1
|
Shao Y, Mei Y, Tan Y, Yang M, Wu H. The regulatory functions of G protein-coupled receptors signaling pathways in B cell differentiation and development contributing to autoimmune diseases. Cell Biosci 2025; 15:57. [PMID: 40307944 PMCID: PMC12042570 DOI: 10.1186/s13578-025-01398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Autoimmune diseases are characterized by a dysfunction of the immune system. Disruptions in the balance of B-cell dynamics and the increase in auto-antibody levels are pivotal in the triggering of several autoimmune disorders. All of this is inextricably linked to the differentiation, development, migration, and functional regulation of B cells in the human immune response. G protein-coupled receptors (GPCR) are recognized as crucial targets in drug development and play pivotal roles in both B cell differentiation and the underlying mechanisms of autoimmune diseases. However, there has been an inadequate comprehension of how GPCR intricately modulate B cell development and impact the pathogenesis of autoimmune diseases. Ligands and functions of GPCR-chemokine receptors including CXCR3, CXCR4, CXCR5 and CCR7, lipid receptors including S1PR1-5, cannabinoid receptor CB2 as well as orphan GPCR including GPR132, GPR183, GPR174, and P2RY8 in B cell differentiation and development, will be elaborated in this review. The roles these GPCR play in mediating B cells in several autoimmune diseases will also be discussed. The elucidation of the multifaceted mechanisms controlled by GPCR not only enriches our comprehension of immune responses but also provides a promising avenue for therapeutic interventions in the domain of autoimmune disorders.
Collapse
Affiliation(s)
- Yongqi Shao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yang Mei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
2
|
Kaur A, Singh I, Kohli I, Singh Bhupal S, Patel J, Nikzad N, Sohal A, Yang J. Association of Cannabis Use with Complications Among Patients with Gastroesophageal Reflux Disease: Insights from National Inpatient Sample. Cannabis Cannabinoid Res 2025; 10:e333-e340. [PMID: 38700593 DOI: 10.1089/can.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Background/Objective: Cannabis, one of the most widely used recreational drug in the United States, has had a significant surge in usage following its legalization in 1996. In recent years, there has been research into the physiological effects of cannabis on the gastrointestinal (GI) system. Our study aims to systematically examine the association between cannabis use and complications of gastroesophageal reflux disease (GERD). Materials and Methods: We queried the 2016-2020 National Inpatient Sample database to identify patient encounters with GERD. Patients with eosinophilic esophagitis or missing demographics were excluded. We compared patient demographics, comorbidities, and complications among cannabis users and nonusers. Multivariate logistic regression analysis was used to investigate the relationship between cannabis use and complications of GERD. Results: A total of 27.2 million patient encounters were included in the analysis, out of which 507,190 were cannabis users. Majority of the cannabis users were aged between 45-64 years (46.6%), males (57.4%), White (63.84%), and belonged to the lowest income quartile (40.6%). Cannabis users demonstrated a higher prevalence of esophagitis compared to nonusers (6.11% vs. 3.23%, p<0.001). However, they exhibited a lower rates of esophageal stricture (0.6% vs. 0.8%, p<0.001) and esophageal cancer (0.2% vs. 0.24%, p<0.001). After adjusting for confounding factors, cannabis users were noted to have higher odds of esophagitis (adjusted odds ratio [aOR]: 1.34, 95% confidence interval [CI]: 1.30-1.39, p<0.001). A lower odds of esophageal stricture (aOR: 0.88, 95% CI: 0.81-0.96, p=0.02) and esophageal cancer (aOR: 0.48,95% CI: 0.42-0.57, p<0.001) were noted. Conclusion: Our cross-sectional study using the nationally available database indicates an association between cannabis use and higher odds of esophagitis, along with lower odds of esophageal stricture and cancer. While these findings suggest a potential relationship between cannabis use and esophageal complications, it is limited in establishing causality. Therefore, further long-term studies are warranted to understand the mechanism behind this association and to determine if cannabis use has an impact on esophagus.
Collapse
Affiliation(s)
- Avneet Kaur
- Department of Internal Medicine, Punjab Institute of Medicine Sciences, Jalandhar, India
| | - Ishandeep Singh
- Department of Internal Medicine, Dayanand Medical College and Hospital, India
| | - Isha Kohli
- Graduate Program in Public Health, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Sahiljot Singh Bhupal
- Department of Health Information Systems and Technology, Claremont Graduate University, Claremont, California, USA
| | - Jay Patel
- Department of Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nikki Nikzad
- Department of Hepatology, Liver Institute Northwest, Seattle, Washington, USA
| | - Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, Washington, USA
| | - Juliana Yang
- Department of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Eddin LB, Meeran MFN, Subramanya SB, Jha NK, Ojha S. Therapeutic potential of agents targeting cannabinoid type 2 receptors in organ fibrosis. Pharmacol Res Perspect 2024; 12:e1219. [PMID: 39425446 PMCID: PMC11489134 DOI: 10.1002/prp2.1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 10/21/2024] Open
Abstract
The endocannabinoid system has garnered attention as a potential therapeutic target in a range of pathological disorders. Cannabinoid receptors type 2 (CB2) are a class of G protein-coupled receptors responsible for transmitting intracellular signals triggered by both endogenous and exogenous cannabinoids, including those derived from plants (phytocannabinoids) or manufactured synthetically (synthetic cannabinoids). Recent recognition of the role of CB2 receptors in fibrosis has fueled interest in therapeutic targeting of CB2 receptors in fibrosis. Fibrosis is characterized by the alteration of the typical cellular composition within the tissue parenchyma, resulting from exposure to diverse etiological factors. The pivotal function of CB2 agonists has been widely recognized in the regulation of inflammation, fibrogenesis, and various other biological pathologies. The modulation of CB2 receptors, whether by enhancing their expression or activating their function, has the potential to provide benefits in numerous conditions, particularly by avoiding any associated adverse effects on the central nervous system. The sufficient activation of CB2 receptors resulted in the complete suppression of gene expression related to transforming growth factor β1 and its subsequent fibrogenic response. Multiple reports have also indicated the diverse functions that CB2 agonists possess in mitigating chronic inflammation and subsequent fibrosis development in various types of tissues. While currently in the preclinical stage, the advancement of CB2 compounds has garnered significant attention within the realm of drug discovery. This review presents a comprehensive synthesis of various independent experimental studies elucidating the pivotal role of identified natural and synthetic CB2 agonists in the pathophysiology of organ fibrosis, specifically in the cardiac, hepatic, and renal systems.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical CollegeSaveetha Institute of Medical and Technical Sciences, Saveetha UniversityChennaiIndia
- School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia
- Department of Biotechnology, School of Applied & Life Sciences (SALS)Uttaranchal UniversityDehradunIndia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
- Zayed Bin Sultan Center for Health SciencesUnited Arab Emirates UniversityAl AinUAE
| |
Collapse
|
4
|
de Carvalho JF, Ribeiro MFLDS, Skare T. Cannabis therapy in rheumatological diseases: A systematic review. North Clin Istanb 2024; 11:361-366. [PMID: 39165706 PMCID: PMC11331211 DOI: 10.14744/nci.2023.43669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/05/2023] [Indexed: 08/22/2024] Open
Abstract
Cannabis has been used in rheumatic diseases as therapy for chronic pain or inflammatory conditions. Herein, the authors systematically review the rheumatological diseases in which cannabis has been studied: systemic sclerosis, fibromyalgia, osteoarthritis, rheumatoid arthritis, osteoporosis, polymyalgia rheumatica, gout, dermatomyositis, and psoriatic arthritis. We systematically searched PubMed for articles on cannabis and rheumatic diseases between 1966 and March 2023. Twenty-eight articles have been selected for review. Most of them (n=13) were on fibromyalgia and all of them but one showed important reduction in pain; sleep and mood also improved. On rheumatoid arthritis, two papers displayed decrease in pain and in one of them a reduction in inflammatory parameters was found. In scleroderma there was a case description with good results, one study on local use for digital ulcers also with good outcomes and a third one, that disclosed good results for skin fibrosis. In dermatomyositis a single study showed improvement of skin manifestations and in osteoarthritis (3 studies) this drug has demonstrated a good analgesic effect. Several surveys (n=5) on the general use of cannabis showed that rheumatological patients (mixed diseases) do use this drug even without medical supervision. The reported side effects were mild. In conclusion, cannabis treatment is an interesting option for the treatment of rheumatological diseases that should be further explored with more studies.
Collapse
Affiliation(s)
- Jozélio Freire de Carvalho
- Núcleo de Pesquisa em Doenças Crônicas não Transmissíveis (NUPEN), School of Nutrition from the Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Thelma Skare
- Department of Rheumatology, Hospital Evangélico Mackenzie, Curitiba, PR, Brazil
| |
Collapse
|
5
|
Tian N, Cheng H, Du Y, Wang X, Lei Y, Liu X, Chen M, Xu Z, Wang L, Yin H, Fu R, Li D, Zhou P, Lu L, Yin Z, Dai SM, Li B. Cannabinoid receptor 2 selective agonist alleviates systemic sclerosis by inhibiting Th2 differentiation through JAK/SOCS3 signaling. J Autoimmun 2024; 147:103233. [PMID: 38797049 DOI: 10.1016/j.jaut.2024.103233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Systemic sclerosis (SSc) poses a significant challenge in autoimmunology, characterized by the development of debilitating fibrosis of skin and internal organs. The pivotal role of dysregulated T cells, notably the skewed polarization toward Th2 cells, has been implicated in the vascular damage and progressive fibrosis observed in SSc. In this study, we explored the underlying mechanisms by which cannabinoid receptor 2 (CB2) highly selective agonist HU-308 restores the imbalance of T cells to alleviate SSc. Using a bleomycin-induced SSc (BLM-SSc) mouse model, we demonstrated that HU-308 effectively attenuates skin and lung fibrosis by specifically activating CB2 on CD4+ T cells to inhibit the polarization of Th2 cells in BLM-SSc mice, which was validated by Cnr2-specific-deficient mice. Different from classical signaling downstream of G protein-coupled receptors (GPCRs), HU-308 facilitates the expression of SOCS3 protein and subsequently impedes the IL2/STAT5 signaling pathway during Th2 differentiation. The deficiency of SOCS3 partially mitigated the impact of HU-308. Analysis of a cohort comprising 80 SSc patients and 82 healthy controls revealed an abnormal elevation in the Th2/Th1 ratio in SSc patients. The proportion of Th2 cells showed a significant positive correlation with mRSS score and positivity of anti-Scl-70. Administration of HU-308 to PBMCs and peripheral CD4+ T cells from SSc patients led to the upregulation of SOCS3, which effectively suppressed the aberrantly activated STAT5 signaling pathway and the proportion of CD4+IL4+ T cells. In conclusion, our findings unveil a novel mechanism by which the CB2 agonist HU-308 ameliorates fibrosis in SSc by targeting and reducing Th2 responses. These insights provide a foundation for future therapeutic approaches in SSc by modulating Th2 responses.
