1
|
Lu S, Li Y, Qian Z, Zhao T, Feng Z, Weng X, Yu L. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus. Front Immunol 2023; 14:1052756. [PMID: 36993972 PMCID: PMC10040598 DOI: 10.3389/fimmu.2023.1052756] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The inflammasome is a protein complex composed of a variety of proteins in cells and which participates in the innate immune response of the body. It can be activated by upstream signal regulation and plays an important role in pyroptosis, apoptosis, inflammation, tumor regulation, etc. In recent years, the number of metabolic syndrome patients with insulin resistance (IR) has increased year by year, and the inflammasome is closely related to the occurrence and development of metabolic diseases. The inflammasome can directly or indirectly affect conduction of the insulin signaling pathway, involvement the occurrence of IR and type 2 diabetes mellitus (T2DM). Moreover, various therapeutic agents also work through the inflammasome to treat with diabetes. This review focuses on the role of inflammasome on IR and T2DM, pointing out the association and utility value. Briefly, we have discussed the main inflammasomes, including NLRP1, NLRP3, NLRC4, NLRP6 and AIM2, as well as their structure, activation and regulation in IR were described in detail. Finally, we discussed the current therapeutic options-associated with inflammasome for the treatment of T2DM. Specially, the NLRP3-related therapeutic agents and options are widely developed. In summary, this article reviews the role of and research progress on the inflammasome in IR and T2DM.
Collapse
Affiliation(s)
- Shen Lu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhaojun Qian
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Tiesuo Zhao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaogang Weng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| | - Lili Yu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Lili Yu, ; Xiaogang Weng,
| |
Collapse
|
2
|
Wang J, Yang D, Shen X, Wang J, Liu X, Lin J, Zhong J, Zhao Y, Qi Z. BPTES inhibits anthrax lethal toxin-induced inflammatory response. Int Immunopharmacol 2020; 85:106664. [PMID: 32521490 DOI: 10.1016/j.intimp.2020.106664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
Bacillus anthracis is a lethal agent of anthrax disease and the toxins are required in anthrax pathogenesis. The anthrax lethal toxin can trigger NLRP1b inflammasome activation and pyroptosis. Although the underlying mechanism is well understood, the medications targeting the NLRP1b inflammasome are not available in the clinic. Herein, we describe that BPTES, a known Glutaminase (GLS) inhibitor, is an effective NLRP1b inflammasome inhibitor. BPTES could effectively and specifically suppress NLRP1b inflammasome activation in macrophages but have no effects on NLRP3, NLRC4 and AIM2 inflammasome activation. Mechanistically, BPTES alleviated the UBR2 mediated proteasomal degradation pathway of the NLRP1b N terminus, thus blocking the release of the CARD domain for subsequent caspase-1 processing. Furthermore, BPTES could prevent disease progression in mice challenged with the anthrax lethal toxin. Taken together, our studies indicate that BPTES can be a promising pharmacological inhibitor to treat anthrax lethal toxin-related inflammatory diseases.
Collapse
Affiliation(s)
- Jinling Wang
- Department of Emergency, Zhongshan Hospital of Xiamen University, Xiamen 361005, China
| | - Daowei Yang
- Department of Emergency, Zhongshan Hospital of Xiamen University, Xiamen 361005, China.
