1
|
Hu Y, Wang H, Wang Z, Zhang X, Liu L, Chen J. Antiviral potential of the arctigenin derivative COA in reducing viral adhesion to the epithelial cell surface against IHNV infection. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110278. [PMID: 40089086 DOI: 10.1016/j.fsi.2025.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/02/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a major aquaculture threat, highlighting the need for effective antiviral agents. This study evaluates the arctigenin derivative COA for its antiviral potential against IHNV. COA demonstrated no cytotoxicity to EPC cells at concentrations up to 10 μM and inhibited over 90 % of IHNV gene expression in vitro. It preserved normal nuclear morphology in infected cells, reduced viral titers, and completely blocked IHNV infection at 10 μM. Time-gradient assays identified COA's antiviral action during early infection, specifically inhibiting viral adsorption (82 %) and internalization (92 %). Using DiO-labeled IHNV particles, we visualized COA preventing viral entry into EPC cells, marking a novel finding for arctigenin derivatives. COA remained stable in water for over four days, enhancing its suitability for aquaculture applications. In vivo, COA improved survival rates of IHNV-infected rainbow trout by 46 % (injection) and 22 % (immersion) while significantly reducing IHNV gene expression and viral titers in spleen and kidney. It also upregulated interferon genes, activating antiviral responses and effectively reducing horizontal transmission of IHNV. These results highlight COA's potential as an antiviral agent, providing insights for developing targeted therapies against rhabdoviruses in aquaculture.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Huan Wang
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Zixuan Wang
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Xu Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Lei Liu
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
2
|
Huang L, Kuang J, Yu J, Yu Q, Xu W, Liu M, Wei Y, Han S, Huang Y, Li P. Antiviral activity of epicatechin against Singapore grouper iridovirus in vitro and in vivo. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110331. [PMID: 40222693 DOI: 10.1016/j.fsi.2025.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
As the main highly pathogenic pathogen of grouper, Singapore grouper iridovirus (SGIV) can give rise to significant economic losses in grouper aquaculture. Epicatechin (EC) belongs to flavonoids, which primarily derived from the traditional Chinese medicinal plants, green tea. In this study, the role of EC in SGIV infection was evaluated in vitro and in vivo. In the meantime, the mechanism of EC worked on SGIV was also explored, including the impact of EC on SGIV virus particles, the effects of EC on SGIV infection process, and the influence of EC on host immune response. The results showed that EC had concentration dependent antiviral effects against SGIV both in vitro and in vivo. EC could limit SGIV infection by interacting with SGIV virus particles, interfering with the invasion and replication process of SGIV infection. Moreover, EC was able to upregulate the expression of genes involved in interferon system (IFN, TRAF6, ISG15, IRF3, IRF7, TLR9, and myd88), downregulate the expression of TNF-α and IL1-β related to inflammation, and inhibit the cell apoptosis induced by SGIV to exert antiviral effects. Our finding revealed that EC probably is a potential excellent anti-SGIV drug with a clear antiviral mechanism, which provides a theoretical basis for the development of environmentally friendly fishing drugs for the prevention and control of SGIV.
Collapse
Affiliation(s)
- Lin Huang
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Jihui Kuang
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Jieying Yu
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Qing Yu
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Weiqiang Xu
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China
| | - Mingzhu Liu
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China
| | - Yunyi Wei
- College of Food Science and Quality Engineering, Nanning University, Nanning, PR China
| | - Shuyu Han
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China; Guangxi Fisheries Technology Extension Station, Nanning, PR China
| | - Yanhua Huang
- Qinzhou Fisheries Technology Extension Station, Nanning, PR China.
| | - Pengfei Li
- Guangxi Academy of Marine Sciences, Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efffcient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Sciences, Nanning, PR China; College of Food Science and Quality Engineering, Nanning University, Nanning, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning, PR China.
