1
|
Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases: an update. Am J Physiol Renal Physiol 2024; 327:F967-F984. [PMID: 39361724 PMCID: PMC11687849 DOI: 10.1152/ajprenal.00179.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases with important roles in kidney homeostasis and pathology. While capable of collectively degrading each component of the extracellular matrix, MMPs also degrade nonmatrix substrates to regulate inflammation, epithelial plasticity, proliferation, apoptosis, and angiogenesis. More recently, intriguing mechanisms that directly alter podocyte biology have been described. There is now irrefutable evidence for MMP dysregulation in many types of kidney disease including acute kidney injury, diabetic and hypertensive nephropathy, polycystic kidney disease, and Alport syndrome. This updated review will detail the complex biology of MMPs in kidney disease.
Collapse
Affiliation(s)
- Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Chen H, You R, Guo J, Zhou W, Chew G, Devapragash N, Loh JZ, Gesualdo L, Li Y, Jiang Y, Tan ELS, Chen S, Pontrelli P, Pesce F, Behmoaras J, Zhang A, Petretto E. WWP2 Regulates Renal Fibrosis and the Metabolic Reprogramming of Profibrotic Myofibroblasts. J Am Soc Nephrol 2024; 35:696-718. [PMID: 38502123 PMCID: PMC11164121 DOI: 10.1681/asn.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Key Points WWP2 expression is elevated in the tubulointerstitium of fibrotic kidneys and contributes to CKD pathogenesis and progression. WWP2 uncouples the profibrotic activation and cell proliferation in renal myofibroblasts. WWP2 controls mitochondrial respiration in renal myofibroblasts through the metabolic regulator peroxisome proliferator-activated receptor gamma coactivator 1-alpha. Background Renal fibrosis is a common pathologic end point in CKD that is challenging to reverse, and myofibroblasts are responsible for the accumulation of a fibrillar collagen–rich extracellular matrix. Recent studies have unveiled myofibroblasts' diversity in proliferative and fibrotic characteristics, which are linked to different metabolic states. We previously demonstrated the regulation of extracellular matrix genes and tissue fibrosis by WWP2, a multifunctional E3 ubiquitin–protein ligase. Here, we investigate WWP2 in renal fibrosis and in the metabolic reprograming of myofibroblasts in CKD. Methods We used kidney samples from patients with CKD and WWP2 -null kidney disease mice models and leveraged single-cell RNA sequencing analysis to detail the cell-specific regulation of WWP2 in fibrotic kidneys. Experiments in primary cultured myofibroblasts by bulk-RNA sequencing, chromatin immunoprecipitation sequencing, metabolomics, and cellular metabolism assays were used to study the metabolic regulation of WWP2 and its downstream signaling. Results The tubulointerstitial expression of WWP2 was associated with fibrotic progression in patients with CKD and in murine kidney disease models. WWP2 deficiency promoted myofibroblast proliferation and halted profibrotic activation, reducing the severity of renal fibrosis in vivo . In renal myofibroblasts, WWP2 deficiency increased fatty acid oxidation and activated the pentose phosphate pathway, boosting mitochondrial respiration at the expense of glycolysis. WWP2 suppressed the transcription of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a metabolic mediator of fibrotic response, and pharmacologic inhibition of PGC-1α partially abrogated the protective effects of WWP2 deficiency on myofibroblasts. Conclusions WWP2 regulates the metabolic reprogramming of profibrotic myofibroblasts by a WWP2-PGC-1α axis, and WWP2 deficiency protects against renal fibrosis in CKD.
Collapse
Affiliation(s)
- Huimei Chen
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, Singapore
| | - Ran You
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Guo
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, Singapore
| | - Wei Zhou
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Gabriel Chew
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, Singapore
| | - Nithya Devapragash
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, Singapore
| | - Jui Zhi Loh
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, Singapore
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Yanwei Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuteng Jiang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Elisabeth Li Sa Tan
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, Singapore
| | - Shuang Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- School of Science, Institute for Big Data and Artificial Intelligence in Medicine, China Pharmaceutical University, Nanjing, China
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pesce
- Division of Renal Medicine, Fatebenefratelli Isola Tiberina—Gemelli Isola, Rome, Italy
| | - Jacques Behmoaras
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, Singapore
- Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, Singapore
- School of Science, Institute for Big Data and Artificial Intelligence in Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Wu YS, Liang S, Li DY, Wen JH, Tang JX, Liu HF. Cell Cycle Dysregulation and Renal Fibrosis. Front Cell Dev Biol 2021; 9:714320. [PMID: 34900982 PMCID: PMC8660570 DOI: 10.3389/fcell.2021.714320] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Precise regulation of cell cycle is essential for tissue homeostasis and development, while cell cycle dysregulation is associated with many human diseases including renal fibrosis, a common process of various chronic kidney diseases progressing to end-stage renal disease. Under normal physiological conditions, most of the renal cells are post-mitotic quiescent cells arrested in the G0 phase of cell cycle and renal cells turnover is very low. Injuries induced by toxins, hypoxia, and metabolic disorders can stimulate renal cells to enter the cell cycle, which is essential for kidney regeneration and renal function restoration. However, more severe or repeated injuries will lead to maladaptive repair, manifesting as cell cycle arrest or overproliferation of renal cells, both of which are closely related to renal fibrosis. Thus, cell cycle dysregulation of renal cells is a potential therapeutic target for the treatment of renal fibrosis. In this review, we focus on cell cycle regulation of renal cells in healthy and diseased kidney, discussing the role of cell cycle dysregulation of renal cells in renal fibrosis. Better understanding of the function of cell cycle dysregulation in renal fibrosis is essential for the development of therapeutics to halt renal fibrosis progression or promote regression.
