1
|
Tachibana M, Ito Y, Fujikawa R, Tsukamoto K, Uehara M, Kobayashi J, Hayashi T. Lung Adenocarcinoma Exhibiting Thanatosomes (Hyaline Bodies), Cytoplasmic Clearing, and Nuclear Pleomorphism, with a KRAS Mutation. Diagnostics (Basel) 2025; 15:894. [PMID: 40218244 PMCID: PMC11988772 DOI: 10.3390/diagnostics15070894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Since epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors were introduced in 2004, various driver gene mutations have been identified in non-small cell lung cancer, particularly adenocarcinoma, where mutations are typically mutually exclusive. EGFR and Kirsten rat sarcoma viral oncogene (KRAS) mutations are most prevalent in Japan, with routine testing now standard. However, hematoxylin and eosin staining often fails to detect mutations, except in cases such as ALK fusion lung cancer. We report a 76-year-old non-smoking Japanese woman diagnosed with adenocarcinoma confirmed as KRAS G12D/S-positive. Histological features, including thanatosomes (hyaline globules), nuclear pleomorphism, and cytoplasmic clearing, may aid in identifying mutations. Numerous thanatosomes were identified, some containing nuclear dust. Thanatosomes revealed periodic acid-Schiff reactivity with diastase resistance, fuchsinophilia with Masson's trichrome stain, and dark blue-black color with Mallory's PTAH stain. This is the first report linking thanatosomes in KRAS-mutant pulmonary adenocarcinoma to apoptosis via cleaved caspase-3 staining.
Collapse
Affiliation(s)
- Mitsuhiro Tachibana
- Department of Diagnostic Pathology, Shimada General Medical Center, Shimada 427-8502, Japan
| | - Yutaro Ito
- Department of Respiratory Medicine, Shimada General Medical Center, Shimada 427-8502, Japan
| | - Ryo Fujikawa
- Department of Respiratory Surgery, Shimada General Medical Center, Shimada 427-8502, Japan
| | - Kei Tsukamoto
- Department of Diagnostic Radiology, Shimada General Medical Center, Shimada 427-8502, Japan
| | - Masahiro Uehara
- Department of Respiratory Medicine, Shimada General Medical Center, Shimada 427-8502, Japan
| | - Jun Kobayashi
- Department of Respiratory Surgery, Shimada General Medical Center, Shimada 427-8502, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8431, Japan;
| |
Collapse
|
2
|
Kawai H, Miura T, Kawamatsu N, Nakagawa T, Shiba-Ishii A, Yoshimoto T, Amano Y, Kihara A, Sakuma Y, Fujita K, Shibano T, Ishikawa S, Ushiku T, Fukayama M, Tsubochi H, Endo S, Hagiwara K, Matsubara D, Niki T. Expression patterns of HNF4α, TTF-1, and SMARCA4 in lung adenocarcinomas: impacts on clinicopathological and genetic features. Virchows Arch 2025; 486:343-354. [PMID: 38710944 PMCID: PMC11876232 DOI: 10.1007/s00428-024-03816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION HNF4α expression and SMARCA4 loss were thought to be features of non-terminal respiratory unit (TRU)-type lung adenocarcinomas, but their relationships remained unclear. MATERIALS AND METHODS HNF4α-positive cases among 241 lung adenocarcinomas were stratified based on TTF-1 and SMARCA4 expressions, histological subtypes, and driver mutations. Immunohistochemical analysis was performed using xenograft tumors of lung adenocarcinoma cell lines with high HNF4A expression. RESULT HNF4α-positive adenocarcinomas(n = 33) were divided into two groups: the variant group(15 mucinous, 2 enteric, and 1 colloid), where SMARCA4 was retained in all cases, and the conventional non-mucinous group(6 papillary, 5 solid, and 4 acinar), where SMARCA4 was lost in 3/15 cases(20%). All variant cases were negative for TTF-1 and showed wild-type EGFR and frequent KRAS mutations(10/18, 56%). The non-mucinous group was further divided into two groups: TRU-type(n = 7), which was positive for TTF-1 and showed predominantly papillary histology(6/7, 86%) and EGFR mutations(3/7, 43%), and non-TRU-type(n = 8), which was negative for TTF-1, showed frequent loss of SMARCA4(2/8, 25%) and predominantly solid histology(4/8, 50%), and never harbored EGFR mutations. Survival analysis of 230 cases based on histological grading and HNF4α expression revealed that HNF4α-positive poorly differentiated (grade 3) adenocarcinoma showed the worst prognosis. Among 39 cell lines, A549 showed the highest level of HNF4A, immunohistochemically HNF4α expression positive and SMARCA4 lost, and exhibited non-mucinous, high-grade morphology in xenograft tumors. CONCLUSION HNF4α-positive non-mucinous adenocarcinomas included TRU-type and non-TRU-type cases; the latter tended to exhibit the high-grade phenotype with frequent loss of SMARCA4, and A549 was a representative cell line.
Collapse
Affiliation(s)
- Hitomi Kawai
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tamaki Miura
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Natsumi Kawamatsu
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tomoki Nakagawa
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Aya Shiba-Ishii
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan
| | - Taichiro Yoshimoto
- Department of Pathology, Showa General Hospital, 8-1-1 Hanakoganei, Kodaira-Shi, Tokyo, 187-851, Japan
| | - Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuji Sakuma
- Department of Molecular Medicine, Sapporo Medical University, 1-17, Minami Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Kazutaka Fujita
- Department of Respiratory Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Tomoki Shibano
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Tetsuo Ushiku
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Koichi Hagiwara
- Omiya Medical Association Medical Examination Center, 2-107, Higashioonari-Chou, Kita-Ku, Saitama-Shi, Saitama, 331-8689, Japan
| | - Daisuke Matsubara
- Department of Pathology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8574, Japan.
- Department of Diagnostic Pathology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan.
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
3
|
Camidge DR, Barlesi F, Goldman JW, Morgensztern D, Heist R, Vokes E, Spira A, Angevin E, Su WC, Hong DS, Strickler JH, Motwani M, Dunbar M, Parikh A, Noon E, Blot V, Wu J, Kelly K. Phase Ib Study of Telisotuzumab Vedotin in Combination With Erlotinib in Patients With c-Met Protein-Expressing Non-Small-Cell Lung Cancer. J Clin Oncol 2023; 41:1105-1115. [PMID: 36288547 PMCID: PMC9928626 DOI: 10.1200/jco.22.00739] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Overexpression of c-Met protein and epidermal growth factor receptor (EGFR) mutations can co-occur in non-small-cell lung cancer (NSCLC), providing strong rationale for dual targeting. Telisotuzumab vedotin (Teliso-V), a first-in-class antibody-drug conjugate targeting c-Met, has shown a tolerable safety profile and antitumor activity as monotherapy. Herein, we report the results of a phase Ib study (ClinicalTrials.gov identifier: NCT02099058) evaluating Teliso-V plus erlotinib, an EGFR tyrosine kinase inhibitor (TKI), in patients with c-Met-positive (+) NSCLC. PATIENTS AND METHODS This study evaluated Teliso-V (2.7 mg/kg once every 21 days) plus erlotinib (150 mg once daily) in adult patients (age ≥ 18 years) with c-Met+ NSCLC. Later enrollment required presence of an EGFR-activating mutation (EGFR-M+) and progression on a prior EGFR TKI. End points included safety, pharmacokinetics, objective response rate (ORR), and progression-free survival (PFS). The efficacy-evaluable population consisted of c-Met+ patients (confirmed histology [H]-score ≥ 150) who had at least one postbaseline scan; c-Met+ patients with H-scores ≥ 225 were classified as c-Met high. RESULTS As of January 2020, 42 patients were enrolled (N = 36 efficacy-evaluable). Neuropathies were the most common any-grade adverse events reported, with 24 of 42 patients (57%) experiencing at least one event. The pharmacokinetic profile of Teliso-V plus erlotinib was similar to Teliso-V monotherapy. Median PFS for all efficacy-evaluable patients was 5.9 months (95% CI, 2.8 to not reached). ORR for EGFR-M+ patients (n = 28) was 32.1%. Of EGFR-M+ patients, those who were c-Met high (n = 15) had an ORR of 52.6%. Median PFS was 6.8 months for non-T790M+ and for those whose T790M status was unknown, versus 3.7 months for T790M+. CONCLUSION Teliso-V plus erlotinib showed encouraging antitumor activity and acceptable toxicity in EGFR TKI-pretreated patients with EGFR-M+, c-Met+ NSCLC.
