1
|
Li S, Liu J, Wang G, Kan Y, Wang W, Yang J. 18F-FDG PET/CT volumetric parameter predicts prognosis for neuroblastoma with MYCN gain. Abdom Radiol (NY) 2025:10.1007/s00261-025-04973-1. [PMID: 40317359 DOI: 10.1007/s00261-025-04973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
PURPOSE The aim of the study was to evaluate the value of 18F-FDG PET/CT metabolic parameters in neuroblastoma (NB) with MYCN gain. METHODS A retrospective analysis was conducted on 87 patients with NB (29 with MYCN gain and 58 with MYCN normal). The region of interest of primary tumors were manually delineated using 3D slicer™ software, and 18F-FDG PET/CT metabolic parameters, including SUVmax, SUVpeak, SUVmean, MTV and TLG were extracted. Logistic regression analyses were used to identify the relationship between 18F-FDG PET/CT metabolic parameters and MYCN gain. Cox proportional hazards regression models were used to assess the associations between 18F-FDG PET/CT metabolic parameters and EFS and OS. Survival curves were generated using the Kaplan-Meier method, and differences in survival between groups were compared using the log-rank test. RESULTS A total of 87 NB patients [median age: 40 (20-56) months; 48 girls and 39 boys] were evaluated. Logistic regression analyses revealed that MTV (>133.3 cm3) was an independent predictor of MYCN gain. During the follow-up period of 22 (2-70) months, 21 patients died and 37 patients experienced disease recurrence or progression. Cox proportional hazards regression analyses showed that MTV, in combination with PHOX2B, was an independent prognostic factor for EFS and OS in NB patients with MYCN-gain. Patients with high MTV exhibited significantly shorter EFS and OS compared to those with low MTV. CONCLUSION The volumetric parameter MTV derived from 18F-FDG PET/CT imaging can predict MYCN gain in NB patients and provide valuable prognostic information for patients with MYCN-gain NB.
Collapse
Affiliation(s)
- Siqi Li
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Liu
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guanyun Wang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Kan
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jigang Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Geng J, Wang X, Zhao L, Zhang J, Niu H. Segmental chromosome aberrations as a prognostic factor of neuroblastoma: a meta-analysis and systematic review. Transl Pediatr 2024; 13:1789-1798. [PMID: 39524401 PMCID: PMC11543117 DOI: 10.21037/tp-24-200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background Segmental chromosome aberrations, defined as presence of aberrations, deletion, or imbalance in the chromosomal arms, have long been considered as a predictor of poor prognosis of patients with neuroblastoma. The objective of this meta-analysis is to quantitively analyze the hazard ratios (HRs) of different whole or segmental chromosome aberrations for overall survival (OS) rate or event-free survival (EFS) rate of patients with neuroblastoma. Methods Relevant studies about chromosome, neuroblastoma, predictor, prognosis, and survival published from the inception to April 2023 in the databases of PubMed, Embase, and Web of Science were searched, screened, and reviewed. The risk of bias of included articles was assessed using the Quality In Prognosis Studies tool. Basic characteristics, HRs of long term (>3 years) EFS and OS with 95% confidence intervals (CIs) of included articles were extracted. A random effects model of DerSimonian-Laird was used to analyze the extracted HRs. For studies that did not report HRs, narrative synthesis was used for summarization. Results There were 34 (including 14,356 patients) in 844 searched studies finally included for narrative and quantitative analysis. There were 24 articles rated as low risk of bias and 10 articles rated as moderate. Although the results were inconsistent, the pooled effect of HR for 1p loss was 4.46 (1.88-10.59) for EFS and 2.29 (1.26-4.15) for OS; the pooled effect of HR for 17q gain was 4.81 (3.29-7.04) for EFS and 3.98 (2.11-7.54) for OS; the pooled effect of HR for 11q loss was 2.54 (2.32-3.73) for OS. Results of 1p36 loss, 1p22 loss, 11q23 loss, 11q13-q14 gain, 1q gain, 1q22 gain, 2p gain, 3p loss, 4p loss, 14q loss, 14q32 loss, and other segmental chromosome aberrations were also summarized. Conclusions 1p loss, 11q loss, and 17q gain were identified as significant independent predictors for long-term OS and EFS of patients with neuroblastoma.
Collapse
Affiliation(s)
- Jianlei Geng
- Department of General Surgery, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Xiaoyu Wang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, China
| | - Libo Zhao
- Clinical Laboratory, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Jianxiao Zhang
- Clinical Laboratory, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Huizhong Niu
- Department of General Surgery, Children’s Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
3
|
Winnicka D, Skowera P, Stelmach M, Styka B, Lejman M. Application of the FISH method and high-density SNP arrays to assess genetic changes in neuroblastoma-research by one institute. Acta Biochim Pol 2024; 71:12821. [PMID: 39049899 PMCID: PMC11267511 DOI: 10.3389/abp.2024.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children. Amplification of the MYCN gene has been observed in approximately 20%-30% of tumors. It is strongly correlated with advanced-stage disease, rapid tumor progression, resistance to chemotherapy and poor outcomes independent of patient age and stage of advanced disease. MYCN amplification identifies high-risk patients. To assess neuroblastoma tumors with MYCN amplification we used paraffin-embedded tissue sections in 57 patients and intraoperative tumor imprints in 10 patients by fluorescence in situ hybridization (FISH). Positive results for MYCN amplification have been observed in twelve patients' paraffin-embedded tissue sections and in three patients' intraoperative tumor imprints, which represents 22.4% of all patients tested in the analysis. Fluorescence in situ hybridization is a highly sensitive and useful technique for detecting MYCN amplification on paraffin-embedded tissue sections of neuroblastoma tumors and intraoperative tumor imprints thus facilitating therapeutic decisions based on the presence or absence of this important biologic marker. The presence of structural changes, regardless of MYCN gene amplification status, influences the clinical behavior of neuroblastoma. High-Density SNP Arrays have emerged as the perfect tools for detecting these changes due to their exceptional accuracy, sensitivity and ability to analyze copy number and allele information. Consequently, they are proven to be highly valuable in the genomic diagnosis of immature neuroectodermal tumors.