Collapse
Affiliation(s)
- Yun-Shan Wu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shan Liang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong-Yi Li
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun-Hao Wen
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Shunde Women and Children's Hospital, Guangdong Medical University (Foshan Shunde Maternal and Child Healthcare Hospital), Foshan, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Chen F, Hu Y, Xie Y, Zhao Z, Ma L, Li Z, Tan W. Total Glucosides of Paeony Alleviate Cell Apoptosis and Inflammation by Targeting the Long Noncoding RNA XIST/MicroRNA-124-3p/ITGB1 Axis in Renal Ischemia/Reperfusion Injury. Mediators Inflamm 2020; 2020:8869511. [PMID: 33299380 PMCID: PMC7710434 DOI: 10.1155/2020/8869511] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Renal ischemia/reperfusion injury (RI/RI) is the main cause of acute kidney injury. Total glucosides of paeony (TGP) are a traditional Chinese medicine. This study was aimed at exploring the role of TGP in RI/RI and its underlying mechanism of action. METHODS Rat RI/RI models were constructed by surgical operation. Serum creatinine (Scr) and blood urea nitrogen (BUN) were used to evaluate renal function. The levels of proinflammatory cytokines were detected by ELISA. RI/RI was simulated by hypoxia/reoxygenation (H/R) treatment in renal cells in vitro. The lncRNA XIST (XIST) expression was analyzed by qRT-PCR. Then, the viability and apoptosis of renal cells were detected by MTT and flow cytometry assay. Additionally, dual-luciferase reporter assay was used to determine the interactions among XIST, microRNA-124-3p (miR-124-3p), and ITGB1. RESULTS TGP improved renal function and inhibited inflammatory responses after RI/RI. XIST expression was highly expressed in rat RI/RI models and H/R-treated renal cells, whereas treatment with TGP downregulated the XIST expression. Additionally, TGP increased viability and attenuated apoptosis and inflammation of H/R-treated renal cells via inhibiting XIST. Moreover, XIST was competitively bound to miR-124-3p, and ITGB1 was a target of miR-124-3p. miR-124-3p overexpression or ITGB1 inhibition rescued the reduction effect on viability and mitigated the promoting effects on cell apoptosis and inflammation caused by XIST overexpression in H/R-treated renal cells. CONCLUSIONS In vivo, TGP attenuated renal dysfunction and inflammation in RI/RI rats. In vitro, TGP inhibited XIST expression to modulate the miR-124-3p/ITGB1 axis, alleviating the apoptosis and inflammation of H/R-treated renal cells.
Collapse
Affiliation(s)
- Fang Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yi Hu
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Yuetao Xie
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Zonghui Zhao
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Lin Ma
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Zhili Li
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
5
|
Ó hAinmhire E, Wu H, Muto Y, Donnelly EL, Machado FG, Fan LX, Chang-Panesso M, Humphreys BD. A conditionally immortalized Gli1-positive kidney mesenchymal cell line models myofibroblast transition. Am J Physiol Renal Physiol 2019; 316:F63-F75. [PMID: 30303712 PMCID: PMC6383201 DOI: 10.1152/ajprenal.00460.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma-associated oncogene homolog-1 (Gli1)-positive resident mesenchymal stem cell-like cells are the predominant source of kidney myofibroblasts in fibrosis, but investigating Gli1-positive myofibroblast progenitor activation is hampered by the difficulty of isolating and propagating primary cultures of these cells. Using a genetic strategy with positive and negative selection, we isolated Kidney-Gli1 (KGli1) cells that maintain expression of appropriate mesenchymal stem cell-like cell markers, respond to hedgehog pathway activation, and display robust myofibroblast differentiation upon treatment with transforming growth factor-β (TGF-β). Coculture of KGli1 cells with endothelium stabilizes capillary formation. Single-cell RNA sequencing (scRNA-seq) analysis during differentiation identified autocrine ligand-receptor pair upregulation and a strong focal adhesion pathway signal. This led us to test the serum response factor inhibitor CCG-203971 that potently inhibited TGF-β-induced pericyte-to-myofibroblast transition. scRNA-seq also identified the unexpected upregulation of nerve growth factor (NGF), which we confirmed in two mouse kidney fibrosis models. The Ngf receptor Ntrk1 is expressed in tubular epithelium in vivo, suggesting a novel interstitial-to-tubule paracrine signaling axis. Thus, KGli1 cells accurately model myofibroblast activation in vitro, and the development of this cell line provides a new tool to study resident mesenchymal stem cell-like progenitors in health and disease.
