1
|
Guo J, Chen J, Wang Y, Bai X, Feng H, Sheng S, Wang H, Xu K, Huang M, Lei Z, Chu X. Putative function and prognostic molecular marker of mast cells in colorectal cancer. BMC Med Genomics 2025; 18:65. [PMID: 40205370 PMCID: PMC11983841 DOI: 10.1186/s12920-025-02117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 02/27/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND The increased demand for markers for colorectal cancer (CRC) highlights the importance of investigating immune cells involved in CRC progression. This study aims to dissect the mast cells in CRC, characterize the role of mast cells in CRC development, coordinate molecular communication between mast cells and malignant cells, and construct and validate a prognostic classification model based on mast cell markers. METHODS Single-cell transcriptome data of CRC patients were extracted from GSE146771 for cell classification and annotation. The malignant cells were identified by copykat and the communication between mast cells and malignant cells was analyzed by CellChat. Least absolute shrinkage and selection operator (LASSO) regression analysis and Cox regression analysis of mast cell markers were performed in the TCGA-COAD cohort to construct a prognostic classification model. qRT-PCR was performed to detect the mRNA expression of the molecules in the classification model in P815 and MC-9 cells. The co-culture experiment of MC38 and P815 cells were performed in 12-well transwell dish. Wound healing assay and Transwell assay were performed to detect cell migration and invasion. RESULTS 10,186 high-quality cells in GSE146771 were annotated to 9 cell types. Six markers in mast cells (HDC, GATA2, ASAH1, BTBD19, TIMP1, FAM110A) were selected to construct a classification model. The high-risk score defined showed high infiltration of immunosuppressive cells, including endothelial cells, CAFs, Tregs and high angiogenesis and epithelial-mesenchymal transition (EMT) activities. In the model, HDC were abnormally low expressed in P815 cells, while BTBD19, FAM110A, GATA2, ASAH1 and TIMP1 showed excessive expression in P815 cells. Knockdown of GATA2 in the co-culture system of P815 and MC38 cells blocked cell migration and invasion. CONCLUSION This study identified the cell types within CRC, elaborated the cellular functions of mast cells in CRC development and their molecular communication to coordinate malignant cells, and highlighted the molecular components and biological features that constitute promising prognostic classification model.
Collapse
Affiliation(s)
- Jiani Guo
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Chen
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yiting Wang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Bai
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Haimei Feng
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Siqi Sheng
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hongyu Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ke Xu
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengxi Huang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, the First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Affiliated Hospital of Medical School, Nanjing Jinling Hospital, Nanjing University, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Department of Medical Oncology, the First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu Province, China.
- , 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
2
|
Jia Y, Peng Z, Tian X, Guan Y, Han Y, Ji D, Lan B, Xu B, Fan Y. Single-cell sequencing exposes mast cell-derived CD52's anti-tumor action in breast cancer through the IL-6/JAK/STAT3 axis. Int J Biol Macromol 2025; 310:142879. [PMID: 40194575 DOI: 10.1016/j.ijbiomac.2025.142879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The aggressive nature and rapid progression of triple-negative breast cancer (TNBC), coupled with a high likelihood of recurrence and mortality, underscore the critical need for effective treatments. While immunotherapy presents promising advantages for those with triple-negative breast cancer (TNBC), its efficacy is not universal. This disparity highlights the importance of investigating survival outcomes and prognostic factors for those TNBC patients who don't respond well to immunotherapy. Our study leverages both bulk and single-cell RNA sequencing data to conduct an in-depth analysis, revealing that genes associated with mast cells (PCMT1, VDAC1, YWHAB, BRD4, BTG1, and CD52) are pivotal in prognostication for TNBC patients. Laboratory experiments have further substantiated our findings, demonstrating that the overexpression of CD52 in mast cells impedes the proliferation, invasion, and metastasis of breast cancer cells. Further anti-CD52 treatment inhibiting breast tumor growth in vivo. Additionally, we have discovered that CD52 elicits its antitumor effects by meditating the IL-6/JAK/STAT3 signaling pathway. These insights not only enhance the prognostic significance of mast cells in TNBC but also pave the way for the development of novel targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Yueran Jia
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zexi Peng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xinzhu Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuhang Han
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dangyang Ji
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
3
|
Yan H, Mao AW, Li D, Pérez-Baena MJ, Jiménez-Navas A, Wang D, Hong R, Cai W, Pérez-Losada J, Jen KY, Wang S, Peng S, Barcellos-Hoff MH, Mao JH, Fu Y, Iczkowski KA, Gulati S, Chang H. AI-Powered cellular morphometric biomarkers discovered in needle biopsy of prostatic cancer predict neoadjuvant androgen deprivation therapy response and prognosis: an international multicenter retrospective study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.17.24317411. [PMID: 39606414 PMCID: PMC11601692 DOI: 10.1101/2024.11.17.24317411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It is imperative to identify patients with prostate cancer (PCa) who will benefit from androgen receptor signaling inhibitors that can impact quality of life upon prolonged use. Using our extensively-validated artificial-intelligence technique: cellular morphometric biomarker via machine learning (CMB-ML), we identified 13 CMBs from whole slide images of needle biopsies from the trial specimens ( NCT02430480 , n=37) that accurately predicted response to neoadjuvant androgen deprivation therapy (NADT) (AUC: 0.980). Notably, 13-CMB model stratified PCa patients into responder and non-responder groups after NADT treatment in an independent hospital cohort (n=122) that significantly associated with pathologic complete response (p=0.0005), biochemical-recurrence-free survival (p=0.024) and mTOR signaling pathway (p=0.03), suggesting potentially more clinical benefit from mTOR inhibitors in non-responder group. Additionally, genetic and genomic analysis revealed interplay between genetic variants and CMBs on NADT resistance, and provided molecular annotations for CMBs. Overall, prospective clinical implementation of 13-CMB model could assist precision care of PCa patients. Significance We describe a highly accurate CMB model to predict the therapeutic benefit in prostate cancer patients and uncover the complex interplay between genetic variants and CMBs on NADT resistance. Our model relies only on widely available needle biopsy specimens and provides a robust and cost-effective solution for clinical implementation.
Collapse
|
4
|
Ak Ç, Sayar Z, Thibault G, Burlingame EA, Kuykendall MJ, Eng J, Chitsazan A, Chin K, Adey AC, Boniface C, Spellman PT, Thomas GV, Kopp RP, Demir E, Chang YH, Stavrinides V, Eksi SE. Multiplex imaging of localized prostate tumors reveals altered spatial organization of AR-positive cells in the microenvironment. iScience 2024; 27:110668. [PMID: 39246442 PMCID: PMC11379676 DOI: 10.1016/j.isci.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Mapping the spatial interactions of cancer, immune, and stromal cell states presents novel opportunities for patient stratification and for advancing immunotherapy. While single-cell studies revealed significant molecular heterogeneity in prostate cancer cells, the impact of spatial stromal cell heterogeneity remains poorly understood. Here, we used cyclic immunofluorescent imaging on whole-tissue sections to uncover novel spatial associations between cancer and stromal cells in low- and high-grade prostate tumors and tumor-adjacent normal tissues. Our results provide a spatial map of single cells and recurrent cellular neighborhoods in the prostate tumor microenvironment of treatment-naive patients. We report unique populations of mast cells that show distinct spatial associations with M2 macrophages and regulatory T cells. Our results show disease-specific neighborhoods that are primarily driven by androgen receptor-positive (AR+) stromal cells and identify inflammatory gene networks active in AR+ prostate stroma.
Collapse
Affiliation(s)
- Çiğdem Ak
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Zeynep Sayar
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Guillaume Thibault
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Erik A Burlingame
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - M J Kuykendall
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Jennifer Eng
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | - Alex Chitsazan
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Koei Chin
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Andrew C Adey
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Christopher Boniface
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - Paul T Spellman
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Knight Cancer Institute, OHSU, Portland, OR 97239, USA
| | - George V Thomas
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Pathology & Laboratory Medicine, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Ryan P Kopp
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Urology, School of Medicine, Knight Cancer Institute, Portland, OR 97239, USA
| | - Emek Demir
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Division of Oncological Sciences, School of Medicine, OHSU, Portland, OR 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| | | | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR 97239, USA
- Department of Biomedical Engineering, School of Medicine, OHSU, Portland, OR 97209, USA
| |
Collapse
|
5
|
Sulsenti R, Scialpi GB, Frossi B, Botti L, Ferri R, Tripodi I, Piva A, Sangaletti S, Pernici D, Cancila V, Romeo F, Chiodoni C, Lecis D, Bianchi F, Fischetti I, Enriquez C, Crivelli F, Bregni M, Renne G, Pece S, Tripodo C, Pucillo CE, Colombo MP, Jachetti E. Intracellular Osteopontin Promotes the Release of TNFα by Mast Cells to Restrain Neuroendocrine Prostate Cancer. Cancer Immunol Res 2024; 12:1147-1169. [PMID: 38869181 PMCID: PMC11369624 DOI: 10.1158/2326-6066.cir-23-0792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer that emerges as tumors become resistant to hormone therapies or, rarely, arises de novo in treatment-naïve patients. The urgent need for effective therapies against NEPC is hampered by the limited knowledge of the biology governing this lethal disease. Based on our prior observations in the transgenic adenocarcinoma of the mouse prostate (TRAMP) spontaneous prostate cancer model, in which the genetic depletion of either mast cells (MC) or the matricellular protein osteopontin (OPN) increases NEPC frequency, we tested the hypothesis that MCs can restrain NEPC through OPN production, using in vitro co-cultures between murine or human tumor cell lines and MCs, and in vivo experiments. We unveiled a role for the intracellular isoform of OPN, so far neglected compared with the secreted isoform. Mechanistically, we unraveled that the intracellular isoform of OPN promotes TNFα production in MCs via the TLR2/TLR4-MyD88 axis, specifically triggered by the encounter with NEPC cells. We found that MC-derived TNFα, in turn, hampered the growth of NEPC. We then identified the protein syndecan-1 (SDC1) as the NEPC-specific TLR2/TLR4 ligand that triggered this pathway. Interrogating published single-cell RNA-sequencing data, we validated this mechanism in a different mouse model. Translational relevance of the results was provided by in silico analyses of available human NEPC datasets and by immunofluorescence on patient-derived adenocarcinoma and NEPC lesions. Overall, our results show that MCs actively inhibit NEPC, paving the way for innovative MC-based therapies for this fatal tumor. We also highlight SDC1 as a potential biomarker for incipient NEPC.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Giuseppina B. Scialpi
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Barbara Frossi
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy.
| | - Laura Botti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Renata Ferri
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Irene Tripodi
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Annamaria Piva
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Davide Pernici
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy.
| | - Francesco Romeo
- Dipartimento di Onologia Sperimentale, European Institute of Oncology IRCCS, Milan, Italy.
