCID: PMC7617020 DOI: 10.20900/immunometab20200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Myeloid cells are key contributors to tissue, immune and metabolic homeostasis and their alteration fuels inflammation and associated disorders such as atherosclerosis. Conversely, in a classical chicken-and-egg situation, systemic and local metabolism, together with receptor-mediated activation, regulate intracellular metabolism and reprogram myeloid cell functions. Those regulatory loops are notable during the development of atherosclerotic lesions. Therefore, understanding the intricate metabolic mechanisms regulating myeloid cell biology could lead to innovative approaches to prevent and treat cardiovascular diseases. In this review, we will attempt to summarize the different metabolic factors regulating myeloid cell homeostasis and contribution to atherosclerosis, the most frequent cardiovascular disease.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Marion I. Stunault
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Johanna Merlin
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Rodolphe R. Guinamard
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Laurent Yvan-Charvet
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| | - Stoyan Ivanov
- Mediterranean center of molecular medicine (C3M)-Université Côte d’Azur–INSERM U1065, Team 13, Nice, 06200, France
| |
Collapse
|
29
|
Chen HJ, Tas SW, de Winther MPJ. Type-I interferons in atherosclerosis. J Exp Med 2020; 217:132613. [PMID: 31821440 PMCID: PMC7037237 DOI: 10.1084/jem.20190459] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Chen et al. review the effects of type-I IFNs and the potential of anti–type-I IFN therapies in atherosclerosis. The contribution of dyslipidemia and inflammation in atherosclerosis is well established. Along with effective lipid-lowering treatments, the recent success of clinical trials with anti-inflammatory therapies and the accelerated atherosclerosis in many autoimmune diseases suggest that targeting inflammation may open new avenues for the prevention and the treatment for cardiovascular diseases (CVDs). In the past decades, studies have widened the role of type-I interferons (IFNs) in disease, from antivirus defense to autoimmune responses and immuno-metabolic syndromes. While elevated type-I IFN level in serum is associated with CVD incidence in patients with interferonopathies, experimental data have attested that type-I IFNs affect plaque-residing macrophages, potentiate foam cell and extracellular trap formation, induce endothelial dysfunction, alter the phenotypes of dendritic cells and T and B lymphocytes, and lead to exacerbated atherosclerosis outcomes. In this review, we discuss the production and the effects of type-I IFNs in different atherosclerosis-associated cell types from molecular biology studies, animal models, and clinical observations, and the potential of new therapies against type-I IFN signaling for atherosclerosis.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, and Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
30
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
31
|
Huang JB, Chen YS, Ji HY, Xie WM, Jiang J, Ran LS, Zhang CT, Quan XQ. Neutrophil to high-density lipoprotein ratio has a superior prognostic value in elderly patients with acute myocardial infarction: a comparison study. Lipids Health Dis 2020; 19:59. [PMID: 32247314 PMCID: PMC7126405 DOI: 10.1186/s12944-020-01238-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/13/2020] [Indexed: 01/31/2023] Open
Abstract