| | - Xizi Shen
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Junsheng Wang
- Department of Emergency, Zhongshan Hospital of Xiamen University, Xiamen 361005, China
| | - Xiaomei Liu
- Department of Emergency, Zhongshan Hospital of Xiamen University, Xiamen 361005, China
| | - Jinzhou Lin
- Department of Emergency, Zhongshan Hospital of Xiamen University, Xiamen 361005, China
| | - Jiaying Zhong
- Faculty of Medicine, Xiamen University, Xiamen, China
| | - Yilin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Houtman J, Freitag K, Gimber N, Schmoranzer J, Heppner FL, Jendrach M. Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. EMBO J 2019; 38:embj.201899430. [PMID: 30617086 DOI: 10.15252/embj.201899430] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease is characterized not only by extracellular amyloid plaques and neurofibrillary tangles, but also by microglia-mediated neuroinflammation. Recently, autophagy has been linked to the regulation of the inflammatory response. Thus, we investigated how an impairment of autophagy mediated by BECN1/Beclin1 reduction, as described in Alzheimer's disease patients, would influence cytokine production of microglia. Acutely stimulated microglia from Becn1 +/- mice exhibited increased expression of IL-1beta and IL-18 compared to wild-type microglia. Becn1 +/- APPPS1 mice also contained enhanced IL-1beta levels. The investigation of the IL-1beta/IL-18 processing pathway showed an elevated number of cells with inflammasomes and increased levels of NLRP3 and cleaved CASP1/Caspase1 in Becn1 +/- microglia. Super-resolation microscopy revealed a very close association of NLRP3 aggregates and LC3-positive vesicles. Interestingly, CALCOCO2 colocalized with NLRP3 and its downregulation increased IL-1beta release. These data support the notion that selective autophagy can impact microglia activation by modulating IL-1beta and IL-18 production via NLRP3 degradation and thus present a mechanism how impaired autophagy could contribute to neuroinflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Judith Houtman
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Kiara Freitag
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany
| | - Niclas Gimber
- Core Facility Advanced Medical Bioimaging (AMBIO), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Jan Schmoranzer
- Core Facility Advanced Medical Bioimaging (AMBIO), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Berlin, Germany.,Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Marina Jendrach
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Brojatsch J, Lima H, Palliser D, Jacobson LS, Muehlbauer SM, Furtado R, Goldman DL, Lisanti MP, Chandran K. Distinct cathepsins control necrotic cell death mediated by pyroptosis inducers and lysosome-destabilizing agents. Cell Cycle 2015; 14:964-72. [PMID: 25830414 DOI: 10.4161/15384101.2014.991194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Necrotic cell death triggers a range of biological responses including a strong adaptive immune response, yet we know little about the cellular pathways that control necrotic cell death. Inhibitor studies suggest that proteases, and in particular cathepsins, drive necrotic cell death. The cathepsin B-selective inhibitor CA-074-Me blocks all forms of programmed necrosis by an unknown mechanism. We found that cathepsin B deficiency does not prevent induction of pyroptosis and lysosome-mediated necrosis suggesting that CA-074-Me blocks necrotic cell death by targeting cathepsins other than cathepsin B. A single cathepsin, cathepsin C, drives necrotic cell death mediated by the lysosome-destabilizing agent Leu-Leu-OMe (LLOMe). Here we present evidence that cathepsin C-deficiency and CA-074-Me block LLOMe killing in a distinct and cell type-specific fashion. Cathepsin C-deficiency and CA-074-Me block LLOMe killing of all myeloid cells, except for neutrophils. Cathepsin C-deficiency, but not CA-074-Me, blocks LLOMe killing of neutrophils suggesting that CA-074-Me does not target cathepsin C directly, consistent with inhibitor studies using recombinant cathepsin C. Unlike other cathepsins, cathepsin C lacks endoproteolytic activity, and requires activation by other lysosomal proteases, such as cathepsin D. Consistent with this theory, we found that lysosomotropic agents and cathepsin D downregulation by siRNA block LLOMe-mediated necrosis. Our findings indicate that a proteolytic cascade, involving cathepsins C and D, controls LLOMe-mediated necrosis. In contrast, cathepsins C and D were not required for pyroptotic cell death suggesting that distinct cathepsins control pyroptosis and lysosome-mediated necrosis.