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Francesca Bianchi
- Microenvironment and Biomarkers in Solid tumors Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Irene Fischetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Claudia Enriquez
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Filippo Crivelli
- Oncology-Hematology Unit, ASST Valle Olona, Busto Arsizio, Italy.
| | - Marco Bregni
- Oncology-Hematology Unit, ASST Valle Olona, Busto Arsizio, Italy.
| | - Giuseppe Renne
- Uropathology and Intraoperative Diagnostic Division, European Institute of Oncology IRCCS, Milan, Italy.
| | - Salvatore Pece
- Dipartimento di Onologia Sperimentale, European Institute of Oncology IRCCS, Milan, Italy.
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy.
| | - Carlo E. Pucillo
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy.
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| |
Collapse
|
6
|
Pascal M, Bax HJ, Bergmann C, Bianchini R, Castells M, Chauhan J, De Las Vecillas L, Hartmann K, Álvarez EI, Jappe U, Jimenez-Rodriguez TW, Knol E, Levi-Schaffer F, Mayorga C, Poli A, Redegeld F, Santos AF, Jensen-Jarolim E, Karagiannis SN. Granulocytes and mast cells in AllergoOncology-Bridging allergy to cancer: An EAACI position paper. Allergy 2024; 79:2319-2345. [PMID: 39036854 DOI: 10.1111/all.16246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.
Collapse
Affiliation(s)
- Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, Barcelona, Spain
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Drug Hypersensitivity and Desensitization Center, Mastocytosis Center, Brigham and Women's Hospital; Harvard Medical School, Boston, USA
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
| | | | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Elena Izquierdo Álvarez
- Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Madrid, Spain
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Luebeck, Germany
| | | | - Edward Knol
- Departments Center of Translational Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine. The Hebrew University of Jerusalem, Ein Kerem Campus, Jerusalem, Israel
| | - Cristobalina Mayorga
- RETICS Asma, reacciones adversas y alérgicas (ARADYAL) and RICORS Red De Enfermedades Inflamatorias (REI), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Allergy Unit and Research Laboratory, Hospital Regional Universitario de Málaga-HRUM, Instituto de investigación Biomédica de Málaga -IBIMA-Plataforma BIONAND, Málaga, Spain
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St Thomas' Hospital, London, UK
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- The interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
7
|
Trocchia M, Ventrici A, Modestino L, Cristinziano L, Ferrara AL, Palestra F, Loffredo S, Capone M, Madonna G, Romanelli M, Ascierto PA, Galdiero MR. Innate Immune Cells in Melanoma: Implications for Immunotherapy. Int J Mol Sci 2024; 25:8523. [PMID: 39126091 PMCID: PMC11313504 DOI: 10.3390/ijms25158523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.
Collapse
Affiliation(s)
- Marialuisa Trocchia
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Annagioia Ventrici
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Luca Modestino
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
| | - Leonardo Cristinziano
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Francesco Palestra
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Gabriele Madonna
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Marilena Romanelli
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80138 Naples, Italy; (M.C.); (G.M.); (M.R.); (P.A.A.)
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, 80138 Naples, Italy; (M.T.); (A.V.); (A.L.F.); (F.P.); (S.L.)
- Department of Internal Medicine and Clinical Immunology, University Hospital of Naples Federico II, 80138 Naples, Italy;
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80138 Naples, Italy;
| |
Collapse
|
8
|
Wang G, Mao X, Wang W, Wang X, Li S, Wang Z. Bioprinted research models of urological malignancy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230126. [PMID: 39175884 PMCID: PMC11335473 DOI: 10.1002/exp.20230126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/08/2024] [Indexed: 08/24/2024]
Abstract
Urological malignancy (UM) is among the leading threats to health care worldwide. Recent years have seen much investment in fundamental UM research, including mechanistic investigation, early diagnosis, immunotherapy, and nanomedicine. However, the results are not fully satisfactory. Bioprinted research models (BRMs) with programmed spatial structures and functions can serve as powerful research tools and are likely to disrupt traditional UM research paradigms. Herein, a comprehensive review of BRMs of UM is presented. It begins with a brief introduction and comparison of existing UM research models, emphasizing the advantages of BRMs, such as modeling real tissues and organs. Six kinds of mainstream bioprinting techniques used to fabricate such BRMs are summarized with examples. Thereafter, research advances in the applications of UM BRMs, such as culturing tumor spheroids and organoids, modeling cancer metastasis, mimicking the tumor microenvironment, constructing organ chips for drug screening, and isolating circulating tumor cells, are comprehensively discussed. At the end of this review, current challenges and future development directions of BRMs and UM are highlighted from the perspective of interdisciplinary science.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| | - Xiongmin Mao
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wang Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiaolong Wang
- Lewis Katz School of MedicineTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Sheng Li
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zijian Wang
- Department of UrologyCancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related DiseaseTaiKang Medical School (School of Basic Medical Sciences)Wuhan UniversityWuhanChina
| |
Collapse
|
9
|
Guo X, Sun M, Yang P, Meng X, Liu R. Role of mast cells activation in the tumor immune microenvironment and immunotherapy of cancers. Eur J Pharmacol 2023; 960:176103. [PMID: 37852570 DOI: 10.1016/j.ejphar.2023.176103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
The mast cell is an important cellular component that plays a crucial role in the crosstalk between innate and adaptive immune responses within the tumor microenvironment (TME). Recently, numerous studies have indicated that mast cells related to tumors play a dual role in regulating cancers, with conflicting results seemingly determined by the degranulation medium. As such, mast cells are an ignored but very promising potential target for cancer immunotherapy based on their immunomodulatory function. In this review, we present a comprehensive overview of the roles and mechanisms of mast cells in diverse cancer types. Firstly, we evaluated the infiltration density and location of mast cells on tumor progression. Secondly, mast cells are activated by the TME and subsequently release a range of inflammatory mediators, cytokines, chemokines, and lipid products that modulate their pro-or anti-tumor functions. Thirdly, activated mast cells engage in intercellular communication with other immune or stromal cells to modulate the immune status or promote tumor development. Finally, we deliberated on the clinical significance of targeting mast cells as a therapeutic approach to restrict tumor initiation and progression. Overall, our review aims to provide insights for future research on the role of mast cells in tumors and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Xiangnan University, Chenzhou, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Fernandes R, Costa C, Fernandes R, Barros AN. Inflammation in Prostate Cancer: Exploring the Promising Role of Phenolic Compounds as an Innovative Therapeutic Approach. Biomedicines 2023; 11:3140. [PMID: 38137361 PMCID: PMC10740737 DOI: 10.3390/biomedicines11123140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cátia Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rúben Fernandes
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, 4249-004 Porto, Portugal;
- CECLIN, Centro de Estudos Clínicos, Hospital Fernando Pessoa, 4420-096 Gondomar, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
11
|
Pandya Shesh B, Walter V, Palsa K, Slagle-Webb B, Neely E, Schell T, Connor JR. Sexually dimorphic effect of H-ferritin genetic manipulation on survival and tumor microenvironment in a mouse model of glioblastoma. J Neurooncol 2023; 164:569-586. [PMID: 37812288 DOI: 10.1007/s11060-023-04415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Iron plays a crucial role in various biological mechanisms and has been found to promote tumor growth. Recent research has shown that the H-ferritin (FTH1) protein, traditionally recognized as an essential iron storage protein, can transport iron to GBM cancer stem cells, reducing their invasion activity. Moreover, the binding of extracellular FTH1 to human GBM tissues, and brain iron delivery in general, has been found to have a sex bias. These observations raise questions, addressed in this study, about whether H-ferritin levels extrinsic to the tumor can affect tumor cell pathways and if this impact is sex-specific. METHODS To interrogate the role of systemic H-ferritin in GBM we introduce a mouse model in which H-ferritin levels are genetically manipulated. Mice that were genetically manipulated to be heterozygous for H-ferritin (Fth1+/-) gene expression were orthotopically implanted with a mouse GBM cell line (GL261). Littermate Fth1 +/+ mice were used as controls. The animals were evaluated for survival and the tumors were subjected to RNA sequencing protocols. We analyzed the resulting data utilizing the murine Microenvironment Cell Population (mMCP) method for in silico immune deconvolution. mMCP analysis estimates the abundance of tissue infiltrating immune and stromal populations based on cell-specific gene expression signatures. RESULTS There was a clear sex bias in survival. Female Fth1+/- mice had significantly poorer survival than control females (Fth1+/+). The Fth1 genetic status did not affect survival in males. The mMCP analysis revealed a significant reduction in T cells and CD8 + T cell infiltration in the tumors of females with Fth1+/- background as compared to the Fth1+/+. Mast and fibroblast cell infiltration was increased in females and males with Fth1+/- background, respectively, compared to Fth1+/+ mice. CONCLUSION Genetic manipulation of Fth1 which leads to reduced systemic levels of FTH1 protein had a sexually dimorphic impact on survival. Fth1 heterozygosity significantly worsened survival in females but did not affect survival in male GBMs. Furthermore, the genetic manipulation of Fth1 significantly affected tumor infiltration of T-cells, CD8 + T cells, fibroblasts, and mast cells in a sexually dimorphic manner. These results demonstrate a role for FTH1 and presumably iron status in establishing the tumor cellular landscape that ultimately impacts survival and further reveals a sex bias that may inform the population studies showing a sex effect on the prevalence of brain tumors.