Background The importance of the lipid-related biomarkers has been implicated in the pathological process and prognosis of acute myocardial infarction (AMI). Our work was conducted to discuss and compare the predictive ability of the neutrophil to high-density lipoprotein cholesterol (HDL-C) ratio (NHR) with other existing prognostic indices, for instance, the monocyte to HDL-C ratio (MHR) and the low-density lipoprotein cholesterol (LDL-C) to HDL-C ratio (LDL-C/HDL-C) in elderly patients with AMI. Methods Our population was 528 consecutive elderly AMI patients (65–85 years) who were enrolled from Tongji Hospital and grouped according to the cutoff points which were depicted by the receiver operating characteristic (ROC). The Kaplan-Meier curves were plotted with the survival data from the follow-up to investigate the difference between cutoff point-determined groups. Moreover, we assessed the impact of NHR, MHR, LDL-C/HDL-C on the long-term mortality and recurrent myocardial infarction (RMI) with Cox proportional hazard models. Results Mean duration of follow-up was 673.85 ± 14.32 days (median 679.50 days). According to ROC curve analysis, NHR ≥ 5.74, MHR ≥ 0.67, LDL-C/HDL-C ≥ 3.57 were regarded as high-risk groups. Kaplan-Meier analysis resulted that the high-NHR, high-MHR and high-LDL-C/HDL-C groups presented higher mortality and RMI rate than the corresponding low-risk groups in predicting the long-term clinical outcomes (log-rank test: all P < 0.050). In multivariate analysis, compared with MHR and LDL-C/HDL-C, only NHR was still recognized as a latent predictor for long-term mortality (harzard ratio [HR]: 1.96, 95% confidence interval [CI]: 1.02 to 3.75, P = 0.044) and long-term RMI (HR: 2.23, 95% CI: 1.04 to 4.79, P = 0.040). Furthermore, the positive correlation between NHR and Gensini score (r = 0.15, P < 0.001) indicated that NHR was relevant to the severity of coronary artery to some extent. Conclusions NHR, a novel laboratory marker, might be a predictor of the long-term clinical outcomes of elderly patients with AMI, which was superior to MHR and LDL-C/HDL-C.
Collapse
Affiliation(s)
- Jia-Bao Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Si Chen
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Yan Ji
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Ming Xie
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Jiang
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Sen Ran
- Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cun-Tai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiao-Qing Quan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Shenzhen, China.
| |
Collapse
|
32
|
Al-Sharea A, Lee MKS, Purton LE, Hawkins ED, Murphy AJ. The haematopoietic stem cell niche: a new player in cardiovascular disease? Cardiovasc Res 2020; 115:277-291. [PMID: 30590405 DOI: 10.1093/cvr/cvy308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Haematopoiesis, the process of blood production, can be altered during the initiation or progression of many diseases. Cardiovascular disease (CVD) has been shown to be heavily influenced by changes to the haematopoietic system, including the types and abundance of immune cells produced. It is now well established that innate immune cells are increased in people with CVD, and the mechanisms contributing to this can be vastly different depending on the risk factors or comorbidities present. Many of these changes begin at the level of the haematopoietic stem and progenitor cells (HSPCs) that reside in the bone marrow (BM). In general, the HSPCs and downstream myeloid progenitors are expanded via increased proliferation in the setting of atherosclerotic CVD. However, HSPCs can also be encouraged to leave the BM and colonise extramedullary sites (i.e. the spleen). Within the BM, HSPCs reside in specialized microenvironments, often referred to as a niche. To date in depth studies assessing the damage or dysregulation that occurs in the BM niche in varying CVDs are scarce. In this review, we provide a general overview of the complex components and interactions within the BM niche and how they influence the function of HSPCs. Additionally, we discuss the main findings regarding changes in the HSPC niche that influence the progression of CVD. We hypothesize that understanding the influence of the BM niche in CVD will aid in delineating new pathways for therapeutic interventions.