| |
Collapse
|
3
|
Romero A, Figueras A, Novoa B. Spring viraemia of carp virus modulates the time-dependent unfolded protein response to facilitate viral replication. Front Immunol 2025; 16:1576758. [PMID: 40248709 PMCID: PMC12003378 DOI: 10.3389/fimmu.2025.1576758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction The spring viraemia of carp virus (SVCV) poses a significant threat to global aquaculture, yet effective antiviral drugs and vaccines remain unavailable. Understanding the interplay between host-pathogen interactions and SVCV replication is crucial for devising preventive strategies. Methods ZF4 cells were exposed to UV-inactivated SVCV or live SVCV at different multiplicities of infection, and the modulation of the unfolded protein response (UPR) was assayed by qPCR at different times. Moreover, ZF4 cells were treated with several UPR modulators to investigate their effect on viral replication. The UPR was also modulated in vivo in zebrafish larvae, and its impact on the survival against SVCV infection was evaluated. Results and conclusions This study reveals how SVCV exploits the host's UPR to facilitate its replication. SVCV targets the immunoglobulin heavy chain-binding protein (BiP) and the activating transcription factor 4 (ATF4) during early infection to enhance viral RNA synthesis and translation. At later stages, activation of the BiP, the PKR-like ER kinase (PERK), and the inositol-requiring enzyme 1 alpha (IRE1α) pathways supports the release of viral progeny and induces cellular processes, including immune responses and apoptotic cell death. Furthermore, the data demonstrate that modulating UPR pathways, particularly ATF6 and PERK, significantly affect viral replication, providing a novel avenue for antiviral drug development. Preliminary in vivo studies suggest the feasibility of chemically modulating the UPR to combat SVCV, though optimizing administration conditions to maximize efficacy while minimizing side effects warrants further investigation. These findings offer critical insights into the molecular mechanisms underlying SVCV pathogenesis and highlight promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Alejandro Romero
- Instituto de Investigaciones Marinas Spanish National Research Council
(CSIC), Vigo, Spain
| | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas Spanish National Research Council
(CSIC), Vigo, Spain
| |
Collapse
|
4
|
Lachowicz-Radulska J, Widelski J, Nowaczyński F, Serefko A, Sobczyński J, Ludwiczuk A, Kasica N, Szopa A. Zebrafish as a Suitable Model for Utilizing the Bioactivity of Coumarins and Coumarin-Based Compounds. Int J Mol Sci 2025; 26:1444. [PMID: 40003910 PMCID: PMC11855297 DOI: 10.3390/ijms26041444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to summarize the current knowledge on the use of coumarin-derived compounds in the zebrafish (Danio rerio) model. Coumarins, a class of naturally occurring compounds with diverse biological activities, including compounds such as coumarin, angelicin, and warfarin, have attracted considerable attention in the study of potential therapeutic agents for cancer, central nervous system disorders, and infectious diseases. The capabilities of coumarins as active compounds have led to synthesizing various derivatives with their own properties. While such variety is certainly promising, it is also cumbersome due to the large amount of research needed to find the most optimal compounds. The zebrafish model offers unique advantages for such studies, including high genetic and physiological homology to mammals, optical transparency of the embryos, and rapid developmental processes, facilitating the assessment of compound toxicity and underlying mechanisms of action. This review provides an in-depth analysis of the chemical properties of coumarins, their mechanisms of biological activity, and the results of previous studies evaluating the toxicity and efficacy of these compounds in zebrafish assays. The zebrafish model allows for a holistic assessment of the therapeutic potential of coumarin derivatives, offering valuable insights for advancing drug discovery and development.
Collapse
Affiliation(s)
- Joanna Lachowicz-Radulska
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Filip Nowaczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| |
Collapse
|
5
|
Aarattuthodi S, Bosworth B, Kumar G, Nalamalapu A. Efficacy determination of a disinfectant against channel catfish virus by in vitro and in vivo methods. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-01003-0. [PMID: 39738918 DOI: 10.1007/s11626-024-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025]
Abstract
Channel catfish virus (CCV) poses a significant threat to catfish culture. Lack of effective vaccines and antiviral treatments necessitates effective disinfection strategies to mitigate its spread. In vitro trials indicated the virus to be inactivated at high temperatures, but was infectious at 40°C. This study evaluated the efficacy of a commercial disinfectant against CCV using both in vitro and in vivo approaches. In vitro experiments assessed the virucidal activity of the disinfectant against CCV in channel catfish ovary (CCO) cells, while in vivo trials evaluated its effectiveness in reducing viral transmission and mortality among channel and hybrid catfish fingerlings. Results indicated that the disinfectant was effective in inactivating the virus at the tested concentrations and improved the survival of fish exposed to the virus. This study provides critical insights into selecting appropriate disinfection protocols to enhance biosecurity in catfish hatchery settings and to mitigate CCV transmission.