Collapse
Affiliation(s)
| | - Vonn Walter
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Kondaiah Palsa
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth Neely
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Todd Schell
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
12
|
Qiu Y, Liu YF, Shu X, Qiao XF, Ai GY, He XJ. Peritumoral Radiomics Strategy Based on Ensemble Learning for the Prediction of Gleason Grade Group of Prostate Cancer. Acad Radiol 2023; 30 Suppl 1:S1-S13. [PMID: 37393175 DOI: 10.1016/j.acra.2023.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
RATIONALE AND OBJECTIVES To develop and evaluate a peritumoral radiomic-based machine learning model to differentiate low-Gleason grade group (L-GGG) and high-GGG (H-GGG) prostate lesions. MATERIALS AND METHODS In this retrospective study, a total of 175 patients with prostate cancer (PCa) confirmed by puncture biopsy were recruited and included 59 patients with L-GGG and 116 patients with H-GGG. The original PCa regions of interest (ROIs) were delineated on T2-weighted (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps, and then centra-tumoral and peritumoral ROIs were defined. Features were meticulously extracted from each ROI to establish radiomics models, employing distinct sequence datasets. Peritumoral radiomics models were specifically developed for both the peripheral zone (PZ) and transitional zone (TZ), utilizing dedicated PZ and TZ datasets, respectively. The performances of the models were evaluated by using the receiver operating characteristic (ROC) curve and precision-recall curve. RESULTS The classification model with combined peritumoral features based on T2 + DWI + ADC sequence dataset demonstrated superior performance compared to the original tumor and centra-tumoral classification models. It achieved an area under the ROC curve (AUC) of 0.850 [95% confidence interval, 0.849, 0.860] and an average accuracy of 0.950. The combined peritumoral model outperformed the regional peritumoral models with AUC of 0.85 versus 0.75 for PZ lesions and 0.88 versus 0.69 for TZ lesions, respectively. The peritumoral classification models exhibit greater efficacy in predicting PZ lesions as opposed to TZ lesions. CONCLUSION The peritumoral radiomics features showed excellent performance in predicting GGG in PCa patients and might be a valuable addition to the non-invasive assessment of PCa aggressiveness.
Collapse
Affiliation(s)
- Yang Qiu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yun-Fan Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xin Shu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiao-Feng Qiao
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guang-Yong Ai
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiao-Jing He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Wu C, Yu S, Wang Y, Gao Y, Xie X, Zhang J. Metabolic-suppressed cancer-associated fibroblasts limit the immune environment and survival in colorectal cancer with liver metastasis. Front Pharmacol 2023; 14:1212420. [PMID: 37719863 PMCID: PMC10501863 DOI: 10.3389/fphar.2023.1212420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Colorectal cancer liver metastasis is a major risk factor of poor outcomes, necessitating proactive interventions and treatments. Cancer-associated fibroblasts (CAFs) play essential roles in metastasis, with a focus on metabolic reprogramming. However, knowledge about associations between Cancer-associated fibroblasts metabolic phenotypes and immune cell is limited. This study uses single-cell and bulk transcriptomics data to decode roles of metabolism-related subtype of Cancer-associated fibroblasts and immune cells in liver metastasis, developing a CAF-related prognostic model for colorectal cancer liver metastases. Methods: In this study, Cancer-associated fibroblasts metabolism-related phenotypes were screened using comprehensive datasets from The Cancer Genome Atlas and gene expression omnibus (GEO). Cox regression and Lasso regression were applied to identify prognostic genes related to Cancer-associated fibroblasts, and a model was constructed based on the Cancer-associated fibroblasts subtype gene score. Subsequently, functional, immunological, and clinical analyses were performed. Results: The study demonstrated the metabotropic heterogeneity of Cancer-associated fibroblasts cells. Cancer-associated fibroblasts cells with varying metabolic states were found to exhibit significant differences in communications with different immune cells. Prognostic features based on Cancer-associated fibroblasts signature scores were found to be useful in determining the prognostic status of colorectal cancer patients with liver metastases. High immune activity and an enrichment of tumor-related pathways were observed in samples with high Cancer-associated fibroblasts signature scores. Furthermore, Cancer-associated fibroblasts signature score could be practical in guiding the selection of chemotherapeutic agents with higher sensitivity. Conclusion: Our study identified a prognostic signature linked to metabotropic subtype of Cancer-associated fibroblasts. This signature has promising clinical implications in precision therapy for colorectal cancer liver metastases.
Collapse
Affiliation(s)
- Chenghao Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shaobo Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Schafer CC, Jiang J, Elsamanoudi S, Nousome D, Young DY, Song Y, Sesterhenn IA, Chesnut GT, Tan SH. Immunologic Assessment of Tumors from a Race-matched Military Cohort Identifies Mast Cell Depletion as a Marker of Prostate Cancer Progression. CANCER RESEARCH COMMUNICATIONS 2023; 3:1423-1434. [PMID: 37534375 PMCID: PMC10392708 DOI: 10.1158/2767-9764.crc-22-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
Elucidating the cellular immune components underlying aggressive prostate cancer, especially among African American (AA) men who are disproportionately affected by this disease compared with Caucasian American (CA) men, will support more inclusive precision medicine treatment strategies. We aimed to evaluate which immune-related genes and cell types are differentially expressed in AA tumors and how immunobiology impacts prostate cancer progression. We purified nucleic acid from tumor biopsies, obtained following radical prostatectomy, from 51 patients (AA = 26, CA = 25). Gene expression was measured using the NanoString platform from which we estimated immune cell abundances and assessed differences between groups based on clinicopathologic data. Product-limit estimates determined associations with biochemical recurrence (BCR)-free and metastasis-free survival. DVL2 and KLRC2 were significantly upregulated in CA tumors and were also associated with worse disease progression. No significant differences in immune cell abundances by race were observed. Highly significant reductions in abundances of mast cells versus tumor-infiltrating lymphocytes (TIL) were found in men with high-grade pathologies and in men who later developed metastases. Low ratios of mast cells versus TILs were associated with worse BCR-free survival and metastasis-free survival. Although estimated immune cell abundances were not different by race, we identified genes involved in metabolism and natural killer cell functions that were differentially expressed between AA and CA tumors. Among the entire cohort, depletion of mast cells within prostatectomy tumors was characteristic of advanced disease and susceptibility to disease progression. Significance Our findings demonstrate that there are immune-related genes and pathways that differ by race. Impaired intratumoral cellular immune composition, especially for TIL-normalized mast cells, may be vital in predicting and contributing to prostate cancer disease progression.
Collapse
Affiliation(s)
- Cara C. Schafer
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Jiji Jiang
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Sally Elsamanoudi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
- Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland
| | - Denise Y. Young
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Yingjie Song
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | | | - Gregory T. Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Urology Service, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Shyh-Han Tan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| |
Collapse
|
15
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
16
|
Sulsenti R, Jachetti E. Frenemies in the Microenvironment: Harnessing Mast Cells for Cancer Immunotherapy. Pharmaceutics 2023; 15:1692. [PMID: 37376140 DOI: 10.3390/pharmaceutics15061692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor development, progression, and resistance to therapies are influenced by the interactions between tumor cells and the surrounding microenvironment, comprising fibroblasts, immune cells, and extracellular matrix proteins. In this context, mast cells (MCs) have recently emerged as important players. Yet, their role is still controversial, as MCs can exert pro- or anti-tumor functions in different tumor types depending on their location within or around the tumor mass and their interaction with other components of the tumor microenvironment. In this review, we describe the main aspects of MC biology and the different contribution of MCs in promoting or inhibiting cancer growth. We then discuss possible therapeutic strategies aimed at targeting MCs for cancer immunotherapy, which include: (1) targeting c-Kit signaling; (2) stabilizing MC degranulation; (3) triggering activating/inhibiting receptors; (4) modulating MC recruitment; (5) harnessing MC mediators; (6) adoptive transferring of MCs. Such strategies should aim to either restrain or sustain MC activity according to specific contexts. Further investigation would allow us to better dissect the multifaceted roles of MCs in cancer and tailor novel approaches for an "MC-guided" personalized medicine to be used in combination with conventional anti-cancer therapies.
Collapse
Affiliation(s)
- Roberta Sulsenti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
17
|
Feng D, Wang J, Shi X, Li D, Wei W, Han P. Membrane tension-mediated stiff and soft tumor subtypes closely associated with prognosis for prostate cancer patients. Eur J Med Res 2023; 28:172. [PMID: 37179366 PMCID: PMC10182623 DOI: 10.1186/s40001-023-01132-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is usually considered as cold tumor. Malignancy is associated with cell mechanic changes that contribute to extensive cell deformation required for metastatic dissemination. Thus, we established stiff and soft tumor subtypes for PCa patients from perspective of membrane tension. METHODS Nonnegative matrix factorization algorithm was used to identify molecular subtypes. We completed analyses using software R 3.6.3 and its suitable packages. RESULTS We constructed stiff and soft tumor subtypes using eight membrane tension-related genes through lasso regression and nonnegative matrix factorization analyses. We found that patients in stiff subtype were more prone to biochemical recurrence than those in soft subtype (HR 16.18; p < 0.001), which was externally validated in other three cohorts. The top ten mutation genes between stiff and soft subtypes were DNAH, NYNRIN, PTCHD4, WNK1, ARFGEF1, HRAS, ARHGEF2, MYOM1, ITGB6 and CPS1. E2F targets, base excision repair and notch signaling pathway were highly enriched in stiff subtype. Stiff subtype had significantly higher TMB and T cells follicular helper levels than soft subtype, as well as CTLA4, CD276, CD47 and TNFRSF25. CONCLUSIONS From the perspective of cell membrane tension, we found that stiff and soft tumor subtypes were closely associated with BCR-free survival for PCa patients, which might be important for the future research in the field of PCa.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Hemmerlein B, Reinhardt L, Wiechens B, Khromov T, Schliephake H, Brockmeyer P. Is CCL2 an Important Mediator of Mast Cell-Tumor Cell Interactions in Oral Squamous Cell Carcinoma? Int J Mol Sci 2023; 24:ijms24043641. [PMID: 36835050 PMCID: PMC9963724 DOI: 10.3390/ijms24043641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
In this study, we aimed to evaluate the influence of interactions between mast cells (MCs) and oral squamous cell carcinoma (OSCC) tumor cells on tumor proliferation and invasion rates and identify soluble factors mediating this crosstalk. To this end, MC/OSCC interactions were characterized using the human MC cell line LUVA and the human OSCC cell line PCI-13. The influence of an MC-conditioned (MCM) medium and MC/OSCC co-cultures on the proliferative and invasive properties of the tumor cells was investigated, and the most interesting soluble factors were identified by multiplex ELISA analysis. LUVA/PCI-13 co-cultures increased tumor cell proliferation significantly (p = 0.0164). MCM reduced PCI-13 cell invasion significantly (p = 0.0010). CC chemokine ligand 2 (CCL2) secretion could be detected in PCI-13 monocultures and be significantly (p = 0.0161) increased by LUVA/PCI-13 co-cultures. In summary, the MC/OSCC interaction influences tumor cell characteristics, and CCL2 could be identified as a possible mediator.
