1
|
Martorana E, Raciti G, Giuffrida R, Bruno E, Ficarra V, Ludovico GM, Suardi NR, Iraci N, Leggio L, Bussolati B, Grange C, Lorico A, Leonardi R, Forte S. A Novel Liquid Biopsy Method Based on Specific Combinations of Vesicular Markers Allows Us to Discriminate Prostate Cancer from Hyperplasia. Cells 2024; 13:1286. [PMID: 39120316 PMCID: PMC11311686 DOI: 10.3390/cells13151286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Prostate cancer is the second most common cancer in males worldwide, and its incidence is rising. Early detection is crucial for improving the outcomes, but the current screening methods have limitations. While prostate-specific antigen (PSA) testing is the most widely used screening tool, it has poor specificity, leading to a high rate of false positives and unnecessary biopsies. The existing biopsy techniques are invasive and are associated with complications. The liquid biopsy methods that analyze the biomarkers in blood or other bodily fluids offer a non-invasive and more accurate alternative for detecting and characterizing prostate tumors. METHODS Here, we present a novel liquid biopsy method for prostate cancer based on the identification of specific proteins in the extracellular vesicles isolated from the blood of patients with prostate cancer. RESULTS We observed that a specific combination of sEV proteins is a sensitive indicator of prostate cancer. Indeed, we found that the number of clusters expressed by specific combinations of either intra-vesicular (STAT3 and CyclinD1) or surface proteins (ERBB3, ALK, and CD81) allowed us to significantly discriminate the patients with prostate cancer from the individuals with hyperplasia. CONCLUSION This new liquid biopsy method has the potential to improve prostate cancer screening by providing a non-invasive and more accurate diagnostic tool.
Collapse
Affiliation(s)
- Emanuele Martorana
- IOM Ricerca Srl, Viagrande, 95029 Catania, Italy; (E.M.); (G.R.); (R.G.); (A.L.)
| | - Gabriele Raciti
- IOM Ricerca Srl, Viagrande, 95029 Catania, Italy; (E.M.); (G.R.); (R.G.); (A.L.)
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| | - Raffaella Giuffrida
- IOM Ricerca Srl, Viagrande, 95029 Catania, Italy; (E.M.); (G.R.); (R.G.); (A.L.)
| | - Elena Bruno
- Department of Physic and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy;
| | - Vincenzo Ficarra
- Azienda Ospedaliera Policlinico Universitario “G. Martino”, Dipartimento di Patologia Umana dell’Adulto e dell’Età Evolutiva, 98124 Messina, Italy;
| | - Giuseppe Mario Ludovico
- Ospedale Generale Regionale “F. Miulli”, Divisione di Urologia, Acquaviva Delle Fonti, 70021 Bari, Italy;
| | - Nazareno Roberto Suardi
- Azienda Ospedaliera Policlinico Universitario Di Genova, Divisione di Urologia, 16132 Genova, Italy;
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.I.); (L.L.)
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (N.I.); (L.L.)
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10124 Turin, Italy;
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Aurelio Lorico
- IOM Ricerca Srl, Viagrande, 95029 Catania, Italy; (E.M.); (G.R.); (R.G.); (A.L.)
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | | | - Stefano Forte
- IOM Ricerca Srl, Viagrande, 95029 Catania, Italy; (E.M.); (G.R.); (R.G.); (A.L.)
| |
Collapse
|
2
|
Maranto C, Sabharwal L, Udhane V, Pitzen SP, McCluskey B, Qi S, O’Connor C, Devi S, Johnson S, Jacobsohn K, Banerjee A, Iczkowski KA, Wang L, Dehm SM, Nevalainen MT. Stat5 induces androgen receptor ( AR) gene transcription in prostate cancer and offers a druggable pathway to target AR signaling. SCIENCE ADVANCES 2024; 10:eadi2742. [PMID: 38416822 PMCID: PMC10901378 DOI: 10.1126/sciadv.adi2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Androgen receptor (AR) drives prostate cancer (PC) growth and progression, and targeting AR signaling is the mainstay of pharmacological therapies for PC. Resistance develops relatively fast as a result of refueled AR activity. A major gap in the field is the lack of understanding of targetable mechanisms that induce persistent AR expression in castrate-resistant PC (CRPC). This study uncovers an unexpected function of active Stat5 signaling, a known promoter of PC growth and clinical progression, as a potent inducer of AR gene transcription. Stat5 suppression inhibited AR gene transcription in preclinical PC models and reduced the levels of wild-type, mutated, and truncated AR proteins. Pharmacological Stat5 inhibition by a specific small-molecule Stat5 inhibitor down-regulated Stat5-inducible genes as well as AR and AR-regulated genes and suppressed PC growth. This work introduces the concept of Stat5 as an inducer of AR gene transcription in PC. Pharmacological Stat5 inhibitors may represent a new strategy for suppressing AR and CRPC growth.
Collapse
Affiliation(s)
- Cristina Maranto
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lavannya Sabharwal
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vindhya Udhane
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Samuel P. Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Braedan McCluskey
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Songyan Qi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine O’Connor
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Savita Devi
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott Johnson
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenneth Jacobsohn
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anjishnu Banerjee
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marja T. Nevalainen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center at Jefferson Health, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol 2023; 13:1025373. [PMID: 36755813 PMCID: PMC9899847 DOI: 10.3389/fimmu.2022.1025373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)-5 proteins are required in immune regulation and homeostasis and play a crucial role in the development and function of several hematopoietic cells. STAT5b activation is involved in the expression of genes that participate in cell development, proliferation, and survival. STAT5a and STAT5b are paralogs and only human mutations in STAT5B have been identified leading to immune dysregulation and hematopoietic malignant transformation. The inactivating STAT5B mutations cause impaired post-natal growth, recurrent infections and immune dysregulation, whereas gain of function somatic mutations cause dysregulated allergic inflammation. These mutations are rare, and they are associated with a wide spectrum of clinical manifestations which provide a disease model elucidating the biological mechanism of STAT5 by studying the consequences of perturbations in STAT5 activity. Further, the use of Jak inhibitors as therapy for a variety of autoimmune and malignant disorders has increased substantially heading relevant lessons for the consequences of Jak/STAT immunomodulation from the human model. This review summarizes the biology of the STAT5 proteins, human disease associate with molecular defects in STAT5b, and the connection between aberrant activation of STAT5b and the development of certain cancers.
Collapse
Affiliation(s)
- Madison R. Smith
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States,*Correspondence: Alexander Vargas-Hernández,
| |
Collapse
|
4
|
Porcacchia AS, Câmara DAD, Andersen ML, Tufik S. Sleep disorders and prostate cancer prognosis: biology, epidemiology, and association with cancer development risk. Eur J Cancer Prev 2022; 31:178-189. [PMID: 33990093 DOI: 10.1097/cej.0000000000000685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sleep is crucial for the maintenance of health and well-being. Sleep disorders can result in physiological consequences and are associated with several health issues, including cancer. Cancer is one of the most significant health problems in the world. In Western countries, prostate cancer is the most prevalent noncutaneous cancer among men. Epidemiological studies showed that one in nine men will have this disease during their life. Many factors influence prostate cancer and the tumor niche, including endogenous hormones, family history, diet, and gene mutations. Disruption of the circadian cycle by sleep disorders or other factors has been suggested as a novel and important risk factor for prostate cancer and its tumorigenesis. This review presents information regarding the epidemiological and biological aspects of prostate cancer, and discusses the impact of sleep physiology and sleep disorders on this type of cancer, highlighting possible associations with risk of cancer development.
Collapse
Affiliation(s)
| | | | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP)
- Instituto do Sono, São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP)
- Instituto do Sono, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Second-Generation Jak2 Inhibitors for Advanced Prostate Cancer: Are We Ready for Clinical Development? Cancers (Basel) 2021; 13:cancers13205204. [PMID: 34680353 PMCID: PMC8533841 DOI: 10.3390/cancers13205204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Prostate Cancer (PC) is currently estimated to affect 1 in 9 men and is the second leading cause of cancer in men in the US. While androgen deprivation therapy, which targets the androgen receptor, is one of the front-line therapies for advanced PC and for recurrence of organ-confined PC treated with surgery, lethal castrate-resistant PC develops consistently in patients. PC is a multi-focal cancer with different grade carcinoma areas presenting simultaneously. Jak2-Stat5 signaling pathway has emerged as a potentially highly effective molecular target in PCs with positive areas for activated Stat5 protein. Activated Jak2-Stat5 signaling can be readily targeted by the second-generation Jak2-inhibitors that have been developed for myeloproliferative and autoimmune disorders and hematological malignancies. In this review, we analyze and summarize the Jak2 inhibitors that are currently in preclinical and clinical development. Abstract Androgen deprivation therapy (ADT) for metastatic and high-risk prostate cancer (PC) inhibits growth pathways driven by the androgen receptor (AR). Over time, ADT leads to the emergence of lethal castrate-resistant PC (CRPC), which is consistently caused by an acquired ability of tumors to re-activate AR. This has led to the development of second-generation anti-androgens that more effectively antagonize AR, such as enzalutamide (ENZ). However, the resistance of CRPC to ENZ develops rapidly. Studies utilizing preclinical models of PC have established that inhibition of the Jak2-Stat5 signaling leads to extensive PC cell apoptosis and decreased tumor growth. In large clinical cohorts, Jak2-Stat5 activity predicts PC progression and recurrence. Recently, Jak2-Stat5 signaling was demonstrated to induce ENZ-resistant PC growth in preclinical PC models, further emphasizing the importance of Jak2-Stat5 for therapeutic targeting for advanced PC. The discovery of the Jak2V617F somatic mutation in myeloproliferative disorders triggered the rapid development of Jak1/2-specific inhibitors for a variety of myeloproliferative and auto-immune disorders as well as hematological malignancies. Here, we review Jak2 inhibitors targeting the mutated Jak2V617F vs. wild type (WT)-Jak2 that are currently in the development pipeline. Among these 35 compounds with documented Jak2 inhibitory activity, those with potency against WT-Jak2 hold strong potential for advanced PC therapy.
Collapse
|
6
|
Le T, Jerel D, Bryan LJ. Update on the role of copanlisib in hematologic malignancies. Ther Adv Hematol 2021; 12:20406207211006027. [PMID: 33889376 PMCID: PMC8040547 DOI: 10.1177/20406207211006027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 11/23/2022] Open
Abstract
Clinical research in hematologic malignancies is continually advancing with emerging concepts in therapy and evolving results from clinical protocols. Targeting of the PI3K pathway remains a valuable treatment across both hematologic and solid malignancies. There are currently four United States Food and Drug Administration (FDA)-approved PI3K inhibitors, with several others in development. Copanlisib is a pan-PI3K inhibitor currently FDA-approved for the treatment of relapsed/refractory follicular lymphoma (FL) following two lines of therapy. Since FDA approval, there have been further investigations into the long-term safety profile of copanlisib, as well as treatment of FL and other lymphoma subtypes, both indolent and aggressive. Here, we review the most recent available data from clinical trials, describe the management of the most common side effects, and explore future concepts. The use of copanlisib as part of a combination therapy for various hematologic malignancies will also be discussed. Copanlisib is a unique drug compared with other PI3K inhibitors, with remarkable potential to improve our armamentarium in cancer treatment.