Collapse
Affiliation(s)
- Suja Aarattuthodi
- United States Department of Agriculture - Agricultural Research Service, Plant Genetics Research Unit, Columbia, MO-65211, USA.
| | - Brian Bosworth
- United States Department of Agriculture - Agricultural Research Service, Warmwater Aquaculture Research Unit, Stoneville, MS-38776, USA
| | - Ganesh Kumar
- Delta Research and Extension Center, Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS-38776, USA
| | - Anita Nalamalapu
- Delta Research and Extension Center, Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS-38776, USA
| |
Collapse
|
6
|
Chen M, Xue M, Zhou Y, Xu C, Jiang N, Fan Y, Meng Y. Antiviral effects of rhein on largemouth bass ranavirus (LMBRaV). FISH & SHELLFISH IMMUNOLOGY 2024; 155:110019. [PMID: 39521355 DOI: 10.1016/j.fsi.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Largemouth bass ranavirus (LMBRaV), also known as largemouth bass virus (LMBV), is a highly damaging viral pathogen that causes widespread mortality in cultured largemouth bass and poses a significant threat to the farming industry in China. However, there is a paucity of effective preventive methods for this disease by LMBRaV. Research has established that herbal extracts possess antiviral activity, potentially exerting a controlling effect on viruses in aquaculture. Therefore, the identification of simple and structurally safe herbal extract immunomodulators is critical for largemouth bass health and development. Rhein, an herbal compound, exhibits a broad spectrum of pharmacological effects in herbal medicine. This study aimed to evaluate the properties and effects of rhein against LMBRaV in epithelioma papilloma cyprinid (EPC) and largemouth bass. In vitro CCK-8 assays were performed to determine the highest safe concentrations. Significantly, 50 mg/L rhein effectively inhibited cytopathic effects (CPE) in EPC induced by LMBRaV, resulting in a 97 % reduction in viral replication rates. Furthermore, a six-point dose-response experiment revealed that rhein doses as low as 6.4 mg/L inhibited LMBRaV and suppressed LMBRaV infection with a dose-dependent manner. Subsequent experiments demonstrated that sustained rhein activity effectively alleviated CPE and nuclear damage caused by LMBRaV infection. Additionally, rhein exerted protective effects against declines in LMBRaV-induced mitochondrial membrane potential. In vivo experiments validated that largemouth bass diets supplemented with 0.075 % rhein exerted a protective effect against LMBRaV infection. Moreover, LMBRaV MCP gene expression levels were lower in several organs of fish in the rhein supplementation group. Immunogene analysis determined that rhein upregulated relevant gene expression levels in multiple organs of largemouth bass, with higher activities observed for the Mx, INF-γ, and IRF3 genes. Histopathological results displayed that a supplemental dosage of 0.075 % rhein significantly mitigated LMBRaV infection-induced pathological damage in the liver, spleen, and kidney. Taken together, these in vivo and in vitro results support the effective use of rhein as a promising candidate for the development of antiviral treatment against LMBRaV infection, highlighting its role in aquatic animal husbandry as a wide-spectrum antiviral and immune response booster.
Collapse
Affiliation(s)
- Mengmeng Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China.