Collapse
Affiliation(s)
| | - Luisa Reinhardt
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Bernhard Wiechens
- Department of Orthodontics, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Tatjana Khromov
- Institute for Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
19
|
Ren L, Yang X, Wang W, Lin H, Huang G, Liu Z, Pan J, Mao X. A cuproptosis-related LncRNA signature: Integrated analysis associated with biochemical recurrence and immune landscape in prostate cancer. Front Genet 2023; 14:1096783. [PMID: 36911392 PMCID: PMC9999016 DOI: 10.3389/fgene.2023.1096783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
Background: As a new form of regulated cell death, cuproptosis differs profoundly from apoptosis, ferroptosis, pyroptosis, and necroptosis. The correlation between cuproptosis and long non-coding RNAs (lncRNAs) has been increasingly studied recently. In this study, a novel cuproptosis-related lncRNA prognostic signature was developed to investigate biochemical recurrence (BCR) and tumor immune landscape in prostate cancer (PCa). Methods and Materials: The transcriptome data and clinicopathologic information of PCa patients were downloaded from The Cancer Genome Atlas (TCGA). Pearson's correlation analysis was applied to identify lncRNAs associated with cuproptosis. Based on Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis, we developed a cuproptosis-related lncRNA prognostic model (risk score) to predict the BCR of PCa patients. Additionally, we also constructed a nomogram with the risk score and clinicopathologic features. The biological function, tumor mutation burden (TMB), immune cell infiltration, expression levels of immune checkpoint genes, and anti-cancer drug sensitivity were investigated. Results: We constructed and validated the cuproptosis-related lncRNA signature prognostic model (risk score) by six crlncRNAs. All patients were divided into the low- and high-risk groups based on the median risk score. The Kaplan-Meier (KM) survival analysis revealed that the high-risk group had shorter BCR-free survival (BCRFS). The risk score has been proven to be an independent prognostic factor of BCR in PCa patients. In addition, a nomogram of risk scores and clinicopathologic features was established and demonstrated an excellent predictive capability of BCR. The ROC curves further validated that this nomogram had higher accuracy of predicting the BCR compared to other clinicopathologic features. We also found that the high-risk group had higher TMB levels and more infiltrated immune cells. Furthermore, patients with high TMB in the high-risk group were inclined to have the shortest BCRFS. Finally, patients in the high-risk group were more susceptible to docetaxel, gefitinib, methotrexate, paclitaxel, and vinblastine. Conclusion: The novel crlncRNA signature prognostic model shows a greatly prognostic prediction value of BCR for PCa patients, extends our thought on the association of cuproptosis and PCa, and provides novel insights into individual-based treatment strategies for PCa.
Collapse
Affiliation(s)
- Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xu Yang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Guankai Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Zixiong Liu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jincheng Pan
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
dos Reis FD, Jerónimo C, Correia MP. Epigenetic modulation and prostate cancer: Paving the way for NK cell anti-tumor immunity. Front Immunol 2023; 14:1152572. [PMID: 37090711 PMCID: PMC10113550 DOI: 10.3389/fimmu.2023.1152572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Immunoepigenetics is a growing field, as there is mounting evidence on the key role played by epigenetic mechanisms in the regulation of tumor immune cell recognition and control of immune cell anti-tumor responses. Moreover, it is increasingly acknowledgeable a tie between epigenetic regulation and prostate cancer (PCa) development and progression. PCa is intrinsically a cold tumor, with scarce immune cell infiltration and low inflammatory tumor microenvironment. However, Natural Killer (NK) cells, main anti-tumor effector immune cells, have been frequently linked to improved PCa prognosis. The role that epigenetic-related mechanisms might have in regulating both NK cell recognition of PCa tumor cells and NK cell functions in PCa is still mainly unknown. Epigenetic modulating drugs have been showing boundless therapeutic potential as anti-tumor agents, however their role in immune cell regulation and recognition is scarce. In this review, we focused on studies addressing modulation of epigenetic mechanisms involved in NK cell-mediated responses, including both the epigenetic modulation of tumor cell NK ligand expression and NK cell receptor expression and function in different tumor models, highlighting studies in PCa. The integrated knowledge from diverse epigenetic modulation mechanisms promoting NK cell-mediated immunity in various tumor models might open doors for the development of novel epigenetic-based therapeutic options for PCa management.
Collapse
Affiliation(s)
- Filipa D. dos Reis
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Master Program in Oncology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- *Correspondence: Margareta P. Correia,
| |
Collapse
|
21
|
Ma C, Luo H. A more novel and robust gene signature predicts outcome in patients with esophageal squamous cell carcinoma. Clin Res Hepatol Gastroenterol 2022; 46:102033. [PMID: 36265781 DOI: 10.1016/j.clinre.2022.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/24/2022] [Accepted: 10/10/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a life-threatening thoracic tumor with a poor prognosis. The tumor microenvironment (TME) mainly comprises tumor cells and tumor-infiltrating immune cells mixed with stromal components. The latest research has displayed that tumor immune cell infiltration (ICI) is closely connected with the ESCC patients' clinical prognosis. This study was designed to construct a gene signature based on the ICI of ESCC to predict prognosis. METHODS Based on the selection criteria we set, the eligible ESCC cases from the GSE53625 and TCGA-ESCA datasets were chosen for the training cohort and the validation cohort, respectively. Unsupervised clustering detailed grouped ESCC cases of the training cohort based on the ICI profile. We determined the differential expression genes (DEGs) between the ICI clusters, and, subsequently, we adopted the univariate Cox analysis to recognize DEGs with prognostic potential. These screened DEGs underwent a Lasso regression, which then generated a gene signature. The harvested signature's predictive ability was further examined by the Kaplan-Meier analysis, Cox analysis, ROC, IAUC, and IBS. More importantly, we listed similar studies in the most recent year and compared theirs with ours. We performed the functional annotation, immune relevant signature correlation analysis, and immune infiltrating analysis to thoroughly understand the functional mechanism of the signature and the immune cells' roles in the gene signature's predicting capacity. RESULTS A sixteen-gene signature (ARSD, BCAT1, BIK, CLDN11, DLEU7-AS1, GGH, IGFBP2, LINC01037, LINC01446, LINC01497, M1AP, PCSK2, PCSK5, PPP2R2A, TIGD7, and TMSB4X) was generated from the Lasso model. We then confirmed the signature as having solid and stable prognostic capacity by several statistical methods. We revealed the superiority of our signature after comparing it to our predecessors, and the GSEA uncovered the specifically mechanism of action related to the gene signature. Two immune relevant signatures, including GZMA and LAG3 were identified associating with our signature. The immune-infiltrating analysis identified crucial roles of resting mast cells, which potentially support the sixteen-gene signature's prognosis ability. CONCLUSIONS We discovered a robust sixteen-gene signature that can accurately predict ESCC prognosis. The immune relevant signatures, GZMA and LAG3, and resting mast cells infiltrating were closely linked to the sixteen-gene signature's ability.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Huan Luo
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
22
|
Guo J, Zhao J, Sun L, Yang C. Role of ubiquitin specific proteases in the immune microenvironment of prostate cancer: A new direction. Front Oncol 2022; 12:955718. [PMID: 35924159 PMCID: PMC9339679 DOI: 10.3389/fonc.2022.955718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of ubiquitination is associated with multiple processes of tumorigenesis and development, including regulation of the tumor immune microenvironment. Deubiquitinating enzymes (DUBs) can remove ubiquitin chains from substrates, thereby stabilizing target proteins and altering and remodeling biological processes. During tumorigenesis, deubiquitination-altered biological processes are closely related to tumor metabolism, stemness, and the immune microenvironment. Recently, tumor microenvironment (TME) modulation strategies have attracted considerable attention in cancer immunotherapy. Targeting immunosuppressive mechanisms in the TME has revolutionized cancer therapy. Prostate cancer (PC) is one of the most common cancers and the second most common cause of cancer-related death in men worldwide. While immune checkpoint inhibition has produced meaningful therapeutic effects in many cancer types, clinical trials of anti-CTLA4 or anti-PD1 have not shown a clear advantage in PC patients. TME affects PC progression and also enables tumor cell immune evasion by activating the PD-1/PD-L1 axis. Over the past few decades, an increasing number of studies have demonstrated that deubiquitination in PC immune microenvironment may modulate the host immune system’s response to the tumor. As the largest and most diverse group of DUBs, ubiquitin-specific proteases (USPs) play an important role in regulating T cell development and function. According to current studies, USPs exhibit a high expression signature in PC and may promote tumorigenesis. Elevated expression of USPs often indicates poor tumor prognosis, suggesting that USPs are expected to develop as the markers of tumor prognosis and even potential drug targets for anti-tumor therapy. Herein, we first summarized recent advances of USPs in PC and focused on the relationship between USPs and immunity. Additionally, we clarified the resistance mechanisms of USPs to targeted drugs in PC. Finally, we reviewed the major achievement of targeting USPs in cancers.