Collapse
Affiliation(s)
- Eoghainín Ó hAinmhire
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Erinn L Donnelly
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Flavia G Machado
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Lucy X Fan
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Monica Chang-Panesso
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
- Department of Developmental Biology, Washington University in Saint Louis School of Medicine , St. Louis, Missouri
| |
Collapse
|
6
|
Fu H, Tian Y, Zhou L, Zhou D, Tan RJ, Stolz DB, Liu Y. Tenascin-C Is a Major Component of the Fibrogenic Niche in Kidney Fibrosis. J Am Soc Nephrol 2017; 28:785-801. [PMID: 27612995 PMCID: PMC5328156 DOI: 10.1681/asn.2016020165] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
Kidney fibrosis initiates at certain focal sites in which the fibrogenic niche provides a specialized microenvironment that facilitates fibroblast activation and proliferation. However, the molecular identity of these fibrogenic niches is poorly characterized. Here, we determined whether tenascin-C (TNC), an extracellular matrix glycoprotein, is a component of the fibrogenic niche in kidney fibrosis. In vivo, TNC expression increased rapidly in kidneys subjected to unilateral ureteral obstruction or ischemia/reperfusion injury and predominantly localized at the foci rich in fibroblasts in renal interstitium. In vitro, TNC selectively promoted renal interstitial fibroblast proliferation, bromodeoxyuridine incorporation, and the expression of proliferation-related genes. The mitogenic activity of TNC required the integrin/focal adhesion kinase/mitogen-activated protein kinase signaling cascade. Using decellularized extracellular matrix scaffolds, we found that TNC-enriched scaffolds facilitated fibroblast proliferation, whereas TNC-deprived scaffolds inhibited proliferation. Matrix scaffold prepared from fibrotic kidney also promoted greater ex vivo fibroblast proliferation than did scaffolds prepared from healthy kidney. Conversely, small interfering RNA-mediated knockdown of TNC in vivo repressed injury-induced fibroblast expansion and renal fibrosis. These studies identify TNC as a major constituent of the fibrogenic niche that promotes fibroblast proliferation, and illustrate a pivotal role for the TNC-enriched microenvironment in kidney fibrogenesis.
Collapse
Affiliation(s)
- Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
- Departments of Pathology
| | - Yuan Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | | | | | - Donna B Stolz
- Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
- Departments of Pathology
| |
Collapse
|
7
|
Li M, Hu L, Zhu F, Zhou Z, Tian J, Ai J. Hepatitis B virus X protein promotes renal epithelial-mesenchymal transition in human renal proximal tubule epithelial cells through the activation of NF-κB. Int J Mol Med 2016; 38:513-20. [PMID: 27314843 DOI: 10.3892/ijmm.2016.2637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/31/2016] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B virus (HBV)-associated glomerulo-nephritis is the most common extra-hepatic disorder occurring with hepatitis B virus infection. In the present study, we hypothesized that HBV X protein (HBx) may play a critical role in renal interstitial fibrosis, as HBx has been shown to induce epithelial-mesenchymal transition (EMT) in renal cells. For this purpose, we successfully transfected HBx plasmid into human renal proximal tubule epithelial cells (HK-2 cells). We found that transfection with HBx plasmid significantly downregulated E-cadherin expression and upregulated α-smooth muscle actin, collagen I and fibronectin expression in a time- and concentration-dependent manner (at the lower concentrations and earlier time points). HBx also increased nuclear factor-κB (NF-κB) phosphorylation in a time- and concentration-dependent manner (again at the lower concentrations and earlier time points); however, it did not alter the phosphorylation of Smad2, Smad3, p38, phosphoinositide 3-kinase (PI3K) or extracellular signal-regulated kinase (ERK). Thus, the findings of this study demonstrate that HBx promotes EMT in renal HK-2 cells, and the potential underlying mechanisms may involve the activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Mei Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Liping Hu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fengxin Zhu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhangmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianwei Tian