Collapse
Affiliation(s)
- Na Tian
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Cheng
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Guangdong, China; Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Yu Du
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoxia Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Songjiang Research Institute, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Lei
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xinnan Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Miao Chen
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhan Xu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lingbiao Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Hanlin Yin
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Fu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China.
| | - Sheng-Ming Dai
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Integrated TCM & Western Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China; Department of Oncology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Li G, Choi J, Stephens KL, DeGeorge BR. Vasoactive and Antifibrotic Properties of Cannabinoids and Applications to Vasospastic/Vaso-Occlusive Disorders: A Systematic Review. Ann Plast Surg 2024; 92:S445-S452. [PMID: 38857012 DOI: 10.1097/sap.0000000000003985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND Management of vasospastic and vaso-occlusive disorders is a complex challenge, with current treatments showing varied success. Cannabinoids have demonstrated both vasodilatory and antifibrotic properties, which present potential mechanisms for therapeutic relief. No existing review examines these effects in peripheral circulation in relation to vasospastic and vaso-occlusive disorders. This study aims to investigate vasodilatory and antifibrotic properties of cannabinoids in peripheral vasculature for application in vasospastic and vaso-occlusive disorders affecting the hand. METHODS A systematic search was conducted by 2 independent reviewers across PubMed, Cochrane, Ovid MEDLINE, and CINAHL to identify studies in accordance with the determined inclusion/exclusion criteria. Information regarding study design, medication, dosage, and hemodynamic or antifibrotic effects were extracted. Descriptive statistics were used to summarize study findings as appropriate. RESULTS A total of 584 articles were identified, and 32 were selected for inclusion. Studies were grouped by effect type: hemodynamic (n = 17, 53%) and antifibrotic (n = 15, 47%). Vasodilatory effects including reduced perfusion pressure, increased functional capillary density, inhibition of vessel contraction, and increased blood flow were reported in 82% of studies. Antifibrotic effects including reduced dermal thickening, reduced collagen synthesis, and reduced fibroblast migration were reported in 100% of studies. CONCLUSION Overall, cannabinoids were found to have vasodilatory and antifibrotic effects on peripheral circulation via both endothelium-dependent and independent mechanisms. Our review suggests the applicability of cannabis-based medicines for vasospastic and vaso-occlusive disorders affecting the hand (eg, Raynaud disease, Buerger disease). Future research should aim to assess the effectiveness of cannabis-based medicines for these conditions.
Collapse
Affiliation(s)
- Gabrielle Li
- From the University of Virginia School of Medicine, Charlottesville, VA
| | - Janice Choi
- From the University of Virginia School of Medicine, Charlottesville, VA
| | - Kristen L Stephens
- Department of Plastic Surgery, University of Virginia Health System, Charlottesville, VA
| | - Brent R DeGeorge
- Department of Plastic Surgery, University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
7
|
Morozan A, Joy S, Fujii U, Fraser R, Watters K, Martin JG, Colmegna I. Superiority of systemic bleomycin to intradermal HOCl for the study of interstitial lung disease. Sci Rep 2023; 13:20577. [PMID: 37996447 PMCID: PMC10667597 DOI: 10.1038/s41598-023-47083-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, immune dysregulation, and multi-organ fibrosis. Interstitial lung disease (ILD) is a complication of SSc and a leading cause of SSc-death. The administration of hypochlorous acid (HOCl) intradermally in the mouse (HOCl-SSc) purportedly shows several features typical of SSc. We studied the model by injecting BALB/c mice daily intradermally with HOCl for 6-weeks, an exposure reported to induce lung fibrosis. On day 42, the skinfold thickness and the dermal thickness were two and three times larger respectively in the HOCl group compared to controls. HOCl treatment did not result in histological features of pulmonary fibrosis nor significant changes in lung compliance. Automated image analysis of HOCl mice lungs stained with picrosirius red did not show increased collagen deposition. HOCl injections did not increase pulmonary mRNA expression of pro-fibrotic genes nor induced the production of serum advanced oxidation protein products and anti-topoisomerase 1 antibodies. Immune cells in bronchoalveolar lavage fluid (BALF) and whole lung digests were not increased in HOCl-treated animals. Since lung fibrosis is proposed to be triggered by oxidative stress, we injected HOCl to Nrf2-/- mice, a mouse deficient in many antioxidant proteins. Lung compliance, histology, and BALF leukocyte numbers were comparable between Nrf2-/- mice and wild-type controls. We conclude that the HOCl-SSc model does not manifest SSc-lung disease.
Collapse
Affiliation(s)
- Arina Morozan
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Sydney Joy
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Utako Fujii
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
| | - Richard Fraser
- Division of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Kevin Watters
- Division of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - James G Martin
- Meakins Christie Laboratories, McGill University Health Centre and McGill University, Montreal, QC, H4A 3J1, Canada
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada
| | - Inés Colmegna
- The Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Office # EM2-3238, Montreal, QC, H4A 3J1, Canada.
- Division of Rheumatology, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Spiera R, Kuwana M, Khanna D, Hummers L, Frech TM, Stevens W, Matucci-Cerinic M, Kafaja S, Distler O, Jun JB, Levy Y, Leszcyzński P, Gordon J, Steen V, Lee EB, Jankowski T, Litinsky I, Chung L, Hsu V, Mayes M, Sandorfi N, Simms RW, Finzel S, de Vries-Bouwstra J, Constantine S, Dgetluck N, Dinh Q, Bloom BJ, Furst DE, White B, Denton CP. Efficacy and Safety of Lenabasum, a Cannabinoid Type 2 Receptor Agonist, in a Phase 3 Randomized Trial in Diffuse Cutaneous Systemic Sclerosis. Arthritis Rheumatol 2023; 75:1608-1618. [PMID: 37098795 DOI: 10.1002/art.42510] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 04/27/2023]
Abstract
OBJECTIVE This phase 3 study was undertaken to investigate the efficacy and safety of lenabasum, a cannabinoid type 2 receptor agonist, in patients with diffuse cutaneous systemic sclerosis (dcSSc). METHODS A multinational double-blind study was conducted in 365 dcSSc patients who were randomized and dosed 1:1:1 with lenabasum 20 mg, lenabasum 5 mg, or placebo, each twice daily and added to background treatments, including immunosuppressive therapies (IST). RESULTS The primary end point, the American College of Rheumatology combined response index in dcSSc (CRISS) at week 52 for lenabasum 20 mg twice a day versus placebo, was not met, with CRISS score of 0.888 versus 0.887 (P = 0.4972, using mixed models repeated measures [MMRM]). The change in the modified Rodnan skin thickness score (MRSS) at week 52 for lenabasum 20 mg twice a day versus placebo was -6.7 versus -8.1 (P = 0.1183, using MMRM). Prespecified analyses showed higher CRISS scores, greater improvement in MRSS, and lower decline in forced vital capacity in patients on background mycophenolate and those who were taking IST for ≤1 year. No deaths or excess in serious or severe adverse events related to lenabasum were observed. CONCLUSION A benefit of lenabasum in dcSSc was not demonstrated. Most patients were treated with background IST, and treatment with mycophenolate mofetil in particular was associated with better outcomes. These findings support the use of IST in the treatment of dcSSc and highlight the challenge of demonstrating a treatment effect when investigational treatment is added to standard of care IST. These findings have relevance to trial design in SSc, as well as to clinical care.
Collapse
Affiliation(s)
| | - Masataka Kuwana
- Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | | | - Laura Hummers
- John Hopkins University School of Medicine, Baltimore, Maryland
| | - Tracy M Frech
- University of Utah and Salt Lake City VA Health Care System, Salt Lake City, Utah
| | - Wendy Stevens
- St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, and Division of Rheumatology AOUC, Florence, and Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Suzanne Kafaja
- David Geffen School of Medicine at University of California, Los Angeles (UCLA)
| | - Oliver Distler
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jae-Bum Jun
- Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Yair Levy
- Meir Medical Center, Kfar Saba, Israel
| | | | | | - Virginia Steen
- Georgetown University School of Medicine, Washington, DC
| | - Eun Bong Lee
- Seoul National University College of Medicine, Seoul, South Korea
| | - Tomasz Jankowski
- Klinika Reumatologii Ukladowych Chorob Tkanki Lacznej Szpital Uniwersytecki, Bydgozzcz, Poland
| | | | - Lorina Chung
- Stanford University School of Medicine and Palo Alto VA Health Care System, Palo Alto, California
| | - Vivien Hsu
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Maureen Mayes
- McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Nora Sandorfi
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Robert W Simms
- Boston University School of Medicine, Boston, Massachusetts
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, University Medical Center, Universitätsklinikum Freiburg, Freiburg, Germany
| | | | | | | | - Quinn Dinh
- Corbus Pharmaceuticals, Inc., Norwood, Massachusetts
| | | | - Daniel E Furst
- Department of Experimental and Clinical Medicine, University of Florence, and Division of Rheumatology AOUC, Florence, Italy, David Geffen School of Medicine at UCLA, Los Angeles, California, and University of Washington, Seattle, UK
| | - Barbara White
- Corbus Pharmaceuticals, Inc., Norwood, Massachusetts
| | - Christopher P Denton
- UCL Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| |
Collapse
|
9
|
Okpujie V, Ozumba S, Olaomi OA, Uwumiro FE, Ajiboye AE, Abesin O, Solomon RO, Ogunfuwa OM, Hassan JH, Opeyemi MR. Green Smoke, Red Flag: Cannabis and the Risk of Orbitopathy and Dermopathy in Thyrotoxicosis. Cureus 2023; 15:e39092. [PMID: 37378109 PMCID: PMC10291966 DOI: 10.7759/cureus.39092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Background The use of cannabis has been associated with an array of multi-systemic physiological effects. However, the medical literature on the potential role of cannabinoids in the management and outcomes of thyrotoxicosis remains scarce. We studied the association between cannabis use and orbitopathy, dermopathy, and the length of hospital stay for thyrotoxicosis admissions. Methods A thorough analysis was conducted on adult hospitalizations in 2020 with a primary discharge diagnosis of thyrotoxicosis, using data from the Nationwide Inpatient Sample (NIS). To ensure data completeness and consistency, hospitalizations with missing or incomplete information, as well as those involving patients under 18 years of age, were excluded from the study. The remaining study sample was categorized into two groups based on the presence or absence of cannabis use, as determined by ICD-10-CM/PCS codes. Subtypes of orbitopathy, dermopathy, and potential confounding factors were identified based on previous literature and defined using validated ICD-10-CM/PCS codes. The association between cannabis use and the outcomes was evaluated using multivariate regression analysis. The primary focus was on thyroid orbitopathy, while dermopathy and the average length of hospital stay were considered as secondary outcomes. Results A total of 7,210 hospitalizations for thyrotoxicosis were included in the analysis. Among them, 404 (5.6%) were associated with cannabis use, while 6,806 (94.4%) were non-users serving as controls. Cannabis users were predominantly female (227, 56.3%), which was similar to the control group (5,263, 73%), and they were primarily of Black descent. Notably, the cohort of cannabis users was significantly younger than the control group (37.7 ± 1.3 vs. 63.6 ± 0.3). Upon conducting multivariate regression analysis, it was found that cannabis use was linked to a significant increase in the odds of orbitopathy among patients with thyrotoxicosis (AOR: 2.36; 95% CI: 1.12-4.94; P = 0.02). Additionally, a history of tobacco smoking was also correlated with higher odds of orbitopathy in the study (AOR: 1.21; 95% CI: 0.76-1.93; p = 0.04). However, no significant association was observed between cannabis use and the odds of dermopathy (AOR: 0.88; 95% CI: 0.51-1.54; p = 0.65) or the average length of hospital stay (IRR: 0.44; 95% CI: 0.58-1.46; p = 0.40). Conclusion The study identified a significant association between cannabis use and increased odds of orbitopathy in patients with thyrotoxicosis. Additionally, a history of tobacco smoking was also found to be correlated with augmented odds of orbitopathy.