Collapse
Affiliation(s)
- Jinhui Guo
- Cancer Center, Institute of clinical medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Litao Sun, ; Chen Yang,
| | - Chen Yang
- Cancer Center, Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Litao Sun, ; Chen Yang,
| |
Collapse
|
23
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|
24
|
Diagnosis and Prediction of Endometrial Carcinoma Using Machine Learning and Artificial Neural Networks Based on Public Databases. Genes (Basel) 2022; 13:genes13060935. [PMID: 35741697 PMCID: PMC9222484 DOI: 10.3390/genes13060935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Endometrial carcinoma (EC), a common female reproductive system malignant tumor, affects thousands of people with high morbidity and mortality worldwide. This study was aimed at developing a prediction model for the diagnosis of EC in the general population. First, we obtained datasets GSE63678, GSE106191, and GSE115810 from the Gene Expression Omnibus (GEO) database, dataset GSE17025 from the GEO database, and the RNA sequence of EC from The Cancer Genome Atlas (TCGA) database to constitute the training, test, and validation groups, respectively. Subsequently, the 96 most significantly differentially expressed genes (DEGs) were identified and analyzed for function and pathway enrichment in the training group. Next, we acquired the disease-specific genes by random forest and established an artificial neural network for the diagnosis. Receiver operating characteristic (ROC) curves were utilized to identify the signature across the three groups. Finally, immune infiltration was analyzed to reveal tumor-immune microenvironment (TIME) alterations in EC. The top 96 DEGs (77 down-regulated and 19 up-regulated genes) were primarily enriched in the interleukin-17 signaling pathway, protein digestion and absorption, and transcriptional misregulation in cancer. Subsequently, 14 characterizing genes of EC were identified by random forest. In the training, test, and validation groups, the artificial neural network was constructed with high diagnostic accuracies of 0.882, 0.864, and 0.839, respectively, and areas under the ROC curve (AUCs) of 0.928, 0.921, and 0.782, respectively. Finally, resting and activated mast cells were found to have increased in TIME. We constructed an artificial diagnostic model with excellent reliability for EC and uncovered variations in the immunological ecosystem of EC through integrated bioinformatics approaches, which might be potential diagnostic targets for EC.
Collapse
|
25
|
Halin Bergström S, Lundholm M, Nordstrand A, Bergh A. Rat prostate tumors induce DNA synthesis in remote organs. Sci Rep 2022; 12:7908. [PMID: 35551231 PMCID: PMC9098422 DOI: 10.1038/s41598-022-12131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Advanced cancers induce systemic responses. However, if such systemic changes occur already when aggressive tumors are small, have not been thoroughly characterized. Here, we examined how localized prostate cancers of different sizes and metastatic potential affected DNA synthesis in the rest of the prostate and in various remote organs. Non-metastatic Dunning R-3327 G (G) tumor cells, metastatic MatLyLu (MLL) tumor cells, or vehicle were injected into the prostate of immunocompetent rats. All animals received daily injections of Bromodeoxyuridine (BrdU), to label cells/daughter cells with active DNA synthesis. Equal sized G- and MLL-tumors, similarly increased BrdU-labeling in the prostate, lymph nodes and liver compared to tumor-free controls. Prior to metastasis, MLL-tumors also increased BrdU-labeling in bone marrow and lungs compared to animals with G-tumors or controls. In animals with MLL-tumors, BrdU-labeling in prostate, lungs, brown adipose tissue and skeletal muscles increased in a tumor-size-dependent way. Furthermore, MLL-tumors induced increased signs of DNA damage (γH2AX staining) and accumulation of CD68 + macrophages in the lungs. In conclusion, small localized prostate cancers increased DNA synthesis in several remote tissues in a tumor type- and size-dependent way. This may suggest the possibility for early diagnosis of aggressive prostate cancer by examining tumor-induced effects in other tissues.
Collapse
Affiliation(s)
- Sofia Halin Bergström
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden.
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Annika Nordstrand
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| |
Collapse
|
26
|
Groll T, Silva M, Sarker RSJ, Tschurtschenthaler M, Schnalzger T, Mogler C, Denk D, Schölch S, Schraml BU, Ruland J, Rad R, Saur D, Weichert W, Jesinghaus M, Matiasek K, Steiger K. Comparative Study of the Role of Interepithelial Mucosal Mast Cells in the Context of Intestinal Adenoma-Carcinoma Progression. Cancers (Basel) 2022; 14:cancers14092248. [PMID: 35565377 PMCID: PMC9105816 DOI: 10.3390/cancers14092248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Mast cells (MCs) are crucial players in the relationship between the tumor microenvironment (TME) and cancer cells and have been shown to influence angiogenesis and progression of human colorectal cancer (CRC). However, the role of MCs in the TME is controversially discussed as either pro- or anti-tumorigenic. Genetically engineered mouse models (GEMMs) are the most frequently used in vivo models for human CRC research. In the murine intestine there are at least three different MC subtypes: interepithelial mucosal mast cells (ieMMCs), lamina proprial mucosal mast cells (lpMMCs) and connective tissue mast cells (CTMCs). Interepithelial mucosal mast cells (ieMMCs) in (pre-)neoplastic intestinal formalin-fixed paraffin-embedded (FFPE) specimens of mouse models (total lesions n = 274) and human patients (n = 104) were immunohistochemically identified and semiquantitatively scored. Scores were analyzed along the adenoma-carcinoma sequence in humans and 12 GEMMs of small and large intestinal cancer. The presence of ieMMCs was a common finding in intestinal adenomas and carcinomas in mice and humans. The number of ieMMCs decreased in the course of colonic adenoma-carcinoma sequence in both species (p < 0.001). However, this dynamic cellular state was not observed for small intestinal murine tumors. Furthermore, ieMMC scores were higher in GEMMs with altered Wnt signaling (active β-catenin) than in GEMMs with altered MAPK signaling and wildtypes (WT). In conclusion, we hypothesize that, besides stromal MCs (lpMMCs/CTMCs), particularly the ieMMC subset is important for onset and progression of intestinal neoplasia and may interact with the adjacent neoplastic epithelial cells in dependence on the molecular environment. Moreover, our study indicates the need for adequate GEMMs for the investigation of the intestinal immunologic TME.
Collapse
Affiliation(s)
- Tanja Groll
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universitaet (LMU), 80539 Munich, Germany;
| | - Miguel Silva
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
| | - Rim Sabrina Jahan Sarker
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Markus Tschurtschenthaler
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (M.T.); (R.R.); (D.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Theresa Schnalzger
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Daniela Denk
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universitaet (LMU), 80539 Munich, Germany;
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, 68167 Mannheim, Germany
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Barbara U. Schraml
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, 82152 Planegg-Martinsried, Germany;
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Jürgen Ruland
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (M.T.); (R.R.); (D.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (M.T.); (R.R.); (D.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany;
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, 81675 Munich, Germany;
| | - Moritz Jesinghaus
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Institute of Pathology, University Hospital Marburg, 35043 Marburg, Germany
| | - Kaspar Matiasek
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universitaet (LMU), 80539 Munich, Germany;
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (T.G.); (M.S.); (R.S.J.S.); (C.M.); (D.D.); (W.W.); (M.J.)
- Comparative Experimental Pathology (CEP), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-6075; Fax: +49-89-4140-4865
| |
Collapse
|
27
|
Majorini MT, Colombo MP, Lecis D. Few, but Efficient: The Role of Mast Cells in Breast Cancer and Other Solid Tumors. Cancer Res 2022; 82:1439-1447. [PMID: 35045983 PMCID: PMC9306341 DOI: 10.1158/0008-5472.can-21-3424] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
Abstract
Tumor outcome is determined not only by cancer cell-intrinsic features but also by the interaction between cancer cells and their microenvironment. There is great interest in tumor-infiltrating immune cells, yet mast cells have been less studied. Recent work has highlighted the impact of mast cells on the features and aggressiveness of cancer cells, but the eventual effect of mast cell infiltration is still controversial. Here, we review multifaceted findings regarding the role of mast cells in cancer, with a particular focus on breast cancer, which is further complicated because of its classification into subtypes characterized by different biological features, outcome, and therapeutic strategies.
Collapse
Affiliation(s)
| | - Mario Paolo Colombo
- Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| |
Collapse
|
28
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
29
|
Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 2022; 8:527-555. [PMID: 35331673 DOI: 10.1016/j.trecan.2022.03.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022]
Abstract
The view of cancer as a tumor cell-centric disease is now replaced by our understanding of the interconnection and dependency of tumor stroma. Cancer-associated fibroblasts (CAFs), the most abundant stromal cells in the tumor microenvironment (TME), are involved in anticancer therapeutic resistance. As we unearth more solid evidence on the link between CAFs and tumor progression, we gain insight into the role of CAFs in establishing resistance to cancer therapies. Herein, we review the origin, heterogeneity, and function of CAFs, with a focus on how CAF subsets can be used as biomarkers and can contribute to therapeutic resistance in cancer. We also depict current breakthroughs in targeting CAFs to overcome anticancer therapeutic resistance and discuss emerging CAF-targeting modalities.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
30
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
31
|
Palano MT, Gallazzi M, Cucchiara M, Dehò F, Capogrosso P, Bruno A, Mortara L. The tumor innate immune microenvironment in prostate cancer: an overview of soluble factors and cellular effectors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:694-718. [PMID: 36338516 PMCID: PMC9630328 DOI: 10.37349/etat.2022.00108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023] Open
Abstract
Prostate cancer (PCa) accounts as the most common non-cutaneous disease affecting males, and as the first cancer, for incidence, in male. With the introduction of the concept of immunoscore, PCa has been classified as a cold tumor, thus driving the attention in the development of strategies aimed at blocking the infiltration/activation of immunosuppressive cells, while favoring the infiltration/activation of anti-tumor immune cells. Even if immunotherapy has revolutionized the approaches to cancer therapy, there is still a window failure, due to the immune cell plasticity within PCa, that can acquire pro-tumor features, subsequent to the tumor microenvironment (TME) capability to polarize them. This review discussed selected relevant soluble factors [transforming growth factor-beta (TGFβ), interleukin-6 (IL-6), IL-10, IL-23] and cellular components of the innate immunity, as drivers of tumor progression, immunosuppression, and angiogenesis within the PCa-TME.