Collapse
Affiliation(s)
| | | | - Magdalena Stelmach
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | | | | |
Collapse
|
4
|
Qian LD, Zhou ZA, Li SQ, Liu J, Zhang SX, Ren JL, Wang W, Yang J. 18F-fluorodeoxyglucose ( 18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging of pediatric neuroblastoma: a multi-omics parameters method to predict MYCN copy number category. Quant Imaging Med Surg 2024; 14:3131-3145. [PMID: 38617169 PMCID: PMC11007507 DOI: 10.21037/qims-23-494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/10/2024] [Indexed: 04/16/2024]
Abstract
Background The MYCN copy number category is closely related to the prognosis of neuroblastoma (NB). Therefore, this study aimed to assess the predictive ability of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features for MYCN copy number in NB. Methods A retrospective analysis was performed on 104 pediatric patients with NB that had been confirmed by pathology. To develop the Bio-omics model (B-model), which incorporated clinical and biological aspects, PET/CT radiographic features, PET quantitative parameters, and significant features with multivariable stepwise logistic regression were preserved. Important radiomics features were identified through least absolute shrinkage and selection operator (LASSO) and univariable analysis. On the basis of radiomics features obtained from PET and CT scans, the radiomics model (R-model) was developed. The significant bio-omics and radiomics features were combined to establish a Multi-omics model (M-model). The above 3 models were established to differentiate MYCN wild from MYCN gain and MYCN amplification (MNA). The calibration curve and receiver operating characteristic (ROC) curve analyses were performed to verify the prediction performance. Post hoc analysis was conducted to compare whether the constructed M-model can distinguish MYCN gain from MNA. Results The M-model showed excellent predictive performance in differentiating MYCN wild from MYCN gain and MNA, which was better than that of the B-model and R-model [area under the curve (AUC) 0.83, 95% confidence interval (CI): 0.74-0.92 vs. 0.81, 95% CI: 0.72-0.90 and 0.79, 95% CI: 0.69-0.89]. The calibration curve showed that the M-model had the highest reliability. Post hoc analysis revealed the great potential of the M-model in differentiating MYCN gain from MNA (AUC 0.95, 95% CI: 0.89-1). Conclusions The M-model model based on bio-omics and radiomics features is an effective tool to distinguish MYCN copy number category in pediatric patients with NB.
Collapse
Affiliation(s)
- Luo-Dan Qian
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zi-Ang Zhou
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Si-Qi Li
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Liu
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shu-Xin Zhang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia-Liang Ren
- Department of Pharmaceuticals Diagnostics, GE HealthCare, Beijing, China
| | - Wei Wang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jigang Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Mlakar V, Dupanloup I, Gonzales F, Papangelopoulou D, Ansari M, Gumy-Pause F. 17q Gain in Neuroblastoma: A Review of Clinical and Biological Implications. Cancers (Basel) 2024; 16:338. [PMID: 38254827 PMCID: PMC10814316 DOI: 10.3390/cancers16020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent extracranial solid childhood tumor. Despite advances in the understanding and treatment of this disease, the prognosis in cases of high-risk NB is still poor. 17q gain has been shown to be the most frequent genomic alteration in NB. However, the significance of this remains unclear because of its high frequency and association with other genetic modifications, particularly segmental chromosomal aberrations, 1p and 11q deletions, and MYCN amplification, all of which are also associated with a poor clinical prognosis. This work reviewed the evidence on the clinical and biological significance of 17q gain. It strongly supports the significance of 17q gain in the development of NB and its importance as a clinically relevant marker. However, it is crucial to distinguish between whole and partial chromosome 17q gains. The most important breakpoints appear to be at 17q12 and 17q21. The former distinguishes between whole and partial chromosome 17q gain; the latter is a site of IGF2BP1 and NME1 genes that appear to be the main oncogenes responsible for the functional effects of 17q gain.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
| | - Isabelle Dupanloup
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Swiss Institute of Bioinformatics, Amphipôle, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Fanny Gonzales
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Danai Papangelopoulou
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Rue Michel Servet 1, 1211 Geneva, Switzerland; (I.D.); (F.G.); (D.P.); (M.A.); (F.G.-P.)
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Rue Willy-Donzé 6, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Pourghasem N, Ghorbanzadeh S, Nejatizadeh AA. The Regulatory Mechanisms and Clinical Significance of Lnc SNHG4 in Cancer. Curr Pharm Des 2022; 28:3563-3571. [PMID: 36411578 DOI: 10.2174/1381612829666221121161950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND LncRNAs have been reported to be involved in a variety of biological functions, including gene expression, cell growth, and differentiation. They may also serve as oncogenes or tumor suppressor genes in diseases. lncRNAs that can encode small nucleolar RNAs (snoRNAs) have been named small nucleolar RNA host genes (SNHGs). OBJECTIVE In this review article, we readily review the regulatory mechanisms and clinical significance of Lnc SNHG4 in cancer. METHODS We systematically investigated databases, like Scopus, PubMed, Embase, Google Scholar, and Cochrane Library database for all research articles, and have provided an overview regarding the biological functions and mechanisms of lncRNA SNHG4 in tumorigenesis. RESULTS Compared to neighboring normal tissues, SNHG4 is significantly dysregulated in various tumor tissues. SNHG4 upregulation is mainly associated with advanced tumor stage, tumor size, TNM stage, and decreased overall survival. In addition, aberrant SNHG4 expression promotes cell proliferation, metastasis, migration, and invasion of cancer cells. CONCLUSION SNHG4 may serve as a new therapeutic target and prognostic biomarker in patients with cancer.