Collapse
Affiliation(s)
| | - Fabrice Barlesi
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Inserm U911 CRO2, Marseille, France
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | | | | | - Rebecca Heist
- Massachusetts General Hospital Cancer Center, Boston, MA
| | | | - Alex Spira
- Virginia Cancer Specialists Research Institute, Fairfax, VA
| | - Eric Angevin
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Wu-Chou Su
- National Cheng Kung University Hospital, Tainan, Taiwan
| | - David S. Hong
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | - Jun Wu
- AbbVie Inc, North Chicago, IL
| | - Karen Kelly
- University of California Davis Comprehensive Cancer Center, Sacramento, CA
| |
Collapse
|
4
|
Matsubara D, Yoshimoto T, Akolekar N, Totsuka T, Amano Y, Kihara A, Miura T, Isagawa Y, Sakuma Y, Ishikawa S, Ushiku T, Fukayama M, Niki T. Genetic and phenotypic determinants of morphologies in 3D cultures and xenografts of lung tumor cell lines. Cancer Sci 2022; 114:1757-1770. [PMID: 36533957 PMCID: PMC10067422 DOI: 10.1111/cas.15702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
We previously proposed the classification of lung adenocarcinoma into two groups: the bronchial epithelial phenotype (BE phenotype) with high-level expressions of bronchial epithelial markers and actionable genetic abnormalities of tyrosine kinase receptors and the non-BE phenotype with low-level expressions of bronchial Bronchial epithelial (BE) epithelial markers and no actionable genetic abnormalities of tyrosine kinase receptors. Here, we performed a comprehensive analysis of tumor morphologies in 3D cultures and xenografts across a panel of lung cancer cell lines. First, we demonstrated that 40 lung cancer cell lines (23 BE and 17 non-BE) can be classified into three groups based on morphologies in 3D cultures on Matrigel: round (n = 31), stellate (n = 5), and grape-like (n = 4). The latter two morphologies were significantly frequent in the non-BE phenotype (1/23 BE, 8/17 non-BE, p = 0.0014), and the stellate morphology was only found in the non-BE phenotype. SMARCA4 mutations were significantly frequent in stellate-shaped cells (4/4 stellate, 4/34 non-stellate, p = 0.0001). Next, from the 40 cell lines, we successfully established 28 xenograft tumors (18 BE and 10 non-BE) in NOD/SCID mice and classified histological patterns of the xenograft tumors into three groups: solid (n = 20), small nests in desmoplasia (n = 4), and acinar/papillary (n = 4). The latter two patterns were characteristically found in the BE phenotype. The non-BE phenotype exhibited a solid pattern with significantly less content of alpha-SMA-positive fibroblasts (p = 0.0004) and collagen (p = 0.0006) than the BE phenotype. Thus, the morphology of the tumors in 3D cultures and xenografts, including stroma genesis, reflects the intrinsic properties of the cancer cell lines. Furthermore, this study serves as an excellent resource for lung adenocarcinoma cell lines, with clinically relevant information on molecular and morphological characteristics and drug sensitivity.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan.,Department of Pathology, University of Tsukuba, Ibaraki, Japan
| | - Taichiro Yoshimoto
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | | | | | - Yusuke Amano
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Atsushi Kihara
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Tamaki Miura
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yuriko Isagawa
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yuji Sakuma
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Human Pathology Department, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
5
|
Liu L, Qu J, Heng J, Zhou C, Xiong Y, Yang H, Jiang W, Zeng L, Zhu S, Zhang Y, Tan J, Hu C, Deng P, Yang N. A Large Real-World Study on the Effectiveness of the Combined Inhibition of EGFR and MET in EGFR-Mutant Non-Small-Cell Lung Cancer After Development of EGFR-TKI Resistance. Front Oncol 2021; 11:722039. [PMID: 34660287 PMCID: PMC8517073 DOI: 10.3389/fonc.2021.722039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background MET proto-oncogene amplification (amp) is an important mechanism underlying acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, the optimal treatment strategy after acquiring MET-amp-mediated EGFR-TKI resistance remains controversial. Our study compared three treatment strategies for patients with EGFR-mutant non-small-cell lung cancer (NSCLC) who were detected with MET-amp at EGFR-TKI progression using next-generation sequencing. Methods Of the 70 patients included in the study, 38 received EGFR-TKI + crizotinib, 10 received crizotinib monotherapy, and 22 received chemotherapy. Clinical outcomes and molecular profiles were analyzed. Results The objective response rate was 48.6% for EGFR-TKI + crizotinib group, 40.0% for crizotinib monotherapy group, and 18.2% for chemotherapy group. Patients who received EGFR-TKI + crizotinib had significantly longer progression-free survival than those who received crizotinib or chemotherapy (5.0 vs. 2.3 vs. 2.9 months, p = 0.010), but overall survival was comparable (10.0 vs. 4.1 vs. 8.5 months, p = 0.088). TP53 mutation (58.5%) and EGFR-amp (42.9%) were frequent concurrent mutations of the cohort. Progression-free survival was significantly longer for patients with either concurrent TP53 mutation (n = 17) (6.0 vs. 2.3 vs. 2.9 months, p = 0.009) or EGFR-amp (n = 13) (5.0 vs. 1.2 vs. 2.4 months, p = 0.016) in the EGFR-TKI + crizotinib group than the other two regimen. Potential acquired resistance mechanisms to EGFR-TKI + crizotinib included EGFR-T790M (n = 2), EGFR-L718Q (n = 1), EGFR-S645C (n = 1), MET-D1228H (n = 1), BRAF-V600E (n = 1), NRAS-Q61H (n = 1), KRAS-amp (n = 1), ERBB2-amp (n = 1), CDK4-amp (n = 1), and MYC-amp (n = 1). Conclusion Our study provides real-world clinical evidence from a large cohort that simultaneous inhibition of EGFR and MET could be a more effective therapeutic strategy for patients with MET-amp acquired from EGFR-TKI therapy.
Collapse
Affiliation(s)
- Li Liu
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfu Heng
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China.,Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Chunhua Zhou
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Yi Xiong
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China.,Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Haiyan Yang
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Wenjuan Jiang
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Liang Zeng
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Songlin Zhu
- Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Yongchang Zhang
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Jiarong Tan
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Pengbo Deng
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Nong Yang
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| |
Collapse
|
6
|
Matsubara D, Yoshimoto T, Soda M, Amano Y, Kihara A, Funaki T, Ito T, Sakuma Y, Shibano T, Endo S, Hagiwara K, Ishikawa S, Fukayama M, Murakami Y, Mano H, Niki T. Reciprocal expression of trefoil factor-1 and thyroid transcription factor-1 in lung adenocarcinomas. Cancer Sci 2020; 111:2183-2195. [PMID: 32237253 PMCID: PMC7293082 DOI: 10.1111/cas.14403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Molecular targeted therapies against EGFR and ALK have improved the quality of life of lung adenocarcinoma patients. However, targetable driver mutations are mainly found in thyroid transcription factor‐1 (TTF‐1)/NK2 homeobox 1 (NKX2‐1)‐positive terminal respiratory unit (TRU) types and rarely in non‐TRU types. To elucidate the molecular characteristics of the major subtypes of non‐TRU‐type adenocarcinomas, we analyzed 19 lung adenocarcinoma cell lines (11 TRU types and 8 non‐TRU types). A characteristic of non‐TRU‐type cell lines was the strong expression of TFF‐1 (trefoil factor‐1), a gastric mucosal protective factor. An immunohistochemical analysis of 238 primary lung adenocarcinomas resected at Jichi Medical University Hospital revealed that TFF‐1 was positive in 31 cases (13%). Expression of TFF‐1 was frequently detected in invasive mucinous (14/15, 93%), enteric (2/2, 100%), and colloid (1/1, 100%) adenocarcinomas, less frequent in acinar (5/24, 21%), papillary (7/120, 6%), and solid (2/43, 5%) adenocarcinomas, and negative in micropapillary (0/1, 0%), lepidic (0/23, 0%), and microinvasive adenocarcinomas or adenocarcinoma in situ (0/9, 0%). Expression of TFF‐1 correlated with the expression of HNF4‐α and MUC5AC (P < .0001, P < .0001, respectively) and inversely correlated with that of TTF‐1/NKX2‐1 (P < .0001). These results indicate that TFF‐1 is characteristically expressed in non‐TRU‐type adenocarcinomas with gastrointestinal features. The TFF‐1‐positive cases harbored KRAS mutations at a high frequency, but no EGFR or ALK mutations. Expression of TFF‐1 correlated with tumor spread through air spaces, and a poor prognosis in advanced stages. Moreover, the knockdown of TFF‐1 inhibited cell proliferation and soft‐agar colony formation and induced apoptosis in a TFF‐1‐high and KRAS‐mutated lung adenocarcinoma cell line. These results indicate that TFF‐1 is not only a biomarker, but also a potential molecular target for non‐TRU‐type lung adenocarcinomas.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan.,Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Yoshimoto
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Manabu Soda
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Amano
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Atsushi Kihara
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Toko Funaki
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ito
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuji Sakuma
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Tomoki Shibano
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Koichi Hagiwara
- Department of Respiratory Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshiro Niki
- Division of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
7
|
Prell RA, Dybdal N, Arima A, Chihaya Y, Nijem I, Halpern W. Placental and Fetal Effects of Onartuzumab, a Met/HGF Signaling Antagonist, When Administered to Pregnant Cynomolgus Monkeys. Toxicol Sci 2019; 165:186-197. [PMID: 29893934 DOI: 10.1093/toxsci/kfy141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Onartuzumab is an engineered single arm, monovalent monoclonal antibody that targets the MET receptor and prevents hepatocyte growth factor (HGF) signaling. Knockout mice have clearly demonstrated that HGF/MET signaling is developmentally critical. A pre- and postnatal development study (enhanced design) was conducted in cynomolgus monkeys to evaluate the potential developmental consequences following onartuzumab administration. Control or onartuzumab, at loading/maintenance doses of 75/50 mg/kg (low) or 100/100 mg/kg (high), was administered intravenously once weekly to 12 confirmed pregnant female cynomolgus monkeys per group from gestation day (GD) 20 through GD 174. Onartuzumab administration resulted in decreased gestation length, decreased birth weight, and increased fetal and perinatal mortality. A GD147 C-section was conducted for a subset of Control and High Dose monkeys, and identified placental infarcts with hemorrhage in the chorionic plate, chorionic villus and/or decidual plate. These findings were limited to placentas from onartuzumab-treated animals. In addition, decreased cellularity of the hepatocytes with dilated hepatic sinusoids was inconsistently observed in the liver of a few fetal or infant monkeys that died in the perinatal period. Surviving offspring had some evidence of developmental delay compared with controls, but no overt teratogenicity. Overall, effects on the perinatal fetuses were consistent with those reported in knockout mice, but not as severe. Onartuzumab concentrations were low or below the level of detection in most offspring, with cord blood concentrations only 1%-2% of maternal levels on GD 147. Malperfusion secondary to onartuzumab-induced placental injury could explain the adverse pregnancy outcomes, fetal growth restriction and relatively low fetal exposures.