Collapse
Affiliation(s)
- Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Federico Dehò
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Paolo Capogrosso
- Unit of Urology, ASST-Sette Laghi, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Correspondence: Antonino Bruno,
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy,Lorenzo Mortara, . Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
32
|
Das B, Mendonca S. Prognostic significance of mast cells and vascular density in prostatic adenocarcinoma. INDIAN J PATHOL MICR 2022; 65:828-831. [DOI: 10.4103/ijpm.ijpm_93_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
33
|
Li X, Liang W, Zhao H, Jin Z, Shi G, Xie W, Wang H, Wu X. Immune Cell Infiltration Landscape of Ovarian Cancer to Identify Prognosis and Immunotherapy-Related Genes to Aid Immunotherapy. Front Cell Dev Biol 2021; 9:749157. [PMID: 34805159 PMCID: PMC8595115 DOI: 10.3389/fcell.2021.749157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer (OC) is the second leading cause of death in gynecological cancer. Multiple study have shown that the efficacy of tumor immunotherapy is related to tumor immune cell infiltration (ICI). However, so far, the Immune infiltration landscape of tumor microenvironment (TME) in OC has not been elucidated. In this study, We organized the transcriptome data of OC in the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, evaluated the patient's TME information, and constructed the ICI scores to predict the clinical benefits of patients undergoing immunotherapy. Immune-related genes were further used to construct the prognostic model. After clustering analysis of ICI genes, we found that patients in ICI gene cluster C had the best prognosis, and their tumor microenvironment had the highest proportion of macrophage M1 and T cell follicular helper cells. This result was consistent with that of multivariate cox (multi-cox) analysis. The prognostic model constructed by immune-related genes had good predictive performance. By estimating Tumor mutation burden (TMB), we also found that there were multiple genes with statistically different mutation frequencies in the high and low ICI score groups. The model based on the ICI score may help to screen out patients who would benefit from immunotherapy. The immune-related genes screened may be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | | | - Huanyi Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Jin
- ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| | - Guoqi Shi
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanhua Xie
- The Precise Medicine Center, Department of Basic Medical College, Shenyang Medical College, Shenyang, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xueqing Wu
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Clinical Medical Academy, Shenzhen University, Shenzhen, China
| |
Collapse
|
34
|
Fahmy O, Alhakamy NA, Rizg WY, Bagalagel A, Alamoudi AJ, Aldawsari HM, Khateb AM, Eldakhakhny BM, Fahmy UA, Abdulaal WH, Fresta CG, Caruso G. Updates on Molecular and Biochemical Development and Progression of Prostate Cancer. J Clin Med 2021; 10:5127. [PMID: 34768647 PMCID: PMC8585085 DOI: 10.3390/jcm10215127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) represents the most commonly non-cutaneous diagnosed cancer in men worldwide and occupies a very wide area of preclinical and clinical research. Targeted therapy for any cancer depends on the understanding of the molecular bases and natural behaviour of the diseases. Despite the well-known effect of androgen deprivation on PCa, many patients develop resistance either for antiandrogen therapy or other new treatment modalities such as checkpoint inhibitors and chemotherapy. Comprehensive understanding of the development of PCa as well as of the mechanisms underlying its progression is mandatory to maximise the benefit of the current approved medications or to guide the future research for targeted therapy of PCa. The aim of this review was to provide updates on the most recent mechanisms regarding the development and the progression of PCa. According to the current understanding, future treatment strategies should include more predictive genetic and biomarker analysis to assign different patients to the expected most appropriate and effective treatment.
Collapse
Affiliation(s)
- Omar Fahmy
- Department of Urology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aiah M. Khateb
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah 42224, Saudi Arabia;
| | - Basmah M. Eldakhakhny
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21555, Saudi Arabia;
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (W.Y.R.); (H.M.A.); (U.A.F.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21555, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21555, Saudi Arabia
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
35
|
Noto CN, Hoft SG, DiPaolo RJ. Mast Cells as Important Regulators in Autoimmunity and Cancer Development. Front Cell Dev Biol 2021; 9:752350. [PMID: 34712668 PMCID: PMC8546116 DOI: 10.3389/fcell.2021.752350] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Mast cells are an essential part of the immune system and are best known as important modulators of allergic and anaphylactic immune responses. Upon activation, mast cells release a multitude of inflammatory mediators with various effector functions that can be both protective and damage-inducing. Mast cells can have an anti-inflammatory or pro-inflammatory immunological effect and play important roles in regulating autoimmune diseases including rheumatoid arthritis, type 1 diabetes, and multiple sclerosis. Importantly, chronic inflammation and autoimmunity are linked to the development of specific cancers including pancreatic cancer, prostate cancer, colorectal cancer, and gastric cancer. Inflammatory mediators released from activated mast cells regulate immune responses and promote vascular permeability and the recruitment of immune cells to the site of inflammation. Mast cells are present in increased numbers in tissues affected by autoimmune diseases as well as in tumor microenvironments where they co-localize with T regulatory cells and T effector cells. Mast cells can regulate immune responses by expressing immune checkpoint molecules on their surface, releasing anti-inflammatory cytokines, and promoting vascularization of solid tumor sites. As a result of these immune modulating activities, mast cells have disease-modifying roles in specific autoimmune diseases and cancers. Therefore, determining how to regulate the activities of mast cells in different inflammatory and tumor microenvironments may be critical to discovering potential therapeutic targets to treat autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Christine N Noto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
36
|
Tang Q, Cheng B, Dai R, Wang R. The Role of Androgen Receptor in Cross Talk Between Stromal Cells and Prostate Cancer Epithelial Cells. Front Cell Dev Biol 2021; 9:729498. [PMID: 34692685 PMCID: PMC8526848 DOI: 10.3389/fcell.2021.729498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) lists as the second most lethal cancer for men in western countries, and androgen receptor (AR) plays a central role in its initiation and progression, which prompts the development of androgen deprivation therapy (ADT) as the standard treatment. Prostate tumor microenvironment, consisting of stromal cells and extracellular matrix (ECM), has dynamic interactions with PCa epithelial cells and affects their growth and invasiveness. Studies have shown that both genomic and non-genomic AR signaling pathways are involved in the biological regulation of PCa epithelial cells. In addition, AR signaling in prostate stroma is also involved in PCa carcinogenesis and progression. Loss of AR in PCa stroma is clinically observed as PCa progresses to advanced stage. Especially, downregulation of AR in stromal fibroblasts dysregulates the expression levels of ECM proteins, thus creating a suitable environment for PCa cells to metastasize. Importantly, ADT treatment enhances this reciprocal interaction and predisposes stromal cells to promote cell invasion of PCa cells. During this process, AR in PCa epithelium actively responds to various stimuli derived from the surrounding stromal cells and undergoes enhanced degradation while elevating the expression of certain genes such as MMP9 responsible for cell invasion. AR reduction in epithelial cells also accelerates these cells to differentiate into cancer stem-like cells and neuroendocrine cells, which are AR-negative PCa cells and inherently resistant to ADT treatments. Overall, understanding of the cross talk between tumor microenvironment and PCa at the molecular level may assist the development of novel therapeutic strategies against this disease. This review will provide a snapshot of AR's action when the interaction of stromal cells and PCa cells occurs.
Collapse
Affiliation(s)
- Qianyao Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Sfanos KS. Immune cell infiltrates and prognosis in localized prostate cancer †. J Pathol 2021; 256:135-138. [PMID: 34694014 DOI: 10.1002/path.5817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 01/23/2023]
Abstract
Multiple lines of evidence indicate that quantification of immune cell infiltrates in primary prostate cancer can predict outcomes after radical prostatectomy, including biochemical recurrence, metastasis, and death from prostate cancer. In a recent issue of The Journal of Pathology, Andersen et al explored the predictive value of cancer tissue infiltration of seven immune cell types (mast cells, M1 macrophages, M2 macrophages, B cells, T helper cells, cytotoxic T cells, and regulatory T cells) in association with biochemical recurrence after radical prostatectomy. In addition to reporting a potential association between cancer-infiltrating regulatory T cells and M1 and M2 macrophages and biochemical recurrence, the study also highlighted the use of multiplex digital pathology analyses to assess adverse predictors of prostate cancer outcomes. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Current Treatment Modalities Targeting Tumor Microenvironment in Castration-Resistant Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34664246 DOI: 10.1007/978-3-030-73119-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Prostate cancer (PCa) is responsible for significant cancer-related morbidity and mortality following local treatment failure in men. The initial stages of PCa are typically managed with a combination of surgical resection and/or androgen deprivation therapy (ADT). Unfortunately, a significant proportion of PCa continues to progress despite being at castrate levels of testosterone (<50 ng/dl), at which point it is coined castration-resistant prostate cancer (CRPC). In recent years, many novel therapeutics and drug combinations have been created for CRPC patients. These include immune checkpoint inhibitors, chemokine receptor antagonists, steroidogenic enzyme inhibition, and novel tyrosine kinase inhibitors as well as combinations of drugs. The selection of the most appropriate therapy depends on several factors like stage of the disease, age of the patient, metastasis, functional status, and response towards previous therapies. Here, we review the current state of the literature regarding treatment modalities, focusing on the treatment recommendations per the American Urological Association (AUA), recent clinical trials, and their limitations. An accurate and reliable overview of the strengths and limitations of PCa therapeutics could also allow personalized therapeutic interventions against PCa.
Collapse
|
39
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer 2021; 20:131. [PMID: 34635121 PMCID: PMC8504100 DOI: 10.1186/s12943-021-01428-1] [Citation(s) in RCA: 1233] [Impact Index Per Article: 308.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a stromal cell population with cell-of-origin, phenotypic and functional heterogeneity, are the most essential components of the tumor microenvironment (TME). Through multiple pathways, activated CAFs can promote tumor growth, angiogenesis, invasion and metastasis, along with extracellular matrix (ECM) remodeling and even chemoresistance. Numerous previous studies have confirmed the critical role of the interaction between CAFs and tumor cells in tumorigenesis and development. However, recently, the mutual effects of CAFs and the tumor immune microenvironment (TIME) have been identified as another key factor in promoting tumor progression. The TIME mainly consists of distinct immune cell populations in tumor islets and is highly associated with the antitumor immunological state in the TME. CAFs interact with tumor-infiltrating immune cells as well as other immune components within the TIME via the secretion of various cytokines, growth factors, chemokines, exosomes and other effector molecules, consequently shaping an immunosuppressive TME that enables cancer cells to evade surveillance of the immune system. In-depth studies of CAFs and immune microenvironment interactions, particularly the complicated mechanisms connecting CAFs with immune cells, might provide novel strategies for subsequent targeted immunotherapies. Herein, we shed light on recent advances regarding the direct and indirect crosstalk between CAFs and infiltrating immune cells and further summarize the possible immunoinhibitory mechanisms induced by CAFs in the TME. In addition, we present current related CAF-targeting immunotherapies and briefly describe some future perspectives on CAF research in the end.
