1
|
de Oliveira Gonçalves GB, de Almeida Belo V, Ceron CS. Gel Zymography for the Evaluation of Matrix Metalloproteinase-2 and -9 in Aorta and Kidney Tissues. Methods Mol Biol 2025; 2917:87-97. [PMID: 40347334 DOI: 10.1007/978-1-0716-4478-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases containing zinc that play a role in extracellular matrix remodeling processes in cardiovascular or kidney diseases. The levels and activity of MMP-2 and MMP-9 increase in experimental models of diabetic nephropathy, acute kidney injury (AKI), and renal tubular injury. MMP-2 is also induced in human renal transplants with delayed graft function (DGF) and is correlated with tubular damage in patients with tubular cell necrosis. Moreover, MMP-2 and -9 participate in the degradation of structural components of the extracellular matrix, mainly collagen and elastin, leading to destabilization and dilatation of the aorta in aneurysms. Zymography is a simple, sensitive, quantitative, and widely used approach to assessing both latent and active forms of MMPs in biological materials.
Collapse
Affiliation(s)
- Grazieli Beatriz de Oliveira Gonçalves
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Vanessa de Almeida Belo
- Department of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Cruz JDO, Silva AO, Ribeiro JM, Luizon MR, Ceron CS. Epigenetic Regulation of the N-Terminal Truncated Isoform of Matrix Metalloproteinase-2 (NTT-MMP-2) and Its Presence in Renal and Cardiac Diseases. Front Genet 2021; 12:637148. [PMID: 33732288 PMCID: PMC7959838 DOI: 10.3389/fgene.2021.637148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Several clinical and experimental studies have documented a compelling and critical role for the full-length matrix metalloproteinase-2 (FL-MMP-2) in ischemic renal injury, progressive renal fibrosis, and diabetic nephropathy. A novel N-terminal truncated isoform of MMP-2 (NTT-MMP-2) was recently discovered, which is induced by hypoxia and oxidative stress by the activation of a latent promoter located in the first intron of the MMP2 gene. This NTT-MMP-2 isoform is enzymatically active but remains intracellular in or near the mitochondria. In this perspective article, we first present the findings about the discovery of the NTT-MMP-2 isoform, and its functional and structural differences as compared with the FL-MMP-2 isoform. Based on publicly available epigenomics data from the Encyclopedia of DNA Elements (ENCODE) project, we provide insights into the epigenetic regulation of the latent promoter located in the first intron of the MMP2 gene, which support the activation of the NTT-MMP-2 isoform. We then focus on its functional assessment by covering the alterations found in the kidney of transgenic mice expressing the NTT-MMP-2 isoform. Next, we highlight recent findings regarding the presence of the NTT-MMP-2 isoform in renal dysfunction, in kidney and cardiac diseases, including damage observed in aging, acute ischemia-reperfusion injury (IRI), chronic kidney disease, diabetic nephropathy, and human renal transplants with delayed graft function. Finally, we briefly discuss how our insights may guide further experimental and clinical studies that are needed to elucidate the underlying mechanisms and the role of the NTT-MMP-2 isoform in renal dysfunction, which may help to establish it as a potential therapeutic target in kidney diseases.