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jun Ai
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
8
|
Ai J, Nie J, He J, Guo Q, Li M, Lei Y, Liu Y, Zhou Z, Zhu F, Liang M, Cheng Y, Hou FF. GQ5 Hinders Renal Fibrosis in Obstructive Nephropathy by Selectively Inhibiting TGF-β-Induced Smad3 Phosphorylation. J Am Soc Nephrol 2015; 26:1827-1838. [PMID: 25392233 PMCID: PMC4520163 DOI: 10.1681/asn.2014040363] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/29/2014] [Indexed: 11/03/2022] Open
Abstract
TGF-β1, via Smad-dependent or Smad-independent signaling, has a central role in the pathogenesis of renal fibrosis. This pathway has been recognized as a potential target for antifibrotic therapy. Here, we identified GQ5, a small molecular phenolic compound isolated from the dried resin of Toxicodendron vernicifluum, as a potent and selective inhibitor of TGF-β1-induced Smad3 phosphorylation. In TGF-β1-stimulated renal tubular epithelial cells and interstitial fibroblast cells, GQ5 inhibited the interaction of Smad3 with TGF-β type I receptor (TβRI) by blocking binding of Smad3 to SARA, suppressed subsequent phosphorylation of Smad3, reduced nuclear translocation of Smad2, Smad3, and Smad4, and downregulated the transcription of major fibrotic genes such as α-smooth muscle actin (α-SMA), collagen I, and fibronectin. Notably, intraperitoneal administration of GQ5 in rats immediately after unilateral ureteral obstruction (UUO) selectively inhibited Smad3 phosphorylation in UUO kidneys, suppressed renal expression of α-SMA, collagen I, and fibronectin, and resulted in impressive renal protection after obstructive injury. Late administration of GQ5 also effectively attenuated fibrotic lesions in obstructive nephropathy. In conclusion, our results suggest that GQ5 hinders renal fibrosis in rats by selective inhibition of TGF-β1-induced Smad3 phosphorylation.
Collapse
Affiliation(s)
- Jun Ai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Jiangbo He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Qin Guo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Mei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Ying Lei
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Min Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| | - Yongxian Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, and Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China; and
| |
Collapse
|
9
|
Reichel CA, Hessenauer MET, Pflieger K, Rehberg M, Kanse SM, Zahler S, Krombach F, Berghaus A, Strieth S. Components of the plasminogen activation system promote engraftment of porous polyethylene biomaterial via common and distinct effects. PLoS One 2015; 10:e0116883. [PMID: 25658820 PMCID: PMC4319722 DOI: 10.1371/journal.pone.0116883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Rapid fibrovascularization is a prerequisite for successful biomaterial engraftment. In addition to their well-known roles in fibrinolysis, urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA) or their inhibitor plasminogen activator inhibitor-1 (PAI-1) have recently been implicated as individual mediators in non-fibrinolytic processes, including cell adhesion, migration, and proliferation. Since these events are critical for fibrovascularization of biomaterial, we hypothesized that the components of the plasminogen activation system contribute to biomaterial engraftment. Employing in vivo and ex vivo microscopy techniques, vessel and collagen network formation within porous polyethylene (PPE) implants engrafted into dorsal skinfold chambers were found to be significantly impaired in uPA-, tPA-, or PAI-1-deficient mice. Consequently, the force required for mechanical disintegration of the implants out of the host tissue was significantly lower in the mutant mice than in wild-type controls. Conversely, surface coating with recombinant uPA, tPA, non-catalytic uPA, or PAI-1, but not with non-catalytic tPA, accelerated implant vascularization in wild-type mice. Thus, uPA, tPA, and PAI-1 contribute to the fibrovascularization of PPE implants through common and distinct effects. As clinical perspective, surface coating with recombinant uPA, tPA, or PAI-1 might provide a novel strategy for accelerating the vascularization of this biomaterial.