Collapse
Affiliation(s)
| | - Sara Ozumba
- Family Medicine, University of Nigeria, Nsukka, NGA
| | | | - Fidelis E Uwumiro
- Surgery, Our Lady of Apostles Hospital, Akwanga, NGA
- Surgery, College of Medical Sciences, University of Jos, Jos, NGA
| | | | - Olawale Abesin
- Internal Medicine, Royal Cornwall Hospitals NHS Trust, Cornwall, GBR
| | - Rebecca O Solomon
- Paediatrics and Child Health, Community Medicine, Lagos State Primary Health Care, Ijora Primary Health Centre, Lagos, NGA
| | | | - Judith H Hassan
- Health Sciences and Social Work, Western Illinois University, Macomb, USA
| | - Mojeed R Opeyemi
- Internal Medicine, Federal Medical Centre Abeokuta, Abeokuta, NGA
| |
Collapse
|
10
|
He J, Tang D, Liu D, Hong X, Ma C, Zheng F, Zeng Z, Chen Y, Du J, Kang L, Yin L, Lu Q, Dai Y. Serum proteome and metabolome uncover novel biomarkers for the assessment of disease activity and diagnosing of systemic lupus erythematosus. Clin Immunol 2023; 251:109330. [PMID: 37075949 DOI: 10.1016/j.clim.2023.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting thousands of people. There are still no effective biomarkers for SLE diagnosis and disease activity assessment. We performed proteomics and metabolomics analyses of serum from 121 SLE patients and 106 healthy individuals, and identified 90 proteins and 76 metabolites significantly changed. Several apolipoproteins and the metabolite arachidonic acid were significantly associated with disease activity. Apolipoprotein A-IV (APOA4), LysoPC(16:0), punicic acid and stearidonic acid were correlated with renal function. Random forest model using the significantly changed molecules identified 3 proteins including ATRN, THBS1 and SERPINC1, and 5 metabolites including cholesterol, palmitoleoylethanolamide, octadecanamide, palmitamide and linoleoylethanolamide, as potential biomarkers for SLE diagnosis. Those biomarkers were further validated in an independent cohort with high accuracy (AUC = 0.862 and 0.898 for protein and metabolite biomarkers respectively). This unbiased screening has led to the discovery of novel molecules for SLE disease activity assessment and SLE classification.
Collapse
Affiliation(s)
- Jingquan He
- Department of Radiotherapy, Shenzhen Traditional Chinese Medicine Hospital, The Forth Clinical Medical College, Guangzhou Traditional Chinese Medicine University, Shenzhen 518033, China
| | - Donger Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Dongzhou Liu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Xiaoping Hong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Chiyu Ma
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Fengping Zheng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Yumei Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Jie Du
- Biotree Metabolomics Research Center, Biotree, Jiading District, Shanghai 201800, China
| | - Lin Kang
- Biotree Metabolomics Research Center, Biotree, Jiading District, Shanghai 201800, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China.
| |
Collapse
|
11
|
Ramer R, Hinz B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells 2022; 11:4102. [PMID: 36552866 PMCID: PMC9777118 DOI: 10.3390/cells11244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin's immune response. In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.
Collapse
Affiliation(s)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
12
|
Liu T, Gu J, Yuan Y, Yang Q, Zheng PF, Shan C, Wang F, Li H, Xie XQ, Chen XH, Ouyang Q. Discovery of a pyrano[2,3-b]pyridine derivative YX-2102 as a cannabinoid receptor 2 agonist for alleviating lung fibrosis. J Transl Med 2022; 20:565. [PMID: 36474298 PMCID: PMC9724349 DOI: 10.1186/s12967-022-03773-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pharmacological modulation of cannabinoid 2 receptor (CB2R) is a promising therapeutic strategy for pulmonary fibrosis (PF). Thus, to develop CB2R selective ligands with new chemical space has attracted much research interests. This work aims to discover a novel CB2R agonist from an in-house library, and to evaluate its therapeutic effects on PF model, as well as to disclose the pharmacological mechanism. METHODS Virtual screening was used to identify the candidate ligand for CB2R from a newly established in-house library. Both in vivo experiments on PF rat model and in vitro experiments on cells were performed to investigate the therapeutic effects of the lead compound and underlying mechanism. RESULTS A "natural product-like" pyrano[2,3-b]pyridine derivative, YX-2102 was identified that bound to CB2R with high affinity. Intraperitoneal YX-2102 injections significantly ameliorated lung injury, inflammation and fibrosis in a rat model of PF induced by bleomycin (BLM). On one hand, YX-2102 inhibited inflammatory response at least partially through modulating macrophages polarization thereby exerting protective effects. Whereas, on the other hand, YX-2102 significantly upregulated CB2R expression in alveolar epithelial cells in vivo. Its pretreatment inhibited lung alveolar epithelial-to-mesenchymal transition (EMT) in vitro and PF model induced by transforming growth factor beta-1 (TGF-β1) via a CB2 receptor-dependent pathway. Further studies suggested that the Nrf2-Smad7 pathway might be involved in. CONCLUSION These findings suggest that CB2R is a potential target for PF treatment and YX-2102 is a promising CB2R agonist with new chemical space.
Collapse
Affiliation(s)
- Tao Liu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jing Gu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yi Yuan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qunfang Yang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Changyu Shan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Fangqin Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hongwei Li
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xiao-Hong Chen
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Swanson ML, Regner KR, Moore BM, Park F. Cannabinoid Type 2 Receptor Activation Reduces the Progression of Kidney Fibrosis Using a Mouse Model of Unilateral Ureteral Obstruction. Cannabis Cannabinoid Res 2022; 7:790-803. [PMID: 35196117 DOI: 10.1089/can.2021.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: Kidney fibrosis is a hallmark consequence of all forms of chronic kidney disease with few available treatment modalities. Material and Methods: In this study, we performed the unilateral ureteral obstruction (UUO) procedure to investigate the effects of a selective cannabinoid type 2 (CB2) agonist receptor, SMM-295, as a nephroprotective therapy. Results: SMM-295 was demonstrated to exhibit 50-fold selectivity over the cannabinoid type 1 (CB1) receptor with an EC50 ∼2 nM. Four other off-targets were identified in the safety panel, but only at the highest concentration (5 mM) tested in the assay demonstrating the relative selectivity and safety of our compound. Administration of SMM-295 (12 mg/kg IP daily) in UUO mice led to a significant decrease of 33% in tubular damage compared to the vehicle-treated UUO mice after 7 days. Consistent with these findings, there was a significant decrease in α-smooth muscle actin and fibronectin, which are markers of tubulointerstitial fibrosis, as determined by Western blot analysis. DNA damage as detected by a classic marker, γ-H2AX, was significantly reduced by 50% in the SMM-295 treatment group compared to vehicle treatment. Genetic knockout of CB2 or administration of a CB2 inverse agonist did not exhibit any beneficial effect on tubulointerstitial fibrosis or kidney tubule injury. Conclusions: In conclusion, our study provides new evidence that SMM-295 can therapeutically target the CB2 receptor with few, if any, physiological off-target sites to reduce kidney tissue damage and slow the fibrotic progression in a mouse model of kidney fibrosis.
Collapse
Affiliation(s)
- Mallory L Swanson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kevin R Regner
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bob M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
14
|
Werth VP, Hejazi E, Pena SM, Haber J, Zeidi M, Reddy N, Okawa J, Feng R, Bashir MM, Gebre K, Jadoo AS, Concha JSS, Dgetluck N, Constantine S, White B. Safety and Efficacy of Lenabasum, a Cannabinoid Receptor Type 2 Agonist, in Patients with Dermatomyositis with Refractory Skin Disease: A Randomized Clinical Trial. J Invest Dermatol 2022; 142:2651-2659.e1. [PMID: 35490744 PMCID: PMC10226779 DOI: 10.1016/j.jid.2022.03.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Treatment options are limited for skin disease in dermatomyositis. Lenabasum is a cannabinoid receptor type 2 agonist that triggers the resolution of inflammation. OBJECTIVE The objective of this study was to evaluate the safety and efficacy of lenabasum in patients with refractory cutaneous dermatomyositis. DESIGN This study was a single-center, double-blind, randomized, placebo-controlled phase 2 study conducted from July 2015 to August 2017. POPULATION The population included subjects aged ≥18 years with at least moderately active dermatomyositis skin activity by Cutaneous Dermatomyositis Disease Area and Severity Index activity ≥ 14 and failure or intolerance to hydroxychloroquine. INTERVENTION Participants received 20 mg lenabasum daily for 28 days and then 20 mg twice per day for 56 days or placebo. MAIN OUTCOMES AND MEASURES The primary outcome was a change in Cutaneous Dermatomyositis Disease Area and Severity Index activity. Safety and other secondary efficacy assessments were performed till day 113. RESULTS A total of 22 subjects were randomized to lenabasum (n = 11) or placebo (n = 11). No serious or severe adverse events were related to lenabasum, and no participants discontinued the study. The adjusted least-squares mean for Cutaneous Dermatomyositis Disease Area and Severity Index activity decreased more for lenabasum, and the difference was significant on day 113 (least-squares mean [standard error] difference = ‒6.5 [3.1], P = 0.038). Numerically greater improvements were seen in multiple secondary efficacy outcomes and biomarkers with lenabasum. CONCLUSION Lenabasum treatment was well tolerated and was associated with greater improvement in Cutaneous Dermatomyositis Disease Area and Severity Index activity and multiple efficacy outcomes. TRIAL REGISTRATION This study was registered at ClinicalTrials.gov, NCT02466243.