Collapse
Affiliation(s)
- Thuy Le
- Division of Hematology/Oncology, Georgia Cancer Center at Augusta University, Augusta, GA, USA
| | - David Jerel
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Locke J. Bryan
- Division of Hematology/Oncology, Georgia Cancer Center at Augusta University, 1120 15th St, CN-5333, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Xu B, Tang B, Wei J. Role of STAT1 in the resistance of HBV to IFN-α. Exp Ther Med 2021; 21:550. [PMID: 33850522 PMCID: PMC8027746 DOI: 10.3892/etm.2021.9982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
The objective of the present study was to explore the mechanism of hepatitis B virus (HBV) resistance to interferon (IFN), and the role of signal transducer and activator of transcription 1 (STAT1). HepG2.2.15 cells were stimulated with a long-term (6-24 weeks) low-dose interferon (IFN)α-2b (10-70 IU/ml), so as to construct and screen a HepG2.2.15 cell model resistant to IFNα-2b. The changes of STAT1 and other proteins in the JAK-STAT signaling pathway, before and after drug resistance, were compared. The phosphorylation of STAT1 in HepG2.2.15 cells resistant to IFNα-2b was significantly decreased, and the expression level of 2',5'-oligoadenylate synthetase 1 was downregulated. Decreased phosphorylation of STAT1 in the JAK-STAT signaling pathway a contributor to the development of resistance to IFN-α in HBV.
Collapse
Affiliation(s)
- Bingfa Xu
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Bo Tang
- Department of Pharmacy, Huainan First People's Hospital, Huainan, Anhui 232007, P.R. China
| | - Jiajia Wei
- Department of Pharmacy, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
8
|
Maranto C, Udhane V, Jia J, Verma R, Müller-Newen G, LaViolette PS, Pereckas M, Sabharwal L, Terhune S, Pattabiraman N, Njar VC, Imig JD, Wang L, Nevalainen MT. Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers (Basel) 2020; 12:E3412. [PMID: 33217941 PMCID: PMC7724566 DOI: 10.3390/cancers12113412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98-0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.
Collapse
Affiliation(s)
- Cristina Maranto
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (C.M.); (V.U.); (L.S.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vindhya Udhane
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (C.M.); (V.U.); (L.S.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jing Jia
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.J.); (L.W.)
| | - Ranjit Verma
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, Aachen University, 52066 Aachen, Germany;
| | - Peter S. LaViolette
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Radiology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Michael Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Lavannya Sabharwal
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (C.M.); (V.U.); (L.S.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott Terhune
- Department of Microbiology and Immunology, and Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | | | - Vincent C.O. Njar
- Department of Pharmacology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA;
| | - John D. Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; (J.J.); (L.W.)
| | - Marja T. Nevalainen
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (C.M.); (V.U.); (L.S.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.V.); (J.D.I.)
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells 2020; 9:cells9102297. [PMID: 33076315 PMCID: PMC7602614 DOI: 10.3390/cells9102297] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is associated with the regulation of essential cellular mechanisms, such as proliferation, invasion, survival, inflammation, and immunity. Aberrant JAK/STAT signaling contributes to cancer progression and metastatic development. STAT proteins play an essential role in the development of cervical cancer, and the inhibition of the JAK/STAT pathway may be essential for enhancing tumor cell death. Persistent activation of different STATs is present in a variety of cancers, including cervical cancer, and their overactivation may be associated with a poor prognosis and poor overall survival. The oncoproteins E6 and E7 play a critical role in the progression of cervical cancer and may mediate the activation of the JAK/STAT pathway. Inhibition of STAT proteins appears to show promise for establishing new targets in cancer treatment. The present review summarizes the knowledge about the participation of the different components of the JAK/STAT pathway and the participation of the human papillomavirus (HPV) associated with the process of cellular malignancy.
Collapse
|
10
|
Hall WA, Sabharwal L, Udhane V, Maranto C, Nevalainen MT. Cytokines, JAK-STAT Signaling and Radiation-Induced DNA Repair in Solid Tumors: Novel Opportunities for Radiation Therapy. Int J Biochem Cell Biol 2020; 127:105827. [PMID: 32822847 DOI: 10.1016/j.biocel.2020.105827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
A number of solid tumors are treated with radiation therapy (RT) as a curative modality. At the same time, for certain types of cancers the applicable doses of RT are not high enough to result in a successful eradication of cancer cells. This is often caused by limited pharmacological tools and strategies to selectively sensitize tumors to RT while simultaneously sparing normal tissues from RT. We present an outline of a novel strategy for RT sensitization of solid tumors utilizing Jak inhibitors. Here, recently published pre-clinical data are reviewed which demonstrate the promising role of Jak inhibition in sensitization of tumors to RT. A wide number of currently approved Jak inhibitors for non-malignant conditions are summarized including Jak inhibitors currently in clinical development. Finally, intersection between Jak/Stat and the levels of serum cytokines are presented and discussed as they relate to susceptibility to RT.
Collapse
Affiliation(s)
- William A Hall
- Department of Radiation Oncology and Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lavannya Sabharwal
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Vindhya Udhane
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cristina Maranto
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States; Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
11
|
Orlova A, Wagner C, de Araujo ED, Bajusz D, Neubauer HA, Herling M, Gunning PT, Keserű GM, Moriggl R. Direct Targeting Options for STAT3 and STAT5 in Cancer. Cancers (Basel) 2019; 11:E1930. [PMID: 31817042 PMCID: PMC6966570 DOI: 10.3390/cancers11121930] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)3 and STAT5 are important transcription factors that are able to mediate or even drive cancer progression through hyperactivation or gain-of-function mutations. Mutated STAT3 is mainly associated with large granular lymphocytic T-cell leukemia, whereas mutated STAT5B is associated with T-cell prolymphocytic leukemia, T-cell acute lymphoblastic leukemia and γδ T-cell-derived lymphomas. Hyperactive STAT3 and STAT5 are also implicated in various hematopoietic and solid malignancies, such as chronic and acute myeloid leukemia, melanoma or prostate cancer. Classical understanding of STAT functions is linked to their phosphorylated parallel dimer conformation, in which they induce gene transcription. However, the functions of STAT proteins are not limited to their phosphorylated dimerization form. In this review, we discuss the functions and the roles of unphosphorylated STAT3/5 in the context of chromatin remodeling, as well as the impact of STAT5 oligomerization on differential gene expression in hematopoietic neoplasms. The central involvement of STAT3/5 in cancer has made these molecules attractive targets for small-molecule drug development, but currently there are no direct STAT3/5 inhibitors of clinical grade available. We summarize the development of inhibitors against the SH2 domains of STAT3/5 and discuss their applicability as cancer therapeutics.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Christina Wagner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Elvin D. de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), Cologne University, 50937 Cologne, Germany;
| | - Patrick T. Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| |
Collapse
|
12
|
Yan W, Jamal M, Tan SH, Song Y, Young D, Chen Y, Katta S, Ying K, Ravindranath L, Woodle T, Kohaar I, Cullen J, Kagan J, Srivastava S, Dobi A, McLeod DG, Rosner IL, Sesterhenn IA, Srinivasan A, Srivastava S, Petrovics G. Molecular profiling of radical prostatectomy tissue from patients with no sign of progression identifies ERG as the strongest independent predictor of recurrence. Oncotarget 2019; 10:6466-6483. [PMID: 31741711 PMCID: PMC6849651 DOI: 10.18632/oncotarget.27294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND As a major cause of morbidity and mortality among men, prostate cancer is a heterogenous disease, with a vast heterogeneity in the biology of the disease and in clinical outcome. While it often runs an indolent course, local progression or metastasis may eventually develop, even among patients considered "low risk" at diagnosis. Therefore, biomarkers that can discriminate aggressive from indolent disease at an early stage would greatly benefit patients. We hypothesized that tissue specimens from early stage prostate cancers may harbor predictive signatures for disease progression. METHODS We used a cohort of radical prostatectomy patients with longitudinal follow-up, who had tumors with low grade and stage that revealed no signs of future disease progression at surgery. During the follow-up period, some patients either remained indolent (non-BCR) or progressed to biochemical recurrence (BCR). Total RNA was extracted from tumor, and adjacent normal epithelium of formalin-fixed-paraffin-embedded (FFPE) specimens. Differential gene expression in tumors, and in tumor versus normal tissues between BCR and non-BCR patients were analyzed by NanoString using a customized CodeSet of 151 probes. RESULTS After controlling for false discovery rates, we identified a panel of eight genes (ERG, GGT1, HDAC1, KLK2, MYO6, PLA2G7, BICD1 and CACNAID) that distinguished BCR from non-BCR patients. We found a clear association of ERG expression with non-BCR, which was further corroborated by quantitative RT-PCR and immunohistochemistry assays. CONCLUSIONS Our results identified ERG as the strongest predictor for BCR and showed that potential prognostic prostate cancer biomarkers can be identified from FFPE tumor specimens.
Collapse
Affiliation(s)
- Wusheng Yan
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Muhammad Jamal
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Shyh-Han Tan
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Yingjie Song
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Denise Young
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Yongmei Chen
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shilpa Katta
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kai Ying
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Lakshmi Ravindranath
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Tarah Woodle
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Indu Kohaar
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jennifer Cullen
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jacob Kagan
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Albert Dobi
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - David G. McLeod
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inger L. Rosner
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - Alagarsamy Srinivasan
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Shiv Srivastava
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gyorgy Petrovics
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD, USA
- John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
13
|
Kim JH, Kim WS, Park C. Interleukin-6 mediates resistance to PI3K-pathway-targeted therapy in lymphoma. BMC Cancer 2019; 19:936. [PMID: 31601188 PMCID: PMC6785854 DOI: 10.1186/s12885-019-6057-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Background The phosphoinositol 3-kinase (PI3K) pathway is associated with poor prognosis of hematologic malignancies, providing a strong rationale for the use of PI3K inhibitors in the treatment of malignant lymphoma. However, development of resistance limits the use of PI3K inhibitors in lymphoma patients. Methods We established copanlisib (pan-PI3K inhibitor)-resistant B-cell lymphoma and duvelisib (PI3Kδ and -γ inhibitor)-resistant T-cell lymphoma cell lines. The cytokine array and the phospho-kinase array were used to identify up-regulated proteins in the resistant cells. Cytokine expression and phospho-kinase levels were examined by ELISA and Western blot analysis, respectively. Cell proliferation capabilities were measured by using CCK-8 kit and colony formation assay. The effects of inhibitors on apoptosis were detected using an Annexin V-FITC Apoptosis Detection Kit and a flow cytometry system. The underlying mechanisms were studied by transfecting recombinant plasmids or siRNA into lymphoma cell lines. Cells were transiently transfected using the Amaxa electroporation system. We evaluated the effects of PI3K inhibitor alone and in combination with JAK inhibitor (BSK805) on lymphoma proliferation and signaling pathway activation. Results Cytokine arrays revealed upregulation of interleukin (IL)-6 in both copanlisib- and duvelisib-resistant cell lines. Phosphorylated STAT5, AKT, p70S6K and MAPK were increased in copanlisib-resistant B-cell lymphoma cells, whereas phosphorylated STAT3 and NF-κB were increased in duvelisib-resistant T cell lymphoma cells. Conversely, depletion of IL-6 sensitized both resistant cell lines, and led to downregulation of phosphorylated STAT3 and STAT5 in copanlisib- and duvelisib-resistant cells, respectively. Moreover, combined treatment with a JAK inhibitor (BSK805) and a PI3K inhibitor circumvented the acquired resistance to PI3K inhibitors in lymphoma, and concurrent inhibition of the activated pathways produced combined effects. Conclusions IL-6–induced STAT3 or STAT5 activation is a critical mechanism underlying PI3K inhibitor resistance in lymphoma, supporting the utility of IL-6 as an effective biomarker to predict therapeutic response to PI3K inhibitors. Electronic supplementary material The online version of this article (10.1186/s12885-019-6057-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Won Seog Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea. .,Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| | - Chaehwa Park
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| |
Collapse
|
14
|
Udhane V, Maranto C, Hoang DT, Gu L, Erickson A, Devi S, Talati PG, Banerjee A, Iczkowski KA, Jacobsohn K, See WA, Mirtti T, Kilari D, Nevalainen MT. Enzalutamide-Induced Feed-Forward Signaling Loop Promotes Therapy-Resistant Prostate Cancer Growth Providing an Exploitable Molecular Target for Jak2 Inhibitors. Mol Cancer Ther 2019; 19:231-246. [PMID: 31548294 DOI: 10.1158/1535-7163.mct-19-0508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
The second-generation antiandrogen, enzalutamide, is approved for castrate-resistant prostate cancer (CRPC) and targets androgen receptor (AR) activity in CRPC. Despite initial clinical activity, acquired resistance to enzalutamide arises rapidly and most patients develop terminal disease. Previous work has established Stat5 as a potent inducer of prostate cancer growth. Here, we investigated the significance of Jak2-Stat5 signaling in resistance of prostate cancer to enzalutamide. The levels of Jak2 and Stat5 mRNA, proteins and activation were evaluated in prostate cancer cells, xenograft tumors, and clinical prostate cancers before and after enzalutamide therapy. Jak2 and Stat5 were suppressed by genetic knockdown using lentiviral shRNA or pharmacologic inhibitors. Responsiveness of primary and enzalutamide-resistant prostate cancer to pharmacologic inhibitors of Jak2-Stat5 signaling was assessed in vivo in mice bearing prostate cancer xenograft tumors. Patient-derived prostate cancers were tested for responsiveness to Stat5 blockade as second-line treatment after enzalutamide ex vivo in tumor explant cultures. Enzalutamide-liganded AR induces sustained Jak2-Stat5 phosphorylation in prostate cancer leading to the formation of a positive feed-forward loop, where activated Stat5, in turn, induces Jak2 mRNA and protein levels contributing to further Jak2 activation. Mechanistically, enzalutamide-liganded AR induced Jak2 phosphorylation through a process involving Jak2-specific phosphatases. Stat5 promoted prostate cancer growth during enzalutamide treatment. Jak2-Stat5 inhibition induced death of prostate cancer cells and patient-derived prostate cancers surviving enzalutamide treatment and blocked enzalutamide-resistant tumor growth in mice. This work introduces a novel concept of a pivotal role of hyperactivated Jak2-Stat5 signaling in enzalutamide-resistant prostate cancer, which is readily targetable by Jak2 inhibitors in clinical development.