Collapse
Affiliation(s)
- Christoph A. Reichel
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| | - Maximilian E. T. Hessenauer
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kerstin Pflieger
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Rehberg
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sandip M. Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexander Berghaus
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Head and Neck Surgery, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
10
|
Zhou D, Li Y, Zhou L, Tan RJ, Xiao L, Liang M, Hou FF, Liu Y. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J Am Soc Nephrol 2014; 25:2187-2200. [PMID: 24744439 PMCID: PMC4178435 DOI: 10.1681/asn.2013080893] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/16/2014] [Indexed: 01/06/2023] Open
Abstract
Tubular epithelium constitutes the majority of the renal parenchyma and is the primary target of various kidney injuries. However, how the injured tubules drive interstitial fibroblast activation and proliferation remains poorly understood. Here, we investigated the role of sonic hedgehog (Shh), a secreted extracellular signaling protein, in fibroblast proliferation. Shh was induced in renal tubular epithelia in animal models of CKD induced by ischemia/reperfusion injury (IRI), adriamycin, or renal mass ablation, and in renal tubules of kidney biopsy specimens from CKD patients with different etiologies. Using Gli1-CreER(T2) reporter mice, we identified interstitial fibroblasts as the principal targets of renal Shh signaling in vivo. In vitro, incubation with Shh promoted normal rat kidney fibroblast proliferation, which was assessed by cell counting, MTT assay, and BrdU incorporation assay, and stimulated the induction of numerous proliferation-related genes. However, Shh had no effect on the proliferation of renal tubular epithelial cells. In vivo, overexpression of Shh promoted fibroblast expansion and aggravated kidney fibrotic lesions after IRI. Correspondingly, blockade of Shh signaling by cyclopamine, a small molecule inhibitor of Smoothened, inhibited fibroblast proliferation, reduced myofibroblast accumulation, and attenuated renal fibrosis. These studies identify Shh as a novel, specific, and potent tubule-derived growth factor that promotes interstitial fibroblast proliferation and activation. Our data also suggest that blockade of Shh signaling is a plausible strategy for therapeutic intervention of renal fibrosis.
Collapse
Affiliation(s)
| | | | - Lili Zhou
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Roderick J Tan
- Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Liangxiang Xiao
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Min Liang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Departments of Pathology, and State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
11
|
Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy. Kidney Int 2013; 85:1318-29. [PMID: 24284510 PMCID: PMC4040941 DOI: 10.1038/ki.2013.449] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 08/01/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide has recently been found decreased in chronic kidney disease. Here we determined the effect and underlying mechanisms of hydrogen sulfide on a rat model of unilateral ureteral obstruction. Compared with normal rats, obstructive injury decreased the plasma hydrogen sulfide level. Cystathionine-β-synthase, a hydrogen sulfide-producing enzyme, was dramatically reduced in the ureteral obstructed kidney, but another enzyme cystathionine-γ-lyase was increased. A hydrogen sulfide donor (sodium hydrogen sulfide) inhibited renal fibrosis by attenuating the production of collagen, extracellular matrix, and the expression of α-smooth muscle actin. Meanwhile, the infiltration of macrophages and the expression of inflammatory cytokines including interleukin-1β, tumor necrosis factor-α, and monocyte chemoattractant protein-1 in the kidney were also decreased. In cultured kidney fibroblasts, a hydrogen sulfide donor inhibited the cell proliferation by reducing DNA synthesis and downregulating the expressions of proliferation-related proteins including proliferating cell nuclear antigen and c-Myc. Further, the hydrogen sulfide donor blocked the differentiation of quiescent renal fibroblasts to myofibroblasts by inhibiting the transforming growth factor-β1-Smad and mitogen-activated protein kinase signaling pathways. Thus, low doses of hydrogen sulfide or its releasing compounds may have therapeutic potentials in treating chronic kidney disease.
Collapse
|
12
|
Yin M, Tian S, Huang X, Huang Y, Jiang M. Role and mechanism of tissue plasminogen activator in venous wall fibrosis remodeling after deep venous thrombosis via the glycogen synthase kinase-3 beta signaling pathway. J Surg Res 2013; 184:1182-95. [DOI: 10.1016/j.jss.2013.03.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/24/2013] [Accepted: 03/28/2013] [Indexed: 02/02/2023]
|
13
|
Jiang L, Xu L, Mao J, Li J, Fang L, Zhou Y, Liu W, He W, Zhao AZ, Yang J, Dai C. Rheb/mTORC1 signaling promotes kidney fibroblast activation and fibrosis. J Am Soc Nephrol 2013; 24:1114-26. [PMID: 23661807 DOI: 10.1681/asn.2012050476] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ras homolog enriched in brain (Rheb) is a small GTPase that regulates cell growth, differentiation, and survival by upregulating mammalian target of rapamycin complex 1 (mTORC1) signaling. The role of Rheb/mTORC1 signaling in the activation of kidney fibroblasts and the development of kidney fibrosis remains largely unknown. In this study, we found that Rheb/mTORC1 signaling was activated in interstitial myofibroblasts from fibrotic kidneys. Treatment of rat kidney interstitial fibroblasts (NRK-49F cell line) with TGFβ1 also activated Rheb/mTORC1 signaling. Blocking Rheb/mTORC1 signaling with rapamycin or Rheb small interfering RNA abolished TGFβ1-induced fibroblast activation. In a transgenic mouse, ectopic expression of Rheb activated kidney fibroblasts. These Rheb transgenic mice exhibited increased activation of mTORC1 signaling in both kidney tubular and interstitial cells as well as progressive interstitial renal fibrosis; rapamycin inhibited these effects. Similarly, mice with fibroblast-specific deletion of Tsc1, a negative regulator of Rheb, exhibited activated mTORC1 signaling in kidney interstitial fibroblasts and increased renal fibrosis, both of which rapamycin abolished. Taken together, these results suggest that Rheb/mTORC1 signaling promotes the activation of kidney fibroblasts and contributes to the development of interstitial fibrosis, possibly providing a therapeutic target for progressive renal disease.