Collapse
Affiliation(s)
- Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
40
|
Andersen LB, Nørgaard M, Rasmussen M, Fredsøe J, Borre M, Ulhøi BP, Sørensen KD. Immune cell analyses of the tumor microenvironment in prostate cancer highlight infiltrating regulatory T cells and macrophages as adverse prognostic factors. J Pathol 2021; 255:155-165. [PMID: 34255349 DOI: 10.1002/path.5757] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022]
Abstract
Improved risk stratification is needed for patients with localized prostate cancer. This study characterized and assessed the prognostic potential of distinct immune cell infiltration patterns in the prostate tumor microenvironment. Using tissue microarrays, multiplex immunohistochemistry/immunofluorescence, and automated digital pathology, we analyzed radical prostatectomy specimens from two large patient cohorts (training: n = 470; validation: n = 333) to determine infiltration levels of seven immune cell types in malignant versus benign prostate tissue: CD3+ CD8- FoxP3- T helper cells, CD3+ CD8+ FoxP3- cytotoxic T cells (CTLs), CD3+ CD8- FoxP3+ regulatory T cells (Tregs ), CD20+ B cells, CD68+ CD163- M1 macrophages, CD68+ CD163+ M2 macrophages, and tryptase+ mast cells. Results were further validated by cell type enrichment analyses of bulk tumor RNAseq data from a third independent patient cohort (n = 99). Prognostic potential was assessed by Kaplan-Meier and uni-/multi-variate Cox regression analyses. Clinical endpoint was biochemical recurrence. All seven immune cell types were enriched in prostate cancer versus benign stroma, while there was selective enrichment for B cells, Tregs , M1 and M2 macrophages, and depletion of mast cells and CTLs in prostate cancer epithelium. In all three cohorts, high levels of infiltrating Tregs , M1, and M2 macrophages in stroma and/or epithelium were associated with biochemical recurrence (p < 0.05; log-rank test). After adjustment for routine clinical variables, Tregs and M2 macrophages remained significant adverse predictors of biochemical recurrence (p < 0.05; multivariate Cox regression). Our comprehensive analyses of immune cell infiltration patterns in the prostate tumor microenvironment highlight infiltrating Tregs , M1, and M2 macrophages as adverse predictors of prostate cancer outcome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Line B Andersen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maibritt Nørgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Benedicte P Ulhøi
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
41
|
Lichterman JN, Reddy SM. Mast Cells: A New Frontier for Cancer Immunotherapy. Cells 2021; 10:cells10061270. [PMID: 34063789 PMCID: PMC8223777 DOI: 10.3390/cells10061270] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are unique tissue-resident immune cells of the myeloid lineage that have long been implicated in the pathogenesis of allergic and autoimmune disorders. More recently, mast cells have been recognized as key orchestrators of anti-tumor immunity, modulators of the cancer stroma, and have also been implicated in cancer cell intrinsic properties. As such, mast cells are an underrecognized but very promising target for cancer immunotherapy. In this review, we discuss the role of mast cells in shaping cancer and its microenvironment, the interaction between mast cells and cancer therapies, and strategies to target mast cells to improve cancer outcomes. Specifically, we address (1) decreasing cell numbers through c-KIT inhibition, (2) modulating mast cell activation and phenotype (through mast cell stabilizers, FcεR1 signaling pathway activators/inhibitors, antibodies targeting inhibitory receptors and ligands, toll like receptor agonists), and (3) altering secreted mast cell mediators and their downstream effects. Finally, we discuss the importance of translational research using patient samples to advance the field of mast cell targeting to optimally improve patient outcomes. As we aim to expand the successes of existing cancer immunotherapies, focused clinical and translational studies targeting mast cells in different cancer contexts are now warranted.
Collapse
Affiliation(s)
- Jake N. Lichterman
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sangeetha M. Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-648-4180
| |
Collapse
|
42
|
Fan J, Qin X, He R, Ma J, Wei Q. Gene expression profiles for an immunoscore model in bone and soft tissue sarcoma. Aging (Albany NY) 2021; 13:13708-13725. [PMID: 33946044 PMCID: PMC8202872 DOI: 10.18632/aging.202956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Background: Immune infiltration is a prognostic marker to clinical outcomes in various solid tumors. However, reports that focus on bone and soft tissue sarcoma are rare. The study aimed to analyze and identify how immune components influence prognosis and develop a novel prognostic system for sarcomas. Methods: We retrieved the gene expression data from 3 online databases (GEO, TCGA, and TARGET). The immune fraction was estimated using the CIBERSORT algorithm. After that, we re-clustered samples by K-means and constructed immunoscore by the least absolute shrinkage and selection operator (LASSO) Cox regression model. Next, to confirm the prognostic value, nomograms were constructed. Results: 334 samples diagnosed with 8 tumor types (including osteosarcoma) were involved in our analysis. Patients were next re-clustered into three subgroups (OS, SAR1, and SAR2) through immune composition. Survival analysis showed a significant difference between the two soft tissue groups: patients with a higher proportion of CD8+ T cells, macrophages M1, and mast cells had favorable outcomes (p=0.0018). Immunoscore models were successfully established in OS and SAR2 groups consisting of 12 and 9 cell fractions, respectively. We found immunosocre was an independent factor for overall survival time. Patients with higher immunoscore had poor prognosis (p<0.0001). Patients with metastatic lesions scored higher than those counterparts with localized tumors (p<0.05). Conclusions: Immune fractions could be a useful tool for the classification and prognosis of bone and soft tissue sarcoma patients. This proposed immunoscore showed a promising impact on survival prediction.
Collapse
Affiliation(s)
- Jingyuan Fan
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xinyi Qin
- School of Graduate, Guangxi Medical University, Nanning, Guangxi, China
| | - Rongquan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Ma
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qingjun Wei
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
43
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double Edged Sword in Immunity: Disorders of Mast Cell Activation and Therapeutic Management. Second of Two Parts. Endocr Metab Immune Disord Drug Targets 2021; 20:670-686. [PMID: 31789136 DOI: 10.2174/1871530319666191202121644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) bear many receptors that allow them to respond to a variety of exogenous and endogenous stimuli. However, MC function is dual since they can initiate pathological events or protect the host against infectious challenges. The role of MCs in disease will be analyzed in a broad sense, describing cellular and molecular mechanisms related to their involvement in auto-inflammatory diseases, asthma, autoimmune diseases and cancer. On the other hand, their protective role in the course of bacterial, fungal and parasitic infections will also be illustrated. As far as treatment of MC-derived diseases is concerned, allergen immunotherapy as well as other attempts to reduce MC-activation will be outlined according to the recent data. Finally, in agreement with current literature and our own data polyphenols have been demonstrated to attenuate type I allergic reactions and contact dermatitis in response to nickel. The use of polyphenols in these diseases will be discussed also in view of MC involvement.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
44
|
Bahmad HF, Jalloul M, Azar J, Moubarak MM, Samad TA, Mukherji D, Al-Sayegh M, Abou-Kheir W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front Genet 2021; 12:652747. [PMID: 33841508 PMCID: PMC8033163 DOI: 10.3389/fgene.2021.652747] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is by far the most commonly diagnosed cancer in men worldwide. Despite sensitivity to androgen deprivation, patients with advanced disease eventually develop resistance to therapy and may die of metastatic castration-resistant prostate cancer (mCRPC). A key challenge in the management of PCa is the clinical heterogeneity that is hard to predict using existing biomarkers. Defining molecular biomarkers for PCa that can reliably aid in diagnosis and distinguishing patients who require aggressive therapy from those who should avoid overtreatment is a significant unmet need. Mechanisms underlying the development of PCa are not confined to cancer epithelial cells, but also involve the tumor microenvironment. The crosstalk between epithelial cells and stroma in PCa has been shown to play an integral role in disease progression and metastasis. A number of key markers of reactive stroma has been identified including stem/progenitor cell markers, stromal-derived mediators of inflammation, regulators of angiogenesis, connective tissue growth factors, wingless homologs (Wnts), and integrins. Here, we provide a synopsis of the stromal-epithelial crosstalk in PCa focusing on the relevant molecular biomarkers pertaining to the tumor microenvironment and their role in diagnosis, prognosis, and therapy development.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Mohammad Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abdul Samad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
45
|
Mast Cell-Derived SAMD14 Is a Novel Regulator of the Human Prostate Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13061237. [PMID: 33799802 PMCID: PMC7999778 DOI: 10.3390/cancers13061237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Mast cells (MCs) are important cellular components of the tumor microenvironment and are significantly associated with poor patient outcomes in prostate cancer and other solid cancers. The promotion of tumor progression partly involves heterotypic interactions between MCs and cancer-associated fibroblasts (CAFs), which combine to potentiate a pro-tumor extracellular matrix and promote epithelial cell invasion and migration. Thus far, the interactions between MCs and CAFs remain poorly understood. To identify molecular changes that may alter resident MC function in the prostate tumor microenvironment, we profiled the transcriptome of human prostate MCs isolated from patient-matched non-tumor and tumor-associated regions of fresh radical prostatectomy tissue. Transcriptomic profiling revealed a distinct gene expression profile of MCs isolated from prostate tumor regions, including the downregulation of SAMD14, a putative tumor suppressor gene. Proteomic profiling revealed that overexpression of SAMD14 in HMC-1 altered the secretion of proteins associated with immune regulation and extracellular matrix processes. To assess MC biological function within a model of the prostate tumor microenvironment, HMC-1-SAMD14+ conditioned media was added to co-cultures of primary prostatic CAFs and prostate epithelium. HMC-1-SAMD14+ secretions were shown to reduce the deposition and alignment of matrix produced by CAFs and suppress pro-tumorigenic prostate epithelial morphology. Overall, our data present the first profile of human MCs derived from prostate cancer patient specimens and identifies MC-derived SAMD14 as an important mediator of MC phenotype and function within the prostate tumor microenvironment.