Collapse
Affiliation(s)
- Vindhya Udhane
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cristina Maranto
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David T Hoang
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew Erickson
- Department of Pathology, Medicum, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
| | - Savita Devi
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pooja G Talati
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Anjishnu Banerjee
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kenneth Jacobsohn
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Urology and Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William A See
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Urology and Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tuomas Mirtti
- Department of Pathology, Medicum, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland.,Department of Pathology, HUSLAB and Helsinki University Hospital, Helsinki, Finland
| | - Deepak Kilari
- Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin and Milwaukee VA Medical Center, Milwaukee, Wisconsin
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Pharmacology and Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
15
|
Longo JF, Brosius SN, Black L, Worley SH, Wilson RC, Roth KA, Carroll SL. ErbB4 promotes malignant peripheral nerve sheath tumor pathogenesis via Ras-independent mechanisms. Cell Commun Signal 2019; 17:74. [PMID: 31291965 PMCID: PMC6621970 DOI: 10.1186/s12964-019-0388-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We have found that erbB receptor tyrosine kinases drive Ras hyperactivation and growth in NF1-null malignant peripheral nerve sheath tumors (MPNSTs). However, MPNSTs variably express multiple erbB receptors with distinct functional characteristics and it is not clear which of these receptors drive MPNST pathogenesis. Here, we test the hypothesis that altered erbB4 expression promotes MPNST pathogenesis by uniquely activating key cytoplasmic signaling cascades. METHODS ErbB4 expression was assessed using immunohistochemistry, immunocytochemistry, immunoblotting and real-time PCR. To define erbB4 functions, we generated mice that develop MPNSTs with floxed Erbb4 alleles (P0-GGFβ3;Trp53+/-;Erbb4flox/flox mice) and ablated Erbb4 in these tumors. MPNST cell proliferation and survival was assessed using 3H-thymidine incorporation, MTT assays, Real-Time Glo and cell count assays. Control and Erbb4-null MPNST cells were orthotopically xenografted in immunodeficient mice and the growth, proliferation (Ki67 labeling), apoptosis (TUNEL labeling) and angiogenesis of these grafts was analyzed. Antibody arrays querying cytoplasmic kinases were used to identify erbB4-responsive kinases. Pharmacologic or genetic inhibition was used to identify erbB4-responsive kinases that drive proliferation. RESULTS Aberrant erbB4 expression was evident in 25/30 surgically resected human MPNSTs and in MPNSTs from genetically engineered mouse models (P0-GGFβ3 and P0-GGFβ3;Trp53+/- mice); multiple erbB4 splice variants that differ in their ability to activate PI3 kinase and nuclear signaling were present in MPNST-derived cell lines. Erbb4-null MPNST cells demonstrated decreased proliferation and survival and altered morphology relative to non-ablated controls. Orthotopic allografts of Erbb4-null cells were significantly smaller than controls, with reduced proliferation, survival and vascularization. ERBB4 knockdown in human MPNST cells similarly inhibited DNA synthesis and viability. Although we have previously shown that broad-spectrum erbB inhibitors inhibit Ras activation, Erbb4 ablation did not affect Ras activation, suggesting that erbB4 drives neoplasia via non-Ras dependent pathways. An analysis of 43 candidate kinases identified multiple NRG1β-responsive and erbB4-dependent signaling cascades including the PI3K, WNK1, STAT3, STAT5 and phospholipase-Cγ pathways. Although WNK1 inhibition did not alter proliferation, inhibition of STAT3, STAT5 and phospholipase-Cγ markedly reduced proliferation. CONCLUSIONS ErbB4 promotes MPNST growth by activating key non-Ras dependent signaling cascades including the STAT3, STAT5 and phospholipase-Cγ pathways. ErbB4 and its effector pathways are thus potentially useful therapeutic targets in MPNSTs.
Collapse
Affiliation(s)
- Jody Fromm Longo
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Stephanie N. Brosius
- Department of Pathology (SNB, KAR) and the Medical Scientist Training Program (SNB), University of Alabama at Birmingham, Birmingham, AL 35294-0017 USA
- Present address: Department of Pediatrics at The Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Laurel Black
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Stuart H. Worley
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Robert C. Wilson
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| | - Kevin A. Roth
- Department of Pathology (SNB, KAR) and the Medical Scientist Training Program (SNB), University of Alabama at Birmingham, Birmingham, AL 35294-0017 USA
- Present address: Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY USA
| | - Steven L. Carroll
- Department of Pathology and Laboratory Medicine (JFL, LB, RCW, SJW, SLC), Medical University of South Carolina, 171 Ashley Avenue, MSC 908, Charleston, SC 29425-9080 USA
| |
Collapse
|
16
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
17
|
Gordevičius J, Kriščiūnas A, Groot DE, Yip SM, Susic M, Kwan A, Kustra R, Joshua AM, Chi KN, Petronis A, Oh G. Cell-Free DNA Modification Dynamics in Abiraterone Acetate-Treated Prostate Cancer Patients. Clin Cancer Res 2018; 24:3317-3324. [PMID: 29615462 DOI: 10.1158/1078-0432.ccr-18-0101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/17/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Primary resistance to abiraterone acetate (AA), a key medication for the treatment of metastatic castration-resistant prostate cancer, occurs in 20% to 40% of patients. We aim to identify predictive biomarkers for AA-treatment response and understand the mechanisms related to treatment resistance.Experimental Design: We used the Infinium Human Methylation 450K BeadChip to monitor modification profiles of cell-free circulating DNA (cfDNA) in 108 plasma samples collected from 33 AA-treated patients.Results: Thirty cytosines showed significant modification differences (FDR Q < 0.05) between AA-sensitive and AA-resistant patients during the treatment, of which 21 cytosines were differentially modified prior to treatment. In addition, AA-sensitive patients, but not AA-resistant patients, lost interindividual variation of cfDNA modification shortly after starting AA treatment, but such variation returned to initial levels in the later phases of treatment.Conclusions: Our findings provide a list of potential biomarkers for predicting AA-treatment response, highlight the prognostic value of using cytosine modification variance as biomarkers, and shed new insights into the mechanisms of prostate cancer relapse in AA-sensitive patients. Clin Cancer Res; 24(14); 3317-24. ©2018 AACR.
Collapse
Affiliation(s)
- Juozas Gordevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algimantas Kriščiūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Groot
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Steven M Yip
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Miki Susic
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Andrew Kwan
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rafal Kustra
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anthony M Joshua
- Kinghorn Cancer Center, St. Vincent's Hospital, Sydney, NSW, Australia.,Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Kim N Chi
- Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Art Petronis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania. .,The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gabriel Oh
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Jallow F, Brockman JL, Helzer KT, Rugowski DE, Goffin V, Alarid ET, Schuler LA. 17 β-Estradiol and ICI182,780 Differentially Regulate STAT5 Isoforms in Female Mammary Epithelium, With Distinct Outcomes. J Endocr Soc 2018; 2:293-309. [PMID: 29594259 PMCID: PMC5842396 DOI: 10.1210/js.2017-00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022] Open
Abstract
Prolactin (PRL) and estrogen cooperate in lobuloalveolar development of the mammary gland and jointly regulate gene expression in breast cancer cells in vitro. Canonical PRL signaling activates STAT5A/B, homologous proteins that have different target genes and functions. Although STAT5A/B are important for physiological mammary function and tumor pathophysiology, little is known about regulation of their expression, particularly of STAT5B, and the consequences for hormone action. In this study, we examined the effect of two estrogenic ligands, 17β-estradiol (E2) and the clinical antiestrogen, ICI182,780 (ICI, fulvestrant) on expression of STAT5 isoforms and resulting crosstalk with PRL in normal and tumor murine mammary epithelial cell lines. In all cell lines, E2 and ICI significantly increased protein and corresponding nascent and mature transcripts for STAT5A and STAT5B, respectively. Transcriptional regulation of STAT5A and STAT5B by E2 and ICI, respectively, is associated with recruitment of estrogen receptor alpha and increased H3K27Ac at a common intronic enhancer 10 kb downstream of the Stat5a transcription start site. Further, E2 and ICI induced different transcripts associated with differentiation and tumor behavior. In tumor cells, E2 also significantly increased proliferation, invasion, and stem cell-like activity, whereas ICI had no effect. To evaluate the role of STAT5B in these responses, we reduced STAT5B expression using short hairpin (sh) RNA. shSTAT5B blocked ICI-induced transcripts associated with metastasis and the epithelial mesenchymal transition in both cell types. shSTAT5B also blocked E2-induced invasion of tumor epithelium without altering E2-induced transcripts. Together, these studies indicate that STAT5B mediates a subset of protumorigenic responses to both E2 and ICI, underscoring the need to understand regulation of its expression and suggesting exploration as a possible therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Fatou Jallow
- Endocrinology/Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jennifer L Brockman
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kyle T Helzer
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vincent Goffin
- Inserm Unit 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Elaine T Alarid
- Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
- University of Wisconsin Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
19
|
Maranto C, Udhane V, Hoang DT, Gu L, Alexeev V, Malas K, Cardenas K, Brody JR, Rodeck U, Bergom C, Iczkowski KA, Jacobsohn K, See W, Schmitt SM, Nevalainen MT. STAT5A/B Blockade Sensitizes Prostate Cancer to Radiation through Inhibition of RAD51 and DNA Repair. Clin Cancer Res 2018; 24:1917-1931. [PMID: 29483142 DOI: 10.1158/1078-0432.ccr-17-2768] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/30/2017] [Accepted: 01/23/2018] [Indexed: 01/20/2023]
Abstract
Purpose: The standard treatment for organ-confined prostate cancer is surgery or radiation, and locally advanced prostate cancer is typically treated with radiotherapy alone or in combination with androgen deprivation therapy. Here, we investigated whether Stat5a/b participates in regulation of double-strand DNA break repair in prostate cancer, and whether Stat5 inhibition may provide a novel strategy to sensitize prostate cancer to radiotherapy.Experimental Design: Stat5a/b regulation of DNA repair in prostate cancer was evaluated by comet and clonogenic survival assays, followed by assays specific to homologous recombination (HR) DNA repair and nonhomologous end joining (NHEJ) DNA repair. For HR DNA repair, Stat5a/b regulation of Rad51 and the mechanisms underlying the regulation were investigated in prostate cancer cells, xenograft tumors, and patient-derived prostate cancers ex vivo in 3D explant cultures. Stat5a/b induction of Rad51 and HR DNA repair and responsiveness to radiation were evaluated in vivo in mice bearing prostate cancer xenograft tumors.Results: Stat5a/b is critical for Rad51 expression in prostate cancer via Jak2-dependent mechanisms by inducing Rad51 mRNA levels. Consistent with this, genetic knockdown of Stat5a/b suppressed HR DNA repair while not affecting NHEJ DNA repair. Pharmacologic Stat5a/b inhibition potently sensitized prostate cancer cell lines and prostate cancer tumors to radiation, while not inducing radiation sensitivity in the neighboring tissues.Conclusions: This work introduces a novel concept of a pivotal role of Jak2-Stat5a/b signaling for Rad51 expression and HR DNA repair in prostate cancer. Inhibition of Jak2-Stat5a/b signaling sensitizes prostate cancer to radiation and, therefore, may provide an adjuvant therapy for radiation to reduce radiation-induced damage to the neighboring tissues. Clin Cancer Res; 24(8); 1917-31. ©2018 AACR.