| |
Collapse
|
7
|
Zhao Z, Meng Q, Sun TZ, Zhu B. Mannose modified targeted immersion vaccine delivery system improves protective immunity against Infectious spleen and kidney necrosis virus in mandarin fish (Siniperca chuatsi). Vaccine 2024; 42:2886-2894. [PMID: 38519342 DOI: 10.1016/j.vaccine.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Vaccination is an effective method to prevent viral diseases. However, the biological barrier prevents the immersion vaccine from achieving the best effect without adding adjuvants and carriers. Researches on the targeted presentation technology of vaccines with nanocarriers are helpful to develop immersion vaccines for fish that can break through biological barriers and play an effective role in fish defense. In our study, functionally modified single-walled carbon nanotubes (SWCNTs) were used as carriers to construct a targeted immersion vaccine (SWCNTs-M-MCP) with mannose modified major capsid protein (MCP) to target antigen-presenting cells (APCs), against iridovirus diseases. After bath immunization, our results showed that SWCNTs-M-MCP induced the presentation process and uptake of APCs, triggering a powerful immune response. Moreover, the highest relative percent survival (RPS) was 81.3% in SWCNTs-M-MCP group, which was only 41.5% in SWCNTs-MCP group. Altogether, this study indicates that the SWCNTs-based targeted immersion vaccine induces strong immune response and provided an effective protection against iridovirus diseases.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, PR China
| | - Qiang Meng
- Shenzhen Vaccine Biotechnology Co., Ltd, B618, Virtual University Experimental Platform Building, Nanshan District, Shenzhen 518000, PR China
| | - Tian-Zi Sun
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, PR China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
8
|
Zhang X, Xue M, Liu L, Wang H, Qiu T, Zhou Y, Shan L, Wang Z, Liu G, Hu Y, Chen J. Rhein: A potent immunomodulator empowering largemouth bass against MSRV infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109284. [PMID: 38092092 DOI: 10.1016/j.fsi.2023.109284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Micropterus salmoides rhabdovirus (MSRV) is a significant viral pathogen in largemouth bass aquaculture, causing substantial annual economic losses. However, effective prevention methods remain elusive for various reasons. Medicinal plant extracts have emerged as valuable tools in preventing and managing aquatic animal diseases. Thus, the search for immunomodulators with straightforward, safe structures in plant extracts is imperative to ensure the continued health and growth of the largemouth bass industry. In our research, we employed epithelioma papulosum cyprinid (EPC) cells and largemouth bass as models to assess the anti-MSRV properties and immunomodulatory effects of ten plant-derived bioactive compounds. Among them, rhein demonstrated noteworthy potential, exhibiting a 75 % reduction in viral replication in vitro at a concentration of 50 mg/L. Furthermore, rhein pre-treatment significantly inhibited MSRV genome replication in EPC cells, with the highest inhibition rate reaching 64.8 % after 24 h, underscoring rhein's preventive impact against MSRV. Likewise, rhein displayed remarkable therapeutic effects on EPC cells during the early stages of MSRV infection, achieving a maximum inhibition rate of 85.6 % in viral replication. Subsequent investigations unveiled that rhein, with its consistent activity, effectively mitigated cytopathic effects (CPE) and nuclear damage induced by MSRV infection. Moreover, it restrained mitochondrial membrane depolarization and reduced the apoptosis rate by 38.8 %. In vivo experiments reinforced these findings, demonstrating that intraperitoneal injection of rhein enhanced the expression levels of immune related genes in multiple organs, hindered virus replication, and curtailed the mortality rate of MSRV-infected largemouth bass by 29 %. Collectively, our study endorses the utility of rhein as an immunomodulator to combat MSRV infections in largemouth bass. This not only underscores the potential of rhein as a broad-spectrum antiviral and means to bolster the immune response but also highlights the role of apoptosis as an immunological marker, making it an invaluable addition to the armamentarium against aquatic viral pathogens.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Tianxiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Lipeng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Zixuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Guanglu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
9
|