Collapse
Affiliation(s)
- Jürgen Brojatsch
- a Department of Microbiology and Immunology; Albert Einstein College of Medicine , Bronx , NY USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gunaydin G, Kesikli SA, Guc D. Cancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subset. Oncoimmunology 2015; 4:e1034918. [PMID: 26405600 DOI: 10.1080/2162402x.2015.1034918] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 12/17/2022] Open
Abstract
Circulating fibrocytes were reported to represent a novel myeloid-derived suppressor cell (MDSC) subset and they were also proposed to be involved in the tumor immune escape. This novel fibrocyte subset had a surface phenotype resembling non-monocytic MDSCs (CD14-CD11chiCD123-) and exhibited immunomodulatory roles. Most effector functions of fibrocytes (circulating fibroblast-progenitors) are accomplished as tissue fibroblasts, likewise in the tumor microenvironment. Therefore, fibroblasts at tumor tissues should be evaluated whether they display similar molecular/gene expression patterns and functional roles to the blood-borne fibrocytes. A chemically induced rat breast carcinogenesis model was utilized to obtain cancer associated fibroblasts (CAFs). CAFs and normal tissue fibroblasts (NFs) were isolated from cancerous and healthy breast tissues, respectively, using a previously described enzymatic protocol. Both CAFs and NFs were analyzed for cell surface phenotypes by flow cytometry and for gene expression profiles by gene set enrichment analysis (GSEA). PBMCs were cocultured with either NFs or CAFs and proliferations of PBMCs were assessed by CFSE assays. Morphological analyses were performed by immunocytochemistry stainings with vimentin. CAFs were spindle shaped cells unlike their blood-borne counterparts. They did not express CD80 and their MHC-II expression was lower than NFs. Although CAFs expressed the myeloid marker CD11b/c, its expression was lower than that on the circulating fibrocytes. CAFs did not express granulocytic/neutrophilic markers and they seemed to have developed in an environment containing THELPER2-like cytokines. They also showed immunosuppressive effects similar to their blood-borne counterparts. In summary, CAFs showed similar phenotypic and functional characteristics to the circulating fibrocytes that were reported to represent a unique MDSC subset.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology; Hacettepe University Cancer Institute ; Sihhiye, Ankara, Turkey
| | - S Altug Kesikli
- Department of Basic Oncology; Hacettepe University Cancer Institute ; Sihhiye, Ankara, Turkey
| | - Dicle Guc
- Department of Basic Oncology; Hacettepe University Cancer Institute ; Sihhiye, Ankara, Turkey
| |
Collapse
|
6
|
Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proc Natl Acad Sci U S A 2014; 111:E4254-63. [PMID: 25246571 DOI: 10.1073/pnas.1324021111] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When nucleotide-binding oligomerization domain-like receptors (NLRs) sense cytosolic-invading bacteria, they induce the formation of inflammasomes and initiate an innate immune response. In quiescent cells, inflammasome activity is tightly regulated to prevent excess inflammation and cell death. Many bacterial pathogens provoke inflammasome activity and induce inflammatory responses, including cell death, by delivering type III secreted effectors, the rod component flagellin, and toxins. Recent studies indicated that Shigella deploy multiple mechanisms to stimulate NLR inflammasomes through type III secretion during infection. Here, we show that Shigella induces rapid macrophage cell death by delivering the invasion plasmid antigen H7.8 (IpaH7.8) enzyme 3 (E3) ubiquitin ligase effector via the type III secretion system, thereby activating the NLR family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing 4 (NLRC4) inflammasomes and caspase-1 and leading to macrophage cell death in an IpaH7.8 E3 ligase-dependent manner. Mice infected with Shigella possessing IpaH7.8, but not with Shigella possessing an IpaH7.8 E3 ligase-null mutant, exhibited enhanced bacterial multiplication. We defined glomulin/flagellar-associated protein 68 (GLMN) as an IpaH7.8 target involved in IpaH7.8 E3 ligase-dependent inflammasome activation. This protein originally was identified through its association with glomuvenous malformations and more recently was described as a member of a Cullin ring ligase inhibitor. Modifying GLMN levels through overexpression or knockdown led to reduced or augmented inflammasome activation, respectively. Macrophages stimulated with lipopolysaccharide/ATP induced GLMN puncta that localized with the active form of caspase-1. Macrophages from GLMN(+/-) mice were more responsive to inflammasome activation than those from GLMN(+/+) mice. Together, these results highlight a unique bacterial adaptation that hijacks inflammasome activation via interactions between IpaH7.8 and GLMN.