Collapse
Affiliation(s)
- Juliana de Oliveira Cruz
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alessandra O Silva
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Jessyca M Ribeiro
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Marcelo R Luizon
- Graduate Program in Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carla S Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
3
|
Kim JE, Han D, Jeong JS, Moon JJ, Moon HK, Lee S, Kim YC, Yoo KD, Lee JW, Kim DK, Kwon YJ, Kim YS, Yang SH. Multisample Mass Spectrometry-Based Approach for Discovering Injury Markers in Chronic Kidney Disease. Mol Cell Proteomics 2021; 20:100037. [PMID: 33453410 PMCID: PMC7950200 DOI: 10.1074/mcp.ra120.002159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/15/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Urinary proteomics studies have primarily focused on identifying markers of chronic kidney disease (CKD) progression. Here, we aimed to determine urinary markers of CKD renal parenchymal injury through proteomics analysis in animal kidney tissues and cells and in the urine of patients with CKD. Label-free quantitative proteomics analysis based on liquid chromatography-tandem mass spectrometry was performed on urine samples obtained from 6 normal controls and 9, 11, and 10 patients with CKD stages 1, 3, and 5, respectively, and on kidney tissue samples from a rat CKD model by 5/6 nephrectomy. Tandem mass tag-based quantitative proteomics analysis was performed for glomerular endothelial cells (GECs) and proximal tubular epithelial cells (PTECs) before and after inducing 24-h hypoxia injury. Upon hierarchical clustering, out of 858 differentially expressed proteins (DEPs) in the urine of CKD patients, the levels of 416 decreased and 403 increased sequentially according to the disease stage, respectively. Among 2965 DEPs across 5/6 nephrectomized and sham-operated rat kidney tissues, 86 DEPs showed same expression patterns in the urine and kidney tissue. After cross-validation with two external animal proteome data sets, 38 DEPs were organized; only ten DEPs, including serotransferrin, gelsolin, poly ADP-ribose polymerase 1, neuroblast differentiation-associated protein AHNAK, microtubule-associated protein 4, galectin-1, protein S, thymosin beta-4, myristoylated alanine-rich C-kinase substrate, and vimentin, were finalized by screening human GECs and PTECs data. Among these ten potential candidates for universal CKD marker, validation analyses for protein S and galectin-1 were conducted. Galectin-1 was observed to have a significant inverse correlation with renal function as well as higher expression in glomerulus with chronic injury than protein S. This constitutes the first multisample proteomics study for identifying key renal-expressed proteins associated with CKD progression. The discovered proteins represent potential markers of chronic renal cell and tissue damage and candidate contributors to CKD pathophysiology.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Dohyun Han
- Proteomics Core Facility, Seoul National University Hospital, Seoul, Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Seon Jeong
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Jong Joo Moon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyun Kyung Moon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sunhwa Lee
- Department of Internal Medicine, Kangwon National University Hospital, Gangwon-Do, Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyung Don Yoo
- Department of Internal Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center, Goyang, Gyeonggi-do, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young Joo Kwon
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Hee Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Li Y, Cao Z, Li Q, Wang C, Zhou Z. Effects of Dendrobium Polysaccharides on the Functions of Human Skin Fibroblasts and Expression of Matrix Metalloproteinase-2 under High-Glucose Conditions. Int J Endocrinol 2021; 2021:1092975. [PMID: 33777140 PMCID: PMC7969111 DOI: 10.1155/2021/1092975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of Dendrobium polysaccharides (PDC) on the functions of human skin fibroblasts (HSFs) and expression of matrix metalloproteinase-2 under high-glucose conditions and exploration of the underlying mechanism remain unclear. We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis and flow cytometry to evaluate the cell viability and apoptosis. The collagen levels were determined by the Sircol™ Collagen Assay. Real-time quantitative polymerase chain reaction (RT-PCR) was used to detect the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase inhibitor (TIMP-2) mRNA. We found the following: (1) under the high-glucose condition, the HSF cell viability, the expression of TIMP-2 mRNA, and the collagen levels were reduced, while the apoptosis rate and the expression of MMP-2 mRNA increased (P < 0.05). (2) In the high-glucose + PDC group, the PDC reversed the changes in the collagen level, viability, and apoptosis rate of the HSF cells caused by high glucose, with the expression of protein and TIMP-2 mRNA increased and the level of MMP-2 mRNA decreased (P < 0.05). This is the first time attempting to reveal that PDC can exhibit protective effects on HSF under high-glucose conditions, which may be related to the upregulation of the TIMP-2 expression and inhibition of the MMP-2 expression.