Collapse
Affiliation(s)
- Rodney A Prell
- Department of Safety Assessment, Genentech, South San Francisco, California 94080
| | - Noel Dybdal
- Department of Safety Assessment, Genentech, South San Francisco, California 94080
| | - Akihiro Arima
- Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan
| | - Yutaka Chihaya
- Shin Nippon Biomedical Laboratories, Ltd., Atsubetsu-ku, Sapporo, Hokkaido 004-0071, Japan
| | - Ihsan Nijem
- Bioanalytical Sciences/Assay Development and Technology, Genentech, South San Francisco, California 94080
| | - Wendy Halpern
- Department of Safety Assessment, Genentech, South San Francisco, California 94080
| |
Collapse
|
8
|
Del Re M, Crucitta S, Gianfilippo G, Passaro A, Petrini I, Restante G, Michelucci A, Fogli S, de Marinis F, Porta C, Chella A, Danesi R. Understanding the Mechanisms of Resistance in EGFR-Positive NSCLC: From Tissue to Liquid Biopsy to Guide Treatment Strategy. Int J Mol Sci 2019; 20:ijms20163951. [PMID: 31416192 PMCID: PMC6720634 DOI: 10.3390/ijms20163951] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy has emerged as an alternative source of nucleic acids for the management of Epidermal Growth Factor Receptor (EGFR)-mutant non-Small Cell Lung Cancer (NSCLC). The use of circulating cell-free DNA (cfDNA) has been recently introduced in clinical practice, resulting in the improvement of the identification of druggable EGFR mutations for the diagnosis and monitoring of response to targeted therapy. EGFR-dependent (T790M and C797S mutations) and independent (Mesenchymal Epithelial Transition [MET] gene amplification, Kirsten Rat Sarcoma [KRAS], Phosphatidyl-Inositol 4,5-bisphosphate 3-Kinase Catalytic subunit Alpha isoform [PI3KCA], and RAF murine sarcoma viral oncogene homolog B1 [BRAF] gene mutations) mechanisms of resistance to EGFR tyrosine kinase inhibitors (TKIs) have been evaluated in plasma samples from NSCLC patients using highly sensitive methods (i.e., digital droplet PCR, Next Generation Sequencing), allowing for the switch to other therapies. Therefore, liquid biopsy is a non-invasive method able to detect the molecular dynamic changes that occur under the pressure of treatment, and to capture tumor heterogeneity more efficiently than is allowed by tissue biopsy. This review addresses how liquid biopsy may be used to guide the choice of treatment strategy in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giulia Gianfilippo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, 20141 Milano, Italy
| | - Iacopo Petrini
- General Pathology, Department of Translational Research & New Technologies in Surgery and Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giuliana Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Angela Michelucci
- Unit of Molecular Genetics, Department of Laboratory Medicine, University Hospital, 56126 Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, 20141 Milano, Italy
| | - Camillo Porta
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
- Division of Translational Oncology, I.R.C.C.S. Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy
| | - Antonio Chella
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital, 56126 Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
9
|
Heukers R, Mashayekhi V, Ramirez-Escudero M, de Haard H, Verrips TC, van Bergen En Henegouwen PMP, Oliveira S. VHH-Photosensitizer Conjugates for Targeted Photodynamic Therapy of Met-Overexpressing Tumor Cells. Antibodies (Basel) 2019; 8:antib8020026. [PMID: 31544832 PMCID: PMC6640711 DOI: 10.3390/antib8020026] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is an approach that kills (cancer) cells by the local production of toxic reactive oxygen species upon the local illumination of a photosensitizer (PS). The specificity of PDT has been further enhanced by the development of a new water-soluble PS and by the specific delivery of PS via conjugation to tumor-targeting antibodies. To improve tissue penetration and shorten photosensitivity, we have recently introduced nanobodies, also known as VHH (variable domains from the heavy chain of llama heavy chain antibodies), for targeted PDT of cancer cells overexpressing the epidermal growth factor receptor (EGFR). Overexpression and activation of another cancer-related receptor, the hepatocyte growth factor receptor (HGFR, c-Met or Met) is also involved in the progression and metastasis of a large variety of malignancies. In this study we evaluate whether anti-Met VHHs conjugated to PS can also serve as a biopharmaceutical for targeted PDT. VHHs targeting the SEMA (semaphorin-like) subdomain of Met were provided with a C-terminal tag that allowed both straightforward purification from yeast supernatant and directional conjugation to the PS IRDye700DX using maleimide chemistry. The generated anti-Met VHH-PS showed nanomolar binding affinity and, upon illumination, specifically killed MKN45 cells with nanomolar potency. This study shows that Met can also serve as a membrane target for targeted PDT.
Collapse
Affiliation(s)
- Raimond Heukers
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Vida Mashayekhi
- Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Mercedes Ramirez-Escudero
- Crystal & Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Hans de Haard
- Argenx BVBA, Industriepark-Zwijnaarde 7, 9052 Gent, Belgium.
| | - Theo C Verrips
- QVQ Holding BV, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Paul M P van Bergen En Henegouwen
- Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Sabrina Oliveira
- Cell Biology Division, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
- Pharmaceutics Division, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
10
|
First-line onartuzumab plus erlotinib treatment for patients with MET-positive and EGFR mutation-positive non-small-cell lung cancer. Cancer Treat Res Commun 2018; 18:100113. [PMID: 30472556 DOI: 10.1016/j.ctarc.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The phase II JO28638 study evaluated first-line onartuzumab plus erlotinib in patients with MET-positive advanced, metastatic, or post-operative recurrent non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. The study was stopped following termination of the global METLung study (OAM4971g), which showed lack of efficacy in the onartuzumab/erlotinib arm. We present immature efficacy and safety data from JO28638. MATERIALS AND METHODS Chemotherapy-naïve patients aged ≥ 20 years were enrolled. Patients received onartuzumab (15 mg/kg every 3 weeks) plus erlotinib (150 mg once daily) until progression or unacceptable toxicity. The co-primary endpoints were investigator (INV)-assessed progression-free survival (PFS) and safety. Secondary endpoints: overall response rate (ORR), disease control rate (DCR), overall survival (OS), duration of response (DOR), and pharmacokinetics. Exploratory biomarker analyses were also conducted. RESULTS 61 patients received treatment. Median age was 67 years and most patients had stage IV NSCLC (71%), MET-IHC score 2 (87%), and exon 19 deletion EGFR mutation (53%). Median PFS (INV) was 8.5 months (95% confidence interval [CI] 6.8-12.4); median OS was 15.6 months (95% CI 15.6-not evaluable); ORR was 68.9% (95% CI 55.7-80.1); median DOR was not reached; DCR was 88.5% (95% CI 77.8-95.3). Pharmacokinetics were similar to previous studies. All patients experienced an adverse event (AE); 26 patients discontinued treatment due to AEs; no grade 5 AEs were reported. No significant correlation was found between biomarkers and efficacy outcomes. CONCLUSION The results presented are inconclusive due to the early termination of the study.
Collapse
|
11
|
Gkolfinopoulos S, Mountzios G. Beyond EGFR and ALK: targeting rare mutations in advanced non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:142. [PMID: 29862231 DOI: 10.21037/atm.2018.04.28] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer remains the leading cause of cancer-related death in men and women, despite its constantly declining rates in incidence and mortality in the developed world. The past decade has witnessed an unprecedented rise in the development of molecular targeted therapies in various types of tumors. In non-small cell lung cancer (NSCLC), the greatest paradigm shift is the implementation of EGFR and ALK tyrosine kinase inhibitors in the first line and subsequent lines of therapy, with impressive results. Though less frequent than the molecular alterations in the aforementioned genes, a number of aberrations in potential oncogenic drivers has been discovered, namely mutations in the genes KRAS, BRAF, HER2, PI3KCA and DDR2, ROS1 and RET rearrangements and MET, HER2 and FGFR1 gene amplifications. A great number of clinical trials are currently underway, evaluating agents specifically designed to target these alterations, with mixed results so far. The greatest cumulative benefit offered by these trials is that, despite their success or failure in their objective goals, they have provided us with a better understanding of the complexity of the molecular intracellular processes, necessitating thus the accurate interpretation of the preclinical data in order to appropriately select the patients that may derive benefit from targeted treatment strategies.
Collapse
Affiliation(s)
| | - Giannis Mountzios
- Medical Oncology Department, 251 Air Force General Hospital, Athens, Greece
| |
Collapse
|
12
|
Park CK, Oh IJ, Choi YD, Jang TW, Lee JE, Ryu JS, Lee SY, Kim YC. A Prospective Observational Study Evaluating the Correlation of c-MET Expression and EGFR Gene Mutation with Response to Erlotinib as Second-Line Treatment for Patients with Advanced/Metastatic Non-Small-Cell Lung Cancer. Oncology 2018; 94:373-382. [PMID: 29502124 DOI: 10.1159/000486896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/12/2018] [Indexed: 03/22/2025]
Abstract
OBJECTIVES We aimed to evaluate the prevalence and predictive role of c-MET expression and EGFR mutation in the efficacy of erlotinib in non-small-cell lung cancer (NSCLC). METHODS We prospectively recruited 196 patients with stage IV or recurrent NSCLC treated with erlotinib after failure of first-line chemotherapy. Immunohistochemistry was used to evaluate c-MET overexpression, silver in situ hybridization (SISH) to assess gene copy number, and real-time polymerase chain reaction to detect EGFR mutations, respectively, in tumor tissue. RESULTS The major histologic type was adenocarcinoma (66.8%). c-MET was overexpressed in 55.8% (87/156) and dominant in females as well as non-squamous histology. Although c-MET gene amplification and high polysomy were observed in 2.0% (3/152) and 11.2% (17/152), they did not correlate with any characteristics. EGFR mutation was detected in 13.1% (20/153). The objective response rate of erlotinib was higher (61.1 vs. 3.7%, p < 0.001) and the median progression-free survival (PFS) was longer (10.2 vs. 1.9 months, p < 0.001) in EGFR-sensitizing mutations. However, c-MET positivity did not show a significant correlation with response to erlotinib or PFS. CONCLUSION We reconfirmed EGFR mutation as a strong predictive marker of NSCLC. However, c-MET positivity was not associated with response or PFS, although c-MET overexpression correlated with some clinical characteristics.