Ouyang P, Tao Y, Wei W, Li Q, Liu S, Ren Y, Huang X, Chen D, Geng Y. Spring Viremia of Carp Virus Infection Induces Carp IL-10 Expression, Both In Vitro and In Vivo. Microorganisms 2023; 11:2812. [PMID: 38004823 PMCID: PMC10673272 DOI: 10.3390/microorganisms11112812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine with both immune enhancement and immunosuppression activities, but the main role is immunosuppression and anti-inflammatory ability. In order to use the immunosuppressive function of IL-10, many viruses, such as SARS-CoV-2, hepatitis B virus and EB virus, can evade the host's immune surveillance and clearance by increasing the expression of host IL-10. However, it has not been reported whether the aquatic animal infection virus can upregulate the expression of host IL-10 and the mechanisms are still unknown. Spring viremia of carp (SVC) is a fatal viral disease for many fish species and is caused by spring viremia of carp virus (SVCV). This disease has caused significant economic losses in the aquaculture industry worldwide. In this study, the expression of carp IL-10 with or without infection of SVCV in epithelioma papulosum cyprinid (EPC) cells, carp head kidney (cHK) primary cells and common carp tissues were analyzed using RT-PCR and ELISA. The results show that SVCV infection induced carp IL-10 mRNA and protein expression, both in vitro and in vivo. However, the upregulation of carp IL-10 by SVCV was hindered by specific inhibitors of the JAK inhibitor (CP-690550), STAT3 inhibitor (STA-21), NF-κB inhibitor (BAY11-7082) and p38 MAPK (mitogen-activated protein kinase) inhibitor (SB202190), but not JNK inhibitor (SP600125). Furthermore, the results demonstrated that JAK1, JAK2, JAK3, TYK2 and STAT5 played important roles in carp IL-10 production induced by SVCV infection. Taken together, SVCV infection significantly induced carp IL-10 expression and the upregulation trigged in JAK-STAT, NF-κB and p38MAPK pathways. To our knowledge, this is the first time that a fish infection virus upregulated the host IL-10 expression through the JAK-STAT, NF-κB and p38MAPK pathways. Altogether, fish viruses may have a similar mechanism as human or other mammalian viruses to escape host immune surveillance and clearance.
Collapse
Affiliation(s)
- Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Yu Tao
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Wenyan Wei
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China;
| | - Qiunan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Shuya Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Yongqiang Ren
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| |
Collapse
|
10
|
Chen WC, Luo F, Wang T, Wang GX. 4'-(8-(4-Methylimidazole)-octyloxy)-arctigenin: The first inhibitor of fish rhabdovirus glycoprotein. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108920. [PMID: 37385462 DOI: 10.1016/j.fsi.2023.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Spring viraemia of carp virus (SVCV), a highly pathogenic rhabdovirus, could cause spring viraemia of carp (SVC) with up to 90% lethality. Like other rhabdoviruses, the entry of SVCV into susceptible cells was mediated by a single envelope glycoprotein G. Specific inhibitors targeting the glycoprotein were the most effective means to alleviate the epidemic. The programs including SWISS-MODEL, I-TASSER, Phyre2 and AlphaFold2 were used to build a three-dimensional structural model of glycoprotein. The structural comparison between SVCV-G and homology protein VSV-G revealed that the SVCV glycoprotein ectodomain (residues 19 to 466) folded into four distinct domains. Based on the potential small molecule binding sites on glycoprotein surfaces, virtual screening of the anti-SVCV drug libraries was performed using Autodock software and 4'-(8-(4-Methylimidazole)-octyloxy)-arctigenin (MOA) with a high binding affinity was identified. The solubility enhancer tags including trigger factor and maltose binding protein were fused with the ectodomain of glycoprotein, and the target protein with a purity of about 90% was successfully obtained. The interaction confirmation tests revealed that the fluorescence intensity of a characteristic peak induced by the endogenous chromophores in glycoprotein was decreased with the addition of MOA, indicating changes in the microenvironment of glycoprotein. Moreover, the interaction could cause a slight conformational change in glycoprotein, as shown by the content of β-turn, β-folding, and random coil of protein all increased with the decrease of α-helix content after the addition of MOA compound. These results demonstrated that MOA could act as a novel drug against fish rhabdovirus via direct targeting of glycoprotein.