Collapse
Affiliation(s)
- Yajia Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqin Cao
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiangxiang Li
- National Clinical Research Center for Geriatric Disorders of Xiangya Hospital, Central South University (Sub-Center of Ningxia), Yinchuan, Ningxia Hui Autonomous Region 750001, China
- Ningxia Geriatric Disease Clinical Research Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750001, China
- Hunan People's Hospital, Department of Hunan Institute of Geriatrics, Changsha 410002, China
| | - Chenxu Wang
- Hunan People's Hospital, Department of Hunan Institute of Geriatrics, Changsha 410002, China
| | - Zhuo Zhou
- Hunan People's Hospital, Department of Hunan Institute of Geriatrics, Changsha 410002, China
| |
Collapse
|
5
|
Pereira BP, do Valle GT, Salles BCC, Costa KCM, Ângelo ML, Torres LHL, Novaes RD, Ruginsk SG, Tirapelli CR, de Araújo Paula FB, Ceron CS. Pyrrolidine dithiocarbamate reduces alloxan-induced kidney damage by decreasing nox4, inducible nitric oxide synthase, and metalloproteinase-2. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1899-1910. [PMID: 32440769 DOI: 10.1007/s00210-020-01906-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
Abstract
We examined the effect of the NFκB inhibitor pyrrolidine-1-carbodithioic acid (PDTC) on inducible nitric oxide synthase (iNOS), matrix metalloproteinase-2 (MMP-2) activity, and oxidative and inflammatory kidney damage in alloxan-induced diabetes. Two weeks after diabetes induction (alloxan-130 mg/kg), control and diabetic rats received PDTC (100 mg/kg) or vehicle for 8 weeks. Body weight, glycemia, urea, and creatinine were measured. Kidney changes were measured in hematoxylin/eosin sections and ED1 by immunohistochemistry. Kidney thiobarbituric acid reactive substances (TBARS), superoxide anion (O2-), and nitrate/nitrite (NOx) levels, and catalase and superoxide dismutase (SOD) activities were analyzed. Also, kidney nox4 and iNOS expression, and NFkB nuclear translocation were measured by western blot, and MMP-2 by zymography. Glycemia and urea increased in alloxan rats, which were not modified by PDTC treatment. However, PDTC attenuated kidney structural alterations and macrophage infiltration in diabetic rats. While diabetes increased both TBARS and O2- levels, PDTC treatment reduced TBARS in diabetic and O2- in control kidneys. A decrease in NOx levels was found in diabetic kidneys, which was prevented by PDTC. Diabetes reduced catalase activity, and PDTC increased catalase and SOD activities in both control and diabetic kidneys. PDTC treatment reduced MMP-2 activity and iNOS and p65 NFκB nuclear expression found increased in diabetic kidneys. Our results show that the NFκB inhibitor PDTC reduces renal damage through reduction of Nox4, iNOS, macrophages, and MMP-2 in the alloxan-induced diabetic model. These findings suggest that PDTC inhibits alloxan kidney damage via antioxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Gabriel Tavares do Valle
- Escola de Enfermagem de Ribeirão Preto (EERP), Universidade de São Paulo - USP, Sao Paulo, Brazil
| | - Bruno César Côrrea Salles
- Departamento de Análises Clínicas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Karla Cristinne Mancini Costa
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Marilene Lopes Ângelo
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Larissa Helena Lobo Torres
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil
| | - Rômulo Dias Novaes
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Sílvia Graciela Ruginsk
- Departamento de Ciências Fisiológicas, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Carlos Renato Tirapelli
- Escola de Enfermagem de Ribeirão Preto (EERP), Universidade de São Paulo - USP, Sao Paulo, Brazil
| | | | - Carla Speroni Ceron
- Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais,, Brazil.