Collapse
Affiliation(s)
- Navid Pourghasem
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shadi Ghorbanzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdol Azim Nejatizadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
7
|
Treis D, Umapathy G, Fransson S, Guan J, Mendoza-García P, Siaw JT, Wessman S, Gordon Murkes L, Stenman JJE, Djos A, Elfman LHM, Johnsen JI, Hallberg B, Palmer RH, Martinsson T, Kogner P. Sustained Response to Entrectinib in an Infant With a Germline ALKAL2 Variant and Refractory Metastatic Neuroblastoma With Chromosomal 2p Gain and Anaplastic Lymphoma Kinase and Tropomyosin Receptor Kinase Activation. JCO Precis Oncol 2022; 6:e2100271. [PMID: 35085006 PMCID: PMC8830523 DOI: 10.1200/po.21.00271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Personalized molecular workup enabled successful ALK inhibitor treatment in a child with resistant neuroblastoma.![]()
Collapse
Affiliation(s)
- Diana Treis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Patricia Mendoza-García
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joachim T. Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Gordon Murkes
- Department of Pediatric Radiology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob J. E. Stenman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lotta H. M. Elfman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Per Kogner, MD, PhD; Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet , Tomtebodavägen 18A, 171 77 Stockholm, Sweden;
| |
Collapse
|
8
|
Chromosome Imbalances in Neuroblastoma-Recent Molecular Insight into Chromosome 1p-deletion, 2p-gain, and 11q-deletion Identifies New Friends and Foes for the Future. Cancers (Basel) 2021; 13:cancers13235897. [PMID: 34885007 PMCID: PMC8657310 DOI: 10.3390/cancers13235897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Neuroblastoma is a pediatric cancer that arises in the sympathetic nervous system. High-risk neuroblastoma is clinically challenging and identification of novel therapies, particularly those that offer a reduction in morbidity for these patients, is a high priority. Combining genetic analyses with investigation of molecular mechanisms, while considering recent advances in our understanding of key developmental events, provides avenues for future treatment. Here we review and highlight several recently published articles that address novel molecular mechanisms arising from chromosome 1p, 2p, and 11q aberrations, which likely contribute to high-risk neuroblastoma, and discusses their potential impact on treatment options. Abstract Neuroblastoma is the most common extracranial solid pediatric tumor, with around 15% childhood cancer-related mortality. High-risk neuroblastomas exhibit a range of genetic, morphological, and clinical heterogeneities, which add complexity to diagnosis and treatment with existing modalities. Identification of novel therapies is a high priority in high-risk neuroblastoma, and the combination of genetic analysis with increased mechanistic understanding—including identification of key signaling and developmental events—provides optimism for the future. This focused review highlights several recent findings concerning chromosomes 1p, 2p, and 11q, which link genetic aberrations with aberrant molecular signaling output. These novel molecular insights contribute important knowledge towards more effective treatment strategies for neuroblastoma.
Collapse
|
9
|
BioID-Screening Identifies PEAK1 and SHP2 as Components of the ALK Proximitome in Neuroblastoma Cells. J Mol Biol 2021; 433:167158. [PMID: 34273398 DOI: 10.1016/j.jmb.2021.167158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that is mutated in approximately 10% of pediatric neuroblastoma (NB). To shed light on ALK-driven signaling processes, we employed BioID-based in vivo proximity labeling to identify molecules that interact intracellularly with ALK. NB-derived SK-N-AS and SK-N-BE(2) cells expressing inducible ALK-BirA* fusion proteins were generated and stimulated with ALKAL ligands in the presence and absence of the ALK tyrosine kinase inhibitor (TKI) lorlatinib. LC/MS-MS analysis identified multiple proteins, including PEAK1 and SHP2, which were validated as ALK interactors in NB cells. Further analysis of the ALK-SHP2 interaction confirmed that the ALK-SHP2 interaction as well as SHP2-Y542 phosphorylation was dependent on ALK activation. Use of the SHP2 inhibitors, SHP099 and RMC-4550, resulted in inhibition of cell growth in ALK-driven NB cells. In addition, we noted a strong synergistic effect of combined ALK and SHP2 inhibition that was specific to ALK-driven NB cells, suggesting a potential therapeutic option for ALK-driven NB.
Collapse
|
10
|
Early Use of Dinutuximab Beta in Patients with High-Risk Neuroblastoma. Case Rep Pediatr 2021; 2021:6610955. [PMID: 34239748 PMCID: PMC8235958 DOI: 10.1155/2021/6610955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/06/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in children, accounting for 15% of all pediatric cancer deaths. High-risk neuroblastoma (HRNB) is a particularly difficult-to-treat form of the disease that requires aggressive multimodality therapy, including induction chemotherapy, consolidation therapy with high-dose chemotherapy and autologous stem cell transplant, and maintenance therapy with dinutuximab beta. Despite treatment advances, the prognosis of these patients remains poor. As a better response to induction therapy has been associated with prolonged survival in patients with HRNB, we hypothesized that early use of dinutuximab beta-post-induction chemotherapy-may improve patient outcomes. We describe here our experience of administering at least one cycle of dinutuximab beta post-induction and prior to surgery in three children with HRNB who did not demonstrate a complete response to induction chemotherapy. All three patients achieved complete remission. Early use of dinutuximab beta may therefore have the potential to improve outcomes in patients with HRNB.