Collapse
Affiliation(s)
- Wei-Chao Chen
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Fei Luo
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China
| | - Tao Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
11
|
Liu G, Zhu L, Wu Y, Wang C, Wang Y, Zheng Q, Tian M, Wang H, Chen YH. Herbal active small molecule as an immunomodulator for potential application on resistance of common carp against SVCV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108782. [PMID: 37141957 DOI: 10.1016/j.fsi.2023.108782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Herbal immunomodulators are an important part of prevention and control on viral diseases in aquaculture because of their propensity to improve immunity in fish. The present study was conducted to evaluate the immunomodulatory effect and antiviral activity of a synthesized derivative (serial number: LML1022) against spring viremia of carp virus (SVCV) infection in vitro and in vivo. The antiviral data suggested that LML1022 at 100 μM significantly inhibited the virus replication in epithelioma papulosum cyprini (EPC) cells, and may completely inhibit the infectivity of SVCV virion particles to fish cells by affecting the viral internalization. The results in the related stability of water environments also demonstrated that LML1022 had an inhibitory half-life of 2.3 d at 15 °C, which would facilitate rapid degradation of LML1022 in aquaculture application. For in vivo study, the survival rate of SVCV-infected common carp was increased 30% at least under continuous oral injection of LML1022 at 2.0 mg/kg for 7 d treatment. Additionally, pretreatment of LML1022 on fish prior to SVCV infection also obviously reduced the viral loads in vivo as well as an improved survival rate, showing that LML1022 was potential as an immunomodulator. As an immune response, LML1022 significantly upregulated the immune-related gene expression including IFN-γ2b, IFN-I, ISG15 and Mx1, indicating that its dietary administration may improve the resistance of common carp against SVCV infection.
Collapse
Affiliation(s)
- Guanglu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China; Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Normal University, Zhoukou, 466001, China; Zhoukou Key Laboratory of Small Molecule Drug Development and Application, Zhoukou, 466001, China.
| | - Lili Zhu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yi Wu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Chunjie Wang
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yunsheng Wang
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Qiushuo Zheng
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Mengyao Tian
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Haitong Wang
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Ya-Hong Chen
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China; Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Normal University, Zhoukou, 466001, China; Zhoukou Key Laboratory of Small Molecule Drug Development and Application, Zhoukou, 466001, China.
| |
Collapse
|
12
|
Zhou ZY, Bai SJ, Lu CW, Yang B, Wang J, Lian S, Jian ZR, Wang EL, Wang GX, Liu T. Nocardia seriolae mediates liver granulomatous chronic inflammation in Micropterus salmoides through pyroptosis. JOURNAL OF FISH DISEASES 2023; 46:321-332. [PMID: 36644875 DOI: 10.1111/jfd.13746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Granulomatous diseases caused by Nocardia seriously endanger the health of cultured fish. These bacteria are widely distributed, but prevention and treatment methods are very limited. Chronic granulomatous inflammation is an important pathological feature of Nocardia infection. However, the molecular mechanisms of granuloma formation and chronic inflammation are still unclear. Constructing a granuloma infection model of Nocardia is the key to exploring the pathogenesis of the disease. In this study, we established a granuloma model in the liver of largemouth bass (Micropterus salmoides) and assessed the infection process of Nocardia seriolae at different concentrations by analysing relevant pathological features. By measuring the expression of pro-inflammatory cytokines, transcription factors and a pyroptosis-related protein, we revealed the close relationship between pyroptosis and chronic inflammation of granulomas. We further analysed the immunofluorescence results and the expression of pyroptosis-related protein of macrophage infected by N. seriolae and found that N. seriolae infection induced macrophage pyroptosis in vitro. These results were proved by flow cytometry analysis of infection experiment in vivo. Our results indicated that the pyroptosis effect may be the key to inducing chronic inflammation in the fish liver and further mediating granuloma formation. In this study, we explored the molecular mechanism underlying chronic inflammation of granulomas and developed research ideas for understanding the occurrence and development of granulomatous diseases in fish.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shang-Jie Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen-Wang Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, Sichuan, China
| | - Sheng Lian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zheng-Ran Jian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Er-Long Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Qiu T, Wang H, Liu L, Chen J. Long-term exposure to azoxystrobin induces immunodeficiency in fish that are vulnerable to subsequent rhabdovirus infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114331. [PMID: 36435002 DOI: 10.1016/j.ecoenv.2022.114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Azoxystrobin (AZ) is one of the most widely used strobilurin fungicides in the world, and its residue has seriously endangered aquatic ecological security. Our previous data showed that AZ exposure may reduce the resistance of fish to rhabdovirus infection in aquatic environment. Here, we further reported a potential long-term adverse effect of AZ exposure on the antiviral and immunosuppressive recovery in fish, and observed that mitochondrial dynamic balance was disturbed by AZ in which excessive mitochondrial fission occurred in response to decreased ATP levels. When a recovery operation was performed in AZ-exposed cells and fish, infectivity of our model virus, spring viraemia of carp virus (SVCV), was significantly decreased in vitro (using the epithelioma papulosum cyprini [EPC] fish cell line) and in vivo (using zebrafish) in a time-dependent manner. Also, the expression of eight innate antiviral immune genes (IFNs, ISG15, MX1, RIG-I, IRF3, Nrf2 and HO-1) showed a similar change to SVCV replication between the longer exposure period and the expression recovery. Additionally, AZ facilitated horizontal transmission of SVCV in a static cohabitation challenge model, predicting the increase of the potential for the viral outbreak. Therefore, our data suggest that long-term effect of AZ on irreparable impairment in fish made AZ residue potentially greater for ecological risks.