Collapse
|
46
|
Targeting Innate Immunity in Cancer Therapy. Vaccines (Basel) 2021; 9:vaccines9020138. [PMID: 33572196 PMCID: PMC7916062 DOI: 10.3390/vaccines9020138] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
The majority of current cancer immunotherapy strategies target and potentiate antitumor adaptive immune responses. Unfortunately, the efficacy of these treatments has been limited to a fraction of patients within a subset of tumor types, with an aggregate response rate of approximately 20% to date across all malignancies. The success of therapeutic inhibition of programmed death protein 1 (PD-1), protein death ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) with immune checkpoint inhibitors (ICI) has been limited to “hot” tumors characterized by preexisting T cell infiltration, whereas “cold” tumors, which lack T cell infiltration, have not achieved durable benefit. There are several mechanisms by which “cold” tumors fail to generate spontaneous immune infiltration, which converge upon the generation of an immunosuppressive tumor microenvironment (TME). The role of the innate immune system in tumor immunosurveillance and generation of antitumor immune responses has been long recognized. In recent years, novel strategies to target innate immunity in cancer therapy have emerged, including therapeutic stimulation of pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs); the DNA sensing cGAS/STING pathway; nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRP3; and the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). In addition, therapeutic modulation of key innate immune cell types, such as macrophages and natural killer cells, has been investigated. Herein, we review therapeutic approaches to activate innate immunity within the TME to enhance antitumor immune responses, with the goal of disease eradication in “cold” tumors. In addition, we discuss rational immune-oncology combination strategies that activate both innate and adaptive immunity, with the potential to enhance the efficacy of current immunotherapeutic approaches.
Collapse
|
47
|
The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sci 2021; 284:119132. [PMID: 33513396 DOI: 10.1016/j.lfs.2021.119132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Despite developments in the treatment of various cancers, prostate cancer is one of the deadliest diseases known to men. Systemic therapies such as androgen deprivation, chemotherapy, and radiation therapy have not been very successful in treating this disease. Numerous studies have shown that there is a direct relationship between cancer progression and inhibition of anti-tumor immune responses that can lead to progression of various malignancies, including prostate cancer. Interestingly, CD4+CD25+FoxP3+ regulatory T cells significantly accumulate and increase in draining lymph nodes and PBMCs of patients with prostate cancer and other solid tumors. In vivo and in vitro studies have shown that Tregs can suppress anti-tumor responses, which is directly related to the increased risk of cancer recurrence. Tregs are essential for preserving self-tolerance and inhibiting extra immune responses harmful to the host. Since the tumor-related antigens are mainly self-antigens, Tregs could play a major role in tumor progression. Accordingly, it has discovered that prostate cancer patients with higher Tregs have poor prognosis and low survival rates. However, anti-tumor responses can be reinforced by suppression of Tregs with using monoclonal antibodies against CD25 and CTLA-4. Therefore, depleting Tregs or suppressing their functions could be one of the effective ways for prostate cancer immunotherapy. The purpose of this review is to investigate the role of Treg cells in the progression of prostate cancer and to evaluate effective strategies for the treatment of prostate cancer by regulating Treg cells.
Collapse
|
48
|
Hempel Sullivan H, Maynard JP, Heaphy CM, Lu J, De Marzo AM, Lotan TL, Joshu CE, Sfanos KS. Differential mast cell phenotypes in benign versus cancer tissues and prostate cancer oncologic outcomes. J Pathol 2021; 253:415-426. [PMID: 33338262 DOI: 10.1002/path.5606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022]
Abstract
We reported previously that high numbers of mast cells in benign (extra-tumoral) regions of the prostate are associated with worse outcomes after radical prostatectomy including biochemical recurrence and the development of metastases. Herein, with a cohort of 384 men, we performed mast cell subtyping and report that higher minimum number of the tryptase-only (MCT ) subset of extra-tumoral mast cells is associated with increased risk of biochemical recurrence (comparing highest to lowest tertiles: HR 2.32, 95% CI 1.37-3.93; P-trend = 0.002), metastases (HR 3.62, 95% CI 1.75-7.47; P-trend 0.001), and death from prostate cancer (HR 2.87, 95% CI 1.19-6.95; P-trend = 0.02). Preliminary RNA sequencing and comparison of benign versus cancer tissue mast cells revealed differential expression of additional site-specific genes. We further demonstrate that the genes CXCR4 and TFE3 are more highly expressed in tumor-infiltrating mast cells as well as other tumor-infiltrating immune cells and in tumor cells, respectively, and represent an altered tumor microenvironment. KIT variants were also differentially expressed in benign versus cancer tissue mast cells, with KIT variant 1 (GNNK+ ) mast cells identified as more prevalent in extra-tumoral regions of the prostate. Finally, using an established mouse model, we found that mast cells do not infiltrate Hi-Myc tumors, providing a model to specifically examine the role of extra-tumoral mast cells in tumorigenesis. Hi-Myc mice crossed to mast cell knockout (Wsh) mice and aged to 1 year revealed a higher degree of pre-invasive lesions and invasive cancer in wild-type mice versus heterozygous and knockout mice. This suggests a dosage effect where higher numbers of extra-tumoral mast cells resulted in higher cancer invasion. Overall, our studies provide further evidence for a role of extra-tumoral mast cells in driving adverse prostate cancer outcomes. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heidi Hempel Sullivan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Corinne E Joshu
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Somasundaram R, Connelly T, Choi R, Choi H, Samarkina A, Li L, Gregorio E, Chen Y, Thakur R, Abdel-Mohsen M, Beqiri M, Kiernan M, Perego M, Wang F, Xiao M, Brafford P, Yang X, Xu X, Secreto A, Danet-Desnoyers G, Traum D, Kaestner KH, Huang AC, Hristova D, Wang J, Fukunaga-Kalabis M, Krepler C, Ping-Chen F, Zhou X, Gutierrez A, Rebecca VW, Vonteddu P, Dotiwala F, Bala S, Majumdar S, Dweep H, Wickramasinghe J, Kossenkov AV, Reyes-Arbujas J, Santiago K, Nguyen T, Griss J, Keeney F, Hayden J, Gavin BJ, Weiner D, Montaner LJ, Liu Q, Peiffer L, Becker J, Burton EM, Davies MA, Tetzlaff MT, Muthumani K, Wargo JA, Gabrilovich D, Herlyn M. Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nat Commun 2021; 12:346. [PMID: 33436641 PMCID: PMC7804257 DOI: 10.1038/s41467-020-20600-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Anti-PD-1 therapy is used as a front-line treatment for many cancers, but mechanistic insight into this therapy resistance is still lacking. Here we generate a humanized (Hu)-mouse melanoma model by injecting fetal liver-derived CD34+ cells and implanting autologous thymus in immune-deficient NOD-scid IL2Rγnull (NSG) mice. Reconstituted Hu-mice are challenged with HLA-matched melanomas and treated with anti-PD-1, which results in restricted tumor growth but not complete regression. Tumor RNA-seq, multiplexed imaging and immunohistology staining show high expression of chemokines, as well as recruitment of FOXP3+ Treg and mast cells, in selective tumor regions. Reduced HLA-class I expression and CD8+/Granz B+ T cells homeostasis are observed in tumor regions where FOXP3+ Treg and mast cells co-localize, with such features associated with resistance to anti-PD-1 treatment. Combining anti-PD-1 with sunitinib or imatinib results in the depletion of mast cells and complete regression of tumors. Our results thus implicate mast cell depletion for improving the efficacy of anti-PD-1 therapy. Immune checkpoint therapies (ICT) are promising for treating various cancers, but response rates vary. Here the authors show, in mouse models, that tumor-infiltrating mast cells colocalize with regulatory T cells, coincide with local reduction of MHC-I and CD8 T cells, and is associated with resistance to ICT, which can be reversed by c-kit inhibitor treatment.
Collapse
Affiliation(s)
| | | | - Robin Choi
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Ling Li
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Rohit Thakur
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | - Fang Wang
- The Wistar Institute, Philadelphia, PA, USA
| | - Min Xiao
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Xue Yang
- The Wistar Institute, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anthony Secreto
- Department of Medicine, Stem Cell and Xenograft Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwenn Danet-Desnoyers
- Department of Medicine, Stem Cell and Xenograft Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Traum
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Department of Pathology and Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Johannes Griss
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | - Qin Liu
- The Wistar Institute, Philadelphia, PA, USA
| | | | | | - Elizabeth M Burton
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of California, San Francisco, CA, USA
| | - Michael T Tetzlaff
- Department of Pathology and Dermatology, University of California, San Francisco, CA, USA
| | - Kar Muthumani
- The Wistar Institute, Philadelphia, PA, USA.,GeneOne Life Science Inc., Fort Washington, PA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
50
|
Domagala M, Laplagne C, Leveque E, Laurent C, Fournié JJ, Espinosa E, Poupot M. Cancer Cells Resistance Shaping by Tumor Infiltrating Myeloid Cells. Cancers (Basel) 2021; 13:E165. [PMID: 33418996 PMCID: PMC7825276 DOI: 10.3390/cancers13020165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Interactions between malignant cells and neighboring stromal and immune cells profoundly shape cancer progression. New forms of therapies targeting these cells have revolutionized the treatment of cancer. However, in order to specifically address each population, it was essential to identify and understand their individual roles in interaction between malignant cells, and the formation of the tumor microenvironment (TME). In this review, we focus on the myeloid cell compartment, a prominent, and heterogeneous group populating TME, which can initially exert an anti-tumoral effect, but with time actively participate in disease progression. Macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, mast cells, eosinophils, and basophils act alone or in concert to shape tumor cells resistance through cellular interaction and/or release of soluble factors favoring survival, proliferation, and migration of tumor cells, but also immune-escape and therapy resistance.
Collapse
Affiliation(s)
- Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Edouard Leveque
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- IUCT-O, 31000 Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Eric Espinosa
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| |
Collapse
|