Collapse
|
11
|
Borenäs M, Umapathy G, Lai W, Lind DE, Witek B, Guan J, Mendoza‐Garcia P, Masudi T, Claeys A, Chuang T, El Wakil A, Arefin B, Fransson S, Koster J, Johansson M, Gaarder J, Van den Eynden J, Hallberg B, Palmer RH. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J 2021; 40:e105784. [PMID: 33411331 PMCID: PMC7849294 DOI: 10.15252/embj.2020105784] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.
Collapse
Affiliation(s)
- Marcus Borenäs
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Wei‐Yun Lai
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Barbara Witek
- Department of Molecular BiologyUmeå UniversityUmeåSweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Patricia Mendoza‐Garcia
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Tzu‐Po Chuang
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Abeer El Wakil
- Department of Molecular BiologyUmeå UniversityUmeåSweden
- Present address:
Department of Biological SciencesAlexandria UniversityAlexandriaEgypt
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Susanne Fransson
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Koster
- Department of OncogenomicsAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mathias Johansson
- Clinical GenomicsScience for life laboratoryUniversity of GothenburgGothenburgSweden
| | - Jennie Gaarder
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Javanmardi N, Fransson S, Djos A, Umapathy G, Östensson M, Milosevic J, Borenäs M, Hallberg B, Kogner P, Martinsson T, Palmer RH. Analysis of ALK, MYCN, and the ALK ligand ALKAL2 (FAM150B/AUGα) in neuroblastoma patient samples with chromosome arm 2p rearrangements. Genes Chromosomes Cancer 2020; 59:50-57. [PMID: 31340081 DOI: 10.1002/gcc.22790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023] Open
Abstract
Gain of chromosome arm 2p is a previously described entity in neuroblastoma (NB). This genomic address is home to two important oncogenes in NB-MYCN and anaplastic lymphoma kinase (ALK). MYCN amplification is a critical prognostic factor coupled with poor prognosis in NB. Mutation of the ALK receptor tyrosine kinase has been described in both somatic and familial NB. Here, ALK activation occurs in the context of the full-length receptor, exemplified by activating point mutations in NB. ALK overexpression and activation, in the absence of genetic mutation has also been described in NB. In addition, the recently identified ALK ligand ALKAL2 (previously described as FAM150B and AUGα) is also found on the distal portion of 2p, at 2p25. Here we analyze 356 NB tumor samples and discuss observations indicating that gain of 2p has implications for the development of NB. Finally, we put forward the hypothesis that the effect of 2p gain may result from a combination of MYCN, ALK, and the ALK ligand ALKAL2.
Collapse
Affiliation(s)
- Niloufar Javanmardi
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jelena Milosevic
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Szewczyk K, Wieczorek A, Młynarski W, Janczar S, Woszczyk M, Gamrot Z, Chaber R, Wysocki M, Pogorzała M, Bik-Multanowski M, Balwierz W. Unfavorable Outcome of Neuroblastoma in Patients With 2p Gain. Front Oncol 2019; 9:1018. [PMID: 31649880 PMCID: PMC6794702 DOI: 10.3389/fonc.2019.01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Amplification of the MYCN oncogene is the most unfavorable genetic factor in neuroblastoma patients. However, knowledge about the clinical impact of low-level multiplication of MYCN is still insufficient. Therefore, we aimed to investigate the disease course in patients with different copy number status of MYCN. Materials and Methods: We examined 105 children diagnosed with neuroblastoma from 2010 to 2018 in five pediatric oncology centers in Poland. We determined the MYCN status at diagnosis by the interphase FISH examination and assessed the clinical outcome in patients. Results: A total of 35% of tumors presented with chromosome 2 numerical changes, 20% had MYCN amplification and 16% revealed 2p gain. Unexpectedly, we observed very low overall survival and event free survival (EFS) rates in neuroblastomas with 2p gain, which were comparable with patients with MYCN amplification. Conclusions: The 2p gain alteration should be reported as a strong unfavorable prognostic marker in neuroblastoma patients.
Collapse
Affiliation(s)
- Katarzyna Szewczyk
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksandra Wieczorek
- Department of Pediatrics Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.,Department of Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Mariola Woszczyk
- Unit of Pediatric Oncology and Hematology, City Hospital, Chorzow, Poland
| | - Zuzanna Gamrot
- Unit of Pediatric Oncology and Hematology, City Hospital, Chorzow, Poland
| | - Radosław Chaber
- Clinic of Pediatric Oncology and Hematology, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
| | - Mariusz Wysocki
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Monika Pogorzała
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Mirosław Bik-Multanowski
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Walentyna Balwierz
- Department of Pediatrics Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.,Department of Pediatric Oncology and Hematology, University Children's Hospital of Krakow, Krakow, Poland
| |
Collapse
|
14
|
Trigg RM, Shaw JA, Turner SD. Opportunities and challenges of circulating biomarkers in neuroblastoma. Open Biol 2019; 9:190056. [PMID: 31088252 PMCID: PMC6544987 DOI: 10.1098/rsob.190056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular analysis of nucleic acid and protein biomarkers is becoming increasingly common in paediatric oncology for diagnosis, risk stratification and molecularly targeted therapeutics. However, many current and emerging biomarkers are based on analysis of tumour tissue, which is obtained through invasive surgical procedures and in some cases may not be accessible. Over the past decade, there has been growing interest in the utility of circulating biomarkers such as cell-free nucleic acids, circulating tumour cells and extracellular vesicles as a so-called liquid biopsy of cancer. Here, we review the potential of emerging circulating biomarkers in the management of neuroblastoma and highlight challenges to their implementation in the clinic.