| |
Collapse
|
6
|
Chung S, Kim S, Son M, Kim M, Koh ES, Shin SJ, Park CW, Kim HS. Inhibition of p300/CBP-Associated Factor Attenuates Renal Tubulointerstitial Fibrosis through Modulation of NF-kB and Nrf2. Int J Mol Sci 2019; 20:ijms20071554. [PMID: 30925687 PMCID: PMC6479343 DOI: 10.3390/ijms20071554] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/24/2019] [Indexed: 12/17/2022] Open
Abstract
p300/CBP-associated factor (PCAF), a histone acetyltransferase, is involved in many cellular processes such as differentiation, proliferation, apoptosis, and reaction to cell damage by modulating the activities of several genes and proteins through the acetylation of either the histones or transcription factors. Here, we examined a pathogenic role of PCAF and its potential as a novel therapeutic target in the progression of renal tubulointerstitial fibrosis induced by non-diabetic unilateral ureteral obstruction (UUO) in male C57BL/6 mice. Administration of garcinol, a PCAF inhibitor, reversed a UUO-induced increase in the renal expression of total PCAF and histone 3 lysine 9 acetylation and reduced positive areas of trichrome and α-smooth muscle actin and collagen content. Treatment with garcinol also decreased mRNA levels of transforming growth factor-β, matrix metalloproteinase (MMP)-2, MMP-9, and fibronectin. Furthermore, garcinol suppressed nuclear factor-κB (NF-κB) and pro-inflammatory cytokines such as tumor necrosis factor-α and IL-6, whereas it preserved the nuclear expression of nuclear factor erythroid-derived 2-like factor 2 (Nrf2) and levels of Nrf2-dependent antioxidants including heme oxygense-1, catalase, superoxide dismutase 1, and NAD(P)H:quinone oxidoreductase 1. These results suggest that the inhibition of inordinately enhanced PCAF could mitigate renal fibrosis by redressing aberrant balance between inflammatory signaling and antioxidant response through the modulation of NF-κB and Nrf2.
Collapse
Affiliation(s)
- Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Mina Son
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Minyoung Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Eun Sil Koh
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seok Joon Shin
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| |
Collapse
|
7
|
Jang IA, Kim EN, Lim JH, Kim MY, Ban TH, Yoon HE, Park CW, Chang YS, Choi BS. Effects of Resveratrol on the Renin-Angiotensin System in the Aging Kidney. Nutrients 2018; 10:E1741. [PMID: 30424556 PMCID: PMC6267480 DOI: 10.3390/nu10111741] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS), especially the angiotensin II (Ang II)/angiotensin II type 1 receptor (AT1R) axis, plays an important role in the aging process of the kidney, through increased tissue reactive oxygen species production and progressively increased oxidative stress. In contrast, the angiotensin 1-7 (Ang 1-7)/Mas receptor (MasR) axis, which counteracts the effects of Ang II, is protective for end-organ damage. To evaluate the ability of resveratrol (RSV) to modulate the RAS in aging kidneys, eighteen-month-old male C57BL/6 mice were divided into two groups that received either normal mouse chow or chow containing resveratrol, for six months. Renal expressions of RAS components, as well as pro- and antioxidant enzymes, were measured and mouse kidneys were isolated for histopathology. Resveratrol-treated mice demonstrated better renal function and reduced albuminuria, with improved renal histologic findings. Resveratrol suppressed the Ang II/AT1R axis and enhanced the AT2R/Ang 1-7/MasR axis. Additionally, the expression of nicotinamide adenine dinucleotide phosphate oxidase 4, 8-hydroxy-2'-deoxyguanosine, 3-nitrotyrosine, collagen IV, and fibronectin was decreased, while the expression of endothelial nitric oxide synthase and superoxide dismutase 2 was increased by resveratrol treatment. These findings demonstrate that resveratrol exerts protective effects on aging kidneys by reducing oxidative stress, inflammation, and fibrosis, through Ang II suppression and MasR activation.
Collapse
Affiliation(s)
- In-Ae Jang
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Eun Nim Kim
- Division of Medical Cell Biology, Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Ji Hee Lim
- Division of Medical Cell Biology, Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Min Young Kim
- Division of Medical Cell Biology, Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Tae Hyun Ban
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul 06591, Korea.
| | - Hye Eun Yoon
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, Incheon 21431, Korea.
| | - Cheol Whee Park
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul 06591, Korea.
| | - Yoon Sik Chang
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary's Hospital, Seoul 07345, Korea.
| | - Bum Soon Choi
- Department of Internal medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Division of Nephrology, Department of Internal Medicine, St. Paul's Hospital, Seoul 02559, Korea.
| |
Collapse
|