Collapse
|
7
|
Brojatsch J, Lima H, Kar AK, Jacobson LS, Muehlbauer SM, Chandran K, Diaz-Griffero F. A proteolytic cascade controls lysosome rupture and necrotic cell death mediated by lysosome-destabilizing adjuvants. PLoS One 2014; 9:e95032. [PMID: 24893007 PMCID: PMC4043491 DOI: 10.1371/journal.pone.0095032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/23/2014] [Indexed: 12/22/2022] Open
Abstract
Recent studies have linked necrotic cell death and proteolysis of inflammatory proteins to the adaptive immune response mediated by the lysosome-destabilizing adjuvants, alum and Leu-Leu-OMe (LLOMe). However, the mechanism by which lysosome-destabilizing agents trigger necrosis and proteolysis of inflammatory proteins is poorly understood. The proteasome is a cellular complex that has been shown to regulate both necrotic cell death and proteolysis of inflammatory proteins. We found that the peptide aldehyde proteasome inhibitors, MG115 and MG132, block lysosome rupture, degradation of inflammatory proteins and necrotic cell death mediated by the lysosome-destabilizing peptide LLOMe. However, non-aldehyde proteasome inhibitors failed to prevent LLOMe-induced cell death suggesting that aldehyde proteasome inhibitors triggered a pleotropic effect. We have previously shown that cathepsin C controls lysosome rupture, necrotic cell death and the adaptive immune response mediated by LLOMe. Using recombinant cathepsin C, we found that aldehyde proteasome inhibitors directly block cathepsin C, which presumably prevents LLOMe toxicity. The cathepsin B inhibitor CA-074-Me also blocks lysosome rupture and necrotic cell death mediated by a wide range of necrosis inducers, including LLOMe. Using cathepsin-deficient cells and recombinant cathepsins, we demonstrate that the cathepsins B and C are not required for the CA-074-Me block of necrotic cell death. Taken together, our findings demonstrate that lysosome-destabilizing adjuvants trigger an early proteolytic cascade, involving cathepsin C and a CA-074-Me-dependent protease. Identification of these early events leading to lysosome rupture will be crucial in our understanding of processes controlling necrotic cell death and immune responses mediated by lysosome-destabilizing adjuvants.
Collapse
Affiliation(s)
- Jürgen Brojatsch
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
- * E-mail:
| | - Heriberto Lima
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
| | - Alak K. Kar
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
| | - Lee S. Jacobson
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
| | - Stefan M. Muehlbauer
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
| | - Kartik Chandran
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
| | - Felipe Diaz-Griffero
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York, United States of America
| |
Collapse
|
8
|
Rivera J, Sellers RS, Zeng W, van Rooijen N, Casadevall A, Goldman DL. Platelet-activating factor contributes to Bacillus anthracis lethal toxin-associated damage. J Biol Chem 2014; 289:7131-7141. [PMID: 24478317 DOI: 10.1074/jbc.m113.524900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lethal toxin (LeTx) of Bacillus anthracis plays a central role in the pathogenesis of anthrax-associated shock. Platelet-activating factor (PAF) is a potent lipid mediator that has been implicated in endotoxin-associated shock. In this study, we examined the contribution of PAF to the manifestations of lethal toxin challenge in WT mice. LeTx challenge resulted in transient increase in serum PAF levels and a concurrent decrease in PAF acetylhydrolase activity. Inhibition of PAF activity using PAF antagonists or toxin challenge of PAF receptor negative mice reversed or ameliorated many of the pathologic features of LeTx-induced damage, including changes in vascular permeability, hepatic necrosis, and cellular apoptosis. In contrast, PAF inhibition had minimal effects on cytokine levels. Findings from these studies support the continued study of PAF antagonists as potential adjunctive agents in the treatment of anthrax-associated shock.
Collapse
Affiliation(s)
- Johanna Rivera
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Rani S Sellers
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Wangyong Zeng
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461; Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York 10461
| | - David L Goldman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
9
|
Maier NK, Crown D, Liu J, Leppla SH, Moayeri M. Arsenic trioxide and other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:763-70. [PMID: 24337744 PMCID: PMC3884817 DOI: 10.4049/jimmunol.1301434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammasomes are large cytoplasmic multiprotein complexes that activate caspase-1 in response to diverse intracellular danger signals. Inflammasome components termed nucleotide-binding oligomerization domain-like receptor (NLR) proteins act as sensors for pathogen-associated molecular patterns, stress, or danger stimuli. We discovered that arsenicals, including arsenic trioxide and sodium arsenite, inhibited activation of the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes by their respective activating signals, anthrax lethal toxin, nigericin, and flagellin. These compounds prevented the autoproteolytic activation of caspase-1 and the processing and secretion of IL-1β from macrophages. Inhibition was independent of protein synthesis induction, proteasome-mediated protein breakdown, or kinase signaling pathways. Arsenic trioxide and sodium arsenite did not directly modify or inhibit the activity of preactivated recombinant caspase-1. Rather, they induced a cellular state inhibitory to both the autoproteolytic and substrate cleavage activities of caspase-1, which was reversed by the reactive oxygen species scavenger N-acetylcysteine but not by reducing agents or NO pathway inhibitors. Arsenicals provided protection against NLRP1-dependent anthrax lethal toxin-mediated cell death and prevented NLRP3-dependent neutrophil recruitment in a monosodium urate crystal inflammatory murine peritonitis model. These findings suggest a novel role in inhibition of the innate immune response for arsenical compounds that have been used as therapeutics for a few hundred years.