Collapse
Affiliation(s)
- Cristina Maranto
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vindhya Udhane
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David T Hoang
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vitali Alexeev
- Department of Dermatology, Thomas Jefferson University Medical College, Philadelphia, Pennsylvania
| | - Kareem Malas
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Karmel Cardenas
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jonathan R Brody
- Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ulrich Rodeck
- Department of Dermatology, Thomas Jefferson University Medical College, Philadelphia, Pennsylvania
| | - Carmen Bergom
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ken A Iczkowski
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ken Jacobsohn
- Department of Urology, Prostate Cancer Center of Excellence at Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William See
- Department of Urology, Prostate Cancer Center of Excellence at Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sara M Schmitt
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marja T Nevalainen
- Department of Pathology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Pharmacology & Toxicology, Prostate Cancer Center of Excellence at Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
20
|
Culig Z, Puhr M. Interleukin-6 and prostate cancer: Current developments and unsolved questions. Mol Cell Endocrinol 2018; 462:25-30. [PMID: 28315704 DOI: 10.1016/j.mce.2017.03.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/27/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-6 is a pro-inflammatory cytokine that is expressed in prostate tumors and in the stromal tumor micro-enviroment. It is known to regulate proliferation, apoptosis, angiogenesis, and differentiation. The signaling pathway of Janus kinase and signal transducer and activator of transcription (STAT)3, which is activated by IL-6, is in the focus of scientific investigations for improved treatment approaches. Different effects of IL-6 and/or STAT3 on tumor cell growth have been observed in human and murine prostate cancer (PCa) models. Experimental therapies have been proposed in order to block the IL-6/STAT3 signaling pathway. In this context, the anti-IL-6 antibody siltuximab (CNTO 328) has been demonstrated to inhibit growth of prostate tumors in vitro and in vivo and delays progression towards castration resistance. However, clinically, the anti-IL-6 antibody was not successful as a monotherapy in phase II studies in patients with metastatic PCa. IL-6 is implicated in regulation of cellular stemness by increasing phosphorylation of STAT3. The cytokine has also a role in development of resistance to the non-steroidal anti-androgen enzalutamide. Endogenous inhibitors of IL-6 are suppressors of cytokine signaling and protein inhibitors of activated STAT. Although they inhibit signal transduction through STAT3, they may also exhibit anti-apoptotic effects. On the basis of complexity of IL-6 action in PCa, an individualized approach is needed to identify patients who will benefit from anti-IL-6 therapy in combination with standard treatments.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | - Martin Puhr
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
21
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Mohanty SK, Yagiz K, Pradhan D, Luthringer DJ, Amin MB, Alkan S, Cinar B. STAT3 and STAT5A are potential therapeutic targets in castration-resistant prostate cancer. Oncotarget 2017; 8:85997-86010. [PMID: 29156772 PMCID: PMC5689662 DOI: 10.18632/oncotarget.20844] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/03/2017] [Indexed: 11/25/2022] Open
Abstract
Mechanisms of castration-resistant prostate cancer (CRPC) are not well understood, thus hindering rational-based drug design. Activation of STAT3/5A, key components of the JAK/STAT pathway, is implicated in aggressive PC, yet their clinical relevance in CRPC remains elusive. Here, we evaluated the possible role of STAT3/5A in CRPC using immunological, quantitative mRNA expression profiling, and pharmacological methods. We observed a strong nuclear immunoreactivity for STAT3 and STAT5A in 93% (n=14/15) and 80% (n=12/15) of CRPC cases, respectively, compared with benign prostatic hyperplasia (BPH). We demonstrated that PC cells express varying levels of STAT3 and STAT5A transcripts. In addition, we demonstrate that pimozide, a psychotropic drug and an indirect inhibitor of STAT5, attenuated PC cells growth, and induced apoptosis in a dose-dependent manner. Furthermore, our analysis of the PC public data revealed that the STAT3/5A genes were frequently amplified in metastatic CRPC. These findings suggest that STAT3/5A potentially serves as a predictive biomarker to evaluate the therapeutic efficacy of a cancer drug targeting the JAK/STAT pathway. Since the JAK/STAT and AR pathways are suggested to be functionally synergistic, inhibition of the JAK/STAT signaling alone or together with AR may lead to a novel treatment modality for patients with advanced PC.
Collapse
Affiliation(s)
- Sambit K. Mohanty
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kader Yagiz
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dinesh Pradhan
- University of Pittsburgh Medical Center, Pittsburgh, PA 15238, USA
| | - Daniel J. Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mahul B. Amin
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bekir Cinar
- Department of Biological Sciences, The Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Hoang DT, Iczkowski KA, Kilari D, See W, Nevalainen MT. Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget 2017; 8:3724-3745. [PMID: 27741508 PMCID: PMC5356914 DOI: 10.18632/oncotarget.12554] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 12/25/2022] Open
Abstract
Despite aggressive treatment for localized cancer, prostate cancer (PC) remains a leading cause of cancer-related death for American men due to a subset of patients progressing to lethal and incurable metastatic castrate-resistant prostate cancer (CRPC). Organ-confined PC is treated by surgery or radiation with or without androgen deprivation therapy (ADT), while options for locally advanced and disseminated PC include radiation combined with ADT, or systemic treatments including chemotherapy. Progression to CRPC results from failure of ADT, which targets the androgen receptor (AR) signaling axis and inhibits AR-driven proliferation and survival pathways. The exact mechanisms underlying the transition from androgen-dependent PC to CRPC remain incompletely understood. Reactivation of AR has been shown to occur in CRPC despite depletion of circulating androgens by ADT. At the same time, the presence of AR-negative cell populations in CRPC has also been identified. While AR signaling has been proposed as the primary driver of CRPC, AR-independent signaling pathways may represent additional mechanisms underlying CRPC progression. Identification of new therapeutic strategies to target both AR-positive and AR-negative PC cell populations and, thereby, AR-driven as well as non-AR-driven PC cell growth and survival mechanisms would provide a two-pronged approach to eliminate CRPC cells with potential for synthetic lethality. In this review, we provide an overview of AR-dependent and AR-independent molecular mechanisms which drive CRPC, with special emphasis on the role of the Jak2-Stat5a/b signaling pathway in promoting castrate-resistant growth of PC through both AR-dependent and AR-independent mechanisms.
Collapse
Affiliation(s)
- David T Hoang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deepak Kilari
- Department of Medicine, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William See
- Department of Urology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology/Toxicology, Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Talati PG, Gu L, Ellsworth EM, Girondo MA, Trerotola M, Hoang DT, Leiby B, Dagvadorj A, McCue PA, Lallas CD, Trabulsi EJ, Gomella L, Aplin AE, Languino L, Fatatis A, Rui H, Nevalainen MT. Jak2-Stat5a/b Signaling Induces Epithelial-to-Mesenchymal Transition and Stem-Like Cell Properties in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2505-22. [PMID: 26362718 DOI: 10.1016/j.ajpath.2015.04.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 01/30/2023]
Abstract
Active Stat5a/b predicts early recurrence and disease-specific death in prostate cancer (PC), which both typically are caused by development of metastatic disease. Herein, we demonstrate that Stat5a/b induces epithelial-to-mesenchymal transition (EMT) of PC cells, as shown by Stat5a/b regulation of EMT marker expression (Twist1, E-cadherin, N-cadherin, vimentin, and fibronectin) in PC cell lines, xenograft tumors in vivo, and patient-derived PCs ex vivo using organ explant cultures. Jak2-Stat5a/b signaling induced functional end points of EMT as well, indicated by disruption of epithelial cell monolayers and increased migration and adhesion of PC cells to fibronectin. Knockdown of Twist1 suppressed Jak2-Stat5a/b-induced EMT properties of PC cells, which were rescued by re-introduction of Twist1, indicating that Twist1 mediates Stat5a/b-induced EMT in PC cells. While promoting EMT, Jak2-Stat5a/b signaling induced stem-like properties in PC cells, such as sphere formation and expression of cancer stem cell markers, including BMI1. Mechanistically, both Twist1 and BMI1 were critical for Stat5a/b induction of stem-like features, because genetic knockdown of Twist1 suppressed Stat5a/b-induced BMI1 expression and sphere formation in stem cell culture conditions, which were rescued by re-introduction of BMI1. By using human prolactin knock-in mice, we demonstrate that prolactin-Stat5a/b signaling promoted metastases formation of PC cells in vivo. In conclusion, our data support the concept that Jak2-Stat5a/b signaling promotes metastatic progression of PC by inducing EMT and stem cell properties in PC cells.
Collapse
Affiliation(s)
- Pooja G Talati
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elyse M Ellsworth
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Melanie A Girondo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marco Trerotola
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David T Hoang
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayush Dagvadorj
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard J Trabulsi
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard Gomella
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucia Languino
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Prostate Cancer Discovery and Development Program, Wistar Institute, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania; Prostate Cancer Discovery and Development Program, Wistar Institute, Philadelphia, Pennsylvania; Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Thomas LN, Merrimen J, Bell DG, Rendon R, Too CKL. Prolactin- and testosterone-induced carboxypeptidase-D correlates with increased nitrotyrosines and Ki67 in prostate cancer. Prostate 2015. [PMID: 26202060 DOI: 10.1002/pros.23054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Carboxypeptidase-D (CPD) cleaves C-terminal arginine for conversion to nitric oxide (NO) by nitric oxide synthase (NOS). Prolactin (PRL) and androgens stimulate CPD gene transcription and expression, which increases intracellular production of NO to promote viability of prostate cancer (PCa) cells in vitro. The current study evaluated whether hormonal upregulation of CPD and NO promote PCa cell viabilty in vivo, by correlating changes in expression of CPD and nitrotyrosine residues (products of NO action) with proliferation marker Ki67 and associated proteins during PCa development and progression. METHODS Fresh prostate tissues, obtained from 40 men with benign prostatic hyperplasia (BPH) or PCa, were flash-frozen at the time of surgery and used for RT-qPCR analysis of CPD, androgen receptor (AR), PRL receptor (PRLR), eNOS, and Ki67 levels. Archival paraffin-embedded tissues from 113 men with BPH or PCa were used for immunohistochemical (IHC) analysis of CPD, nitrotyrosines, phospho-Stat5 (for activated PRLR), AR, eNOS/iNOS, and Ki67. RESULTS RT-qPCR and IHC analyses showed strong AR and PRLR expression in benign and malignant prostates. CPD mRNA levels increased ∼threefold in PCa compared to BPH, which corresponded to a twofold increase in Ki67 mRNA levels. IHC analysis showed a progressive increase in CPD from 11.4 ± 2.1% in benign to 21.8 ± 3.2% in low-grade (P = 0.007), 40.7 ± 4.0% in high-grade (P < 0.0001) and 50.0 ± 9.5% in castration-recurrent PCa (P < 0.0001). Immunostaining for nitrotyrosines and Ki67 mirrored these increases during PCa progression. CPD, nitrotyrosines, and Ki67 tended to co-localize, as did phospho-Stat5. CONCLUSIONS CPD, nitrotyrosine, and Ki67 levels were higher in PCa than in benign and tended to co-localize, along with phospho-Stat5. The strong correlation in expression of these proteins in benign and malignant prostate tissues, combined with abundant AR and PRLR, supports in vitro evidence that the CPD-Arg-NO pathway is involved in the regulation of PCa cell proliferation. It further highlights a role for PRL in the development and progression of PCa.