Collapse
Affiliation(s)
- Tianxiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
14
|
Taxifolin Inhibits WSSV Infection and Transmission by Increasing the Innate Immune Response in Litopenaeus vannamei. Viruses 2022; 14:v14122731. [PMID: 36560735 PMCID: PMC9787842 DOI: 10.3390/v14122731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
An outbreak of white spot syndrome virus (WSSV) can hit shrimp culture with a devastating blow, and there are no suitable measures to prevent infection with the virus. In this study, the activity of active molecules from Chinese herbs against WSSV was evaluated and screened. Taxifolin had the highest rate (84%) of inhibition of the WSSV infection. The viral infectivity and genome copy number were reduced by 41% when WSSV virion was pretreated with taxifolin prior to shrimp infection. A continuous exchange of taxifolin significantly reduced the mortality of shrimp infected with WSSV. Due to the WSSV virion infectivity being affected by taxifolin, the horizontal transmission of the virus was blocked with an inhibition rate of up to 30%, which would further reduce the cost of a viral outbreak. Additionally, the viral genome copy number was also reduced by up to 63% in shrimp preincubated in taxifolin for 8 h. There may be a connection to the enhancement of innate immunity in shrimp that resulted in a 15% reduction in mortality for taxifolin-fed shrimp after the WSSV challenge. After dietary supplementation with taxifolin, the resistance of larvae to WSSV was improved, indicating that taxifolin may be a potential immunostimulant for shrimp to prevent WSD. Therefore, the results indicate that taxifolin has application potential for blocking a WSSV outbreak and reducing the loss of shrimp culture.
Collapse
|
15
|
Xiong ZQ, Yang L, Xiao SZ, Yang CY, Nie XL. Crystal structure of 3-acetyl-6-hydroxy-2 H-chromen-2-one monohydrate, C 11H 10O 5. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
[C11H10O5], monoclinic, P21/n, a = 7.041(3) Å, b = 9.339(4) Å, c = 15.614(6) Å, β = 103.03°, V = 1000.2(7) Å3, Z = 4, Rgt
(F) = 0.0337, wR
ref
(F
2) = 0.0994, T = 296(2) K.
Collapse
Affiliation(s)
- Zhi-Qiang Xiong
- Instrumental Analysis Center , Nanchang Hangkong University , Nanchang 330063 , P. R. China
| | - Ling Yang
- Nanfeng County People’s Hospital , Nanfeng 344500 , P. R. China
| | - Shu-Zhen Xiao
- College of Chemistry and Materials, Jiangxi Agricultural University , Nanchang 330045 , P. R. China
| | - Chen-Yu Yang
- College of Chemistry and Materials, Jiangxi Agricultural University , Nanchang 330045 , P. R. China
| | - Xu-Liang Nie
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang/College of Chemistry and Materials , Jiangxi Agricultural University , Nanchang 330045 , P. R. China
| |
Collapse
|
16
|
Wang J, Luo LS, Deng YC, Li ZC, Peng DY. Crystal structure of 6-methyl-3-(pyrrolidine-1-carbonyl)-2 H-chromen-2-one, C 15H 15N 1O 3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
C15H15N1O3, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 7.1053(11) Å, b = 8.3014(12) Å, c = 11.0297(16) Å, α = 85.810(2)°, β = 79.896(2)°, γ = 87.055(2)°, V = 638.28(16) Å3, Z = 2, R
gt
(F) = 0.0371, wR
ref
(F
2) = 0.1062, T = 296(2) K.