Collapse
Affiliation(s)
- Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne) 2013; 4:7. [PMID: 23390421 PMCID: PMC3565176 DOI: 10.3389/fendo.2013.00007] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022] Open
Abstract
Kidney disease associated with diabetes mellitus is a major health problem worldwide. Although established therapeutic strategies, such as appropriate blood glucose control, blood pressure control with renin-angiotensin system blockade, and lipid lowering with statins, are used to treat diabetes, the contribution of diabetic end-stage kidney disease to the total number of cases requiring hemodialysis has increased tremendously in the past two decades. Once renal function starts declining, it can result in a higher frequency of renal and extra-renal events, including cardiovascular events. Therefore, slowing renal function decline is one of the main areas of focus in diabetic nephropathy research, and novel strategies are urgently needed to prevent diabetic kidney disease progression. Regardless of the type of injury and etiology, kidney fibrosis is the commonly the final outcome of progressive kidney diseases, and it results in significant destruction of normal kidney structure and accompanying functional deterioration. Kidney fibrosis is caused by prolonged injury and dysregulation of the normal wound-healing process in association with excess extracellular matrix deposition. Kidney fibroblasts play an important role in the fibrotic process, but the origin of the fibroblasts remains elusive. In addition to the activation of residential fibroblasts, other important sources of fibroblasts have been proposed, such as pericytes, fibrocytes, and fibroblasts originating from epithelial-to-mesenchymal and endothelial-to-mesenchymal transition. Inflammatory cells and cytokines play a vital role In the process of fibroblast activation. In this review, we will analyze the contribution of inflammation to the process of tissue fibrosis, the type of fibroblast activation and the therapeutic strategies targeting the inflammatory pathways in an effort to slow the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Division of Diabetology and Endocrinology, Kanazawa Medical UniversityKahoku, Japan
- *Correspondence: Keizo Kanasaki and Daisuke Koya, Division of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku Ishikawa 920-0293, Japan. e-mail: ; ; Gangadhar Taduri, Department of Nephrology, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad 500082, Andhra Pradesh, India. e-mail:
| | - Gangadhar Taduri
- Department of Nephrology, Nizam’s Institute of Medical SciencesHyderabad, India
- *Correspondence: Keizo Kanasaki and Daisuke Koya, Division of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku Ishikawa 920-0293, Japan. e-mail: ; ; Gangadhar Taduri, Department of Nephrology, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad 500082, Andhra Pradesh, India. e-mail:
| | - Daisuke Koya
- Division of Diabetology and Endocrinology, Kanazawa Medical UniversityKahoku, Japan
- *Correspondence: Keizo Kanasaki and Daisuke Koya, Division of Diabetology and Endocrinology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku Ishikawa 920-0293, Japan. e-mail: ; ; Gangadhar Taduri, Department of Nephrology, Nizam’s Institute of Medical Sciences, Punjagutta, Hyderabad 500082, Andhra Pradesh, India. e-mail:
| |
Collapse
|
15
|
Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Renal Physiol 2012; 302:F1351-F1361. [PMID: 22492945 PMCID: PMC3774496 DOI: 10.1152/ajprenal.00037.2012] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/03/2012] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that have been increasingly linked to both normal physiology and abnormal pathology in the kidney. Collectively able to degrade all components of the extracellular matrix, MMPs were originally thought to antagonize the development of fibrotic diseases solely through digestion of excessive matrix. However, increasing evidence has shown that MMPs play a wide variety of roles in regulating inflammation, epithelial-mesenchymal transition, cell proliferation, angiogenesis, and apoptosis. We now have robust evidence for MMP dysregulation in a multitude of renal diseases including acute kidney injury, diabetic nephropathy, glomerulonephritis, inherited kidney disease, and chronic allograft nephropathy. The goal of this review is to summarize current findings regarding the role of MMPs in kidney diseases as well as the mechanisms of action of this family of proteases.