Collapse
Affiliation(s)
- Victoria P Werth
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| | - Emily Hejazi
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sandra M Pena
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jessica Haber
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Majid Zeidi
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nithin Reddy
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joyce Okawa
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rui Feng
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Muhammad M Bashir
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kirubel Gebre
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Arvin S Jadoo
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Josef Symon S Concha
- Corporal Michael J. Crescenz Department of Veterans Affairs Medical Center, U.S. Department of Veterans Affairs, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
15
|
Mohammadi M, Kohan L, Saeidi M, Saghaeian Jazi M, Mohammadi S. The antifibrotic effects of naringin in a hypochlorous acid (HOCl)-induced mouse model of skin fibrosis. Immunopharmacol Immunotoxicol 2022; 44:704-711. [PMID: 35583493 DOI: 10.1080/08923973.2022.2077217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/07/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Fibrosis is a chronic inflammation caused by the loss of innate compensational mechanisms. Naringin (NR) is a flavonoid with antineoplastic and anti-inflammatory effects. Here, we aimed to investigate the antifibrotic effects of NR and underlying mechanisms in a Hypochlorous acid (HOCl)-induced mouse model of skin fibrosis. MATERIALS AND METHODS A total of 24 six-week-old female BALB/c mice were randomly allocated into five groups: HOCl, Sham, PBS, HOCl + NR and DMSO and selected skin regions were treated for 6 weeks, until sacrifice. The histopathologic and collagenesis of skin resections were analyzed using H&E and PR staining. The mRNA levels of COL1, COL3 and αSMA genes were quantified. Serum samples were also used to evaluate TGF-β levels and LDH activity. RESULTS HOCl could increase the relative collagen content, while NR administration on HOCl-treated biopsies decreased collagenesis. COL1, COL3 and αSMA mRNA levels were significantly increased among HOCl-treated skin samples, while NR treatment could decrease these mRNA levels of genes to the extent equal to the levels in the Sham group. Similarly, Naringin-treated samples could decrease TGF-β levels. CONCLUSIONS We demonstrated that Naringin could exert protective effects against fibrotic complications of HOCL in skin tissue in vivo, by reducing the collagenesis and decreasing the levels of fibrosis-associated genes.
Collapse
Affiliation(s)
- Mahmoud Mohammadi
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Leila Kohan
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Mohsen Saeidi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
16
|
He Q, Zhang W, Zhang J, Deng Y. Cannabinoid Analogue WIN 55212-2 Protects Paraquat-Induced Lung Injury and Enhances Macrophage M2 Polarization. Inflammation 2022; 45:2256-2267. [PMID: 35674874 PMCID: PMC9174632 DOI: 10.1007/s10753-022-01688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023]
Abstract
WIN 55212-2 is an endocannabinoids analogue that has been reported to have anti-inflammatory and anti-fibrosis effects on different models. In this study, we investigated the protective effects of WIN 55212-2 on paraquat (PQ)-induced poison on mice especially on lung injury. Mice were administrated with different dose of PQ and thereafter treated with 0.2 mg/kg or 1 mg/kg WIN 55212-2. The survival of mice was recorded during 4 weeks of observation. Twenty-eight days after PQ treatment, the cell population and inflammatory factors IL-6, IL-10, and TNF-α were measured in bronchoalveolar lavage fluid (BALF). Pulmonary fibrosis was evaluated by Masson staining. Our results showed that WIN 55212-2 treatment reduced PQ-induced mortality of mice in a dose dependent manner. It decreased the number of inflammation-associated cells, as well as the level of pro-inflammatory factors in BALF (P < 0.05). WIN 55212-2 increased M2 cells in BALF (P < 0.05), improved the lung histology, reduced fibrosis formation, and decreased TGF-β, α-SMA and PDGFRa expression. The protective effects of WIN 55212-2 on PQ-induced lung injury and fibrosis were associated with an increase inM2 cells and increased expressions of IL-10, CD163, and CD206, suggesting that polarization of M2 macrophages may be involved in WIN 55212-2 protective effects on PQ-induced lung injury.
Collapse
Affiliation(s)
- Quan He
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China.
| | - Wen Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Jinjuan Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Yuanyou Deng
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| |
Collapse
|
17
|
Golosova D, Levchenko V, Kravtsova O, Palygin O, Staruschenko A. Acute and long-term effects of cannabinoids on hypertension and kidney injury. Sci Rep 2022; 12:6080. [PMID: 35413977 PMCID: PMC9005691 DOI: 10.1038/s41598-022-09902-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabinoids and their endogenous and synthetic analogs impact blood pressure and contribute to the incidence of hypertension. It was previously reported that the endocannabinoid system plays an important role in developing hypertension; however, it was also shown that cannabinoids elicit profound hypotension associated with hemorrhagic, cardiogenic, and endotoxic shock. This study aimed to test acute and chronic effects of an endogenous ligand of cannabinoid receptor anandamide (AEA) on blood pressure and kidney injury in vivo in conscious Dahl salt-sensitive (SS) rats. We demonstrated that acute i.v. bolus administration of a low or a high doses (0.05 or 3 mg/kg) of AEA did not affect blood pressure for 2 h after the injection in Dahl SS rats fed a normal salt diet (0.4% NaCl). Neither low nor high doses of AEA had any beneficial effects on blood pressure or kidney function. Furthermore, hypertensive rats fed a HS diet (8% NaCl) and chronically treated with 3 mg/kg of AEA exhibited a significant increase in blood pressure accompanied by increased renal interstitial fibrosis and glomerular damage at the late stage of hypertension. Western blot analyses revealed increased expression of Smad3 protein levels in the kidney cortex in response to chronic treatment with a high AEA dose. Therefore, TGF-β1/Smad3 signaling pathway may play a crucial role in kidney injury in SS hypertension during chronic treatment with AEA. Collectively, these data indicate that prolonged stimulation of cannabinoid receptors may result in aggravation of hypertension and kidney damage.
Collapse
Affiliation(s)
- Daria Golosova
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA. .,Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA. .,Clement J. Zablocki VA Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
18
|
Kodumudi V, Bibb LA, Adalsteinsson JA, Shahriari N, Skudalski L, Santiago S, Grant-Kels JM, Lu J. Emerging Therapeutics in the Management of Connective Tissue Disease. Part II. Dermatomyositis and Scleroderma. J Am Acad Dermatol 2022; 87:21-38. [PMID: 35202777 DOI: 10.1016/j.jaad.2021.12.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
The management of connective tissue diseases is dramatically evolving with the advent of biologics and novel oral systemic therapeutics. Despite involvement in the care of these complex patients, there is a knowledge gap in the field of dermatology regarding these emerging agents. The second article in this continuing medical education series discusses new and emerging therapeutics for dermatomyositis and scleroderma that target cells, intracellular signaling pathways, and cytokines.
Collapse
Affiliation(s)
- Vijay Kodumudi
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Lorin A Bibb
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | | | - Neda Shahriari
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Sueheidi Santiago
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Jun Lu
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT.
| |
Collapse
|
19
|
Jayarajan S, Meissler JJ, Adler MW, Eisenstein TK. A Cannabinoid 2-Selective Agonist Inhibits Allogeneic Skin Graft Rejection In Vivo. Front Pharmacol 2022; 12:804950. [PMID: 35185546 PMCID: PMC8850832 DOI: 10.3389/fphar.2021.804950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Previous work from our laboratory showed that a CB2 selective agonist, O-1966, blocked the proliferative response of C57BL/6 mouse spleen cells exposed to spleen cells of C3HeB/FeJ mice in vitro in the mixed lymphocyte reaction (MLR). The MLR is widely accepted as an in vitro correlate of in vivo grant rejection. Mechanisms of the immunosuppression induced by the cannabinoid were explored, and it was shown that O-1966 in this in vitro assay induced CD25+Foxp3+ Treg cells and IL-10, as well as down-regulated mRNA for CD40 and the nuclear form of the transcription factors NF-κB and NFAT in T-cells. The current studies tested the efficacy of O-1966 in prolonging skin grafts in vivo. Full thickness flank skin patches (1-cm2) from C3HeB/FeJ mice were grafted by suturing onto the back of C57BL/6 mice. O-1966 or vehicle was injected intraperitoneally into treated or control groups of animals beginning 1 h pre-op, and then every other day until 14 days post-op. Graft survival was scored based on necrosis and rejection. Treatment with 5 mg/kg of O-1966 prolonged mean graft survival time from 9 to 11 days. Spleens harvested from O-1966 treated mice were significantly smaller than those of vehicle control animals based on weight. Flow cytometry analysis of CD4+ spleen cells showed that O-1966 treated animals had almost a 3-fold increase in CD25+Foxp3+ Treg cells compared to controls. When dissociated spleen cells were placed in culture ex vivo and stimulated with C3HeB/FeJ cells in an MLR, the cells from the O-1966 treated mice were significantly suppressed in their proliferative response to the allogeneic cells. These results support CB2 selective agonists as a new class of compounds to prolong graft survival in transplant patients.
Collapse
|
20
|
Boleto G, Avouac J, Allanore Y. The role of antifibrotic therapies in the treatment of systemic sclerosis-associated interstitial lung disease. Ther Adv Musculoskelet Dis 2022; 14:1759720X211066686. [PMID: 35111241 PMCID: PMC8801639 DOI: 10.1177/1759720x211066686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune condition with complex pathogenesis characterized by a heterogeneous presentation and different disease courses. Fibrosis of multiple organs including the lungs favored by inflammation and vasculopathy is the hallmark of SSc. SSc-associated interstitial lung disease (SSc-ILD) is common and can be associated with poor outcomes, this complication being the leading cause of death in recent series. Because of its huge heterogeneity, SSc-ILD management can be very challenging. Immunosuppressive therapy has long been used to prevent SSc-ILD progression with modest effects in clinical trials. However, thanks to a better understating of SSc pathogenesis, innovative therapies including antifibrotics are increasingly being developed. The achievement of the Safety and Efficacy of Nintedanib in Systemic SClerosIS (SENSCIS) trial has led to the approval by drug agencies of the first antifibrotic drug for SSc-ILD. In parallel, other antifibrotics are being investigated as possible beneficial therapies in SSc-ILD. An important unmet need remains to clarify the positioning of the various strategies, such as the added value of combination of immunosuppressants and antifibrotic therapies in patients at high risk of progression. Indeed, irreversible lung injury or self-perpetuated progression highlights the concept of a window of opportunity in SSc-ILD patients. Herewith, we provide an overview of the most significant clinical trials with antifibrotic drugs developed in recent years for the management of SSc-ILD and a viewpoint about their positioning in treatment algorithms.