Collapse
Affiliation(s)
- Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea,
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Tae-Won Jang
- Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Jeong-Eun Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jeong-Seon Ryu
- Department of Internal Medicine, Inha University Hospital, Incheon, Republic of Korea
| | - Shin-Yup Lee
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
| |
Collapse
|
13
|
Progress in the Management of Advanced Thoracic Malignancies in 2017. J Thorac Oncol 2018; 13:301-322. [PMID: 29331646 DOI: 10.1016/j.jtho.2018.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
The treatment paradigm of NSCLC underwent a major revolution during the course of 2017. Immune checkpoint inhibitors (ICIs) brought remarkable improvements in response and overall survival both in unselected pretreated patients and in untreated patients with programmed death ligand 1 expression of 50% or more. Furthermore, compelling preliminary results were reported for new combinations of anti-programmed cell death 1/programmed death ligand 1 agents with chemotherapy or anti-cytotoxic T-lymphocyte associated protein 4 inhibitors. The success of the ICIs appeared to extend to patients with SCLC, mesothelioma, or thymic tumors. Furthermore, in SCLC, encouraging activity was reported for an experimental target therapy (rovalpituzumab teserine) and a new chemotherapeutic agent (lurbinectedin). For oncogene-addicted NSCLC, next-generation tyrosine kinase inhibitors (TKIs) (such as osimertinib or alectinib) have demonstrated increased response rates and progression-free survival compared with first-generation TKIs in patients with both EGFR-mutated and ALK receptor tyrosine kinase gene (ALK)-rearranged NSCLC. However, because of the lack of mature overall survival data and considering the high efficacy of these drugs in patients with NSCLC previously exposed to first- or second-generation TKIs, definitive conclusions concerning the best treatment sequence cannot yet be drawn. In addition, new oncogenes such as mutant BRAF, tyrosine-protein kinase met gene (MET) and erb-b2 receptor tyrosine kinase 2 gene (HER2), and ret proto-oncogene (RET) rearrangements have joined the list of potential targetable drivers. In conclusion, the field of thoracic oncology is on the verge of a breakthrough that will open up many promising new therapeutic options for physicians and patients. The characterization of biomarkers predictive of sensitivity or resistance to immunotherapy and the identification of the optimal therapeutic combinations (for ICIs) and treatment sequence (for oncogene-addicted NSCLC) represent the toughest upcoming challenges in the domain of thoracic oncology.
Collapse
|
14
|
The Prognostic Significance of c-MET and EGFR Overexpression in Resected Gastric Adenocarcinomas. Am J Clin Oncol 2017; 40:543-551. [PMID: 26125303 DOI: 10.1097/coc.0000000000000202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Epidermal growth factor receptor (EGFR) and c-MET are tyrosine kinase growth factor receptors implicated in gastric cancer (GC), and their pathways appear to be interdependent. The aim of this study was to investigate the prognostic value of EGFR and c-MET protein overexpression by immunohistochemistry in Canadian patients with resected GC and correlate it with clinicopathologic characteristics and overall survival (OS). MATERIALS AND METHODS Tissue microarray blocks were constructed from 120 resected GCs stained with EGFR and c-MET and scored semiquantitatively (0 to 3+). Each receptor's expression was compared with clinicopathologic characteristics and survival. Descriptive statistics, Kaplan-Meyer, and Cox regression were used for statistical analyses. RESULTS Of the 113 interpretable cases, overexpression of EGFR and c-MET was noted in 17 (15%) and 65 (57%), respectively; coexpression of EGFR and c-MET was observed in 12 (10%) of GC. EGFR and c-MET overexpression correlated with poor OS: median 13 versus 30 months in EGFR positive versus negative GC (hazard ratio [HR]=1.67, P=0.11); 27 versus 49 months in c-MET positive versus negative GC (HR=1.17, P=0.49), respectively. GC coexpressing EGFR and c-MET was significantly correlated with poor survival: 12 versus 29 months in double-positive versus rest of tumors both in univariate (HR=2.62, P=0.003) and multivariate analyses (HR=2.58, P=0.01). CONCLUSIONS This study describes the prevalence and prognostic value of EGFR and c-MET in a Canadian population of patients undergoing curative intent resection for GC. Both c-MET and EGFR overexpression trended toward poor OS, but only the group with EGFR+/c-MET+ GC reached statistical significance on multivariate analysis.
Collapse
|
15
|
Pilotto S, Carbognin L, Karachaliou N, Ma PC, Rosell R, Tortora G, Bria E. Tracking MET de-addiction in lung cancer: A road towards the oncogenic target. Cancer Treat Rev 2017; 60:1-11. [PMID: 28843992 DOI: 10.1016/j.ctrv.2017.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
The discovery of druggable oncogenic drivers (i.e. EGFR and ALK), along with the introduction of comprehensive tumor genotyping techniques into the daily clinical practice define non-small-cell lung cancer (NSCLC) asa group of heterogeneous diseases, requiring a context-personalized clinico-therapeutical approach. Among the most investigated biomarkers, the MET proto-oncogene has been extensively demonstrated to play a crucial role throughout the lung oncogenesis, unbalancing the proliferation/apoptosis signaling and influencing the epithelial-mesenchymal transition and the invasive phenotype. Nevertheless, although different mechanisms eliciting the aberrant MET-associated oncogenic stimulus have been detected in lung cancer (such as gene amplification, increased gene copy number, mutations and MET/HGF overexpression), to date no clinically impactful results have been achieved with anti-MET tyrosine kinase inhibitors and monoclonal antibodies in the context of an unselected or MET enriched population. Recently, MET exon 14 splicing abnormalities have been identified asa potential oncogenic target in lung cancer, able to drive the activity of MET inhibitors in molecularly selected patients. In this paper, the major advancement and drawbacks of MET history in lung cancer are reviewed, underlying the renewed scientific euphoria related to the recent identification of MET exon 14 splicing variants asan actionable oncogenic target.
Collapse
Affiliation(s)
- S Pilotto
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - L Carbognin
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | | | - P C Ma
- WVU Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States; WV Clinical and Translational Science Institute, Morgantown, WV, United States.
| | - R Rosell
- Pangaea Biotech, Barcelona, Spain; Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain; Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain; Molecular Oncology Research (MORe) Foundation, Barcelona, Spain; Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Spain.
| | - G Tortora
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - E Bria
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| |
Collapse
|
16
|
Santini FC, Kunte S, Drilon A. Combination MET- and EGFR-directed therapy in MET-overexpressing non-small cell lung cancers: time to move on to better biomarkers? Transl Lung Cancer Res 2017; 6:393-395. [PMID: 28713684 DOI: 10.21037/tlcr.2017.04.06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Fernando C Santini
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Siddharth Kunte
- Department of Internal Medicine, Mount Sinai St. Luke's West Hospital, New York, NY, USA
| | - Alexander Drilon
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
17
|
Saito S, Espinoza-Mercado F, Liu H, Sata N, Cui X, Soukiasian HJ. Current status of research and treatment for non-small cell lung cancer in never-smoking females. Cancer Biol Ther 2017; 18:359-368. [PMID: 28494184 DOI: 10.1080/15384047.2017.1323580] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide with over 1 million deaths each year. The overall prognosis of lung cancer patients remains unsatisfactory, with a 5-year overall survival rate of less than 15%. Although most lung cancers are a result of smoking, approximately 25% of lung cancer cases worldwide are not attributable to tobacco use. Notably, more than half of the lung cancer cases in women occur in non-smokers. Among non-small-cell lung cancer (NSCLC) cases, cigarette-smokers have a greater association with squamous cell carcinoma than adenocarcinoma, which is more common in non-smokers. These findings imply that specific molecular and pathological features may associate with lung adenocarcinoma arising in non-smoker female patients. Over the past decade, whole genome sequencing and other '-omics' technologies led to the discovery of pathogenic mutations that drive tumor cell formation. These technological developments may enable tailored patient treatments throughout the course of their disease, potentially leading to improved patient outcomes. Some clinical and laboratory studies have shown success outcomes using epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKI) in patients with EGFR mutations and ALK rearrangements, respectively. In fact, these 2 mutations are predominantly present in female non-smokers with adenocarcinoma. Immunotherapy has also recently emerged as a major therapeutic modality in NSCLC. In this review, we summarize the current understanding of NSCLC biology and new therapeutic molecular targets, focusing on the pathogenesis of non-smoker female NSCLC patients.