Collapse
Affiliation(s)
- Annas Al-Sharea
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | - Man Kit Sam Lee
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | | | - Edwin D Hawkins
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
33
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
34
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
35
|
Zhao J, Huangfu C, Chang Z, Grainger AT, Liu Z, Shi W. Atherogenesis in the Carotid Artery with and without Interrupted Blood Flow of Two Hyperlipidemic Mouse Strains. J Vasc Res 2019; 56:241-254. [PMID: 31536996 DOI: 10.1159/000502691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Atherosclerosis in the carotid arteries is a common cause of ischemic stroke. We examined atherogenesis in the left carotid artery with and without interrupted blood flow of C57BL/6 (B6) and C3H-Apoe-deficient (Apoe-/-) mouse strains. METHODS Blood flow was interrupted by ligating the common carotid artery near its bifurcation in one group of mice and another group was not interrupted. RESULTS Without interference with blood flow, C3H-Apoe-/- mice developed no atherosclerosis in the carotid artery, while B6-Apoe-/- mice formed advanced atherosclerotic lesions (98,019 ± 10,594 μm2/section) after 12 weeks of a Western diet. When blood flow was interrupted by ligating the common carotid artery near its bifurcation, C3H-Apoe-/- mice showed fatty streak lesions 2 weeks after ligation, and by 4 weeks fibrous lesions had formed, although they were smaller than in B6-Apoe-/- mice. Neutrophil adhesion to endothelium and infiltration in lesions was observed in ligated arteries of both strains. Treatment of B6-Apoe-/- mice with antibody against neutrophils had little effect on lesion size. CONCLUSIONS These findings demonstrate the dramatic influences of genetic backgrounds and blood flow on atherogenesis in the carotid artery of hyperlipidemic mice.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chaoji Huangfu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Center for Disease Control and Prevention, Western Theater Command, Lanzhou, China
| | - Zhihui Chang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Andrew T Grainger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA, .,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA,
| |
Collapse
|
36
|
The association of plasma lipids with white blood cell counts: Results from the Multi-Ethnic Study of Atherosclerosis. J Clin Lipidol 2019; 13:812-820. [DOI: 10.1016/j.jacl.2019.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023]
|
37
|
Affiliation(s)
- Ying Jin
- 1 Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Hubei University of Medicine Renmin Hospital Shiyan China.,2 Center for Translational Medicine Hubei University of Medicine Renmin Hospital Shiyan China
| | - Jian Fu
- 1 Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Hubei University of Medicine Renmin Hospital Shiyan China.,2 Center for Translational Medicine Hubei University of Medicine Renmin Hospital Shiyan China
| |
Collapse
|
38
|
Shoulders H, Garner KH, Singla DK. Macrophage depletion by clodronate attenuates bone morphogenetic protein-7 induced M2 macrophage differentiation and improved systolic blood velocity in atherosclerosis. Transl Res 2019; 203:1-14. [PMID: 30107156 PMCID: PMC6314201 DOI: 10.1016/j.trsl.2018.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic protein-7 (BMP-7) affects the presence of macrophage subtypes in vitro and in vivo at an early stage of atherosclerosis (ATH); however, it remains unknown whether BMP-7 treatment affects the development and progression of ATH at a mid-stage of the disease. We therefore performed a Day 28 (D28) study to examine BMP-7's potential to affect monocyte differentiation. Atherosclerosis was developed in ApoE KO mice, and these animals were treated with intravenous injections of BMP-7 and/or liposomal clodronate (LC). BMP-7 significantly (P < 0.05) lowers plaque formation following induction of atherosclerosis. However, upon macrophage depletion, BMP-7 fails to significantly alter plaque progression suggesting a direct role of BMP-7 on macrophages. Immunohistochemical staining of carotid arteries was performed to determine BMP-7's effect on pro-inflammatory M1 inducible nitric oxide synthase and anti-inflammatory M2 (cluster of differentiation [CD]206, Arginase-1) macrophages, and monocytes ( CD14). BMP-7 significantly reduced pro-inflammatory M1 macrophages and increased anti-inflammatory M2 macrophages at D28, while BMP-7 showed no effect on M2 macrophage differentiation in animals treated with LC. Enzyme-linked immunosorbent assay data showed significant reduction in proinflammatory cytokines (Interleukin-6 [IL-6]), monocyte chemoattractant protein-1, and tumor necrosis factor-α) and a significant increase in anti-inflammatory cytokine (IL-10) in BMP-7 treated mice (P < 0.05).Western blot analysis of arterial tissue confirms a significant increase in pro-survival kinases extracellular-signal regulated kinase and SMAD and a reduction in pro-inflammatory kinases p38 and c-Jun N-terminal kinase in BMP-7 treated mice (P < 0.05). Overall, this study suggests that clodronate treatment inhibits BMP-7 induced differentiation of monocytes into M2 macrophages and improved systolic blood velocity.