Collapse
Affiliation(s)
- Ricky M. Trigg
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jacqui A. Shaw
- Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
15
|
Szewczyk K. Comparison of the human tumor metastasis gene expression level in neuroblastoma patients with MYCN amplification and 2p gain: Pilot study. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2018. [DOI: 10.1016/j.phoj.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Rajbhandari P, Lopez G, Capdevila C, Salvatori B, Yu J, Rodriguez-Barrueco R, Martinez D, Yarmarkovich M, Weichert-Leahey N, Abraham BJ, Alvarez MJ, Iyer A, Harenza JL, Oldridge D, De Preter K, Koster J, Asgharzadeh S, Seeger RC, Wei JS, Khan J, Vandesompele J, Mestdagh P, Versteeg R, Look AT, Young RA, Iavarone A, Lasorella A, Silva JM, Maris JM, Califano A. Cross-Cohort Analysis Identifies a TEAD4-MYCN Positive Feedback Loop as the Core Regulatory Element of High-Risk Neuroblastoma. Cancer Discov 2018; 8:582-599. [PMID: 29510988 PMCID: PMC5967627 DOI: 10.1158/2159-8290.cd-16-0861] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2017] [Accepted: 02/23/2018] [Indexed: 01/21/2023]
Abstract
High-risk neuroblastomas show a paucity of recurrent somatic mutations at diagnosis. As a result, the molecular basis for this aggressive phenotype remains elusive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identified three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, and identified subtype-specific master regulator proteins that were conserved across independent cohorts. A 10-protein transcriptional module-centered around a TEAD4-MYCN positive feedback loop-emerged as the regulatory driver of the high-risk subtype associated with MYCN amplification. Silencing of either gene collapsed MYCN-amplified (MYCNAmp) neuroblastoma transcriptional hallmarks and abrogated viability in vitro and in vivo Consistently, TEAD4 emerged as a robust prognostic marker of poor survival, with activity independent of the canonical Hippo pathway transcriptional coactivators YAP and TAZ. These results suggest novel therapeutic strategies for the large subset of MYCN-deregulated neuroblastomas.Significance: Despite progress in understanding of neuroblastoma genetics, little progress has been made toward personalized treatment. Here, we present a framework to determine the downstream effectors of the genetic alterations sustaining neuroblastoma subtypes, which can be easily extended to other tumor types. We show the critical effect of disrupting a 10-protein module centered around a YAP/TAZ-independent TEAD4-MYCN positive feedback loop in MYCNAmp neuroblastomas, nominating TEAD4 as a novel candidate for therapeutic intervention. Cancer Discov; 8(5); 582-99. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Presha Rajbhandari
- Department of Systems Biology, Columbia University, New York, New York
- Department of Biological Sciences, Columbia University, New York, New York
| | - Gonzalo Lopez
- Department of Systems Biology, Columbia University, New York, New York
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Claudia Capdevila
- Department of Systems Biology, Columbia University, New York, New York
| | | | - Jiyang Yu
- Department of Systems Biology, Columbia University, New York, New York
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ruth Rodriguez-Barrueco
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nina Weichert-Leahey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, New York
| | - Archana Iyer
- Department of Systems Biology, Columbia University, New York, New York
| | - Jo Lynne Harenza
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Derek Oldridge
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Katleen De Preter
- Center for Medical Genetics & Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - Shahab Asgharzadeh
- Division of Hematology/Oncology, Saban Research Institute, The Children's Hospital Los Angeles, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert C Seeger
- Division of Hematology/Oncology, Saban Research Institute, The Children's Hospital Los Angeles, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jun S Wei
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, NIH, Bethesda, Maryland
| | - Jo Vandesompele
- Center for Medical Genetics & Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics & Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, the Netherlands
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Antonio Iavarone
- Department of Neurology and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, New York
| | - Anna Lasorella
- Department of Pediatrics and Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, New York
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York.