Collapse
Affiliation(s)
- Nolan K. Maier
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Devorah Crown
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Brojatsch J, Casadevall A, Goldman DL. Molecular determinants for a cardiovascular collapse in anthrax. Front Biosci (Elite Ed) 2014; 6:139-47. [PMID: 24389148 DOI: 10.2741/e697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacillus anthracis releases two bipartite proteins, lethal toxin and edema factor, that contribute significantly to the progression of anthrax-associated shock. As blocking the anthrax toxins prevents disease, the toxins are considered the main virulence factors of the bacterium. The anthrax bacterium and the anthrax toxins trigger multi-organ failure associated with enhanced vascular permeability, hemorrhage and cardiac dysfunction in animal challenge models. A recent study using mice that either lacked the anthrax toxin receptor in specific cells and corresponding mice expressing the receptor in specific cell types demonstrated that cardiovascular cells are critical for disease mediated by anthrax lethal toxin. These studies are consistent with involvement of the cardiovascular system, and with an increase of cardiac failure markers observed in human anthrax and in animal models using B. anthracis and anthrax toxins. This review discusses the current state of knowledge regarding the pathophysiology of anthrax and tries to provide a mechanistic model and molecular determinants for the circulatory shock in anthrax.
Collapse
Affiliation(s)
- Jurgen Brojatsch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - David L Goldman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| |
Collapse
|
11
|
Lima H, Jacobson LS, Goldberg MF, Chandran K, Diaz-Griffero F, Lisanti MP, Brojatsch J. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle 2013; 12:1868-78. [PMID: 23708522 PMCID: PMC3735701 DOI: 10.4161/cc.24903] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Nod-like receptor, Nlrp3, has been linked to inflammatory diseases and adjuvant-mediated immune responses. A wide array of structurally diverse agents does not interact directly with Nlrp3, but is thought to activate the Nlrp3 inflammasome by inducing a common upstream signal, such as lysosome rupture. To test the connection between lysosome integrity and Nlrp3 signaling, we analyzed inflammasome activation following stimulation of murine macrophages with lysosome-destabilizing agents and pyroptosis inducers. Here we provide evidence that lysosomal rupture and the corresponding release of lysosomal hydrolases is an early event in macrophages exposed to the lysosome-destabilizing adjuvants LLOMe and alum. Lysosome rupture preceded cell death induction mediated by these agents and was associated with the degradation of low-molecular weight proteins, including the inflammasome component caspase-1. Proteolysis of caspase-1 was controlled by specific cathepsins, but was independent of autocatalytic processes and Nlrp3 signaling. Consistent with these findings, lysosome-disrupting agents triggered only minimal caspase-1 activation and failed to cause caspase-1-dependent cell death (pyroptosis), generally associated with Nlrp3 signaling. In contrast, lysosome rupture was a late event in macrophages exposed to prototypical pyroptosis inducers. These agents triggered extensive Nlrp3 signaling prior to lysosome rupture with only minimal impact on the cellular proteome. Taken together, our findings suggest that lysosome impairment triggers a cascade of events culminating in cell death but is not crucial for Nlrp3 signaling. The significant differences observed between lysosome-disrupting agents and pyroptosis inducers might explain the distinct immunologic responses associated with these compounds.