Collapse
Affiliation(s)
- Heidi Shoulders
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Kaley H Garner
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida.
| |
Collapse
|
39
|
Kapoor S, Opneja A, Nayak L. The role of neutrophils in thrombosis. Thromb Res 2018; 170:87-96. [PMID: 30138777 DOI: 10.1016/j.thromres.2018.08.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Despite significant evidence implicating an important role for neutrophils in thrombosis, their impact on the thrombotic process has remained a matter of controversy. Until 2010, platelets, coagulation factors, fibrinogen and monocytes were implicated in the thrombotic process. Several studies conducted over the last decade now support the growing notion that neutrophils indeed do contribute significantly to this process. Neutrophils can contribute to pathologic venous and arterial thrombosis or 'immunothrombosis' by the release of neutrophil extracellular traps (NETs) and NET release is emerging as a major contributor to thrombogenesis in pathologic situations such as sepsis and malignancy. Further, blood-cell derived microparticles, including those from neutrophils, have been implicated in thrombus formation. Finally, inflammasome activation in the neutrophil identifies another important mechanism that may be operative in neutrophil-driven risk for thrombosis. The knowledge of these roles of neutrophils in thrombosis may pave the road for novel anti-thrombotic agents in the future that do not affect hemostasis.
Collapse
Affiliation(s)
- Sargam Kapoor
- University Hospitals Cleveland Medical Center, Division of Hematology and Oncology, United States; Case Western Reserve University, Department of Medicine, United States
| | - Aman Opneja
- University Hospitals Cleveland Medical Center, Division of Hematology and Oncology, United States; Case Western Reserve University, Department of Medicine, United States
| | - Lalitha Nayak
- University Hospitals Cleveland Medical Center, Division of Hematology and Oncology, United States; Case Western Reserve University, Department of Medicine, United States.
| |
Collapse
|
40
|
Miteva K, Madonna R, De Caterina R, Van Linthout S. Innate and adaptive immunity in atherosclerosis. Vascul Pharmacol 2018; 107:S1537-1891(17)30464-0. [PMID: 29684642 DOI: 10.1016/j.vph.2018.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/03/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder of the large and medium-size arteries characterized by the subendothelial accumulation of cholesterol, immune cells, and extracellular matrix. At the early onset of atherogenesis, endothelial dysfunction takes place. Atherogenesis is further triggered by the accumulation of cholesterol-carrying low-density lipoproteins, which acquire properties of damage-associated molecular patterns and thereby trigger an inflammatory response. Following activation of the innate immune response, mainly governed by monocytes and macrophages, the adaptive immune response is started which further promotes atherosclerotic plaque formation. In this review, an overview is given describing the role of damage-associated molecular patterns, NLRP3 inflammasome activation, and innate and adaptive immune cells in the atherogenesis process.
Collapse
Affiliation(s)
- Kapka Miteva
- Department of Biomedical Sciences, Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milano, Italy
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
41
|
Boehncke WH. Systemic Inflammation and Cardiovascular Comorbidity in Psoriasis Patients: Causes and Consequences. Front Immunol 2018; 9:579. [PMID: 29675020 PMCID: PMC5895645 DOI: 10.3389/fimmu.2018.00579] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/07/2018] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a common inflammatory skin disease characterized by the appearance of red scaly plaques that can affect any part of the body. High prevalence, chronicity, disfiguration, disability, and associated comorbidity make it a challenge for clinicians of multiple specialties. Likewise, its complex pathogenesis, comprising inflammation, hyperproliferation, and angioneogenesis, intrigues numerous scientific disciplines, namely, immunology. From a clinical perspective, the severity of psoriasis is highlighted by its increased mortality, with cardiovascular diseases contributing the highest excess risk. From a scientific point of view, psoriasis has to be considered a systemic inflammatory condition, as blood biomarkers of inflammation are elevated and imaging techniques document sites of inflammation beyond the skin. While the association of psoriasis with cardiovascular diseases is now widely accepted, causes and consequences of this association are controversially discussed. This review comments on epidemiologic, genetic, and mechanistic studies that analyzed the relation between psoriasis and cardiovascular comorbidity. The hypothesis of psoriasis potentially being an independent cardiovascular risk factor, driving atherosclerosis via inflammation-induced endothelial dysfunction, will be discussed. Finally, consequences for the management of psoriasis with the objective to reduce the patients’ excess cardiovascular risk will be pointed out.