- Department of Biomedical Informatics, Columbia University, New York, New York
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
- Herbert Irving Comprehensive Cancer Center and J.P. Sulzberger Columbia Genome Center, Columbia University, New York, New York
| |
Collapse
|
17
|
Campbell K, Gastier-Foster JM, Mann M, Naranjo AH, Van Ryn C, Bagatell R, Matthay KK, London WB, Irwin MS, Shimada H, Granger MM, Hogarty MD, Park JR, DuBois SG. Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: A report from the Children's Oncology Group. Cancer 2017; 123:4224-4235. [PMID: 28696504 DOI: 10.1002/cncr.30873] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/11/2017] [Accepted: 06/12/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND High-level MYCN amplification (MNA) is associated with poor outcome and unfavorable clinical and biological features in patients with neuroblastoma. To the authors' knowledge, less is known regarding these associations in patients with low-level MYCN copy number increases. METHODS In this retrospective study, the authors classified patients has having tumors with MYCN wild-type tumors, MYCN gain (2-4-fold increase in MYCN signal compared with the reference probe), or MNA (>4-fold increase). Tests of trend were used to investigate ordered associations between MYCN copy number category and features of interest. Log-rank tests and Cox models compared event-free survival and overall survival by subgroup. RESULTS Among 4672 patients, 3694 (79.1%) had MYCN wild-type tumors, 133 (2.8%) had MYCN gain, and 845 (18.1%) had MNA. For each clinical/biological feature, the percentage of patients with an unfavorable feature was lowest in the MYCN wild-type category, intermediate in the MYCN gain category, and highest in the MNA category (P<.0001), except for 11q aberration, for which the highest rates were in the MYCN gain category. Patients with MYCN gain had inferior event-free survival and overall survival compared with those with MYCN wild-type. Among patients with high-risk disease, MYCN gain was associated with the lowest response rate after chemotherapy. Patients with non-stage 4 disease (according to the International Neuroblastoma Staging System) and patients with non-high-risk disease with MYCN gain had a significantly increased risk for death, a finding confirmed on multivariable testing. CONCLUSIONS Increasing MYCN copy number is associated with an increasingly higher rate of unfavorable clinical/biological features, with 11q aberration being an exception. Patients with MYCN gain appear to have inferior outcomes, especially in otherwise more favorable groups. Cancer 2017;123:4224-4235. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Kevin Campbell
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Julie M Gastier-Foster
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Meegan Mann
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Arlene H Naranjo
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, Florida
| | - Collin Van Ryn
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, Florida
| | - Rochelle Bagatell
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine K Matthay
- Department of Pediatrics, University of California at San Francisco Benioff Children's Hospital, University of California at San Francisco School of Medicine, San Francisco, California
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Meredith S Irwin
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hiroyuki Shimada
- Department of Pathology, Children's Hospital of Los Angeles, Los Angeles, California
| | - M Meaghan Granger
- Department of Hematology/Oncology, Cook Children's Hospital, Fort Worth, Texas
| | - Michael D Hogarty
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julie R Park
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Yue ZX, Huang C, Gao C, Xing TY, Liu SG, Li XJ, Zhao Q, Wang XS, Zhao W, Jin M, Ma XL. MYCN amplification predicts poor prognosis based on interphase fluorescence in situ hybridization analysis of bone marrow cells in bone marrow metastases of neuroblastoma. Cancer Cell Int 2017; 17:43. [PMID: 28367105 PMCID: PMC5374581 DOI: 10.1186/s12935-017-0412-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MYCN gene amplification is related to risk stratification. Therefore it is important to identify accurately the level of the MYCN gene as early as possible in neuroblastoma (NB); however, for patients with bone marrow (BM) metastasis who need chemotherapy before surgery, timely detection of the MYCN gene is not possible due to the unavailability of primary tumors. METHODS MYCN gene status was evaluated in 81 BM metastases of NB by interphase fluorescence in situ hybridization (FISH) analysis of BM cells. The clinicobiological characteristics and prognostic impact of MYCN amplification in NB metastatic to BM were analyzed. RESULTS MYCN amplification was found in 16% of patients with metastases, and the results were consistent with the primary tumors detected by pathological tissue FISH. MYCN amplification was associated with age, lactate dehydrogenase (LDH) levels and prognosis (P = 0.038, P < 0.001, P = 0.026). Clinical outcome was poorer in patients with MYCN amplification than in those without amplification (3-year EFS 28.8 ± 13.1 vs. 69.7 ± 5.7%, P = 0.005; 3-year OS 41.5 ± 14.7 vs. 76.7 ± 5.5%, P = 0.005). CONCLUSIONS MYCN amplification predicts a poor outcome in NB metastatic to BM, and interphase FISH of bone marrow cells provides a timely direct and valid method to evaluate the MYCN gene status.
Collapse
Affiliation(s)
- Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Cheng Huang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Tian-Yu Xing
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Xing-Jun Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Qian Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Xi-Si Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Wen Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Mei Jin
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Xiao-Li Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| |
Collapse
|
19
|
Ren X, Bai X, Zhang X, Li Z, Tang L, Zhao X, Li Z, Ren Y, Wei S, Wang Q, Liu C, Ji J. Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol Cell Proteomics 2014; 14:316-28. [PMID: 25505154 DOI: 10.1074/mcp.m114.041905] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma is the most common pediatric extracranial solid tumor with a broad spectrum of clinical behavior and poor prognosis. Despite intensive multimodal therapy, ongoing clinical trials, and basic science investigations, neuroblastoma remains a complex medical challenge with a long-term survival rate less than 40%. In our study, we found that resveratrol (3, 5, 4'-trihydroxystilbene, RSV), a naturally occurring phytoalexin, possesses an anticancer activity through blocking cell growth and inducing apoptosis in neuroblastoma cell line Neuro-2a (N-2a) cells. Using stable isotope labeling with amino acids in cell culture (SILAC) and quantitative proteomic analysis, we found that 395 proteins were up-regulated and 302 proteins were down-regulated in the nucleus of N-2a cells treated with RSV. Among these, the polycomb protein histone methyltransferase EZH2 was reduced significantly, which is aberrantly overexpressed in neuroblastoma and crucial to maintain the malignant phenotype of neuroblastoma by epigenetic repression of multiple tumor suppressor genes. EZH2 reduction further led to decreased H3K27me3 level and reactivation of neuroblastoma tumor suppressor genes CLU and NGFR. Disruption EZH2 expression by RNA interference-mediated knockdown or pharmacologic inhibition with DZNep triggered cellular apoptosis in N-2a cells. We found that the up-regulation of miR-137 level was responsible for reduced EZH2 level in tumor suppression induced by RSV. Inhibition of miR-137 expression rescued the cellular apoptosis phenotypes, EZH2 reduction, and CLU and NGFR reactivation, associated with RSV treatment. Taken together, our findings present for the first time, an epigenetic mechanism involving miR-137-mediated EZH2 repression in RSV-induced apoptosis and tumor suppression of neuroblastoma, which would provide a key potential therapeutic target in neuroblastoma treatment.