Collapse
Affiliation(s)
| | - Jérôme Avouac
- Department of Rheumatology, Université de Paris, Cochin Hospital, Paris, France; INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| | - Yannick Allanore
- Department of Rheumatology, Université de Paris, Cochin Hospital, Paris, France; INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
| |
Collapse
|
21
|
Benfaremo D, Svegliati S, Paolini C, Agarbati S, Moroncini G. Systemic Sclerosis: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10010163. [PMID: 35052842 PMCID: PMC8773282 DOI: 10.3390/biomedicines10010163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic, immune-mediated chronic disorder characterized by small vessel alterations and progressive fibrosis of the skin and internal organs. The combination of a predisposing genetic background and triggering factors that causes a persistent activation of immune system at microvascular and tissue level is thought to be the pathogenetic driver of SSc. Endothelial alterations with subsequent myofibroblast activation, excessive extracellular matrix (ECM) deposition, and unrestrained tissue fibrosis are the pathogenetic steps responsible for the clinical manifestations of this disease, which can be highly heterogeneous according to the different entity of each pathogenic step in individual subjects. Although substantial progress has been made in the management of SSc in recent years, disease-modifying therapies are still lacking. Several molecular pathways involved in SSc pathogenesis are currently under evaluation as possible therapeutic targets in clinical trials. These include drugs targeting fibrotic and metabolic pathways (e.g., TGF-β, autotaxin/LPA, melanocortin, and mTOR), as well as molecules and cells involved in the persistent activation of the immune system (e.g., IL4/IL13, IL23, JAK/STAT, B cells, and plasma cells). In this review, we provide an overview of the most promising therapeutic targets that could improve the future clinical management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Gianluca Moroncini
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
- Correspondence:
| |
Collapse
|
22
|
Gogulska Z, Smolenska Z, Turyn J, Mika A, Zdrojewski Z. Lipid Alterations in Systemic Sclerosis. Front Mol Biosci 2022; 8:761721. [PMID: 34993231 PMCID: PMC8724564 DOI: 10.3389/fmolb.2021.761721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Systemic sclerosis (SSc) is an autoimmune disease with an elusive etiology and poor prognosis. Due to its diverse clinical presentation, a personalized approach is obligatory and needs to be based on a comprehensive biomarker panel. Therefore, particular metabolomic studies are necessary. Lipidomics addressed these issues and found disturbances in several crucial metabolic pathways. Aim of Review: The review aims to briefly summarize current knowledge related to lipid alterations in systemic sclerosis, highlight its importance, and encourage further research in this field. Key Scientific Concepts of Review: In this review, we summarized the studies on the lipidomic pattern, fatty acids, lipoproteins, cholesterol, eicosanoids, prostaglandins, leukotrienes, lysophospholipids, and sphingolipids in systemic sclerosis. Researchers demonstrated several alternate aspects of lipid metabolism. As we aimed to present our findings in a comprehensive view, we decided to divide our findings into three major groups: “serum lipoproteins,” “fatty acids and derivatives,” and “cellular membrane components,” as we do believe they play a prominent role in SSc pathology.
Collapse
Affiliation(s)
- Zuzanna Gogulska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Zaneta Smolenska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Zdrojewski
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
23
|
Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5. Int J Mol Sci 2021; 22:ijms222212609. [PMID: 34830489 PMCID: PMC8619832 DOI: 10.3390/ijms222212609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT). The results of the differential expression analysis showed 2819 DEGs in hIGFBP5 pFBs. Functional enrichment analysis confirmed the pro-fibrotic character of IGFBP5 and revealed its impact on fundamental signaling pathways, including cytokine–cytokine receptor interaction, focal adhesion, AGE-RAGE signaling, calcium signaling, and neuroactive ligand-receptor interactions, to name a few. Noticeably, 7% of the DEGs in hIGFBP5-expressing pFBs are receptors and integrins. Furthermore, hub gene analysis revealed 12 hub genes including Fpr1, Bdkrb2, Mchr1, Nmur1, Cnr2, P2ry14, and Ptger3. Validation assays were performed to complement the RNAseq data. They confirmed significant differences in the levels of the corresponding proteins in cultured pFBs. Our study provides new insights into the molecular mechanism(s) of IGFBP5-associated pulmonary fibrosis through possible receptor interactions that drive fibrosis and tissue remodeling.
Collapse
|
24
|
Abstract
The public and health care providers are increasingly curious about the potential medical benefits of Cannabis. In vitro and in vivo studies of Cannabis have suggested it has favorable effects on regulating pain, pruritus, and inflammation, making it a potentially attractive therapeutic agent for many dermatologic conditions. The body of literature reporting on the role of cannabinoids in dermatology is in its infancy but growing. We review the current research, possible cutaneous adverse effects, and future directions for cannabinoids and their use in skin cancer, acne, psoriasis, pruritus, dermatitis, scleroderma, dermatomyositis, cutaneous lupus erythematous, epidermolysis bullosa, pain, and wound healing.
Collapse
Affiliation(s)
- Kimberly Shao
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Campbell Stewart
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
25
|
Pryimak N, Zaiachuk M, Kovalchuk O, Kovalchuk I. The Potential Use of Cannabis in Tissue Fibrosis. Front Cell Dev Biol 2021; 9:715380. [PMID: 34708034 PMCID: PMC8542845 DOI: 10.3389/fcell.2021.715380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a condition characterized by thickening or/and scarring of various tissues. Fibrosis may develop in almost all tissues and organs, and it may be one of the leading causes of morbidity and mortality. It provokes excessive scarring that excels the usual wound healing response to trauma in numerous organs. Currently, very little can be done to prevent tissue fibrosis, and it is almost impossible to reverse it. Anti-inflammatory and immunosuppressive drugs are among the few treatments that may be efficient in preventing fibrosis. Numerous publications suggest that cannabinoids and extracts of Cannabis sativa have potent anti-inflammatory and anti-fibrogenic properties. In this review, we describe the types and mechanisms of fibrosis in various tissues and discuss various strategies for prevention and dealing with tissue fibrosis. We further introduce cannabinoids and their potential for the prevention and treatment of fibrosis, and therefore for extending healthy lifespan.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
26
|
Lingegowda H, Miller JE, Marks RM, Symons LK, Alward T, Lomax AE, Koti M, Tayade C. Synthetic Cannabinoid Agonist WIN 55212-2 Targets Proliferation, Angiogenesis, and Apoptosis via MAPK/AKT Signaling in Human Endometriotic Cell Lines and a Murine Model of Endometriosis. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:726936. [PMID: 36304004 PMCID: PMC9580784 DOI: 10.3389/frph.2021.726936] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Endometriosis (EM) is characterized by the growth of endometrium-like tissue outside the uterus, leading to chronic inflammation and pelvic pain. Lesion proliferation, vascularization, and associated inflammation are the hallmark features of EM lesions. The legalization of recreational cannabinoids has garnered interest in the patient community and is contributing to a greater incidence of self medication; however, it remains unknown if cannabinoids possess marked disease-modifying properties. In this study, we assess the effects of synthetic cannabinoid, WIN 55212-2 (WIN 55), in EM-representative in vitro and in vivo syngeneic mouse models. WIN 55 reduced proliferation and angiogenesis in vitro, via MAPK/Akt-mediated apoptosis. These findings were corroborated in a mouse model of EM, where we found reduced TRPV1 expression in the dorsal root ganglia of the EM mouse model exposed to WIN 55, suggesting reduced signaling of pain stimuli. Ultimately, these pieces of evidence support the use of cannabinoid receptor agonists as a potential therapeutic intervention for EM associated pain and inflammation.
Collapse
Affiliation(s)
| | - Jessica E. Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Ryan M. Marks
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Lindsey K. Symons
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Taylor Alward
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, ON, Canada
| | - Alan E. Lomax
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, ON, Canada
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- *Correspondence: Chandrakant Tayade
| |
Collapse
|
27
|
Cannabinoid Type-2 Receptor Agonist, JWH133 May Be a Possible Candidate for Targeting Infection, Inflammation, and Immunity in COVID-19. IMMUNO 2021. [DOI: 10.3390/immuno1030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, is a deadly disease affecting millions due to the non-availability of drugs and vaccines. The majority of COVID-19 drugs have been repurposed based on antiviral, immunomodulatory, and antibiotic potential. The pathogenesis and advanced complications with infection involve the immune-inflammatory cascade. Therefore, a therapeutic strategy could reduce infectivity, inflammation, and immune modulation. In recent years, modulating the endocannabinoid system, particularly activation of the cannabinoid type 2 (CB2) receptor is a promising therapeutic target for modulation of immune-inflammatory responses. JWH133, a selective, full functional agonist of the CB2 receptor, has been extensively studied for its potent anti-inflammatory, antiviral, and immunomodulatory properties. JWH133 modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. In this study, we propose that JWH133 could be a promising candidate for targeting infection, immunity, and inflammation in COVID-19, due to its pharmacological and molecular mechanisms in numerous preclinical efficacy and safety studies, along with its immunomodulatory, anti-inflammatory, organoprotective, and antiviral properties. Thus, JWH133 should be investigated in preclinical and clinical studies for its potential as an agent or adjuvant with other agents for its effect on viremia, infectivity, immune modulation, resolution of inflammation, reduction in severity, and progression of complications in COVID-19. JWH133 is devoid of psychotropic effects due to CB2 receptor selectivity, has negligible toxicity, good bioavailability and druggable properties, including pharmacokinetic and physicochemical effects. We believe that JWH133 could be a promising drug and may inspire further studies for an evidence-based approach against COVID-19.
Collapse
|
28
|
Hashiesh HM, Sharma C, Goyal SN, Jha NK, Ojha S. Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist. Front Pharmacol 2021; 12:702675. [PMID: 34393784 PMCID: PMC8363263 DOI: 10.3389/fphar.2021.702675] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system has attracted attention as a pharmacological target for several pathological conditions. Cannabinoid (CB2)-selective agonists have been the focus of pharmacological studies because modulation of the CB2 receptor (CB2R) can be useful in the treatment of pain, inflammation, arthritis, addiction, and cancer among other possible therapeutic applications while circumventing CNS-related adverse effects. Increasing number of evidences from different independent preclinical studies have suggested new perspectives on the involvement of CB2R signaling in inflammation, infection and immunity, thus play important role in cancer, cardiovascular, renal, hepatic and metabolic diseases. JWH133 is a synthetic agonist with high CB2R selectivity and showed to exert CB2R mediated antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory activities. Cumulative evidences suggest that JWH133 protects against hepatic injury, renal injury, cardiotoxicity, fibrosis, rheumatoid arthritis, and cancer as well as against oxidative damage and inflammation, inhibits fibrosis and apoptosis, and acts as an immunosuppressant. This review provides a comprehensive overview of the polypharmacological properties and therapeutic potential of JWH133. This review also presents molecular mechanism and signaling pathways of JWH133 under various pathological conditions except neurological diseases. Based on the available data, this review proposes the possibilities of developing JWH133 as a promising therapeutic agent; however, further safety and toxicity studies in preclinical studies and clinical trials in humans are warranted.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
29
|
Correia-Sá I, Carvalho C, A Machado V, Carvalho S, Serrão P, Marques M, Vieira-Coelho MA. Targeting cannabinoid receptor 2 (CB2) limits collagen production-An in vitro study in a primary culture of human fibroblasts. Fundam Clin Pharmacol 2021; 36:89-99. [PMID: 34259358 DOI: 10.1111/fcp.12716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Previous studies showed that cannabinoid 2 (CB2) receptor is involved in skin inflammation, fibrogenesis and re-epithelialization in mice, indicating that this receptor may be implicated in wound healing. Thus, topical use of cannabinoids may have a role in local fibrotic and wound healing diseases such as scars or keloids. We investigate the effect of the CB2 selective receptor agonist (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran (JWH133) and the CB2 selective receptor antagonist (6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl)(4-methoxyphenyl)-methanone (AM630), on primary cultures of human fibroblasts. Primary cultures of adult human fibroblasts were obtained from abdominal human skin samples. Fibroblasts pretreated with JWH133 and/or AM630 were stimulated with TGF-β (10 ng/ml). Fibroblast activation into myofibroblasts was quantified by the expression of alpha-smooth muscle actin (α-SMA) using Immunocytochemistry and Western Blot assays. Collagen content was quantified with the Sirius red staining assay. Upon human fibroblasts stimulation with TGF-β, a significant increase on α-SMA and CB2 receptor expression was observed. In these cells, JWH133 decreased α-SMA expression and collagen content. However, this effect was not observed in resting human fibroblasts. AM630 decreased α-SMA expression and collagen content in both resting and activated fibroblasts. This effect was time- and concentration-dependent with an IC50 value of 11 μM. The CB2 receptor appears to be involved in fibroblast repair during skin wound healing in humans, as TGF-β increases CB2 receptor expression and JWH133 produces an anti-fibrotic effect in human fibroblasts. AM630 also showed an anti-fibrotic effect hypothesizing that other cannabinoid receptors, such as TRPV, may be involved in this response.