Collapse
Affiliation(s)
- Shin Saito
- a Department of Surgery , Jichi Medical University , Yakushiji, Shimotsuke-City , Tochigi , Japan
| | - Fernando Espinoza-Mercado
- b Department of Surgery, Division of Thoracic Surgery , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Hui Liu
- c College of Medical Laboratory Techniques, Tianjin Medical University , Tianjin , China
| | - Naohiro Sata
- a Department of Surgery , Jichi Medical University , Yakushiji, Shimotsuke-City , Tochigi , Japan
| | - Xiaojiang Cui
- d Department of Surgery , Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Harmik J Soukiasian
- b Department of Surgery, Division of Thoracic Surgery , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
18
|
Drilon A, Cappuzzo F, Ou SHI, Camidge DR. Targeting MET in Lung Cancer: Will Expectations Finally Be MET? J Thorac Oncol 2017; 12:15-26. [PMID: 27794501 PMCID: PMC5603268 DOI: 10.1016/j.jtho.2016.10.014] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/12/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
The hepatocyte growth factor receptor (MET) is a potential therapeutic target in a number of cancers, including NSCLC. In NSCLC, MET pathway activation is thought to occur through a diverse set of mechanisms that influence properties affecting cancer cell survival, growth, and invasiveness. Preclinical and clinical evidence suggests a role for MET activation as both a primary oncogenic driver in subsets of lung cancer and as a secondary driver of acquired resistance to targeted therapy in other genomic subsets. In this review, we explore the biology and clinical significance behind MET proto-oncogene receptor tyrosine kinase (MET) exon 14 alterations and MET amplification in NSCLC, the role of MET amplification in the setting of acquired resistance to EGFR tyrosine kinase inhibitor therapy in EGFR-mutant NSCLC, and the history of MET pathway inhibitor drug development in NSCLC, highlighting current strategies that enrich for biomarkers likely to be predictive of response. Whereas previous trials that focused on MET pathway-directed targeted therapy in unselected or MET-overexpressing NSCLC yielded largely negative results, more recent investigations focusing on MET exon 14 alterations and MET amplification have been notable for meaningful clinical responses to MET inhibitor therapy in a substantial proportion of patients.
Collapse
Affiliation(s)
| | | | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, California
| | | |
Collapse
|
19
|
Spigel DR, Edelman MJ, O'Byrne K, Paz-Ares L, Mocci S, Phan S, Shames DS, Smith D, Yu W, Paton VE, Mok T. Results From the Phase III Randomized Trial of Onartuzumab Plus Erlotinib Versus Erlotinib in Previously Treated Stage IIIB or IV Non-Small-Cell Lung Cancer: METLung. J Clin Oncol 2016; 35:412-420. [PMID: 27937096 DOI: 10.1200/jco.2016.69.2160] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose The phase III OAM4971g study (METLung) examined the efficacy and safety of onartuzumab plus erlotinib in patients with locally advanced or metastatic non-small-cell lung cancer selected by MET immunohistochemistry whose disease had progressed after treatment with a platinum-based chemotherapy regimen. Patients and Methods Patients were randomly assigned at a one-to-one ratio to receive onartuzumab (15 mg/kg intravenously on day 1 of each 21-day cycle) plus daily oral erlotinib 150 mg or intravenous placebo plus daily oral erlotinib 150 mg. The primary end point was overall survival (OS) in the intent-to-treat population. Secondary end points included median progression-free survival, overall response rate, biomarker analysis, and safety. Results A total of 499 patients were enrolled (onartuzumab, n = 250; placebo, n = 249). Median OS was 6.8 versus 9.1 months for onartuzumab versus placebo (stratified hazard ratio [HR], 1.27; 95% CI, 0.98 to 1.65; P = .067), with a greater number of deaths in the onartuzumab arm (130 [52%] v 114 [46%]). Median progression-free survival was 2.7 versus 2.6 months (stratified HR, 0.99; 95% CI, 0.81 to 1.20; P = .92), and overall response rate was 8.4% and 9.6% for onartuzumab versus placebo, respectively. Exploratory analyses using MET fluorescence in situ hybridization status and gene expression showed no benefit for onartuzumab; patients with EGFR mutations showed a trend toward shorter OS with onartuzumab treatment (HR, 4.68; 95% CI, 0.97 to 22.63). Grade 3 to 5 adverse events were reported by 56.0% and 51.2% of patients, with serious AEs in 33.9% and 30.7%, for experimental versus control arms, respectively. Conclusion Onartuzumab plus erlotinib did not improve clinical outcomes, with shorter OS in the onartuzumab arm, compared with erlotinib in patients with MET-positive non-small-cell lung cancer.
Collapse
Affiliation(s)
- David R Spigel
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Martin J Edelman
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Kenneth O'Byrne
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Luis Paz-Ares
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Simonetta Mocci
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - See Phan
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - David S Shames
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Dustin Smith
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Wei Yu
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Virginia E Paton
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Tony Mok
- David R. Spigel, Sarah Cannon Research Institute, Nashville, TN; Martin J. Edelman, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Kenneth O'Byrne, Queensland University of Technology, Brisbane, Queensland, Australia; Luis Paz-Ares, Hospital Universitario Doce de Octubre and Centro Nacional de Investigaciones Oncológicas, Madrid, Spain; Simonetta Mocci, See Phan, David S. Shames, Dustin Smith, Wei Yu, and Virginia E. Paton, Genentech, South San Francisco, CA; and Tony Mok, Chinese University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| |
Collapse
|
20
|
Ito T, Matsubara D, Tanaka I, Makiya K, Tanei ZI, Kumagai Y, Shiu SJ, Nakaoka HJ, Ishikawa S, Isagawa T, Morikawa T, Shinozaki-Ushiku A, Goto Y, Nakano T, Tsuchiya T, Tsubochi H, Komura D, Aburatani H, Dobashi Y, Nakajima J, Endo S, Fukayama M, Sekido Y, Niki T, Murakami Y. Loss of YAP1 defines neuroendocrine differentiation of lung tumors. Cancer Sci 2016; 107:1527-1538. [PMID: 27418196 PMCID: PMC5084673 DOI: 10.1111/cas.13013] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 07/12/2016] [Indexed: 01/24/2023] Open
Abstract
YAP1, the main Hippo pathway effector, is a potent oncogene and is overexpressed in non‐small‐cell lung cancer (NSCLC); however, the YAP1 expression pattern in small‐cell lung cancer (SCLC) has not yet been elucidated in detail. We report that the loss of YAP1 is a special feature of high‐grade neuroendocrine lung tumors. A hierarchical cluster analysis of 15 high‐grade neuroendocrine tumor cell lines containing 14 SCLC cell lines that depended on the genes of Hippo pathway molecules and neuroendocrine markers clearly classified these lines into two groups: the YAP1‐negative and neuroendocrine marker‐positive group (n = 11), and the YAP1‐positive and neuroendocrine marker‐negative group (n = 4). Among the 41 NSCLC cell lines examined, the loss of YAP1 was only observed in one cell line showing the strong expression of neuroendocrine markers. Immunostaining for YAP1, using the sections of 189 NSCLC, 41 SCLC, and 30 large cell neuroendocrine carcinoma (LCNEC) cases, revealed that the loss of YAP1 was common in SCLC (40/41, 98%) and LCNEC (18/30, 60%), but was rare in NSCLC (6/189, 3%). Among the SCLC and LCNEC cases tested, the loss of YAP1 correlated with the expression of neuroendocrine markers, and a survival analysis revealed that YAP1‐negative cases were more chemosensitive than YAP1‐positive cases. Chemosensitivity test for cisplatin using YAP1‐positive/YAP1‐negative SCLC cell lines also showed compatible results. YAP1‐sh‐mediated knockdown induced the neuroendocrine marker RAB3a, which suggested the possible involvement of YAP1 in the regulation of neuroendocrine differentiation. Thus, we showed that the loss of YAP1 has potential as a clinical marker for predicting neuroendocrine features and chemosensitivity.
Collapse
Affiliation(s)
- Takeshi Ito
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Matsubara
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan. .,Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan.
| | - Ichidai Tanaka
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Kanae Makiya
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zen-Ichi Tanei
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuki Kumagai
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shu-Jen Shiu
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hiroki J Nakaoka
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Isagawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Teppei Morikawa
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasushi Goto
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomoyuki Nakano
- Department of Thoracic Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Hiroyoshi Tsubochi
- Department of Thoracic Surgery, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Daisuke Komura
- Division of Genome Science, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Yoh Dobashi
- Department of Pathology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, University of Tokyo, Tokyo, Japan
| | - Shunsuke Endo
- Department of Thoracic Surgery, Jichi Medical University, Tochigi, Japan
| | - Masashi Fukayama
- Department of Human Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Profiling of Oncogenic Driver Events in Lung Adenocarcinoma Revealed MET Mutation as Independent Prognostic Factor. J Thorac Oncol 2016; 10:1292-1300. [PMID: 26098749 DOI: 10.1097/jto.0000000000000620] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oncogenic driver mutations activating receptor tyrosine kinase pathways are promising predictive markers for targeted treatment. We investigated the mutation profile of an updated driver events list on receptor tyrosine kinase/RAS/PI3K axis and the clinicopathologic implications in a cohort of never-smoker predominated Chinese lung adenocarcinoma. METHODS We tested 154 lung adenocarcinomas and adenosquamous carcinomas for EGFR, KRAS, HER2, BRAF, PIK3CA, MET, NRAS, MAP2K1, and RIT1 mutations by polymerase chain reaction-direct sequencing. MET amplification and ALK and ROS1 translocations were assessed by fluorescent in situ hybridizations. MET and thyroid transcription factor-1 protein expressions were investigated by immunohistochemistry. RESULTS Seventy percent of lung adenocarcinomas carried actionable driver events. Alterations on EGFR (43%), KRAS (11.4%), ALK (6%), and MET (5.4%) were frequently found. ROS1 translocation and mutations involving BRAF, HER2, NRAS, and PIK3CA were also detected. No mutation was observed in RIT1 and MAP2K1. Patients with EGFR mutations had a favorable prognosis, whereas those with MET mutations had poorer overall survival. Multivariate analysis further demonstrated that MET mutation was an independent prognostic factor. Although MET protein expression was detected in 65% of lung adenocarcinoma, only 10% of the MET-immunohistochemistry positive tumors harbor MET DNA alterations that drove protein overexpression. Appropriate predictive biomarker is essential for selecting patients who might benefit from specific targeted therapy. CONCLUSION Actionable driver events can be detected in two thirds of lung adenocarcinoma. MET DNA alterations define a subset of patients with aggressive diseases that might potentially benefit from anti-MET targeted therapy. High negative predictive values of thyroid transcription factor-1 and MET expression suggest potential roles as surrogate markers for EGFR and/or MET mutations.