Collapse
Affiliation(s)
- Lynn N Thomas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jennifer Merrimen
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - David G Bell
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ricardo Rendon
- Department of Urology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Catherine K L Too
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
26
|
Lee Y. Cancer Chemopreventive Potential of Procyanidin. Toxicol Res 2015; 33:273-282. [PMID: 29071011 PMCID: PMC5654195 DOI: 10.5487/tr.2017.33.4.273] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/20/2022] Open
Abstract
Chemoprevention entails the use of synthetic agents or naturally occurring dietary phytochemicals to prevent cancer development and progression. One promising chemopreventive agent, procyanidin, is a naturally occurring polyphenol that exhibits beneficial health effects including anti-inflammatory, antiproliferative, and antitumor activities. Currently, many preclinical reports suggest procyanidin as a promising lead compound for cancer prevention and treatment. As a potential anticancer agent, procyanidin has been shown to inhibit the proliferation of various cancer cells in “in vitro and in vivo”. Procyanidin has numerous targets, many of which are components of intracellular signaling pathways, including proinflammatory mediators, regulators of cell survival and apoptosis, and angiogenic and metastatic mediators, and modulates a set of upstream kinases, transcription factors, and their regulators. Although remarkable progress characterizing the molecular mechanisms and targets underlying the anticancer properties of procyanidin has been made in the past decade, the chemopreventive targets or biomarkers of procyanidin action have not been completely elucidated. This review focuses on the apoptosis and tumor inhibitory effects of procyanidin with respect to its bioavailability.
Collapse
Affiliation(s)
- Yongkyu Lee
- Department of Food Science & Nutrition, Dongseo University, Busan, Korea
| |
Collapse
|
27
|
Lai PS, Rosa DA, Magdy Ali A, Gómez-Biagi RF, Ball DP, Shouksmith AE, Gunning PT. A STAT inhibitor patent review: progress since 2011. Expert Opin Ther Pat 2015; 25:1397-421. [PMID: 26394986 DOI: 10.1517/13543776.2015.1086749] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The clinical utility of effective direct STAT inhibitors, particularly STAT3 and STAT5, for treating cancer and other diseases is well studied and known. AREAS COVERED This review will highlight the STAT inhibitor patent literature from 2011 to 2015 inclusive. Emphasis will be placed on inhibitors of the STAT3, STAT5a/b, and STAT1 proteins for cancer treatment. The review will, where suitably investigated, describe the mode and the site of inhibition, list indications that were evaluated, and rank the inhibitor's relative potency among compounds in the same class. The reader will gain an understanding of the diverse set of approaches, used both in academia and industry, to target STAT proteins. EXPERT OPINION There is still much work to be done to directly target the STAT3 and STAT5 proteins. As yet, there is still no direct STAT3 inhibitor in the clinic. While the SH2 domain remains a popular target for therapeutic intervention, the DNA-binding domain and N-terminal region are now attracting attention as possible sites for inhibition. Multiple putative STAT3 and STAT5 inhibitors have now been patented across a broad spectrum of chemotypes, each with their own advantages and limitations.
Collapse
Affiliation(s)
- Ping-Shan Lai
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - David A Rosa
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Ahmed Magdy Ali
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Rodolfo F Gómez-Biagi
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Daniel P Ball
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Andrew E Shouksmith
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| | - Patrick T Gunning
- a University of Toronto Mississauga, Department of Chemical and Physical Sciences , 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada +1 90 55 69 45 88 ; +1 90 55 69 49 29 ;
| |
Collapse
|
28
|
Zhang Y, Liu K, Zhang Y, Qi J, Lu B, Shi C, Yin Y, Cai W, Li W. ABL-N may induce apoptosis of human prostate cancer cells through suppression of KLF5, ICAM-1 and Stat5b, and upregulation of Bax/Bcl-2 ratio: An in vitro and in vivo study. Oncol Rep 2015; 34:2953-60. [PMID: 26397390 DOI: 10.3892/or.2015.4293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/17/2015] [Indexed: 11/06/2022] Open
Abstract
Identification of novel botanicals that can selectively induce apoptosis and arrest growth of cancer cells without producing cytotoxic effects is highly appreciable for cancer therapy. The present study aimed to investigate the possibility of acetylbritannilactone (ABL) derivative 5-(5-(ethylperoxy)pentan-2-yl)-6-methyl-3-methylene-2-oxo-2,3,3a,4,7,7a‑hexahydroben-zofuran-4-yl2-(6-methoxynaphthalen-2-yl) propanoate (ABL-N) as a therapeutic agent in human prostate cancer and potential mechanisms. Human prostate cancer cells were treated with ABL-N of different concentrations (0, 5, 10, 20, 30 and 40 µmol/l). Cell viability, migration and apoptosis were determined. Activities of caspases were assayed, as well as protein expression of cancer‑related proteins KLF5, Stat5b and ICAM-1 in PC3 cells. The therapeutic effect of ABL-N was further evaluated in our tumor xenografts. ABL-N inhibited growth of prostate cancer cells in a dose-dependent manner, without obvious effect on normal human prostate epithelial PrEC cells. ABL-N administration induced apoptosis of PC3 cells in a dose-dependent manner, along with the enhanced activity of caspases and increased Bax/Bcl-2 ratio. Expression of KLF5, Stat5b and ICAM-1 was significantly downregulated in PC3 cells. Our in vivo study further confirmed that ABL-N significantly inhibited the tumor growth of PC3 cells in the xenograft mouse model. ABL-N induces apoptosis of prostate cancer cells through activation of caspases, increasing the ratio of Bax/Bcl-2, as well as suppression of KLF5, Stat5b and ICAM-1 expressions. The present study indicated that ABL-N may be a potential therapeutic drug for human prostate cancer, and our data supported further studies to explore the therapeutic potential of ABL-N in other types of human cancer.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Kailong Liu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Yong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Jinchun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Baosai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Chongjun Shi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Yuewei Yin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Wenqing Cai
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, P.R. China
| |
Collapse
|
29
|
Han Z, Wang X, Ma L, Chen L, Xiao M, Huang L, Cao Y, Bai J, Ma D, Zhou J, Hong Z. Inhibition of STAT3 signaling targets both tumor-initiating and differentiated cell populations in prostate cancer. Oncotarget 2015; 5:8416-28. [PMID: 25261365 PMCID: PMC4226693 DOI: 10.18632/oncotarget.2314] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite of tremendous research efforts to profile prostate cancer, the genetic alterations and biological processes that correlate with disease progression remain partially elusive. In this study we show that the STAT3 small molecule inhibitor Stattic caused S-phase accumulation at low-dose levels and led to massive apoptosis at a relatively high-dose level in prostate cancer cells. STAT3 knockdown led to the disruption of the microvascular niche which tumor-initiating cells (TICs) and non-tumor initiating cells (non-TICs)depend on. Primary human prostate cancer cells and prostate cancer cell line contained high aldehyde dehydrogenase activity (ALDHhigh) subpopulations with stem cell-like characteristics, which expressed higher levels of the active phosphorylated form of STAT3 (pSTAT3) than that of non-ALDHhigh subpopulations. Stattic could singnificantly decreas the population of ALDHhigh prostate cancer cells even at low-dose levels. IL-6 can convert non-ALDHhigh cells to ALDHhigh cells in prostate cancer cell line as well as from cells derived from human prostate tumors, the conversion mediated by IL-6 was abrogated in the presence of STAT3 inhibitor or upon STAT3 knockdown. STAT3 knockdown significantly impaired the ability of prostate cancer cells to initiate development of prostate adenocarcinoma. Moreover, blockade of STAT3 signaling was significantly effective in eradicating the tumor-initiating and bulk tumor cancer cell populations in both prostate cancer cell-line xenograft model and patient-derived tumor xenograft (PDTX) models. This data suggests that targeting both tumor initiating and differentiated cell populations by STAT3 inhibition is predicted to have greater efficacy for prostate cancer treatment.
Collapse
Affiliation(s)
- Zhiqiang Han
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. These authors contributed equally to this work
| | - Xiaoli Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. These authors contributed equally to this work
| | - Liang Ma
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Liang Huang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Cao
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Bai
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenya Hong
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
30
|
Liao Z, Gu L, Vergalli J, Mariani SA, De Dominici M, Lokareddy RK, Dagvadorj A, Purushottamachar P, McCue PA, Trabulsi E, Lallas CD, Gupta S, Ellsworth E, Blackmon S, Ertel A, Fortina P, Leiby B, Xia G, Rui H, Hoang DT, Gomella LG, Cingolani G, Njar V, Pattabiraman N, Calabretta B, Nevalainen MT. Structure-Based Screen Identifies a Potent Small Molecule Inhibitor of Stat5a/b with Therapeutic Potential for Prostate Cancer and Chronic Myeloid Leukemia. Mol Cancer Ther 2015; 14:1777-93. [PMID: 26026053 DOI: 10.1158/1535-7163.mct-14-0883] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/15/2015] [Indexed: 11/16/2022]
Abstract
Bypassing tyrosine kinases responsible for Stat5a/b phosphorylation would be advantageous for therapy development for Stat5a/b-regulated cancers. Here, we sought to identify small molecule inhibitors of Stat5a/b for lead optimization and therapy development for prostate cancer and Bcr-Abl-driven leukemias. In silico screening of chemical structure databases combined with medicinal chemistry was used for identification of a panel of small molecule inhibitors to block SH2 domain-mediated docking of Stat5a/b to the receptor-kinase complex and subsequent phosphorylation and dimerization. We tested the efficacy of the lead compound IST5-002 in experimental models and patient samples of two known Stat5a/b-driven cancers, prostate cancer and chronic myeloid leukemia (CML). The lead compound inhibitor of Stat5-002 (IST5-002) prevented both Jak2 and Bcr-Abl-mediated phosphorylation and dimerization of Stat5a/b, and selectively inhibited transcriptional activity of Stat5a (IC50 = 1.5μmol/L) and Stat5b (IC50 = 3.5 μmol/L). IST5-002 suppressed nuclear translocation of Stat5a/b, binding to DNA and Stat5a/b target gene expression. IST5-002 induced extensive apoptosis of prostate cancer cells, impaired growth of prostate cancer xenograft tumors, and induced cell death in patient-derived prostate cancers when tested ex vivo in explant organ cultures. Importantly, IST5-002 induced robust apoptotic death not only of imatinib-sensitive but also of imatinib-resistant CML cell lines and primary CML cells from patients. IST5-002 provides a lead structure for further chemical modifications for clinical development for Stat5a/b-driven solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Zhiyong Liao
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jenny Vergalli
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samanta A Mariani
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marco De Dominici
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ravi K Lokareddy
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayush Dagvadorj
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Puranik Purushottamachar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Peter A McCue
- Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard Trabulsi
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shilpa Gupta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elyse Ellsworth
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shauna Blackmon
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Guanjun Xia
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Pathology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David T Hoang
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Gino Cingolani
- Department of Biochemistry, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vincent Njar
- School of Pharmacy, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nagarajan Pattabiraman
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Bruno Calabretta
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
31
|
Shukeir N, Stefanska B, Parashar S, Chik F, Arakelian A, Szyf M, Rabbani SA. Pharmacological methyl group donors block skeletal metastasis in vitro and in vivo. Br J Pharmacol 2015; 172:2769-81. [PMID: 25631332 DOI: 10.1111/bph.13102] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE DNA hypomethylation was previously implicated in metastasis. In the present study, we examined whether methyl supplementation with the universal methyl donor S-adenosylmethionine (SAM) inhibits prostate cancer associated skeletal metastasis. EXPERIMENTAL APPROACH Highly invasive human prostate cancer cells PC-3 and DU-145 were treated with vehicle alone, S-adenosylhomocysteine (SAH) or SAM and their effects on tumour cell proliferation, invasion, migration and colony formation were monitored. For in vivo studies, control (SAH) and SAM-treated PC-3 cells were injected into the tibia of Fox chase SCID mice and skeletal lesions were determined by X-ray and μCT. To understand possible mechanisms involved, we delineated the effect of SAM on the genome-wide methylation profile of PC-3 cells. KEY RESULTS Treatment with SAM resulted in a dose-dependent inhibition of tumour cell proliferation, invasion, cell migration, colony formation and cell cycle characteristics. Animals injected with 250 μM SAM-treated cells developed significantly smaller skeletal lesions, which were associated with increases in bone volume to tumour volume ratio and connectivity density as well as decreased trabecular spacing. Genome-wide methylation analysis showed differential methylation in several key signalling pathways implicated in prostate cancer including the signal transducer and activator of transcription 3 (STAT3) pathway. A selective STAT3 inhibitor decreased tumour cell invasion, effects which were less pronounced as compared with SAM. CONCLUSIONS AND IMPLICATIONS These studies provide a possible mechanism for the role of DNA demethylation in the development of skeletal metastasis and a rationale for the use of hypermethylation pharmacological agents to impede the development and progression of skeletal metastasis.