Collapse
Affiliation(s)
- Xiaoqing Ren
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; ¶Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xue Bai
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xuefei Zhang
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zheyi Li
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lingfang Tang
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xuyang Zhao
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; §Institute of System Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Zeyang Li
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yanfei Ren
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shicheng Wei
- ¶Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; ‖Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School of Stomatology, Peking University, Beijing 100081, China
| | - Qingsong Wang
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China;
| | - Cong Liu
- ‡‡Laboratory of Genome Stability, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jianguo Ji
- From the ‡State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; §Institute of System Biomedicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China;
| |
Collapse
|
20
|
Fransson S, Hansson M, Ruuth K, Djos A, Berbegall A, Javanmardi N, Abrahamsson J, Palmer RH, Noguera R, Hallberg B, Kogner P, Martinsson T. Intragenic anaplastic lymphoma kinase (ALK) rearrangements: Translocations as a novel mechanism ofALKactivation in neuroblastoma tumors. Genes Chromosomes Cancer 2014; 54:99-109. [DOI: 10.1002/gcc.22223] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/11/2014] [Indexed: 01/19/2023] Open
Affiliation(s)
- Susanne Fransson
- Department of Medical and Clinical Genetics; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Magnus Hansson
- Department of Pathology; Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
- Department of Medical Biosciences, Section for Pathology; Umeå University; Umeå Sweden
| | - Kristina Ruuth
- Department of Molecular Biology; Umeå University; Umeå Sweden
| | - Anna Djos
- Department of Medical and Clinical Genetics; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Ana Berbegall
- Department of Pathology, Medical School; University of Valencia, INCLIVA; Valencia Spain
| | - Niloufar Javanmardi
- Department of Medical and Clinical Genetics; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics; Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
| | - Ruth H. Palmer
- Department of Molecular Biology; Umeå University; Umeå Sweden
- Department of Medical Chemistry and Cell Biology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Rosa Noguera
- Department of Pathology, Medical School; University of Valencia, INCLIVA; Valencia Spain
| | - Bengt Hallberg
- Department of Molecular Biology; Umeå University; Umeå Sweden
- Department of Medical Chemistry and Cell Biology; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| | - Per Kogner
- Department of Women's and Children's Health; Childhood Cancer Research Unit; Karolinska Institutet; Stockholm Sweden
| | - Tommy Martinsson
- Department of Medical and Clinical Genetics; Sahlgrenska Academy at the University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
21
|
Prochazka P, Hrabeta J, Vicha A, Cipro S, Stejskalova E, Musil Z, Vodicka P, Eckschlager T. Changes in MYCN expression in human neuroblastoma cell lines following cisplatin treatment may not be related to MYCN copy numbers. Oncol Rep 2013; 29:2415-21. [PMID: 23563570 DOI: 10.3892/or.2013.2383] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/13/2013] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma is a tumor accounting for approximately 10% of all childhood malignancies and 50% of all childhood cancer-related deaths. MYCN gene copy number variation represents the most important prognostic factor in neuroblastoma. Prognostic significance of MYCN gene expression is more complicated and may depend on other factors such as MYCN gene copy number status. In the present study, we assessed MYCN gene expression using real-time RT-PCR following cisplatin treatment in three human neuroblastoma cell lines (UKF-NB-3, UKF-NB-4 and SK-N-AS) and their cisplatin-resistant counterparts. We also examined MYCN gene status and copy number (gain and amplification) variations using interphase and metaphase fluorescent in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA). Only cisplatin-sensitive UKF-NB-4 cells exhibited decreased MYCN expression following treatment with cisplatin. Other sensitive neuroblastoma cells did not exhibit a change in MYCN expression. In contrast, cisplatin-resistant UKF-NB-4 and SK-N-AS cells exhibited increased MYCN expression irrespective of the number of MYCN copies or concentration of cisplatin in the medium. In MYCN-amplified neuroblastoma cells we did not observe any significant change in the number of MYCN copies after cisplatin treatment, whereas MYCN-non-amplified SK-N-AS cells revealed during cisplatin treatment an increased number of MYCN gene copies caused by 2p gain in the majority of cells by FISH. We postulated that cisplatin treatment does not result directly in altered transcription of MYCN. A functional change in MYCN mRNA levels and increased MYCN expression in cisplatin-resistant neuroblastoma cells do not have a clear relationship to MYCN copy numbers. These findings may further contribute to the understanding of cisplatin chemotherapy in connection with MYCN expression, and the possible copy number variations in MYCN neuroblastoma cells may be of importance since targeting of MYCN is being tested as neuroblastoma therapy.
Collapse
Affiliation(s)
- Pavel Prochazka
- Department of Paediatric Hematology and Oncology, Second Medical School, Charles University in Prague and University Hospital Motol, 15006 Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Villamón E, Berbegall AP, Piqueras M, Tadeo I, Castel V, Djos A, Martinsson T, Navarro S, Noguera R. Genetic instability and intratumoral heterogeneity in neuroblastoma with MYCN amplification plus 11q deletion. PLoS One 2013; 8:e53740. [PMID: 23341988 PMCID: PMC3544899 DOI: 10.1371/journal.pone.0053740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/03/2012] [Indexed: 12/14/2022] Open
Abstract
Background/Aim Genetic analysis in neuroblastoma has identified the profound influence of MYCN amplification and 11q deletion in patients’ prognosis. These two features of high-risk neuroblastoma usually occur as mutually exclusive genetic markers, although in rare cases both are present in the same tumor. The purpose of this study was to characterize the genetic profile of these uncommon neuroblastomas harboring both these high-risk features. Methods We selected 18 neuroblastomas with MNA plus 11q loss detected by FISH. Chromosomal aberrations were analyzed using Multiplex Ligation-dependent Probe Amplification and Single Nucleotide Polymorphism array techniques. Results and Conclusion This group of tumors has approximately the same high frequency of aberrations as found earlier for 11q deleted tumors. In some cases, DNA instability generates genetic heterogeneity, and must be taken into account in routine genetic diagnosis.