Collapse
Affiliation(s)
- Heriberto Lima
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Mohamed Lamkanfi
- Department of Biochemistry, Ghent University, Ghent 9000, Belgium
- Department of Medical Protein Research, VIB, Ghent 9000, Belgium;
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, California 94080;
| |
Collapse
|
13
|
Moayeri M, Sastalla I, Leppla SH. Anthrax and the inflammasome. Microbes Infect 2012; 14:392-400. [PMID: 22207185 PMCID: PMC3322314 DOI: 10.1016/j.micinf.2011.12.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 01/07/2023]
Abstract
Anthrax lethal toxin (LT), a major virulence determinant of anthrax disease, induces vascular collapse in mice and rats. LT activates the Nlrp1 inflammasome in macrophages and dendritic cells, resulting in caspase-1 activation, IL-1β and IL-18 maturation and a rapid cell death (pyroptosis). This review presents the current understanding of LT-induced activation of Nlrp1 in cells and its consequences for toxin-mediated effects in rodent toxin and spore challenge models.
Collapse
Affiliation(s)
- Mahtab Moayeri
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
14
|
Beierlein JM, Anderson AC. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis. Curr Med Chem 2012; 18:5083-94. [PMID: 22050756 DOI: 10.2174/092986711797636036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 01/28/2023]
Abstract
Bacillus anthracis, the causative agent responsible for anthrax infections, poses a significant biodefense threat. There is a high mortality rate associated with untreated anthrax infections; specifically, inhalation anthrax is a particularly virulent form of infection with mortality rates close to 100%, even with aggressive treatment. Currently, a vaccine is not available to the general public and few antibiotics have been approved by the FDA for the treatment of inhalation anthrax. With the threat of natural or engineered bacterial resistance to antibiotics and the limited population for whom the current drugs are approved, there is a clear need for more effective treatments against this deadly infection. A comprehensive review of current research in drug discovery is presented in this article, including efforts to improve the purity and stability of vaccines, design inhibitors targeting the anthrax toxins, and identify inhibitors of novel enzyme targets. High resolution structural information for the anthrax toxins and several essential metabolic enzymes has played a significant role in aiding the structure-based design of potent and selective antibiotics.
Collapse
Affiliation(s)
- J M Beierlein
- Dept. Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Storrs, CT 06269, USA
| | | |
Collapse
|
15
|
NOD-like receptors and the innate immune system: Coping with danger, damage and death. Cytokine Growth Factor Rev 2011; 22:257-76. [DOI: 10.1016/j.cytogfr.2011.09.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 09/07/2011] [Indexed: 12/26/2022]
|
16
|
Thomas J, Epshtein Y, Chopra A, Ordog B, Ghassemi M, Christman JW, Nattel S, Cook JL, Levitan I. Anthrax lethal factor activates K(+) channels to induce IL-1β secretion in macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 186:5236-43. [PMID: 21421849 DOI: 10.4049/jimmunol.1001078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anthrax lethal toxin (LeTx) is a virulence factor of Bacilillus anthracis that is a bivalent toxin, containing lethal factor (LF) and protective Ag proteins, which causes cytotoxicity and altered macrophage function. LeTx exposure results in early K(+) efflux from macrophages associated with caspase-1 activation and increased IL-1β release. The mechanism of this toxin-induced K(+) efflux is unknown. The goals of the current study were to determine whether LeTx-induced K(+) efflux from macrophages is mediated by toxin effects on specific K(+) channels and whether altered K(+)-channel activity is involved in LeTx-induced IL-1β release. Exposure of macrophages to LeTx induced a significant increase in the activities of two types of K(+) channels that have been identified in mouse macrophages: Ba(2+)-sensitive inwardly rectifying K(+) (Kir) channels and 4-aminopyridine-sensitive outwardly rectifying voltage-gated K(+) (Kv) channels. LeTx enhancement of both Kir and Kv required the proteolytic activity of LF, because exposure of macrophages to a mutant LF-protein (LF(E687C)) combined with protective Ag protein had no effect on the currents. Furthermore, blocking Kir and Kv channels significantly decreased LeTx-induced release of IL-1β. In addition, retroviral transduction of macrophages with wild-type Kir enhanced LeTx-induced release of IL-1β, whereas transduction of dominant-negative Kir blocked LeTx-induced release of IL-1β. Activation of caspase-1 was not required for LeTx-induced activation of either of the K(+) channels. These data indicate that a major mechanism through which LeTx stimulates macrophages to release IL-1β involves an LF-protease effect that enhances Kir and Kv channel function during toxin stimulation.
Collapse
Affiliation(s)
- Johnson Thomas
- Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|