Collapse
|
22
|
Pelosi G, Gasparini P, Conte D, Fabbri A, Perrone F, Tamborini E, Pupa SM, Ciravolo V, Caserini R, Rossi G, Cavazza A, Papotti M, Nakatani Y, Maisonneuve P, Pastorino U, Sozzi G. Synergistic Activation upon MET and ALK Coamplification Sustains Targeted Therapy in Sarcomatoid Carcinoma, a Deadly Subtype of Lung Cancer. J Thorac Oncol 2016; 11:718-728. [DOI: 10.1016/j.jtho.2016.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 12/26/2022]
|
23
|
Ilangovan SS, Sen S. Simultaneous inhibition of EGFR and MET receptors with phytochemical conjugated magnetic nanocarriers: in silico and in vitro study. RSC Adv 2016. [DOI: 10.1039/c6ra11821f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Beta-sitosterol,dl-alpha-tocopherol and 1,3,8-P-menthatriene ofMentha piperitaconjugated superparamagnetic iron-oxide nanoparticles (SPIONs) potentially inhibit EGFR and MET expressing cancer cells.
Collapse
Affiliation(s)
| | - Shampa Sen
- School of Biosciences and Technology
- VIT University
- Vellore
- India
| |
Collapse
|
24
|
Saito S, Morishima K, Ui T, Hoshino H, Matsubara D, Ishikawa S, Aburatani H, Fukayama M, Hosoya Y, Sata N, Lefor AK, Yasuda Y, Niki T. The role of HGF/MET and FGF/FGFR in fibroblast-derived growth stimulation and lapatinib-resistance of esophageal squamous cell carcinoma. BMC Cancer 2015; 15:82. [PMID: 25884729 PMCID: PMC4345039 DOI: 10.1186/s12885-015-1065-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Although advanced esophageal squamous-cell carcinoma (ESCC) is treated using a multidisciplinary approach, outcomes remain unsatisfactory. The microenvironment of cancer cells has recently been shown to strongly influence the biologic properties of malignancies. We explored the effect of supernatant from esophageal fibroblasts on the cell growth and chemo-resistance of ESCC cell lines. METHODS We used 22 ESCC cell lines, isolated primary human esophageal fibroblasts and immortalized fibroblasts. We first examined cell proliferation induced by fibroblast supernatant. The effect of supernatant was evaluated to determine whether paracrine signaling induced by fibroblasts can influence the proliferation of cancer cells. Next, we examined the effects of adding growth factors HGF, FGF1, FGF7, and FGF10, to the culture medium of cancer cells. These growth factors are assumed to be present in the culture supernatants of fibroblasts and may exert a paracrine effect on the proliferation of cancer cells. We also examined the intrinsic role of HGF/MET and FGFs/FGFR in ESCC proliferation. In addition, we examined the inhibitory effect of lapatinib on ESCC cell lines and studied whether the fibroblast supernatants affect the inhibitory effect of lapatinib on ESCC cell proliferation. Finally, we tested whether the FGFR inhibitor PD-173074 could eliminate the rescue effect against lapatinib that was induced by fibroblast supernatants. RESULTS The addition of fibroblast supernatant induces cell proliferation in the majority of cell lines tested. The results of experiments to evaluate the effects of adding growth factors and kinase inhibitors suggests that the stimulating effect of fibroblasts was attributable in part to HGF/MET or FGF/FGFR. The results also indicate diversity in the degree of dependence on HGF/MET and FGF/FGFR among the cell lines. Though lapanitib at 1 μM inhibits cell proliferation by more than 50% in the majority of the ESCC cell lines, fibroblast supernatant can rescue the growth inhibition of ESCC cells. However, the rescue effect is abrogated by co-treatment with FGFR inhibitor. CONCLUSION These results demonstrate that cell growth of ESCC depends on diverse receptor tyrosine kinase signaling, in both cell-autonomous and cell-non-autonomous manners. The combined inhibition of these signals may hold promise for the treatment of ESCC.
Collapse
Affiliation(s)
- Shin Saito
- Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | - Kazue Morishima
- Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | - Takashi Ui
- Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | - Hiroko Hoshino
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | - Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-0034, Japan.
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan.
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Yoshinori Hosoya
- Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | - Alan K Lefor
- Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | - Yoshikazu Yasuda
- Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| |
Collapse
|
25
|
Revannasiddaiah S, Thakur P, Bhardwaj B, Susheela SP, Madabhavi I. Pulmonary adenocarcinoma: implications of the recent advances in molecular biology, treatment and the IASLC/ATS/ERS classification. J Thorac Dis 2014; 6:S502-25. [PMID: 25349702 DOI: 10.3978/j.issn.2072-1439.2014.05.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/16/2014] [Indexed: 12/13/2022]
Abstract
A decade ago, lung cancer could conveniently be classified into two broad categories-either the small cell lung carcinoma (SCLC), or the non-small cell lung carcinoma (NSCLC), mainly to assist in further treatment related decision making. However, the understanding regarding the eligibility of adenocarcinoma histology for treatments with agents such as pemetrexed and bevacizumab made it a necessity for NSCLC to be classified into more specific sub-groups. Then, the availability of molecular targeted therapy with oral tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib not only further emphasized the need for accurate sub-classification of lung cancer, but also heralded the important role of molecular profiling of lung adenocarcinomas. Given the remarkable advances in molecular biology, oncology and radiology, a need for felt for a revised classification for lung adenocarcinoma, since the existing World Health Organization (WHO) classification of lung cancer, published in the year 2004 was mainly a pathological system of classification. Thus, there was a combined effort by the International Association for the Study of Lung Cancer (IASLC), the American Thoracic Society (ATS) and the European Respiratory Society (ERS) with an effort to inculcate newly established perspectives from clinical, molecular and radiological aspects in evolving a modern classification for lung adenocarcinomas. This review provides a summary of the recent advances in molecular biology and molecular targeted therapy with respect to lung adenocarcinoma. Also, a brief summation of the salient recommendations provided in the IASLC/ATS/ERS classification of lung adenocarcinomas is provided. Lastly, a discussion regarding the future prospects with lung adenocarcinoma is included.
Collapse
Affiliation(s)
- Swaroop Revannasiddaiah
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| | - Priyanka Thakur
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| | - Bhaskar Bhardwaj
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| | - Sridhar Papaiah Susheela
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| | - Irappa Madabhavi
- 1 Department of Radiation Oncology, Swami Rama Cancer, Hospital & Research Institute, Government Medical College-Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiotherapy, Regional Cancer Centre, Shimla, India, 3 Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, India ; 4 Department of Radiation Oncology, HealthCare Global-Bangalore Institute of Oncology, Bengaluru, Karnataka, India ; 5 Department of Medical, Oncology, Gujarat Cancer Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
26
|
Chang H, Zhang X, Cho BC, Park HJ, Kim JH. Tumor MET expression profile predicts the outcome of non-small cell lung cancer patients receiving epidermal growth factor receptor tyrosine kinase inhibitors. Thorac Cancer 2014; 5:517-24. [PMID: 26767046 DOI: 10.1111/1759-7714.12122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND This study assesses whether MET expression in tumor tissue is associated with an increased sensitivity to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) in non-small-cell lung cancer (NSCLC) patients. METHODS This retrospective study included 69 NSCLC participants with available tumor tissue and data on treatment response and survival. MET and hepatocyte growth factor expression in tumor tissue were evaluated by immunohistochemistry. RESULTS Positive tMET expression correlated with a shorter progression-free survival (PFS; P = 0.003) and overall survival (OS; P = 0.05). Positive pY1234/1235 expression was significantly associated with a longer PFS (P = 0.031) and OS (P = 0.012). In multivariable analyses, tMET and pY1234/1235 expression were independent factors for PFS and OS, respectively. (tMET, PFS; P = 0.02, OS; P = 0.0007 and pY1234/1234, PFS; P = 0.01, OS; P = 0.004). CONCLUSIONS This study suggests that total and phosphorylated MET expression in tumor tissue is potentially useful for the selection of NSCLC patients who are likely to benefit from EGFR-TKIs, irrespective of their EGFR status.