Collapse
Affiliation(s)
- Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
42
|
Prame Kumar K, Nicholls AJ, Wong CHY. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res 2018; 371:551-565. [PMID: 29387942 PMCID: PMC5820413 DOI: 10.1007/s00441-017-2753-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
Neutrophils are becoming recognized as highly versatile and sophisticated cells that display de novo synthetic capacity and potentially prolonged lifespan. Emerging concepts such as neutrophil heterogeneity and plasticity have revealed that, under pathological conditions, neutrophils may differentiate into discrete subsets defined by distinct phenotypic and functional characteristics. Indeed, these newly described neutrophil subsets will undoubtedly add to the already complex interactions between neutrophils and other immune cell types for an effective immune response. The interactions between neutrophils and monocytes/macrophages enable the host to efficiently defend against and eliminate foreign pathogens. However, it is also becoming increasingly clear that these interactions can be detrimental to the host if not tightly regulated. In this review, we will explore the functional cooperation of neutrophil and monocytes/macrophages in homeostasis, during acute inflammation and in various disease settings. We will discuss this in the context of cardiovascular disease in the form of atherosclerosis, an autoimmune disease mainly occurring in the kidneys, as well as the unique intestinal immune response of the gut that does not conform to the norms of the typical immune system.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Alyce J Nicholls
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
43
|
Roig C, Daemen M, Lutgens E, Soehnlein O, Hartwig H. Neutrophils in atherosclerosis. Hamostaseologie 2017; 35:121-7. [DOI: 10.5482/hamo-14-09-0040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022] Open
Abstract
SummaryAtherosclerosis is a chronic inflammation of the arterial wall and the continuous infiltration of leukocytes into the plaque enhances the progression of the lesion. Because of the scarce detection of neutrophils in atherosclerotic plaques compared to other immune cells, their contribution was largely neglected. However, in the last years studies have accumulated pointing towards the contribution of neutrophils to atherogenesis. In addition, studies are emerging implying a role for neutrophils in advanced atherosclerosis and/or plaque destabilization. Thus, this brief review delivers an overview of the role of neutrophils during early and late stage atherosclerosis.
Collapse
|
44
|
Gonzalez L, Qian AS, Tahir U, Yu P, Trigatti BL. Sphingosine-1-Phosphate Receptor 1, Expressed in Myeloid Cells, Slows Diet-Induced Atherosclerosis and Protects against Macrophage Apoptosis in Ldlr KO Mice. Int J Mol Sci 2017; 18:ijms18122721. [PMID: 29244772 PMCID: PMC5751322 DOI: 10.3390/ijms18122721] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
We generated myeloid specific sphingosine-1-phosphate receptor 1 (S1pr1) deficient mice by crossing mice that had myeloid specific expression of Cre recombinase (lyzMCre) with mice having the S1pr1 gene flanked by loxP recombination sites. We transplanted bone marrow from these mice and control lyzMCre mice with intact macrophage S1pr1 gene expression into low-density lipoprotein (LDL) receptor gene (Ldlr) deficient mice. The resulting chimeras were fed a high fat atherogenic diet for nine or twelve weeks and evaluated for atherosclerosis development in the aortic sinus. Selective S1pr1 deficiency in bone marrow-derived myeloid cells resulted in accelerated development of atherosclerosis, necrotic core formation and the appearance of apoptotic cells within atherosclerotic plaques of Ldlr knockout mice in response to a high fat diet. Examination of macrophages in culture revealed that the sphingosine-1-phosphate receptor 1 selective agonist, SEW2871 or high density lipoprotein (HDL), protected macrophages against apoptosis induced by endoplasmic reticulum (ER) stress or oxidized LDL, through activation of phosphatidylinositol-3-kinase/Akt signaling. Targeted S1pr1-deletion prevented Akt activation and protection against apoptosis by either SEW2871 or HDL. Our data suggests that sphingosine-1-phosphate receptor 1 in macrophages plays an important role in protecting them against apoptosis in vitro and in atherosclerotic plaques in vivo, and delays diet induced atherosclerosis development in Ldlr deficient mice.