Collapse
Affiliation(s)
- Inês Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, Porto, Portugal.,Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Cláudia Carvalho
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Vera A Machado
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Sofia Carvalho
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Paula Serrão
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| | - Marisa Marques
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar São João, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Oporto, Porto, Portugal
| |
Collapse
|
30
|
Irrera N, Bitto A, Sant’Antonio E, Lauro R, Musolino C, Allegra A. Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies. Molecules 2021; 26:molecules26133866. [PMID: 34202812 PMCID: PMC8270322 DOI: 10.3390/molecules26133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | | | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +390902212364
| |
Collapse
|
31
|
A Physiologically Based Pharmacokinetic and Drug-Drug Interaction Model for the CB2 Agonist Lenabasum. Eur J Drug Metab Pharmacokinet 2021; 46:513-525. [PMID: 34143391 DOI: 10.1007/s13318-021-00693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Lenabasum is a synthetic agonist of the cannabinoid receptor type 2 (CB2) with anti-inflammatory and antifibrotic properties. Utilizing Simcyp, we developed a physiologically based pharmacokinetic (PBPK) model based on physicochemical properties, cell culture data, and cytochrome P450 (CYP) phenotyping, inhibition, and induction data. METHODS Clinical data from healthy volunteers treated with 20 mg of lenabasum in a single ascending dose (SAD) study were used for model development. The model was verified using lenabasum SAD (10 and 40 mg) data as well as multiple dose (20 mg three times per day) data. Lenabasum is a CYP substrate, and the model predicted lenabasum clearance of 51% by CYP2C9, 37% by CYP2C8, and 12% by CYP3A4. Lenabasum is also an inhibitor of these isozymes. RESULTS The model accurately described the area under the plasma concentration-time curve (AUC) and maximum plasma concentration (Cmax) for lenabasum within 1.19-fold and 1.25-fold accuracy, respectively, of the observed clinical values. The simulations of CYP inducers predicted that the strongest interaction would occur with rifampin, with the AUC decreasing to 0.36 of the control value, whereas the simulations of CYP inhibitors predicted that the greatest effect would occur with fluconazole, with a 1.43-fold increase in AUC. CONCLUSIONS Our model is a useful tool for predicting the pharmacokinetics of lenabasum and adjustments to its dosing in possible drug-drug interaction scenarios.
Collapse
|
32
|
Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int J Mol Sci 2021; 22:1001. [PMID: 33498245 PMCID: PMC7863932 DOI: 10.3390/ijms22031001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders.
Collapse
Affiliation(s)
| | | | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| |
Collapse
|
33
|
Dao M, François H. Cannabinoid Receptor 1 Inhibition in Chronic Kidney Disease: A New Therapeutic Toolbox. Front Endocrinol (Lausanne) 2021; 12:720734. [PMID: 34305821 PMCID: PMC8293381 DOI: 10.3389/fendo.2021.720734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) concerns millions of individuals worldwide, with few therapeutic strategies available to date. Recent evidence suggests that the endocannabinoid system (ECS) could be a new therapeutic target to prevent CKD. ECS combines receptors, cannabinoid receptor type 1 (CB1R) and type 2 (CB2R), and ligands. The most prominent receptor within the kidney is CB1R, its endogenous local ligands being anandamide and 2-arachidonoylglycerol. Therefore, the present review focuses on the therapeutic potential of CB1R and not CB2R. In the normal kidney, CB1R is expressed in many cell types, especially in the vasculature where it contributes to the regulation of renal hemodynamics. CB1R could also participate to water and sodium balance and to blood pressure regulation but its precise role remains to decipher. CB1R promotes renal fibrosis in both metabolic and non-metabolic nephropathies. In metabolic syndrome, obesity and diabetes, CB1R inhibition not only improves metabolic parameters, but also exerts a direct role in preventing renal fibrosis. In non-metabolic nephropathies, its inhibition reduces the development of renal fibrosis. There is a growing interest of the industry to develop new CB1R antagonists without central nervous side-effects. Experimental data on renal fibrosis are encouraging and some molecules are currently under early-stage clinical phases (phases I and IIa studies). In the present review, we will first describe the role of the endocannabinoid receptors, especially CB1R, in renal physiology. We will next explore the role of endocannabinoid receptors in both metabolic and non-metabolic CKD and renal fibrosis. Finally, we will discuss the therapeutic potential of CB1R inhibition using the new pharmacological approaches. Overall, the new pharmacological blockers of CB1R could provide an additional therapeutic toolbox in the management of CKD and renal fibrosis from both metabolic and non-metabolic origin.
Collapse
Affiliation(s)
- Myriam Dao
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Néphrologie et Transplantation Rénale Adulte, Hôpital Necker Enfants Malades, Paris, France
| | - Helene François
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Hôpital Tenon, Sorbonne Université, Paris, France
- *Correspondence: Helene François,
| |
Collapse
|
34
|
Śledziński P, Nowak-Terpiłowska A, Zeyland J. Cannabinoids in Medicine: Cancer, Immunity, and Microbial Diseases. Int J Mol Sci 2020; 22:E263. [PMID: 33383838 PMCID: PMC7795897 DOI: 10.3390/ijms22010263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, there has been a growing interest in the medical applications of Cannabis plants. They owe their unique properties to a group of secondary metabolites known as phytocannabinoids, which are specific for this genus. Phytocannabinoids, and cannabinoids generally, can interact with cannabinoid receptors being part of the endocannabinoid system present in animals. Over the years a growing body of scientific evidence has been gathered, suggesting that these compounds have therapeutic potential. In this article, we review the classification of cannabinoids, the molecular mechanisms of their interaction with animal cells as well as their potential application in the treatment of human diseases. Specifically, we focus on the research concerning the anticancer potential of cannabinoids in preclinical studies, their possible use in cancer treatment and palliative medicine, as well as their influence on the immune system. We also discuss their potential as therapeutic agents in infectious, autoimmune, and gastrointestinal inflammatory diseases. We postulate that the currently ongoing and future clinical trials should be accompanied by research focused on the cellular and molecular response to cannabinoids and Cannabis extracts, which will ultimately allow us to fully understand the mechanism, potency, and safety profile of cannabinoids as single agents and as complementary drugs.
Collapse
Affiliation(s)
- Paweł Śledziński
- Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 60-032 Poznan, Poland;
| | | | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, 60-632 Poznan, Poland;
| |
Collapse
|
35
|
Parlar A, Arslan SO, Yumrutas O, Elibol E, Yalcin A, Uckardes F, Aydin H, Dogan MF, Kayhan Kustepe E, Ozer MK. Effects of cannabinoid receptor 2 synthetic agonist, AM1241, on bleomycin induced pulmonary fibrosis. Biotech Histochem 2020; 96:48-59. [PMID: 33325762 DOI: 10.1080/10520295.2020.1758343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Bleomycin (BLM) is a chemotherapeutic agent that can cause pulmonary fibrosis. Little is known about the possible protective role of the CB2 receptor agonist, AM1241. We investigated the effects of CB2 receptor activation by AM1241 on BLM induced lung fibrosis in a rat model. BLM was administered via the trachea. Adult female Wistar rats were divided into five groups: saline (control group), BLM (BLM group), CB2 agonist (AM1241) + BLM (BLMA group), CB2 antagonist (AM630) and CB2 agonist (AM1241) + BLM (BLMA + A group), and vehicle (dimethylsulfoxide) + BLM (BLM + vehicle group). Hydroxyproline, collagen type 1, total protein, glutathione (GSH), malondialdehyde (MDA), interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels were measured in lung fibrosis and control tissue using standard methods. We investigated the histopathology of lung tissue to determine the extent of fibrosis. We found significantly higher levels of hydroxyproline, TNF-α, IL-6 and total protein in the BLM group compared to the BLMA group. The level of GSH also was higher in the BLMA group compared to the BLM group. Inflammation and fibrotic changes were significantly reduced in the BLMA group. Our findings suggest that CB2 receptor activation provided protection against BLM induced pulmonary fibrosis by suppressing oxidative stress and increasing cytokines.
Collapse
Affiliation(s)
- Ali Parlar
- Faculty of Medicine, Department of Pharmacology, University of Adıyaman , Adıyaman, Turkey
| | - Seyfullah Oktay Arslan
- Pharmacology Department, Faculty of Medicine, Yıldırım Beyazıt University , Ankara, Turkey
| | - Onder Yumrutas
- Faculty of Medicine, Department of Medical Biology, University of Adıyaman , Adıyaman, Turkey
| | - Ebru Elibol
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Alper Yalcin
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Fatih Uckardes
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, University of Adıyaman , Adıyaman, Turkey
| | - Hasan Aydin
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, University of Adıyaman , Adıyaman, Turkey
| | - Muhammed Fatih Dogan
- Pharmacology Department, Faculty of Medicine, Yıldırım Beyazıt University , Ankara, Turkey
| | - Elif Kayhan Kustepe
- Faculty of Medicine, Department of Histology and Embryology, University of Adıyaman , Adıyaman, Turkey
| | - Mehmet Kaya Ozer
- Faculty of Medicine, Department of Pharmacology, University of Adıyaman , Adıyaman, Turkey
| |
Collapse
|
36
|
Cintosun A, Lara-Corrales I, Pope E. Mechanisms of Cannabinoids and Potential Applicability to Skin Diseases. Clin Drug Investig 2020; 40:293-304. [PMID: 32060787 DOI: 10.1007/s40261-020-00894-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The legalisation of cannabis in a growing number of jurisdictions has led to increasing interest in its potential therapeutic effects in a range of disorders, including cutaneous conditions. Cannabinoids have been used as natural medicines for centuries; however, their biological activity in the skin is a new area of study. Recent data suggest that cannabinoids are involved in neuro-immuno-endocrine modulation of skin functioning, yet their effect on the features of dermatologic conditions is unclear. This article sought to review the mechanisms by which cannabinoids regulate skin functioning through the lens of relevance to treatment of dermatologic diseases looking at the effects of cannabinoids on a range of cellular activities and dermatologic conditions both in vitro and in vivo. We identified studies demonstrating an inhibitory effect of cannabinoids on skin inflammation, proliferation, fibrosis, pain, and itch-biological mechanisms involved in the pathogenesis of many dermatologic conditions. Cannabinoids have the potential to expand the therapeutic repertoire of a wide spectrum of skin disorders. Given their widespread unregulated use by the general public, basic and clinical studies are required to elucidate the effectiveness and long-term effects of topical and systemic cannabinoids in cutaneous disorders.