Collapse
Affiliation(s)
- Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | |
Collapse
|
16
|
Abstract
Renal fibrosis, particularly tubulointerstitial fibrosis, is the common final outcome of almost all progressive chronic kidney diseases. Renal fibrosis is also a reliable predictor of prognosis and a major determinant of renal insufficiency. Irrespective of the initial causes, renal fibrogenesis is a dynamic and converging process that consists of four overlapping phases: priming, activation, execution and progression. Nonresolving inflammation after a sustained injury sets up the fibrogenic stage (priming) and triggers the activation and expansion of matrix-producing cells from multiple sources through diverse mechanisms, including activation of interstitial fibroblasts and pericytes, phenotypic conversion of tubular epithelial and endothelial cells and recruitment of circulating fibrocytes. Upon activation, matrix-producing cells assemble a multicomponent, integrin-associated protein complex that integrates input from various fibrogenic signals and orchestrates the production of matrix components and their extracellular assembly. Multiple cellular and molecular events, such as tubular atrophy, microvascular rarefaction and tissue hypoxia, promote scar formation and ensure a vicious progression to end-stage kidney failure. This Review outlines our current understanding of the cellular and molecular mechanisms of renal fibrosis, which could offer novel insights into the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Youhua Liu
- Department of Pathology, University of Pittsburgh, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
17
|
Li Z, Xie WB, Escano CS, Asico LD, Xie Q, Jose PA, Chen SY. Response gene to complement 32 is essential for fibroblast activation in renal fibrosis. J Biol Chem 2011; 286:41323-41330. [PMID: 21990365 DOI: 10.1074/jbc.m111.259184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Response gene to complement 32 (RGC-32) is a downstream target of transforming growth factor-β (TGF-β). TGF-β is known to play a pathogenic role in renal fibrosis. In this study, we investigated RGC-32 function in renal fibrosis following unilateral ureteral obstruction (UUO) in mice, a model of progressive tubulointerstitial fibrosis. RGC-32 is normally expressed only in blood vessels of mouse kidney. However, UUO induces RGC-32 expression in renal interstitial cells at the early stage of kidney injury, suggesting that RGC-32 is involved in interstitial fibroblast activation. Indeed, expression of smooth muscle α-actin (α-SMA), an indicator of fibroblast activation, is limited to the interstitial cells at the early stage, and became apparent later in both interstitial and tubular cells. RGC-32 knockdown by shRNA significantly inhibits UUO-induced renal structural damage, α-SMA expression and collagen deposition, suggesting that RGC-32 is essential for the onset of renal interstitial fibrosis. In vitro studies indicate that RGC-32 mediates TGF-β-induced fibroblast activation. Mechanistically, RGC-32 interacts with Smad3 and enhances Smad3 binding to the Smad binding element in α-SMA promoter as demonstrated by DNA affinity assay. In the chromatin setting, Smad3, but not Smad2, binds to α-SMA promoter in fibroblasts. RGC-32 appears to be essential for Smad3 interaction with the promoters of fibroblast activation-related genes in vivo. Functionally, RGC-32 is crucial for Smad3-mediated α-SMA promoter activity. Taken together, we identify RGC-32 as a novel fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation.
Collapse
Affiliation(s)
- Zuguo Li
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Wei-Bing Xie
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Crisanto S Escano
- Center for Molecular Physiology Research, Children's National Medical Center, Washington, D. C. 20010
| | - Laureano D Asico
- Center for Molecular Physiology Research, Children's National Medical Center, Washington, D. C. 20010
| | - Qiyun Xie
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Pedro A Jose
- Center for Molecular Physiology Research, Children's National Medical Center, Washington, D. C. 20010; Georgetown University Medical Center, Washington, D. C. 20007
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
18
|
Hao S, He W, Li Y, Ding H, Hou Y, Nie J, Hou FF, Kahn M, Liu Y. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol 2011; 22:1642-1653. [PMID: 21816937 PMCID: PMC3171936 DOI: 10.1681/asn.2010101079] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/25/2011] [Indexed: 12/13/2022] Open
Abstract
Because fibrotic kidneys exhibit aberrant activation of β-catenin signaling, this pathway may be a potential target for antifibrotic therapy. In this study, we examined the effects of β-catenin activation on tubular epithelial-mesenchymal transition (EMT) in vitro and evaluated the therapeutic efficacy of the peptidomimetic small molecule ICG-001, which specifically disrupts β-catenin-mediated gene transcription, in obstructive nephropathy. In vitro, ectopic expression of stabilized β-catenin in tubular epithelial (HKC-8) cells suppressed E-cadherin and induced Snail1, fibronectin, and plasminogen activator inhibitor-1 (PAI-1) expression. ICG-001 suppressed β-catenin-driven gene transcription in a dose-dependent manner and abolished TGF-β1-induced expression of Snail1, PAI-1, collagen I, fibronectin, and α-smooth muscle actin (α-SMA). This antifibrotic effect of ICG-001 did not involve disruption of Smad signaling. In the unilateral ureteral obstruction model, ICG-001 ameliorated renal interstitial fibrosis and suppressed renal expression of fibronectin, collagen I, collagen III, α-SMA, PAI-1, fibroblast-specific protein-1, Snail1, and Snail2. Late administration of ICG-001 also effectively attenuated fibrotic lesions in obstructive nephropathy. In conclusion, inhibiting β-catenin signaling may be an effective approach to the treatment of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Sha Hao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Immunology and Reproductive Biology Laboratory, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Weichun He