Collapse
Affiliation(s)
- Nicholas Shukeir
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Barbara Stefanska
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada.,Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Surabhi Parashar
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Flora Chik
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada
| | - Ani Arakelian
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
32
|
Abstract
PURPOSE Prostate cancer cells are responsive to multiple hormones and growth factors that can affect cell function. These effects may include modulating cell proliferation and apoptosis, but the ability to impinge on the metastatic potential of prostate cancer cells by affecting cell motility should also be considered, as prostate tumor metastasis correlates with limited therapeutic options and poor prognosis. Human growth hormone (hGH) can affect the growth and survival of prostate cancer cells, but the effect of hGH on prostate cancer cell motility is unknown. In the present study, the potential for exogenous and autocrine hGH to directly affect prostate cancer cell motility was addressed. MATERIALS AND METHODS The effects of exogenous and autocrine hGH on the chemokinesis and chemotaxis of LNCaP prostate cancer cells were tested using cell monolayer wound healing and Boyden chamber invasion assays. The signaling pathways underlying these effects were resolved with chemical inhibitors and the correlation with cytoskeletal actin reorganization evaluated microscopically by staining cells with fluor-conjugated phalloidin. RESULTS Both exogenous and autocrine hGH augmented the migration and invasion of LNCaP cells, and hGH itself acted as a chemoattractant. This activity was dependent upon the STAT5, MEK1/2 and PI3K signaling pathways, and was accompanied by an alteration in cellular actin organization. CONCLUSIONS hGH may enhance the metastatic potential of prostate cancer cells, both as a stimulant of cellular motility and invasiveness and as a chemoattractant.
Collapse
Affiliation(s)
- Alona O Nakonechnaya
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University , Greenville, NC , USA
| | | |
Collapse
|
33
|
Prolactin-Induced Prostate Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:221-42. [DOI: 10.1007/978-3-319-12114-7_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Hoang DT, Gu L, Liao Z, Shen F, Talati PG, Koptyra M, Tan SH, Ellsworth E, Gupta S, Montie H, Dagvadorj A, Savolainen S, Leiby B, Mirtti T, Merry DE, Nevalainen MT. Inhibition of Stat5a/b Enhances Proteasomal Degradation of Androgen Receptor Liganded by Antiandrogens in Prostate Cancer. Mol Cancer Ther 2014; 14:713-26. [PMID: 25552366 DOI: 10.1158/1535-7163.mct-14-0819] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/07/2014] [Indexed: 11/16/2022]
Abstract
Although poorly understood, androgen receptor (AR) signaling is sustained despite treatment of prostate cancer with antiandrogens and potentially underlies development of incurable castrate-resistant prostate cancer. However, therapies targeting the AR signaling axis eventually fail when prostate cancer progresses to the castrate-resistant stage. Stat5a/b, a candidate therapeutic target protein in prostate cancer, synergizes with AR to reciprocally enhance the signaling of both proteins. In this work, we demonstrate that Stat5a/b sequesters antiandrogen-liganded (MDV3100, bicalutamide, flutamide) AR in prostate cancer cells and protects it against proteasomal degradation in prostate cancer. Active Stat5a/b increased nuclear levels of both unliganded and antiandrogen-liganded AR, as demonstrated in prostate cancer cell lines, xenograft tumors, and clinical patient-derived prostate cancer samples. Physical interaction between Stat5a/b and AR in prostate cancer cells was mediated by the DNA-binding domain of Stat5a/b and the N-terminal domain of AR. Moreover, active Stat5a/b increased AR occupancy of the prostate-specific antigen promoter and AR-regulated gene expression in prostate cancer cells. Mechanistically, both Stat5a/b genetic knockdown and antiandrogen treatment induced proteasomal degradation of AR in prostate cancer cells, with combined inhibition of Stat5a/b and AR leading to maximal loss of AR protein and prostate cancer cell viability. Our results indicate that therapeutic targeting of AR in prostate cancer using antiandrogens may be substantially improved by targeting of Stat5a/b.
Collapse
Affiliation(s)
- David T Hoang
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lei Gu
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhiyong Liao
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Feng Shen
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pooja G Talati
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mateusz Koptyra
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shyh-Han Tan
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elyse Ellsworth
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shilpa Gupta
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, H. Lee Moffit Cancer Center and Research Institute, University of South Florida, Tampa, Florida
| | - Heather Montie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ayush Dagvadorj
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saija Savolainen
- Deparment of Physiology, University of Turku, Turku, Finland. Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tuomas Mirtti
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland. Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Diane E Merry
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Marja T Nevalainen
- Deparment of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Jeet V, Tevz G, Lehman M, Hollier B, Nelson C. Elevated YKL40 is associated with advanced prostate cancer (PCa) and positively regulates invasion and migration of PCa cells. Endocr Relat Cancer 2014; 21:723-37. [PMID: 24981110 PMCID: PMC4134518 DOI: 10.1530/erc-14-0267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in tumours from patients with advanced stage cancers, including prostate cancer (PCa). The exact function of YKL40 is poorly understood, but it has been shown to play an important role in promoting tumour angiogenesis and metastasis. The therapeutic value and biological function of YKL40 are unknown in PCa. The objective of this study was to examine the expression and function of YKL40 in PCa. Gene expression analysis demonstrated that YKL40 was highly expressed in metastatic PCa cells when compared with less invasive and normal prostate epithelial cell lines. In addition, the expression was primarily limited to androgen receptor-positive cell lines. Evaluation of YKL40 tissue expression in PCa patients showed a progressive increase in patients with aggressive disease when compared with those with less aggressive cancers and normal controls. Treatment of LNCaP and C4-2B cells with androgens increased YKL40 expression, whereas treatment with an anti-androgen agent decreased the gene expression of YKL40 in androgen-sensitive LNCaP cells. Furthermore, knockdown of YKL40 significantly decreased invasion and migration of PCa cells, whereas overexpression rendered them more invasive and migratory, which was commensurate with an enhancement in the anchorage-independent growth of cells. To our knowledge, this study characterises the role of YKL40 for the first time in PCa. Together, these results suggest that YKL40 plays an important role in PCa progression and thus inhibition of YKL40 may be a potential therapeutic strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Varinder Jeet
- Australian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, AustraliaDepartment of Urologic SciencesVancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregor Tevz
- Australian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, AustraliaDepartment of Urologic SciencesVancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie Lehman
- Australian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, AustraliaDepartment of Urologic SciencesVancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, CanadaAustralian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, AustraliaDepartment of Urologic SciencesVancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brett Hollier
- Australian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, AustraliaDepartment of Urologic SciencesVancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, AustraliaDepartment of Urologic SciencesVancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, CanadaAustralian Prostate Cancer Research Centre - QueenslandInstitute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, AustraliaDepartment of Urologic SciencesVancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
STAT3 in Cancer-Friend or Foe? Cancers (Basel) 2014; 6:1408-40. [PMID: 24995504 PMCID: PMC4190548 DOI: 10.3390/cancers6031408] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/25/2022] Open
Abstract
The roles and significance of STAT3 in cancer biology have been extensively studied for more than a decade. Mounting evidence has shown that constitutive activation of STAT3 is a frequent biochemical aberrancy in cancer cells, and this abnormality directly contributes to tumorigenesis and shapes many malignant phenotypes in cancer cells. Nevertheless, results from more recent experimental and clinicopathologic studies have suggested that STAT3 also can exert tumor suppressor effects under specific conditions. Importantly, some of these studies have demonstrated that STAT3 can function either as an oncoprotein or a tumor suppressor in the same cell type, depending on the specific genetic background or presence/absence of specific coexisting biochemical defects. Thus, in the context of cancer biology, STAT3 can be a friend or foe. In the first half of this review, we will highlight the “evil” features of STAT3 by summarizing its oncogenic functions and mechanisms. The differences between the canonical and non-canonical pathway will be highlighted. In the second half, we will summarize the evidence supporting that STAT3 can function as a tumor suppressor. To explain how STAT3 may mediate its tumor suppressor effects, we will discuss several possible mechanisms, one of which is linked to the role of STAT3β, one of the two STAT3 splicing isoforms. Taken together, it is clear that the roles of STAT3 in cancer are multi-faceted and far more complicated than one appreciated previously. The new knowledge has provided us with new approaches and strategies when we evaluate STAT3 as a prognostic biomarker or therapeutic target.
Collapse
|
37
|
Fitzgerald KA, Evans JC, McCarthy J, Guo J, Prencipe M, Kearney M, Watson WR, O'Driscoll CM. The role of transcription factors in prostate cancer and potential for future RNA interference therapy. Expert Opin Ther Targets 2014; 18:633-49. [DOI: 10.1517/14728222.2014.896904] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Gu L, Talati P, Vogiatzi P, Romero-Weaver AL, Abdulghani J, Liao Z, Leiby B, Hoang DT, Mirtti T, Alanen K, Zinda M, Huszar D, Nevalainen MT. Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation. Mol Cancer Ther 2014; 13:1246-58. [PMID: 24577942 DOI: 10.1158/1535-7163.mct-13-0605] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastatic prostate cancer is lethal and lacks effective strategies for prevention or treatment, requiring novel therapeutic approaches. Interleukin-6 (IL-6) is a cytokine that has been linked with prostate cancer pathogenesis by multiple studies. However, the direct functional roles of IL-6 in prostate cancer growth and progression have been unclear. In the present study, we show that IL-6 is produced in distant metastases of clinical prostate cancers. IL-6-activated signaling pathways in prostate cancer cells induced a robust 7-fold increase in metastases formation in nude mice. We further show that IL-6 promoted migratory prostate cancer cell phenotype, including increased prostate cancer cell migration, microtubule reorganization, and heterotypic adhesion of prostate cancer cells to endothelial cells. IL-6-driven metastasis was predominantly mediated by Stat3 and to lesser extent by ERK1/2. Most importantly, pharmacologic inhibition of Jak1/2 by AZD1480 suppressed IL-6-induced signaling, migratory prostate cancer cell phenotypes, and metastatic dissemination of prostate cancer in vivo in nude mice. In conclusion, we demonstrate that the cytokine IL-6 directly promotes prostate cancer metastasis in vitro and in vivo via Jak-Stat3 signaling pathway, and that IL-6-driven metastasis can be effectively suppressed by pharmacologic targeting of Jak1/2 using Jak1/2 inhibitor AZD1480. Our results therefore provide a strong rationale for further development of Jak1/2 inhibitors as therapy for metastatic prostate cancer.