Collapse
Affiliation(s)
- Hyun Chang
- Division of Hematology and Medical Oncology, Department of Internal Medicine, International St. Mary's Hospital Incheon, Korea; Department of Internal Medicine, Yonsei University College of Medicine Seoul, Korea
| | - Xianglan Zhang
- Department of Pathology, Yanbian University Hospital Yanji, China
| | - Byoung Chul Cho
- Department of Internal Medicine, Yonsei University College of Medicine Seoul, Korea
| | - Hee Jin Park
- Department of Pathology, Yonsei University College of Medicine Seoul, Korea
| | - Joo-Hang Kim
- Department of Internal Medicine, Yonsei University College of Medicine Seoul, Korea
| |
Collapse
|
27
|
Gruver AM, Liu L, Vaillancourt P, Yan SB, Cook JD, Roseberry Baker JA, Felke EM, Lacy ME, Marchal CC, Szpurka H, Holzer TR, Rhoads EK, Zeng W, Wortinger MA, Lu J, Chow C, Denning IJ, Beuerlein G, Davies J, Hanson JC, Credille KM, Wijayawardana SR, Schade AE. Immunohistochemical application of a highly sensitive and specific murine monoclonal antibody recognising the extracellular domain of the human hepatocyte growth factor receptor (
MET
). Histopathology 2014; 65:879-96. [DOI: 10.1111/his.12510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/12/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Aaron M Gruver
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Ling Liu
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | | | - Sau‐Chi B Yan
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Joel D Cook
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | | | - Erin M Felke
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Megan E Lacy
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | | | - Hadrian Szpurka
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Timothy R. Holzer
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Emily K Rhoads
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Wei Zeng
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Mark A Wortinger
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Jirong Lu
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Chi‐kin Chow
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Irene J Denning
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Gregory Beuerlein
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Julian Davies
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Jeff C Hanson
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Kelly M Credille
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | | | - Andrew E Schade
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| |
Collapse
|
28
|
Increased NQO1 but not c-MET and survivin expression in non-small cell lung carcinoma with KRAS mutations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9491-502. [PMID: 25222473 PMCID: PMC4199031 DOI: 10.3390/ijerph110909491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/07/2014] [Accepted: 08/25/2014] [Indexed: 12/25/2022]
Abstract
Cigarette smoking is one of the most significant public health issues and the most common environmental cause of preventable cancer deaths worldwide. EGFR (Epidermal Growth Factor Receptor)-targeted therapy has been used in the treatment of LC (lung cancer), mainly caused by the carcinogens in cigarette smoke, with variable success. Presence of mutations in the KRAS (Kirsten rat sarcoma viral oncogene homolog) driver oncogene may confer worse prognosis and resistance to treatment for reasons not fully understood. NQO1 (NAD(P)H:quinone oxidoreductase), also known as DT-diaphorase, is a major regulator of oxidative stress and activator of mitomycins, compounds that have been targeted in over 600 pre-clinical trials for treatment of LC. We sequenced KRAS and investigated expression of NQO1 and five clinically relevant proteins (DNMT1, DNMT3a, ERK1/2, c-MET, and survivin) in 108 patients with non-small cell lung carcinoma (NSCLC). NQO1, ERK1/2, DNMT1, and DNMT3a but not c-MET and survivin expression was significantly more frequent in patients with KRAS mutations than those without, suggesting the following: (1) oxidative stress may play an important role in the pathogenesis, worse prognosis, and resistance to treatment reported in NSCLC patients with KRAS mutations, (2) selecting patients based on their KRAS mutational status for future clinical trials may increase success rate, and (3) since oxidation of nucleotides also specifically induces transversion mutations, the high rate of KRAS transversions in lung cancer patients may partly be due to the increased oxidative stress in addition to the known carcinogens in cigarette smoke.
Collapse
|
29
|
Ibrahim R, Matsubara D, Osman W, Morikawa T, Goto A, Morita S, Ishikawa S, Aburatani H, Takai D, Nakajima J, Fukayama M, Niki T, Murakami Y. Expression of PRMT5 in lung adenocarcinoma and its significance in epithelial-mesenchymal transition. Hum Pathol 2014; 45:1397-405. [PMID: 24775604 DOI: 10.1016/j.humpath.2014.02.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/16/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Although protein arginine methyltransferase 5 (PRMT5) has been implicated in various cancers, its expression pattern in lung adenocarcinoma cell lines and tissues has not been elucidated enough. In this study, microarray analysis of 40 non-small-cell lung carcinoma cell lines showed that PRMT5 was a candidate histone methyltransferase gene that correlated with epithelial-mesenchymal transition. Immunocytochemical analysis of these cell lines indicated that the expression of PRMT5 was localized to the cytoplasm of E-cadherin-low and vimentin-high cell lines, whereas it was predominant in the nucleus and faint in the cytoplasm of E-cadherin-high and vimentin-low cell lines. Immunohistochemical analysis of lung adenocarcinoma cases (n = 130) revealed that the expression of PRMT5 was high in the cytoplasm of 47 cases (36%) and the nuclei of 34 cases (26%). The marked cytoplasmic expression of PRMT5 was frequently observed in high-grade subtypes (1 of 17 low grade, 21 of 81 intermediate grade, and 25 of 32 high grade; P < .0001) such as solid adenocarcinoma with the low expression of thyroid transcription factor 1 (the master regulator of lung) and low expression of cytokeratin 7 and E-cadherin (2 markers for bronchial epithelial differentiation), whereas the high nuclear expression of PRMT5 was frequently noted in adenocarcinoma in situ, a low-grade subtype (6 of 17 low grade, 25 of 81 intermediate grade, and 3 of 32 high grade; P = .0444). The cytoplasmic expression of PRMT5 correlated with a poor prognosis (P = .0089). We herein highlighted the importance of PRMT5 expression, especially its cytoplasmic expression, in the process of epithelial-mesenchymal transition and loss of the bronchial epithelial phenotype of lung adenocarcinoma.
Collapse
Affiliation(s)
- Reem Ibrahim
- Molecular Pathology Laboratory, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Daisuke Matsubara
- Molecular Pathology Laboratory, Institute of Medical Science, the University of Tokyo, Tokyo, Japan; Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan.
| | - Wael Osman
- Molecular Pathology Laboratory, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Teppei Morikawa
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shigeki Morita
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, Research Center for Advanced Science and Technology, the University of Tokyo, Tokyo, Japan
| | - Daiya Takai
- Department of Clinical Laboratory, the University of Tokyo, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, the University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Human Pathology Department, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Tochigi, Japan
| | - Yoshinori Murakami
- Molecular Pathology Laboratory, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Haura EB, Smith MA. Signaling control by epidermal growth factor receptor and MET: rationale for cotargeting strategies in lung cancer. J Clin Oncol 2013; 31:4148-50. [PMID: 24101046 DOI: 10.1200/jco.2013.50.8234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eric B Haura
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | |
Collapse
|
31
|
Spigel DR, Ervin TJ, Ramlau RA, Daniel DB, Goldschmidt JH, Blumenschein GR, Krzakowski MJ, Robinet G, Godbert B, Barlesi F, Govindan R, Patel T, Orlov SV, Wertheim MS, Yu W, Zha J, Yauch RL, Patel PH, Phan SC, Peterson AC. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol 2013; 31:4105-14. [PMID: 24101053 DOI: 10.1200/jco.2012.47.4189] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Increased hepatocyte growth factor/MET signaling is associated with poor prognosis and acquired resistance to epidermal growth factor receptor (EGFR) -targeted drugs in patients with non-small-cell lung cancer (NSCLC). We investigated whether dual inhibition of MET/EGFR results in clinical benefit in patients with NSCLC. PATIENTS AND METHODS Patients with recurrent NSCLC were randomly assigned at a ratio of one to one to receive onartuzumab plus erlotinib or placebo plus erlotinib; crossover was allowed at progression. Tumor tissue was required to assess MET status by immunohistochemistry (IHC). Coprimary end points were progression-free survival (PFS) in the intent-to-treat (ITT) and MET-positive (MET IHC diagnostic positive) populations; additional end points included overall survival (OS), objective response rate, and safety. RESULTS There was no improvement in PFS or OS in the ITT population (n = 137; PFS hazard ratio [HR], 1.09; P = .69; OS HR, 0.80; P = .34). MET-positive patients (n = 66) treated with erlotinib plus onartuzumab showed improvement in both PFS (HR, .53; P = .04) and OS (HR, .37; P = .002). Conversely, clinical outcomes were worse in MET-negative patients treated with onartuzumab plus erlotinib (n = 62; PFS HR, 1.82; P = .05; OS HR, 1.78; P = .16). MET-positive control patients had worse outcomes versus MET-negative control patients (n = 62; PFS HR, 1.71; P = .06; OS HR, 2.61; P = .004). Incidence of peripheral edema was increased in onartuzumab-treated patients. CONCLUSION Onartuzumab plus erlotinib was associated with improved PFS and OS in the MET-positive population. These results combined with the worse outcomes observed in MET-negative patients treated with onartuzumab highlight the importance of diagnostic testing in drug development.
Collapse
Affiliation(s)
- David R Spigel
- David R. Spigel, Thomas J. Ervin, and Davey B. Daniel, Sarah Cannon Research Institute; David R. Spigel, Tennessee Oncology, Nashville; Davey B. Daniel, Chattanooga Oncology Hematology Associates, Chattanooga, TN; Thomas J. Ervin, Florida Cancer Specialists, Fort Myers; Michael S. Wertheim, Hematology/Oncology Associates, Port St Lucie, FL; Rodryg A. Ramlau, Poznan University of Medical Sciences, Poznan; Maciej J. Krzakowski, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Jerome H. Goldschmidt Jr, Blue Ridge Cancer Care, Christianburg, VA; George R. Blumenschein Jr, The University of Texas MD Anderson Cancer Center, Houston, TX; Gilles Robinet, University Hospital Morvan, Brest; Benoit Godbert, Centre Hospitalier Universitaire Nancy, Vandoeuvre-lès-Nancy; Fabrice Barlesi, Assistance Publique-Hôpitaux de Marseille, Aix Marseille University, Marseille, France; Ramaswamy Govindan, Washington University School of Medicine, St Louis, MO; Taral Patel, Mid Ohio Oncology/Hematology, Columbus, OH; Sergey V. Orlov, St Petersburg Pavlov State Medical University, St Petersburg, Russia; Wei Yu, Robert L. Yauch, Premal H. Patel, and See-Chun Phan, Genentech; Amy C. Peterson, Medivation, San Francisco, CA; and Jiping Zha, Crown Bioscience, Taicang City, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J Thorac Oncol 2013; 7:1872-1876. [PMID: 23154560 DOI: 10.1097/jto.0b013e3182721ed1] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rearranged during transfection (RET) fusions have been newly identified in approximately 1% of patients with primary lung tumors. However, patient-derived lung cancer cell lines harboring RET fusions have not yet been established or identified, and therefore, the effectiveness of an RET inhibitor on lung tumors with endogenous RET fusion has not yet been studied. In this study, we report identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line LC-2/ad. LC-2/ad showed distinctive sensitivity to the RET inhibitor, vandetanib, among 39 non-small lung cancer cell lines. The xenograft tumor of LC-2/ad showed cribriform acinar structures, a morphologic feature of primary RET fusion-positive lung adenocarcinomas. LC-2/ad cells could provide useful resources to analyze molecular functions of RET-fusion protein and its response to RET inhibitors.