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yingjian Li
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hong Ding
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yayi Hou
- Immunology and Reproductive Biology Laboratory, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jing Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, People's Republic of China; and
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University and Guangdong Provincial Institute of Nephrology, Guangzhou, People's Republic of China; and
| | - Michael Kahn
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Sörensen I, Susnik N, Inhester T, Degen JL, Melk A, Haller H, Schmitt R. Fibrinogen, acting as a mitogen for tubulointerstitial fibroblasts, promotes renal fibrosis. Kidney Int 2011; 80:1035-44. [PMID: 21734641 DOI: 10.1038/ki.2011.214] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fibrinogen plays an important role in blood coagulation but its function extends far beyond blood clotting being involved in inflammation and repair. Besides these crucial functions it can also promote tissue fibrosis. To determine whether fibrinogen is involved in the development of renal tubulointerstitial fibrosis we utilized the profibrotic model of unilateral ureteral obstruction in fibrinogen-deficient mice. In the heterozygotes, obstruction was associated with a massive deposition of intrarenal fibrinogen. Fibrinogen deficiency provided significant protection from interstitial damage and tubular disruption, attenuated collagen accumulation, and greatly reduced de novo expression of α-smooth muscle actin in the obstructed kidney. While no differences were found in renal inflammatory cell infiltration, fibrinogen deficiency was associated with a significant reduction in interstitial cell proliferation, a hallmark of renal fibrosis. In vitro, fibrinogen directly stimulated renal fibroblast proliferation in a dose-dependent manner. This mitogenic effect of fibrinogen was mediated by at least three different cell surface receptors on renal fibroblasts: TLR2, TLR4, and ICAM-1. Thus, our study suggests that fibrinogen promotes renal fibrosis by triggering resident fibroblast proliferation.
Collapse
Affiliation(s)
- Inga Sörensen
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Dai C, Wen X, He W, Liu Y. Inhibition of proinflammatory RANTES expression by TGF-beta1 is mediated by glycogen synthase kinase-3beta-dependent beta-catenin signaling. J Biol Chem 2011; 286:7052-7059. [PMID: 21189258 PMCID: PMC3044962 DOI: 10.1074/jbc.m110.174821] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/01/2010] [Indexed: 12/13/2022] Open
Abstract
TGF-β1 is a pleiotropic cytokine with potent anti-inflammation property. However, the mechanisms underlying TGF-β1 suppression of inflammation remain largely unexplored. In this study, we demonstrated that TGF-β1 inhibited TNF-α- or IL-1-induced RANTES expression in human kidney tubular epithelial cells (HKC-8). To delineate the mechanism by which TGF-β1 inhibits RANTES expression, we examined the potential signal pathway activated by TGF-β1 in suppressing NF-κB signaling. TGF-β1 affected neither TNF-α-induced IκBα phosphorylation and subsequent degradation, nor p65 NF-κB phosphorylation and its nuclear translocation. However, TGF-β1 could inhibit p65 and p50 binding to the κB site in human RANTES promoter as revealed by chromatin immunoprecipitation assay and protein-DNA binding assay. We found that TGF-β1 induced glycogen synthase kinase-3β (GSK-3β) phosphorylation on Ser-9 in HKC-8 cells, leading to its inactivation. Knockdown of GSK-3β mimicked TGF-β1 and inhibited RANTES induction, whereas overexpression of GSK-3β abolished the inhibitory effect of TGF-β1 and completely restored RANTES expression. Furthermore, TGF-β1 induced the dephosphorylation and activation of β-catenin, a major downstream target of GSK-3β. Ectopic expression of constitutively active β-catenin mimicked the TGF-β1 effect and completely suppressed RANTES expression induced by TNF-α. Interestingly, TGF-β1 induced a physical interaction between β-catenin and p65 NF-κB, which prevented p65 binding to the κB site, sequestered its trans-activating activity, and repressed p65-mediated gene transcription. We conclude that TGF-β1 inhibition of proinflammatory RANTES expression is mediated by β-catenin-triggered blockade of NF-κB signaling.
Collapse
Affiliation(s)
- Chunsun Dai
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Xiaoyan Wen
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Weichun He
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Youhua Liu
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|