Collapse
Affiliation(s)
- Leticia Gonzalez
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| | - Alexander S Qian
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| | - Usama Tahir
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| | - Pei Yu
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| | - Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada.
| |
Collapse
|
45
|
Prognostic Association of Circulating Neutrophil Count with No-Reflow in Patients with ST-Segment Elevation Myocardial Infarction following Successful Primary Percutaneous Intervention. DISEASE MARKERS 2017; 2017:8458492. [PMID: 29379223 PMCID: PMC5742887 DOI: 10.1155/2017/8458492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/30/2017] [Accepted: 10/31/2017] [Indexed: 01/04/2023]
Abstract
Objective The aim of the present study was to investigate the predictive value of neutrophil count for no-reflow in patients with ST-segment elevation myocardial infarction (STEMI) who underwent successful primary percutaneous intervention (PCI). Methods We conducted a retrospective study of 361 patients diagnosed with acute STEMI between 2011 and 2015. All patients underwent successful PCI within 12 h from the onset of symptoms. Angiographic no-reflow was diagnosed based on a post-PCI thrombolysis in myocardial infarction flow grade ≤ 2 without mechanical obstruction. According to a neutrophil count cut-off determined by receiver operating characteristic curve analysis, patients were divided into two groups: group A (neutrophil count < 9.14 × 109/L) and group B (neutrophil count ≥ 9.14 × 109/L). Results Compared to patients in the normal reflow group, patients with no-reflow had higher neutrophil counts (P < 0.05). The incidence rate of no-reflow in group A (18, 9.3%) was significantly lower than that in group B (38). Multivariate logistic regression analysis revealed that a neutrophil count ≥ 9.14 × 109/L was independently predictive for no-reflow (odds ratio = 4.474, 95% confidence interval: 1.610–12.433, P = 0.004) after adjusting for potential confounders. Conclusions A circulating neutrophil count ≥ 9.14 × 109/L is independently associated with no-reflow in patients with acute STEMI following primary PCI.
Collapse
|
46
|
Vozenilek AE, Navratil AR, Green JM, Coleman DT, Blackburn CMR, Finney AC, Pearson BH, Chrast R, Finck BN, Klein RL, Orr AW, Woolard MD. Macrophage-Associated Lipin-1 Enzymatic Activity Contributes to Modified Low-Density Lipoprotein-Induced Proinflammatory Signaling and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 38:324-334. [PMID: 29217509 DOI: 10.1161/atvbaha.117.310455] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Macrophage proinflammatory responses induced by modified low-density lipoproteins (modLDL) contribute to atherosclerotic progression. How modLDL causes macrophages to become proinflammatory is still enigmatic. Macrophage foam cell formation induced by modLDL requires glycerolipid synthesis. Lipin-1, a key enzyme in the glycerolipid synthesis pathway, contributes to modLDL-elicited macrophage proinflammatory responses in vitro. The objective of this study was to determine whether macrophage-associated lipin-1 contributes to atherogenesis and to assess its role in modLDL-mediated signaling in macrophages. APPROACH AND RESULTS We developed mice lacking lipin-1 in myeloid-derived cells and used adeno-associated viral vector 8 expressing the gain-of-function mutation of mouse proprotein convertase subtilisin/kexin type 9 (adeno-associated viral vector 8-proprotein convertase subtilisin/kexin type 9) to induce hypercholesterolemia and plaque formation. Mice lacking myeloid-associated lipin-1 had reduced atherosclerotic burden compared with control mice despite similar plasma lipid levels. Stimulation of bone marrow-derived macrophages with modLDL activated a persistent protein kinase Cα/βII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributed to macrophage proinflammatory responses that was dependent on lipin-1 enzymatic activity. CONCLUSIONS Our data demonstrate that macrophage-associated lipin-1 is atherogenic, likely through persistent activation of a protein kinase Cα/βII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributes to foam cell proinflammatory responses. Taken together, these results suggest that modLDL-induced foam cell formation and modLDL-induced macrophage proinflammatory responses are not independent consequences of modLDL stimulation but rather are both directly influenced by enhanced lipid synthesis.