Collapse
Affiliation(s)
| | - Irene Lara-Corrales
- The Hospital for Sick Children and University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Elena Pope
- The Hospital for Sick Children and University of Toronto, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
37
|
Spiera R, Hummers L, Chung L, Frech TM, Domsic R, Hsu V, Furst DE, Gordon J, Mayes M, Simms R, Lafyatis R, Martyanov V, Wood T, Whitfield ML, Constantine S, Lee E, Dgetluck N, White B. Safety and Efficacy of Lenabasum in a Phase II, Randomized, Placebo-Controlled Trial in Adults With Systemic Sclerosis. Arthritis Rheumatol 2020; 72:1350-1360. [PMID: 32336038 PMCID: PMC7497006 DOI: 10.1002/art.41294] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
Abstract
Objective To assess the safety and efficacy of lenabasum in diffuse cutaneous systemic sclerosis (dcSSc). Methods A randomized, double‐blind, placebo‐controlled, phase II study was conducted at 9 SSc clinics in the US. Adults with dcSSc of ≤6 years’ duration who were receiving stable standard‐of‐care treatment were randomized to receive lenabasum (n = 27) or placebo (n = 15). Lenabasum doses were 5 mg once daily, 20 mg once daily, or 20 mg twice daily for 4 weeks, followed by 20 mg twice daily for 8 weeks. Safety and efficacy were assessed at weeks 4, 8, 12, and 16. Results Adverse events (AEs) occurred in 63% of the lenabasum group and 60% of the placebo group, with no serious AEs related to lenabasum. Compared to placebo, lenabasum treatment was associated with greater improvement in the American College of Rheumatology Combined Response Index in diffuse cutaneous Systemic Sclerosis (CRISS) score and other efficacy outcome measures that assessed overall disease, skin involvement, and patient‐reported function. The median CRISS score increased in the lenabasum group during the study, reaching 0.33, versus 0.00 in the placebo group, at week 16 (P = 0.07 by 2‐sided mixed‐effects model repeated‐measures analysis). Gene expression in inflammation and fibrosis pathways was reduced, and inflammation and fibrosis were improved on histologic evaluation of skin biopsy specimens, in the lenabasum group compared to the placebo group (all P ≤ 0.05). Conclusion Despite a short trial duration in a small number of patients in this phase II study in dcSSc, our findings indicate that lenabasum improves efficacy outcomes and underlying disease pathology with a favorable safety profile.
Collapse
Affiliation(s)
| | - Laura Hummers
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lorinda Chung
- Stanford University School of Medicine, Stanford, California, and Palo Alto VA Health Care System, Palo Alto, California
| | - Tracy M Frech
- University of Utah, and Salt Lake City VA Health Care System
| | - Robyn Domsic
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Vivien Hsu
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Daniel E Furst
- Arthritis Association of Southern California, Los Angeles, California
| | | | - Maureen Mayes
- University of Texas Health Science Center at Houston
| | - Robert Simms
- Boston University School of Medicine, Boston, Massachusetts
| | - Robert Lafyatis
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Tammara Wood
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | | | | | | | | |
Collapse
|
38
|
Correia-Sá I, Paiva A, Carvalho CM, Vieira-Coelho MA. Cutaneous endocannabinoid system: Does it have a role on skin wound healing bearing fibrosis? Pharmacol Res 2020; 159:104862. [PMID: 32454223 DOI: 10.1016/j.phrs.2020.104862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Recently, the endocannabinoid system has been identified in skin and it has been linked with the formation of skin fibrosis and wound healing. We aimed to find and analyse reported data on compounds acting in the endocannabinoid system with significant effect in skin fibrosis. METHODS A literature search on PUBMED was conducted for studies published in English until February 2020 on cannabinoids and skin fibrosis. The initial search was performed with terms: "cannabinoid" AND "skin". This search retrieved 296 publications from which 18 directly related to skin fibrosis or wound healing process were included in this review. RESULTS CB1 receptor inactivation and CB2 receptor activation show anti-fibrotic effects on cellular and animal experimental models of cutaneous fibrosis. CB2 receptor activation also promotes re-epithelization. Other cannabinoid related receptors, like adenosine A2A receptors and PPAR-γ, are also involved. Their activation lead to a pro-fibrotic and anti-fibrotic effect, respectively. CONCLUSION Several molecular drug targets for endocannabinoid system were identified in skin. It may be a promising approach for the treatment of excessive skin fibrosis disorders.
Collapse
Affiliation(s)
- Inês Correia-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery and Burn Unit, Faculty of Medicine, University of Porto and Centro Hospitalar Universitário de São João, EPE, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Anita Paiva
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia M Carvalho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine - Pharmacology and Therapeutics Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
39
|
Abstract
Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of inflammatory myopathies whose common feature is immune-mediated muscle injury. There are distinct subgroups including dermatomyositis (DM), polymyositis (PM), inclusion body myositis, and immune-mediated necrotizing myopathy. Antisynthetase syndrome is also emerging as a distinct subgroup with its unique muscle histopathological characteristic of perifascicular necrosis. While the newly updated EULAR/ACR Classification Criteria for IIM have brought advancements in diagnosis and the exclusion of mimickers, the use of only one autoantibody in the derivation of the schema limits its use. Similarly, while the advent of multiple novel therapeutics in the treatment of myositis has been exciting, it has also highlighted the scarcity of validated outcome measures. The purpose of our review is to highlight the updated classification criteria of myositis, newly reported clinical phenotypes associated with myositis autoantibodies, the measurement of outcomes, and emerging treatments in the field.
Collapse
Affiliation(s)
- Sara Baig
- Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Suite 1B.1, Baltimore, MD 21224 USA
| | - Julie J Paik
- Johns Hopkins University School of Medicine, 5200 Eastern Avenue, MFL Building, Center Tower Suite 4500, Baltimore, MD 21224 USA.
| |
Collapse
|
40
|
Cannabinoids in the Pathophysiology of Skin Inflammation. Molecules 2020; 25:molecules25030652. [PMID: 32033005 PMCID: PMC7037408 DOI: 10.3390/molecules25030652] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component. However, various studies cite conflicting results concerning the cellular mechanisms involved, while others suggest that cannabinoids may even exert pro-inflammatory behaviors. This paper aims to detail and clarify the complex workings of cannabinoids in the molecular setting of the main dermatological inflammatory diseases, and their interactions with other substances with emerging applications in the treatment of these conditions. Also, the potential role of cannabinoids as antitumoral drugs is explored in relation to the inflammatory component of skin cancer. In vivo and in vitro studies that employed either phyto-, endo-, or synthetic cannabinoids were considered in this paper. Cannabinoids are regarded with growing interest as eligible drugs in the treatment of skin inflammatory conditions, with potential anticancer effects, and the readiness in monitoring of effects and the facility of topical application may contribute to the growing support of the use of these substances. Despite the promising early results, further controlled human studies are required to establish the definitive role of these products in the pathophysiology of skin inflammation and their usefulness in the clinical setting.
Collapse
|
41
|
Jiang X, Chen S, Zhang Q, Yi C, He J, Ye X, Liu M, Lu W. Celastrol is a novel selective agonist of cannabinoid receptor 2 with anti-inflammatory and anti-fibrotic activity in a mouse model of systemic sclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153160. [PMID: 31901889 DOI: 10.1016/j.phymed.2019.153160] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increasing evidence indicated that the cannabinoid receptors were involved in the pathogenesis of organ fibrogenesis. PURPOSE The purpose of this study was to discover novel cannabinoid receptor 2 (CB2) agonist and assess the potential of CB2 activation in treating systemic sclerosis. METHODS A gaussia princeps luciferase-based split luciferase complementation assay (SLCA) was developed for detection of the interaction between CB2 and β-arrestin2. A library of 366 natural products was then screened as potential CB2 agonist using SLCA approach. Several GPCR functional assays, including HTRF-based cAMP assay and calcium mobilization were also utilized to evaluated CB2 activation. Bleomycin-induced experimental systemic sclerosis was used to assess the in vivo anti-fibrotic effects. Dermal thickness and collagen content were evaluated via H&E and sirius red staining. RESULTS Celastrol was identified as a new agonist of CB2 by using SLCA. Furthermore, celastrol triggers several CB2-mediated downstream signaling pathways, including calcium mobilization, inhibition of cAMP accumulation, and receptor desensitization in a dose-dependent manner, and it has a moderate selectivity on CB1. In addition, celastrol exhibited the anti-inflammatory properties on lipopolysaccharide (LPS) treated murine Raw 264.7 macrophages and primary macrophages. Finally, we found that celastrol exerts anti-fibrotic effects in the bleomycin-induced systemic sclerosis mouse model accompanied by reduced inflammatory conditions. CONCLUSION Taken together, celastrol is identified a novel selective CB2 agonist using a new developed arrestin-based SLCA, and CB2 activation by celastrol reduces the inflammatory response, and prevents the development of dermal fibrosis in bleomycin-induced systemic sclerosis mouse model.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Arrestin/metabolism
- Bleomycin/toxicity
- Calcium/metabolism
- Disease Models, Animal
- Drug Evaluation, Preclinical/methods
- Fibrosis
- Lipopolysaccharides/pharmacology
- Macrophages/drug effects
- Mice
- Mice, Inbred C57BL
- Pentacyclic Triterpenes
- RAW 264.7 Cells
- Receptor, Cannabinoid, CB2/agonists
- Scleroderma, Systemic/chemically induced
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/pathology
- Triterpenes/chemistry
- Triterpenes/pharmacology
Collapse
Affiliation(s)
- Xingwu Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Si Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chunyang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiacheng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiyun Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
42
|
Abstract
Chronic pain is a common complaint among patients, and rheumatic diseases are a common cause for chronic pain. Current pharmacological interventions for chronic pain are not always useful or safe enough for long-term use. Cannabis and cannabinoids are currently being studied due to their potential as analgesics. In this review we will discuss current literature regarding cannabinoids and cannabis as treatment for rheumatic diseases. Fibromyalgia is a prevalent rheumatic disease that causes diffuse pain, fatigue, and sleep disturbances. Treatment of this syndrome is symptomatic, and it has been suggested that cannabis and cannabinoids could potentially alleviate some of the symptoms associated with fibromyalgia. In this review we cite some of the evidence that supports this claim. However, data on long-term efficacy and safety of cannabinoid and cannabis use are still lacking. Cannabinoids and cannabis are commonly investigated as analgesic agents, but in recent years more evidence has accumulated on their potential immune-modulatory effect, supported by results in animal models of certain rheumatic diseases. While results that demonstrate the same effect in humans are still lacking, cannabinoids and cannabis remain potential drugs to alleviate the pain associated with rheumatic diseases, as they were shown to be safe and to cause limited adverse effects.