Collapse
Affiliation(s)
- Lei Gu
- Authors' Affiliations: Departments of Cancer Biology, Urology, and Medical Oncology, Kimmel Cancer Center; Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania; Oncology iMED, AstraZeneca R&D Boston, Waltham, Massachusetts; Department of Pathology, Haartman Institute; Institute of Molecular Medicine, University of Helsinki, Helsinki; and Department of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Teng Y, Ross JL, Cowell JK. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAKSTAT 2014; 3:e28086. [PMID: 24778926 PMCID: PMC3995737 DOI: 10.4161/jkst.28086] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
JAK-STAT3 signaling, while regulating many aspects of cancer development and progression, promotes invasion and metastasis through activation of key metastasis promoting genes such as WASF3. STAT3 promotes WASF3 expression and JAK2 independently activates it, which is required for invasion. JAK-STAT3 signaling is dependent on WASF3 function, since its inactivation in cells expressing JAK-STAT3 suppresses invasion. WASF3 overexpression leads to activation of NFκB and ZEB1 which also promote invasion through regulation of target genes involved in metastasis. NFκB frequently cooperates with STAT3 to upregulate metastasis promoting genes such as matrix metalloproteinases and cytokines, as well as to suppress microRNAs which can suppresses invasion. This better understanding of the complex role played by JAK-STAT3 in the regulation of cell movement, invasion, and metastasis provides opportunities to suppress this lethal aspect of cancer progression by not only targeting the JAK and STAT3 proteins directly, but also some of the downstream effectors of JAK-STAT3 signaling.
Collapse
Affiliation(s)
- Yong Teng
- Georgia Regents University Cancer Center; Augusta, GA USA
| | - James L Ross
- Georgia Regents University Cancer Center; Augusta, GA USA
| | - John K Cowell
- Georgia Regents University Cancer Center; Augusta, GA USA
| |
Collapse
|
40
|
Zhang L, Li J, Li L, Zhang J, Wang X, Yang C, Li Y, Lan F, Lin P. IL-23 selectively promotes the metastasis of colorectal carcinoma cells with impaired Socs3 expression via the STAT5 pathway. Carcinogenesis 2014; 35:1330-40. [PMID: 24464786 DOI: 10.1093/carcin/bgu017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-23 (IL-23) is a conventional proinflammatory IL related to colorectal carcinoma (CRC). The signal transducer and activator of transcription (STAT) and suppressors of cytokine signaling (Socs) molecules, respectively, serve as agonists and antagonists of IL-23-associated inflammation. However, it remains unknown whether IL-23 directly affects CRC metastasis. In this study, we measured the metastasis of several human CRC cell lines stimulated by IL-23 in vitro and in vivo. Interestingly, the prometastasis effect of IL-23 was observed only in SW-620 cells. IL-23-associated migration and invasion was mediated by the phosphorylation of STAT5. The expression of Socs3 in SW-620 was impaired by IL-23 via DNA methylation and DNA methyltransferase-1 (DNMT-1)-dependent way. The DNMT-1-associated regulation was not observed in the other three cells. Socs3 was further confirmed to inhibit the prometastatic function of IL-23 both in vitro and in vivo. We analyzed the clinical correlation between the level of IL-23 in tumors and the metastasis of CRC and found that higher IL-23 levels along with lower Socs3 in CRC tissues accounted for more metastatic cases. In conclusion, it was demonstrated that IL-23, assisted by STAT5, might only promote the metastasis of CRC with deficient Socs3 expression in which IL-23-induced DNMT-1 was involved. It was elucidated that Socs3 seemed to be one of the important factors that mediate the selectivity of IL-23. Taken together, these discoveries give rise to new insights into the role of IL-23 in cancer biology and provide additional preclinical data regarding IL-23-associated therapy for CRC.
Collapse
Affiliation(s)
- Le Zhang
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jun Li
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Li Li
- Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jie Zhang
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Xiaodong Wang
- Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chuanhua Yang
- Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yanyan Li
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Feng Lan
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ping Lin
- Division of Geriatrics, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy and Gastrointestinal Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
41
|
Felgueiras J, Silva JV, Fardilha M. Prostate cancer: the need for biomarkers and new therapeutic targets. J Zhejiang Univ Sci B 2014; 15:16-42. [PMID: 24390742 PMCID: PMC3891116 DOI: 10.1631/jzus.b1300106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/08/2013] [Indexed: 12/16/2022]
Abstract
Prostate cancer (PCa) incidence and mortality have decreased in recent years. Nonetheless, it remains one of the most prevalent cancers in men, being a disquieting cause of men's death worldwide. Changes in many cell signaling pathways have a predominant role in the onset, development, and progression of the disease. These include prominent pathways involved in the growth, apoptosis, and angiogenesis of the normal prostate gland, such as androgen and estrogen signaling, and other growth factor signaling pathways. Understanding the foundations of PCa is leading to the discovery of key molecules that could be used to improve patient management. The ideal scenario would be to have a panel of molecules, preferably detectable in body fluids, that are specific and sensitive biomarkers for PCa. In the early stages, androgen deprivation is the gold standard therapy. However, as the cancer progresses, it eventually becomes independent of androgens, and hormonal therapy fails. For this reason, androgen-independent PCa is still a major therapeutic challenge. By disrupting specific protein interactions or manipulating the expression of some key molecules, it might be possible to regulate tumor growth and metastasis formation, avoiding the systemic side effects of current therapies. Clinical trials are already underway to assess the efficacy of molecules specially designed to target key proteins or protein interactions. In this review, we address that recent progress made towards understanding PCa development and the molecular pathways underlying this pathology. We also discuss relevant molecular markers for the management of PCa and new therapeutic challenges.
Collapse
|
42
|
Tyagi A, Raina K, Shrestha SP, Miller B, Thompson JA, Wempe MF, Agarwal R, Agarwal C. Procyanidin B2 3,3(″)-di-O-gallate, a biologically active constituent of grape seed extract, induces apoptosis in human prostate cancer cells via targeting NF-κB, Stat3, and AP1 transcription factors. Nutr Cancer 2013; 66:736-46. [PMID: 24191894 PMCID: PMC4079462 DOI: 10.1080/01635581.2013.783602] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recently, we identified procyanidin B2 3,3(″)-di-O-gallate (B2G2) as most active constituent of grape seed extract (GSE) for efficacy against prostate cancer (PCa). Isolating large quantities of B2G2 from total GSE is labor intensive and expensive, thereby limiting both efficacy and mechanistic studies with this novel anticancer agent. Accordingly, here we synthesized gram-scale quantities of B2G2, compared it with B2G2 isolated from GSE for possible equivalent biological activity and conducted mechanistic studies. Both B2G2 preparations inhibited cell growth, decreased clonogenicity, and induced cell cycle arrest and apoptotic death, comparable to each other, in various human PCa cell lines. Mechanistic studies focusing on transcription factors involved in apoptotic and survival pathways revealed that B2G2 significantly inhibits NF-κB and activator protein1 (AP1) transcriptional activity and nuclear translocation of signal transducer and activator of transcription3 (Stat3) in PCa cell lines, irrespective of their functional androgen receptor status. B2G2 also decreased survivin expression which is regulated by NF-κB, AP1, and Stat3 and increased cleaved PARP level. In summary, we report B2G2 chemical synthesis at gram-quantity with equivalent biological efficacy against human PCa cell lines and same molecular targeting profiles at key transcription factors level. The synthetic B2G2 will stimulate more research on prostate and possibly other malignancies in preclinical models and clinical translation.
Collapse
Affiliation(s)
- Alpna Tyagi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Suraj Prakash Shrestha
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bettina Miller
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John A. Thompson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Peng C, Wang M, Shen Y, Feng H, Li A. Reconstruction and analysis of transcription factor-miRNA co-regulatory feed-forward loops in human cancers using filter-wrapper feature selection. PLoS One 2013; 8:e78197. [PMID: 24205155 PMCID: PMC3812136 DOI: 10.1371/journal.pone.0078197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND As one of the most common types of co-regulatory motifs, feed-forward loops (FFLs) control many cell functions and play an important role in human cancers. Therefore, it is crucial to reconstruct and analyze cancer-related FFLs that are controlled by transcription factor (TF) and microRNA (miRNA) simultaneously, in order to find out how miRNAs and TFs cooperate with each other in cancer cells and how they contribute to carcinogenesis. Current FFL studies rely on predicted regulation information and therefore suffer the false positive issue in prediction results. More critically, FFLs generated by existing approaches cannot represent the dynamic and conditional regulation relationship under different experimental conditions. METHODOLOGY/PRINCIPAL FINDINGS In this study, we proposed a novel filter-wrapper feature selection method to accurately identify co-regulatory mechanism by incorporating prior information from predicted regulatory interactions with parallel miRNA/mRNA expression datasets. By applying this method, we reconstructed 208 and 110 TF-miRNA co-regulatory FFLs from human pan-cancer and prostate datasets, respectively. Further analysis of these cancer-related FFLs showed that the top-ranking TF STAT3 and miRNA hsa-let-7e are key regulators implicated in human cancers, which have regulated targets significantly enriched in cellular process regulations and signaling pathways that are involved in carcinogenesis. CONCLUSIONS/SIGNIFICANCE In this study, we introduced an efficient computational approach to reconstruct co-regulatory FFLs by accurately identifying gene co-regulatory interactions. The strength of the proposed feature selection method lies in the fact it can precisely filter out false positives in predicted regulatory interactions by quantitatively modeling the complex co-regulation of target genes mediated by TFs and miRNAs simultaneously. Moreover, the proposed feature selection method can be generally applied to other gene regulation studies using parallel expression data with respect to different biological contexts.
Collapse
Affiliation(s)
- Chen Peng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Minghui Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
- Research Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Shen
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Huanqing Feng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Ao Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
- Research Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
44
|
Gu L, Liao Z, Hoang DT, Dagvadorj A, Gupta S, Blackmon S, Ellsworth E, Talati P, Leiby B, Zinda M, Lallas CD, Trabulsi EJ, McCue P, Gomella L, Huszar D, Nevalainen MT. Pharmacologic inhibition of Jak2-Stat5 signaling By Jak2 inhibitor AZD1480 potently suppresses growth of both primary and castrate-resistant prostate cancer. Clin Cancer Res 2013; 19:5658-74. [PMID: 23942095 DOI: 10.1158/1078-0432.ccr-13-0422] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Progression of prostate cancer to the lethal castrate-resistant stage coincides with loss of responsiveness to androgen deprivation and requires development of novel therapies. We previously provided proof-of-concept that Stat5a/b is a therapeutic target protein for prostate cancer. Here, we show that pharmacologic targeting of Jak2-dependent Stat5a/b signaling by the Jak2 inhibitor AZD1480 blocks castrate-resistant growth of prostate cancer. EXPERIMENTAL DESIGN Efficacy of AZD1480 in disrupting Jak2-Stat5a/b signaling and decreasing prostate cancer cell viability was evaluated in prostate cancer cells. A unique prostate cancer xenograft mouse model (CWR22Pc), which mimics prostate cancer clinical progression in patients, was used to assess in vivo responsiveness of primary and castrate-resistant prostate cancer (CRPC) to AZD1480. Patient-derived clinical prostate cancers, grown ex vivo in organ explant cultures, were tested for responsiveness to AZD1480. RESULTS AZD1480 robustly inhibited Stat5a/b phosphorylation, dimerization, nuclear translocation, DNA binding, and transcriptional activity in prostate cancer cells. AZD1480 reduced prostate cancer cell viability sustained by Jak2-Stat5a/b signaling through induction of apoptosis, which was rescued by constitutively active Stat5a/b. In mice, pharmacologic targeting of Stat5a/b by AZD1480 potently blocked growth of primary androgen-dependent as well as recurrent castrate-resistant CWR22Pc xenograft tumors, and prolonged survival of tumor-bearing mice versus vehicle or docetaxel-treated mice. Finally, nine of 12 clinical prostate cancers responded to AZD1480 by extensive apoptotic epithelial cell loss, concurrent with reduced levels of nuclear Stat5a/b. CONCLUSIONS We report the first evidence for efficacy of pharmacologic targeting of Stat5a/b as a strategy to inhibit castrate-resistant growth of prostate cancer, supporting further clinical development of Stat5a/b inhibitors as therapy for advanced prostate cancer.