Collapse
Affiliation(s)
- Aimee E Vozenilek
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Aaron R Navratil
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Jonette M Green
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - David T Coleman
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Cassidy M R Blackburn
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Alexandra C Finney
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Brenna H Pearson
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Roman Chrast
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Brian N Finck
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Ronald L Klein
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - A Wayne Orr
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Matthew D Woolard
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.).
| |
Collapse
|
47
|
Döring Y, Megens R, Soehnlein O, Drechsler M. Neutrophilic granulocytes – promiscuous accelerators of atherosclerosis. Thromb Haemost 2017; 106:839-48. [DOI: 10.1160/th11-07-0501] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022]
Abstract
SummaryNeutrophils, as part of the innate immune system, are classically described to be main actors during the onset of inflammation enforcing rapid neutralisation and clearance of pathogens. Besides their wellstudied role in acute inflammatory processes, recent advances strongly indicate a so far underappreciated importance of neutrophils in initiation and development of atherosclerosis. This review focuses on current findings on the role of neutrophils in atherosclerosis. As pro-inflammatory mechanisms of neutrophils have primarily been studied in the microvascular environment; we here aim at translating these into the context of macrovascular inflammation in atherosclerosis. Since much of the pro-inflammatory activities of neutrophils stem from instructing neighbouring cell types, we highlight the promiscuous interplay between neutrophils and platelets, monocytes, T lymphocytes, and dendritic cells and its possible relevance to atherosclerosis.
Collapse
|
48
|
Wu Z, Rademakers T, Kiessling F, Vogt M, Westein E, Weber C, Megens RT, van Zandvoort M. Multi-photon microscopy in cardiovascular research. Methods 2017; 130:79-89. [DOI: 10.1016/j.ymeth.2017.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 01/26/2023] Open
|
49
|
Sanda GE, Belur AD, Teague HL, Mehta NN. Emerging Associations Between Neutrophils, Atherosclerosis, and Psoriasis. Curr Atheroscler Rep 2017; 19:53. [DOI: 10.1007/s11883-017-0692-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Grechowa I, Horke S, Wallrath A, Vahl C, Dorweiler B. Human neutrophil elastase induces endothelial cell apoptosis by activating the PERK‐CHOP branch of the unfolded protein response. FASEB J 2017; 31:3868-3881. [DOI: 10.1096/fj.201700012r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Irina Grechowa
- Division of Vascular SurgeryDepartment of Cardiothoracic and Vascular SurgeryUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
- Institute of PharmacologyUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| | - Sven Horke
- Institute of PharmacologyUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
- Center for Thrombosis and HemostasisUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| | - Anja Wallrath
- Division of Vascular SurgeryDepartment of Cardiothoracic and Vascular SurgeryUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| | - Christian‐Friedrich Vahl
- Division of Vascular SurgeryDepartment of Cardiothoracic and Vascular SurgeryUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| | - Bernhard Dorweiler
- Division of Vascular SurgeryDepartment of Cardiothoracic and Vascular SurgeryUniversity Medical CenterJohannes‐Gutenberg University Mainz Germany
| |
Collapse
|