Collapse
|
33
|
Pilotto S, Peretti U, Novello S, Rossi G, Milella M, Giaj Levra M, Ciuffreda L, Massari F, Brunelli M, Tortora G, Bria E. PROFILing non-small-cell lung cancer patients for treatment with crizotinib according to anaplastic lymphoma kinase abnormalities: translating science into medicine. Expert Opin Pharmacother 2013; 14:597-608. [PMID: 23472711 DOI: 10.1517/14656566.2013.778828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION In the recent years, the growing attention to the molecular background of non-small-cell lung cancer (NSCLC) led to the identification of different molecular subtypes according to genetic abnormalities driving the disease development and progression. Whereas the addicted pathways were successfully inhibited (such as the mutant epidermal growth factor receptor), clinicians have witnessed a dramatic survival improvement. In this regard, the molecular portrait of adenocarcinoma was recently enriched by the identification of a specific patients' subgroup characterized by abnormalities in the anaplastic lymphoma kinase (ALK), with unclear prognostic features but impressive response to specific inhibitors. AREAS COVERED In this article, updated data derived from the development and the use of crizotinib (the most advanced in development among tyrosine kinase ALK inhibitors) in comparison with standard second-line chemotherapy for patients affected by ALK-altered NSCLC are reviewed. EXPERT OPINION Taking into account the available data, pretreated NSCLC patients carrying the ALK-translocation require a selected targeted therapy which significantly improves activity, efficacy and symptoms control versus chemotherapy. In this context, the identification of this disease entity and the availability of such impressive therapeutic targeting represent a further step toward the understanding of the molecular complexity behind the adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Sara Pilotto
- University of Verona, Azienda Ospedaliera Universitaria Integrata, G.B. Rossi Academic Hospital, Medical Oncology, P.zza L.A. Scuro 10, 37124, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Horm TM, Schroeder JA. MUC1 and metastatic cancer: expression, function and therapeutic targeting. Cell Adh Migr 2013; 7:187-98. [PMID: 23303343 DOI: 10.4161/cam.23131] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MUC1 is a transmembrane mucin that is often overexpressed in metastatic cancers and often used as a diagnostic marker for metastatic progression. The extracellular domain of MUC1 can serve as a ligand for stromal and endothelial cell adhesion receptors, and the cytoplasmic domain engages in several interactions that can result in increased migration and invasion, as well as survival. In this review, we address the role of MUC1 in metastatic progression by assessing clinical studies reporting MUC1 levels at various disease stages, reviewing mouse models utilized to study the role of MUC1 in metastatic progression, discuss mechanisms of MUC1 upregulation, and detail MUC1 protein interactions and signaling events. We review interactions between MUC1 and the extracellular environment, with proteins colocalized in the plasma membrane and/or cytoplasmic proteins, and summarize the role of MUC1 in the nucleus as a transcriptional cofactor. Finally, we review recent publications describing current therapies targeting MUC1 in patients with advanced disease and the stage of these therapies in preclinical development or clinical trials.
Collapse
Affiliation(s)
- Teresa M Horm
- Department of Molecular and Cellular Biology, Arizona Cancer Center and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
35
|
Matsubara D, Kishaba Y, Ishikawa S, Sakatani T, Oguni S, Tamura T, Hoshino H, Sugiyama Y, Endo S, Murakami Y, Aburatani H, Fukayama M, Niki T. Lung cancer with loss of BRG1/BRM, shows epithelial mesenchymal transition phenotype and distinct histologic and genetic features. Cancer Sci 2013; 104:266-73. [PMID: 23163725 DOI: 10.1111/cas.12065] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 12/12/2022] Open
Abstract
BRG1 and BRM, two core catalytic subunits in SWI/SNF chromatin remodeling complexes, have been suggested as tumor suppressors, yet their roles in carcinogenesis are unclear. Here, we present evidence that loss of BRG1 and BRM is involved in the progression of lung adenocarcinomas. Analysis of 15 lung cancer cell lines indicated that BRG1 mutations correlated with loss of BRG1 expression and that loss of BRG1 and BRM expression was frequent in E-cadherin-low and vimentin-high cell lines. Immunohistochemical analysis of 93 primary lung adenocarcinomas showed loss of BRG1 and BRM in 11 (12%) and 16 (17%) cases, respectively. Loss of expression of BRG1 and BRM was frequent in solid predominant adenocarcinomas and tumors with low thyroid transcription factor-1 (TTF-1, master regulator of lung) and low cytokeratin7 and E-cadherin (two markers for bronchial epithelial differentiation). Loss of BRG1 was correlated with the absence of lepidic growth patterns and was mutually exclusive of epidermal growth factor receptor (EGFR) mutations. In contrast, loss of BRM was found concomitant with lepidic growth patterns and EGFR mutations. Finally, we analyzed the publicly available dataset of 442 cases and found that loss of BRG1 and BRM was frequent in E-cadherin-low, TTF-1-low, and vimentin-high cases and correlated with poor prognosis. We conclude that loss of either or both BRG1 and BRM is involved in the progression of lung adenocarcinoma into solid predominant tumors with features of epithelial mesenchymal transition and loss of the bronchial epithelial phenotype. BRG1 loss was specifically involved in the progression of EGFR wild-type, but not EGFR-mutant tumors.
Collapse
Affiliation(s)
- Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Horm TM, Bitler BG, Broka DM, Louderbough JM, Schroeder JA. MUC1 drives c-Met-dependent migration and scattering. Mol Cancer Res 2012. [PMID: 23193156 DOI: 10.1158/1541-7786.mcr-12-0296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The transmembrane mucin MUC1 is overexpressed in most ductal carcinomas, and its overexpression is frequently associated with metastatic progression. MUC1 can drive tumor initiation and progression via interactions with many oncogenic partners, including β-catenin, the EGF receptor (EGFR) and Src. The decoy peptide protein transduction domain MUC1 inhibitory peptide (PMIP) has been shown to inhibit the tumor promoting activities of MUC1 in breast and lung cancer, including cell growth and invasion, and its usage suppresses metastatic progression in mouse models of breast cancer. To further characterize the reduced metastasis observed upon PMIP treatment, we conducted motility assays and observed that PMIP inhibits cell motility of breast cancer cells. To determine the mechanism by which PMIP inhibits motility, we evaluated changes in global gene transcription upon PMIP treatment, and identified a number of genes with altered expression in response to PMIP. Among these genes is the metastatic mediator, c-Met, a transmembrane tyrosine kinase that can promote cell scattering, migration, and invasion. To further investigate the role of c-Met in MUC1-dependent metastatic events, we evaluated the effects of MUC1 expression and EGFR activation on breast cancer cell scattering, branching, and migration. We found that MUC1 strongly promoted all of these events and this effect was further amplified by EGF treatment. Importantly, the effect of MUC1 and EGF on these phenotypes was dependent upon c-Met activity. Overall, these results indicate that PMIP can block the expression of a key metastatic mediator, further advancing its potential use as a clinical therapeutic.
Collapse
Affiliation(s)
- Teresa M Horm
- Department of Molecular and Cellular Biology, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
37
|
Epidermal growth factor receptor mutation and chemosensitivity. J Thorac Oncol 2012; 7:771-2; author reply 772-773. [PMID: 22425932 DOI: 10.1097/jto.0b013e318245a058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Epidermal Growth Factor Receptor Mutation and Chemosensitivity: In Response. J Thorac Oncol 2012. [DOI: 10.1097/jto.0b013e31824c98a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
|
40
|
Ayoub NM, Bachawal SV, Sylvester PW. γ-Tocotrienol inhibits HGF-dependent mitogenesis and Met activation in highly malignant mammary tumour cells. Cell Prolif 2011; 44:516-26. [PMID: 21973114 DOI: 10.1111/j.1365-2184.2011.00785.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Aberrant Met signalling is associated with aggressive cancer cell phenotypes. γ-tocotrienol displays potent anti-cancer activity that is associated with suppression of HER/ErbB receptor signalling. Experiments were conducted to investigate the effects of γ-tocotrienol treatment on HGF-dependent +SA mammary tumour cell proliferation, upon Met activation. MATERIALS AND METHODS The +SA cells were maintained in serum-free defined media containing 10 ng/ml HGF as the mitogen. Cell viability was determined using the MTT assay, western blot analysis was used to measure protein expression, and Met expression and activation were determined using immunofluorescent staining. RESULTS AND CONCLUSIONS Treatment with γ-tocotrienol or Met inhibitor, SU11274, significantly inhibited HGF-dependent +SA cell replication in a dose-responsive manner. Treatment with 4 μmγ-tocotrienol reduced both total Met levels and HGF-induced Met autophosphorylation. In contrast, similar treatment with 5.5 μm SU11274 inhibited HGF-induced Met autophosphorylation, but had no effect on total Met levels. Combined treatment with subeffective doses of γ-tocotrienol (2 μm) and SU11274 (3 μm) resulted in significant inhibition of +SA cell expansion compared to treatment with individual agents alone. These findings show, for the first time, the inhibitory effects of γ-tocotrienol on Met expression and activation, and strongly suggest that γ-tocotrienol treatment may provide significant health benefits in prevention and/or treatment of breast cancer, in women with deregulated HGF/Met signalling.
Collapse
Affiliation(s)
- N M Ayoub
- College of Pharmacy, University of Louisiana at Monroe, USA
| | | | | |
Collapse
|
41
|
Gill RB, Day A, Barstow A, Liu H, Zaman G, Dhoot GK. Sulf2 gene is alternatively spliced in mammalian developing and tumour tissues with functional implications. Biochem Biophys Res Commun 2011; 414:468-73. [DOI: 10.1016/j.bbrc.2011.09.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/17/2011] [Indexed: 12/12/2022]
|