Collapse
Affiliation(s)
- Lei Gu
- Authors' Affiliations: Departments of Cancer Biology, Urology, Pathology, and Medical Oncology, Kimmel Cancer Center; Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania; and Oncology iMED, AstraZeneca R&D Boston, Waltham, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Teng Y, Ghoshal P, Ngoka L, Mei Y, Cowell JK. Critical role of the WASF3 gene in JAK2/STAT3 regulation of cancer cell motility. Carcinogenesis 2013; 34:1994-9. [PMID: 23677069 DOI: 10.1093/carcin/bgt167] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
WASF3 has been shown to be required for invasion and metastasis in different cancer cell types and knockdown of WASF3 leads to suppression of invasion/metastasis. Aberrant signaling through the interleukin 6/Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) axis in cancer cells has emerged as a major mechanism for cancer progression. In this study, we demonstrate that interleukin 6 induces both WASF3 expression and phosphoactivation in breast and prostate cancer cell lines through the JAK2/STAT3 pathway in two different ways. First, we show that STAT3 binds directly to the WASF3 promoter and increases transcription levels, which correlates with increased migration potential. Inactivation of STAT3 with short hairpin RNA, dominant negative constructs or S3I-201 leads to reduced WASF3 levels and reduced migration. Second, we have shown that JAK2, while activating STAT3, also interacts with and activates WASF3. Inhibition of JAK2 with short hairpin RNA or AG490 leads to loss of migration due to reduced WASF3 activation levels and prevention of its membrane localization. Together, these results define a novel signaling network whereby JAK2/STAT3 signaling creates a feed-forward loop to raise activated WASF3 levels that promote cancer cell motility.
Collapse
Affiliation(s)
- Yong Teng
- Georgia Health Sciences University Cancer Center, CN 2115, 1120 15th Street, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
46
|
Shan J, Al-Rumaihi K, Rabah D, Al-Bozom I, Kizhakayil D, Farhat K, Al-Said S, Kfoury H, Dsouza SP, Rowe J, Khalak HG, Jafri S, Aigha II, Chouchane L. Genome scan study of prostate cancer in Arabs: identification of three genomic regions with multiple prostate cancer susceptibility loci in Tunisians. J Transl Med 2013; 11:121. [PMID: 23668334 PMCID: PMC3659060 DOI: 10.1186/1479-5876-11-121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/02/2013] [Indexed: 12/04/2022] Open
Abstract
Background Large databases focused on genetic susceptibility to prostate cancer have been accumulated from population studies of different ancestries, including Europeans and African-Americans. Arab populations, however, have been only rarely studied. Methods Using Affymetrix Genome-Wide Human SNP Array 6, we conducted a genome-wide association study (GWAS) in which 534,781 single nucleotide polymorphisms (SNPs) were genotyped in 221 Tunisians (90 prostate cancer patients and 131 age-matched healthy controls). TaqMan® SNP Genotyping Assays on 11 prostate cancer associated SNPs were performed in a distinct cohort of 337 individuals from Arab ancestry living in Qatar and Saudi Arabia (155 prostate cancer patients and 182 age-matched controls). In-silico expression quantitative trait locus (eQTL) analysis along with mRNA quantification of nearby genes was performed to identify loci potentially cis-regulated by the identified SNPs. Results Three chromosomal regions, encompassing 14 SNPs, are significantly associated with prostate cancer risk in the Tunisian population (P = 1 × 10-4 to P = 1 × 10-5). In addition to SNPs located on chromosome 17q21, previously found associated with prostate cancer in Western populations, two novel chromosomal regions are revealed on chromosome 9p24 and 22q13. eQTL analysis and mRNA quantification indicate that the prostate cancer associated SNPs of chromosome 17 could enhance the expression of STAT5B gene. Conclusion Our findings, identifying novel GWAS prostate cancer susceptibility loci, indicate that prostate cancer genetic risk factors could be ethnic specific.
Collapse
Affiliation(s)
- Jingxuan Shan
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medical College in Qatar, Qatar Foundation, Doha, Qatar.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Haddad BR, Gu L, Mirtti T, Dagvadorj A, Vogiatzi P, Hoang DT, Bajaj R, Leiby B, Ellsworth E, Blackmon S, Ruiz C, Curtis M, Fortina P, Ertel A, Liu C, Rui H, Visakorpi T, Bubendorf L, Lallas CD, Trabulsi EJ, McCue P, Gomella L, Nevalainen MT. STAT5A/B gene locus undergoes amplification during human prostate cancer progression. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2264-75. [PMID: 23660011 DOI: 10.1016/j.ajpath.2013.02.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/22/2013] [Accepted: 02/28/2013] [Indexed: 12/17/2022]
Abstract
The molecular mechanisms underlying progression of prostate cancer (PCa) to castrate-resistant (CR) and metastatic disease are poorly understood. Our previous mechanistic work shows that inhibition of transcription factor Stat5 by multiple alternative methods induces extensive rapid apoptotic death of Stat5-positive PCa cells in vitro and inhibits PCa xenograft tumor growth in nude mice. Furthermore, STAT5A/B induces invasive behavior of PCa cells in vitro and in vivo, suggesting involvement of STAT5A/B in PCa progression. Nuclear STAT5A/B protein levels are increased in high-grade PCas, CR PCas, and distant metastases, and high nuclear STAT5A/B expression predicts early disease recurrence and PCa-specific death in clinical PCas. Based on these findings, STAT5A/B represents a therapeutic target protein for advanced PCa. The mechanisms underlying increased Stat5 protein levels in PCa are unclear. Herein, we demonstrate amplification at the STAT5A/B gene locus in a significant fraction of clinical PCa specimens. STAT5A/B gene amplification was more frequently found in PCas of high histologic grades and in CR distant metastases. Quantitative in situ analysis revealed that STAT5A/B gene amplification was associated with increased STAT5A/B protein expression in PCa. Functional studies showed that increased STAT5A/B copy numbers conferred growth advantage in PCa cells in vitro and as xenograft tumors in vivo. The work presented herein provides the first evidence of somatic STAT5A/B gene amplification in clinical PCas.
Collapse
Affiliation(s)
- Bassem R Haddad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dissecting Major Signaling Pathways throughout the Development of Prostate Cancer. Prostate Cancer 2013; 2013:920612. [PMID: 23738079 PMCID: PMC3657461 DOI: 10.1155/2013/920612] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies found in males. The development of PCa involves several mutations in prostate epithelial cells, usually linked to developmental changes, such as enhanced resistance to apoptotic death, constitutive proliferation, and, in some cases, to differentiation into an androgen deprivation-resistant phenotype, leading to the appearance of castration-resistant PCa (CRPCa), which leads to a poor prognosis in patients. In this review, we summarize recent findings concerning the main deregulations into signaling pathways that will lead to the development of PCa and/or CRPCa. Key mutations in some pathway molecules are often linked to a higher prevalence of PCa, by directly affecting the respective cascade and, in some cases, by deregulating a cross-talk node or junction along the pathways. We also discuss the possible environmental and nonenvironmental inducers for these mutations, as well as the potential therapeutic strategies targeting these signaling pathways. A better understanding of how some risk factors induce deregulation of these signaling pathways, as well as how these deregulated pathways affect the development of PCa and CRPCa, will further help in the development of new treatments and prevention strategies for this disease.
Collapse
|
49
|
Dunkel Y, Ong A, Notani D, Mittal Y, Lam M, Mi X, Ghosh P. STAT3 protein up-regulates Gα-interacting vesicle-associated protein (GIV)/Girdin expression, and GIV enhances STAT3 activation in a positive feedback loop during wound healing and tumor invasion/metastasis. J Biol Chem 2012; 287:41667-83. [PMID: 23066027 DOI: 10.1074/jbc.m112.390781] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gα-interacting vesicle-associated protein (GIV) is a guanine nucleotide exchange factor that modulates key signaling pathways during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, vascular repair, and cancer invasion/metastasis. We recently demonstrated that GIV is a metastasis-related protein, which serves both as a therapeutic target and as a biomarker for prognostication in cancer patients. Here we report the discovery that GIV is a direct target of the transcription factor signal transducer and activator of transcription-3 (STAT3), which is commonly known as a central regulator of tumor metastasis. We identified a single STAT3-binding site on the GIV promoter that was necessary and sufficient for transcriptional activation of GIV during wound healing and cancer invasion. Immunohistochemical analysis of breast carcinomas showed significant correlation between STAT3 activation and elevated GIV expression. Furthermore, we provide evidence that GIV positively autoregulates its own transcription by enhancing STAT3 activation via its guanine nucleotide exchange factor activity. Our findings provide mechanistic insights into how STAT3 activation is directly integrated with the receptor tyrosine kinase-GIV-G protein signaling axis. The forward feedback regulation we describe here between GIV and STAT3 may have profound therapeutic implications for cancer and epithelial regeneration/repair and could help invent novel approaches in treating and prognosticating cancer.
Collapse
Affiliation(s)
- Ying Dunkel
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon. Biosens Bioelectron 2012; 41:71-7. [PMID: 23122230 DOI: 10.1016/j.bios.2012.06.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 06/24/2012] [Indexed: 01/10/2023]
Abstract
Signal transducer and activator of transcription 5B (STAT5B) is an important protein in JAK-STAT signaling pathway that is responsible for the metastasis and proliferation of tumor cells. Determination of the STAT5B messenger Ribonucleic Acid (mRNA) relating to the STAT5B expression provides insight into the mechanism of tumor progression. In this study, we designed and used a special hairpin deoxyribonucleic acid (DNA) for human STAT5B mRNA to functionalize gold nanoparticles, which served as a beacon for detecting human STAT5B expression. Up to 90% quenching efficiency was achieved. Upon hybridizing with the target mRNA, the hairpin DNA modified gold nanoparticle beacons (hDAuNP beacons) release the fluorophores attached at 5' end of the oligonucleotide sequence. The fluorescence properties of the beacon before and after the hybridization with the complementary DNA were confirmed in vitro. The stability of hDAuNP beacons against degradation by DNase I and GSH indicated that the prepared beacon is stable inside cells. The detected fluorescence in MCF-7 cancer cells correlates with the specific STAT5B mRNA expression, which is consistent with the result from PCR measurement. Fluorescence microscopy showed that the hDAuNP beacons internalized in cells without using transfection agents, with intracellular distribution in the cytoplasm rather than the nucleus. The results demonstrated that this beacon could directly provide quantitative measurement of the intracellular STAT5B mRNA in living cells. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection and an increased resistance to nuclease degradation. The strategy reported in this study is a promising approach for the intracellular measurement of RNA or protein expression in living cells, and has great potential in the study of drug screening and discovery.
Collapse
|