Collapse
Affiliation(s)
- Tal Gonen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Medicine ‘B’ & The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Howard Amital
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Medicine ‘B’ & The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Sarzi-Puttini P, Ablin J, Trabelsi A, Fitzcharles MA, Marotto D, Häuser W. Cannabinoids in the treatment of rheumatic diseases: Pros and cons. Autoimmun Rev 2019; 18:102409. [PMID: 31648042 DOI: 10.1016/j.autrev.2019.102409] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Abstract
Medical cannabis is being increasingly used in the treatment of rheumatic diseases because, despite the paucity of evidence regarding its safety and efficacy, a growing number of countries are legalising its use for medical purposes in response to social pressure. Cannabinoids may be useful in the management of rheumatic disorders for two broad reasons: their anti-inflammatory and immunomodulatory activity, and their effects on pain and associated symptoms. It is interesting to note that, although a wide range of medications are available for the treatment of inflammation, including an ever-lengthening list of biological medications, the same is not true of the treatment of chronic pain, a cardinal symptom of many rheumatological disorders. The publication of systematic reviews (SR) concerning the use of cannabis-based medicines for chronic pain (with and without meta-analyses) is outpacing that of randomised controlled trials. Furthermore, narrative reviews of public institution are largely based on these SRs, which often reach different conclusions regarding the efficacy and safety of cannabis-based medicines because of the lack of high-quality evidence of efficacy and the presence of indications that they may be harmful for patients. Societal safety concerns about medical cannabis (e.g. driving risks, workplace safety and pediatric intoxication) must always be borne in mind, and will probably not be addressed by clinical studies. Medical cannabis and cannabis-based medicines have often been legalised as therapeutic products by legislative bodies without going through the usual process of regulatory approval founded on the results of traditional evidence-based studies. This review discusses the advantages and limitations of using cannabis to treat rheumatic conditions.
Collapse
Affiliation(s)
- Piercarlo Sarzi-Puttini
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, University of Milan School of Medicine, Milan, Italy.
| | - Jacob Ablin
- Department of Internal Medicine H, Tel Aviv Sourasky Medical Center & Sackler School of Medicine, Tel Aviv University, Israel
| | - Adva Trabelsi
- Department of Internal Medicine H, Tel Aviv Sourasky Medical Center & Sackler School of Medicine, Tel Aviv University, Israel
| | - Mary-Ann Fitzcharles
- Alan Edwards Pain Management Unit, McGill University Health Centre, Quebec, Canada; Division of Rheumatology, McGill University Health Centre, Quebec, Canada
| | - Daniela Marotto
- Rheumatology Unit, P.Dettori Hospital, Tempio Pausania, Italy
| | - Winfried Häuser
- Internal Medicine Department I, Klinikum Saarbrücken, Saarbrücken, Germany; Department of Psychosomatic Medicine and Psychotherapy, Technische Universität München, München, Germany
| |
Collapse
|
44
|
Sarzi-Puttini P, Batticciotto A, Atzeni F, Bazzichi L, Di Franco M, Salaffi F, Marotto D, Ceribelli A, Ablin JN, Hauser W. Medical cannabis and cannabinoids in rheumatology: where are we now? Expert Rev Clin Immunol 2019; 15:1019-1032. [DOI: 10.1080/1744666x.2019.1665997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Alberto Batticciotto
- Rheumatology Unit, Internal Medicine Department, ASST Settelaghi, Ospedale Di Circolo - Fondazione Macchi, Varese, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, University of Messina, Messina, Italy
| | | | - Manuela Di Franco
- Department of Internal Medicine and Medical Specialities, Rheumatology Unit, Sapienza University of Rome, Rome, Italy
| | - Fausto Salaffi
- Rheumatological Clinic, Università Politecnica delle Marche, Jesi, Ancona, Italy
| | - Daniela Marotto
- Rheumatology Unit, P-Dettori Hospital Tempio Pausania, Tempio Pausania, Italy
| | - Angela Ceribelli
- Rheumatology Unit, ASST Fatebenefratelli-Sacco, University of Milan, Milan, Italy
| | - Jacob N Ablin
- Internal Medicine H, Tel Aviv Sourasky Medical Center, Tel Aviv Israel
| | - Winfred Hauser
- Department of Internal Medicine 1, Klinikum Saarbrücken, D-66119 Saarbrücken, Germany
| |
Collapse
|
45
|
Magrone T, Jirillo E. Drugs of Abuse Induced-Subversion of the Peripheral Immune Response and Central Glial Activity: Focus on Novel Therapeutic Approaches. Endocr Metab Immune Disord Drug Targets 2019; 19:281-291. [PMID: 30488804 DOI: 10.2174/1871530319666181129104329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drugs of abuse affect both central nervous system (CNS) and peripheral immune function. Besides the involvement of dopamine and glutamate systems, chronic exposure to drugs of abuse alters immune homeostasis, promoting a pro-inflammatory status. At the same time, impaired peripheral immunity leads to an increased susceptibility to infections in drug abusers. DISCUSSION There is evidence that certain drugs, such as opioids, activate microglial cells and astrocytes which, in turn, provoke central neuroinflammation. Particularly, opioids bind the Toll-like receptor (TLR)-4 with increased expression of nuclear factor kappa-light-chain-enhancer of activated B cells and release of pro-inflammatory cytokines. Peripheral mediators released by immune cells also contribute to aggravate central neuroinflammation. CONCLUSION These are based either on the inhibition of TLR-4 activation by drugs of abuse or on the correction of dopamine and glutamate pathways. Finally, a hypothetic nutraceutical intervention with polyphenols in view of their anti-inflammatory and anti-oxidant properties will be outlined as an adjuvant treatment for drugs of abuse-related disorders.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
46
|
Abstract
As medical use of cannabis is increasingly legalized worldwide, a better understanding of the medical and hazardous effects of this drug is imperative. The pain associated with rheumatic diseases is considered a prevalent indication for medicinal cannabis in various countries. Thus far, preliminary clinical trials have explored the effects of cannabis on rheumatoid arthritis, osteoarthritis and fibromyalgia; preliminary evidence has also found an association between the cannabinoid system and other rheumatic conditions, including systemic sclerosis and juvenile idiopathic arthritis. The potential medicinal effects of cannabis could be attributable to its influence on the immune system, as it exerts an immunomodulatory effect on various immune cells, including T cells, B cells and macrophages. However, the available evidence is not yet sufficient to support the recommendation of cannabinoid treatment for rheumatic diseases.
Collapse
|
47
|
[Updates in systemic sclerosis pathogenesis: Toward new therapeutic opportunities]. Rev Med Interne 2019; 40:654-663. [PMID: 31301944 DOI: 10.1016/j.revmed.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/04/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023]
Abstract
Systemic sclerosis is a rare connective tissue disease characterized by skin and several internal organ fibrosis, systemic vasculopathy and immune abnormalities. Even if fibroblasts and endothelial cells dysfunction, as well as lymphocytes and other immune cells implication are now well described, the exact origin and chronology of the disease pathogenesis remain unclear. Oxidative stress, influenced by genetic and environmental factors, seems to play a key role. Indeed, it seems to be implicated in the early phases of fibrosis development, vasculopathy and in immune tolerance abnormalities shared by all patients, although disease expression is heterogeneous. To date, no curative treatment is available. Even if immunosuppressive treatment or drugs acting on vascular system are proposed for some patients, overall, treatment efficiency remains modest. Only autologous hematopoietic stem cells transplantation, reserved for patients with severe or rapidly progressive fibrosis, has recently demonstrated efficiency, with lasting regression of fibrosis. Nevertheless, this treatment can expose to important, life-threatening toxicity. In the last decade, new mechanisms implicated in the pathogenesis of systemic sclerosis have been unraveled, bringing new therapeutic opportunities. In this review, we offer to focus on recent insights in the knowledge of systemic sclerosis pathogenesis and its implication in current and future medical care.
Collapse
|
48
|
Milando R, Friedman A. Cannabinoids: Potential Role in Inflammatory and Neoplastic Skin Diseases. Am J Clin Dermatol 2019; 20:167-180. [PMID: 30542832 DOI: 10.1007/s40257-018-0410-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The endocannabinoid system is a complex and nearly ubiquitous network of endogenous ligands, enzymes, and receptors that can also be stimulated by exogenous compounds such as those derived from the marijuana plant, Cannabis sativa. Recent data have shown that the endocannabinoid system is fully functional in the skin and is responsible for maintaining many aspects of skin homeostasis, such as proliferation, differentiation, and release of inflammatory mediators. Because of its role in regulating these key processes, the endocannabinoid system has been studied for its modulating effects on both inflammatory disorders of the skin and skin cancer. Although legal restrictions on marijuana as a Schedule I drug in the USA have made studying cannabinoid compounds unfavorable, an increasing number of studies and clinical trials have focused on the therapeutic uses of cannabinoids. This review seeks to summarize the current, and rapidly expanding field of research on the broad potential uses of cannabinoids in inflammatory and neoplastic diseases of the skin.
Collapse
Affiliation(s)
- Rose Milando
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Adam Friedman
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
- Department of Dermatology, The George Washington University Medical Faculty Associates, 2150 Pennsylvania Avenue NW, Suite 2B-430, Washington, DC, 20037, USA.
| |
Collapse
|
49
|
Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the "C(ut)annabinoid" System. Molecules 2019; 24:E918. [PMID: 30845666 PMCID: PMC6429381 DOI: 10.3390/molecules24050918] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB₁, CB₂), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid ("c[ut]annabinoid") signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.
Collapse
Affiliation(s)
- Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
- HCEMM Nonprofit Ltd., 6720 Szeged, Hungary.
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| |
Collapse
|
50
|
Shen X, Duan H, Wang S, Hong W, Wang YY, Lin SL. Expression of Cannabinoid Receptors in Myometrium and its Correlation With Dysmenorrhea in Adenomyosis. Reprod Sci 2019; 26:1618-1625. [PMID: 30832539 DOI: 10.1177/1933719119833483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The myometrium, especially the junctional zone (JZ), is now well documented to have a role in the pathogenesis of adenomyosis. Cannabinoid receptors have been shown to participate in the establishment of endometriosis and its pain perception. However, its relation to adenomyosis has not been identified yet. The aim of this study was to investigate the expression of cannabinoid receptor type I (CB1) and type II (CB2) in myometrium of uteri with and without adenomyosis and determine the correlation between their levels and clinical parameters of adenomyosis. We collected tissue samples of JZ and the outer myometrium from 45 premenopausal women with adenomyosis and 34 women without adenomyosis. CB1 and CB2 messenger RNA (mRNA) and protein expression levels were evaluated by the use of Western blotting and real-time quantitative polymerase chain reaction from all samples. Clinical information on the severity of dysmenorrhea and other data were collected. We found both CB1 and CB2 mRNA and protein levels in women with adenomyosis were significantly higher than those of controls, and CB1 expression levels in JZ were positively correlated with the severity of dysmenorrhea. These data suggest that cannabinoid receptor CB1 may be involved in the pathogenesis of dysmenorrhea in adenomyosis and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Xue Shen
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hua Duan
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Sha Wang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Hong
- Department of Obstetrics and Gynecology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yu-Yan Wang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Si-Li Lin
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|