Collapse
Affiliation(s)
- Eva Villamón
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Ana P. Berbegall
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Marta Piqueras
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Irene Tadeo
- Research Foundation of Hospital Clínico Universitario of Valencia, Valencia, Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario La Fe, Valencia, Spain
| | - Anna Djos
- Department of Clinical Genetics, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Clinical Genetics, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
23
|
Schleiermacher G, Mosseri V, London WB, Maris JM, Brodeur GM, Attiyeh E, Haber M, Khan J, Nakagawara A, Speleman F, Noguera R, Tonini GP, Fischer M, Ambros I, Monclair T, Matthay KK, Ambros P, Cohn SL, Pearson ADJ. Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br J Cancer 2012; 107:1418-22. [PMID: 22976801 PMCID: PMC3494425 DOI: 10.1038/bjc.2012.375] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: In the INRG dataset, the hypothesis that any segmental chromosomal alteration might be of prognostic impact in neuroblastoma without MYCN amplification (MNA) was tested. Methods: The presence of any segmental chromosomal alteration (chromosome 1p deletion, 11q deletion and/or chromosome 17q gain) defined a segmental genomic profile. Only tumours with a confirmed unaltered status for all three chromosome arms were considered as having no segmental chromosomal alterations. Results: Among the 8800 patients in the INRG database, a genomic type could be attributed for 505 patients without MNA: 397 cases had a segmental genomic type, whereas 108 cases had an absence of any segmental alteration. A segmental genomic type was more frequent in patients >18 months and in stage 4 disease (P<0.0001). In univariate analysis, 11q deletion, 17q gain and a segmental genomic type were associated with a poorer event-free survival (EFS) (P<0.0001, P=0.0002 and P<0.0001, respectively). In multivariate analysis modelling EFS, the parameters age, stage and a segmental genomic type were retained in the model, whereas the individual genetic markers were not (P<0.0001 and RR=2.56; P=0.0002 and RR=1.8; P=0.01 and RR=1.7, respectively). Conclusion: A segmental genomic profile, rather than the single genetic markers, adds prognostic information to the clinical markers age and stage in neuroblastoma patients without MNA, underlining the importance of pangenomic studies.
Collapse
Affiliation(s)
- G Schleiermacher
- INSERM U, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jeison M, Yaniv I, Ash S. Genetic stratification of neuroblastoma for treatment tailoring. Future Oncol 2012; 7:1087-99. [PMID: 21919696 DOI: 10.2217/fon.11.87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is the most common extracranial tumor of childhood. The clinical behavior is variable, ranging from spontaneous regression to fatal progression despite aggressive therapy. The most highly statistically significant and clinically relevant factors that are currently used for classification include stage, age, histopathologic category, MYCN oncogene status, chromosome 11q status and DNA ploidy. These genetic markers were analyzed separately by classical methods until recently: mainly fluorescence in situ hybridization or loss of heterozygosity. The development of genome-wide techniques such as comparative genomic hybridization, array comparative genomic hybridization and single nucleotide polymorphism allows the analysis of copy number variations through the whole genome in one step. This enabled the investigators to refine different genetic subtypes for the better comprehension of neuroblastoma tumor behavior and reach the conclusion that these data together with a genomic profile based on gene expression should be included in future treatment stratification.
Collapse
Affiliation(s)
- Marta Jeison
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | |
Collapse
|
25
|
Bagci O, Tumer S, Olgun N, Altungoz O. Copy number status and mutation analyses of anaplastic lymphoma kinase (ALK) gene in 90 sporadic neuroblastoma tumors. Cancer Lett 2011; 317:72-7. [PMID: 22085494 DOI: 10.1016/j.canlet.2011.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 11/05/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022]
Abstract
Somatic and germline mutations of the anaplastic lymphoma kinase (ALK) gene were recently described in neuroblastoma (NB). In this study, we investigated the association of ALK copy number alterations with copy number status 2p24.1 amplicon harboring DEAD box polypeptide 1 (DDX1), MYCN and neuroblastoma-amplified (NAG) genes in 90 primary tumors of sporadic NB cases by multiplex ligation-dependent probe amplification (MLPA). We also performed mutation analysis of ALK gene by directly sequencing the exons 20-28 which cover the region that encodes juxtamembrane and kinase domains. A total of 39 (43.3%) NB cases revealed copy numbers alterations of ALK gene. There was highly significant association of ALK copy number gains with gains of one or more of the genes at 2p24.1 (DDX1, MYCN or NAG) in MYCN unamplified tumors (P<0.000). In addition, 15 of 17 MYCN amplified cases (88.2%) had aberrant ALK status. Solitary gain of ALK with normal copy number status of all other genes was observed only in one case. DNA sequencing of exons 20-28 of ALK revealed two different nucleotide changes in three cases leading to amino acid substitutions of F1245V and R1275Q in tyrosine kinase domain. In conclusion, the frequency of ALK mutations in NB is low and solitary copy number change of it is rarely observed.
Collapse
Affiliation(s)
- Ozkan Bagci
- Department of Medical Biology and Genetics, Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | | | | | | |
Collapse
|