Collapse
Affiliation(s)
- Jie Wang
- College of Chemistry and Materials, Jiangxi Agricultural University , Nanchang 330045 , People’s Republic of China
| | - Li-Sha Luo
- College of Chemistry and Materials, Jiangxi Agricultural University , Nanchang 330045 , People’s Republic of China
| | - Yu-Cong Deng
- College of Chemistry and Materials, Jiangxi Agricultural University , Nanchang 330045 , People’s Republic of China
| | - Zhong-Chao Li
- Saefu(Henan) Agrochemical Co., Ltd , Mengzhou 410883 , People’s Republic of China
| | - Da-Yong Peng
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang , College of Chemistry and Materials, Jiangxi Agricultural University , Nanchang 330045 , People’s Republic of China
| |
Collapse
|
17
|
Gong YM, Zhang C, Li Y, Chen G, Wang GX, Zhu B. Optimization of immunization procedure for SWCNTs-based subunit vaccine with mannose modification against spring viraemia of carp virus in common carp. JOURNAL OF FISH DISEASES 2021; 44:1925-1936. [PMID: 34383969 DOI: 10.1111/jfd.13506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 05/19/2023]
Abstract
Immersion vaccination of single-walled carbon nanotubes loaded with mannose-modified glycoprotein (SWCNTs-MG) vaccine has been proved to be effective in preventing spring viraemia of carp virus (SVCV). Immunization procedure has immense consequence on the immune effect of the immersion vaccine. However, immunization procedure optimization for SWCNTs-MG vaccine against SVCV has not been reported. In this study, accordingly, a full-factor experiment was designed to optimize the immunization procedure of SWCNTs-MG vaccine by three aspects of vaccine dose (30 mg/L, 40 mg/L and 50 mg/L), immunization density (8 fish L-1 , 24 fish L-1 and 48 fish L-1 ) and immunization time (6, 12 and 24 hr). Furthermore, we used the immunization group (A1B2C1, 30 mg/L, 24 fish L-1 and 6 hr) in the previous study as a positive control (PC) to evaluate the immunization effect optimized conditions from the expression of immune-related genes and relative percentage survival (RPS). At 28 days post-vaccination (DPV), common carps were intraperitoneal injected SVCV challenged test indicated that the A1B2C2 group (30 mg/L, 24 fish L-1 , 12 hr) displayed superiority of protective efficacy compare with other groups and the RPS with 77.9%, which was 15.6% higher than the PC group of RPS with 62.3%. Moreover, the expression of immune-related genes such as IL-10, CD4 and MHC-II was also significantly higher than PC group. The specific experimental flow chart is shown in Figure 1. Conclusively, these results demonstrated that vaccine dose, immunization density and immunization time are 30 mg/L, 24 fish L-1 and 12 hr, which is the more appropriate immunization programme with juvenile carp for SWCNTs-MG vaccine. This study provides a profitable reference for improving the immune efficiency of aquatic immersion vaccine. [Figure: see text].
Collapse
Affiliation(s)
- Yu-Ming Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Zhang LL, Li CH, Chen J. Molecular characterization and chemotaxis assay of a CC motif chemokine ligand 25 from Japanese sea bass (Lateolabrax japonicus). FISH & SHELLFISH IMMUNOLOGY 2021; 119:563-574. [PMID: 34687884 DOI: 10.1016/j.fsi.2021.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
CC motif chemokine ligand 25 (CCL25) is a key chemokine that attracts various types of leukocytes, such as activated peritoneal macrophages. However, information on CCL25 in fish is limited. Here, a CCL25 gene (LjCCL25) was identified from Japanese sea bass (Lateolabrax japonicus), showing upregulation in multiple tissues against Vibrio harveyi infection. The recombinant LjCCL25 (rLjCCL25) only significantly induced the migration of monocytes/macrophages (MO/MΦ) both in vitro and in vivo, but didn't induce that of neutrophils or lymphocytes. Additionally, rLjCCL25 only induced migration of the lipopolysaccharide-stimulated MO/MΦ (M1 type). Knockdown of Japanese sea bass CC chemokine receptor 9 (LjCCR9) expression in MO/MФ by RNA interference inhibited the LjCCL25-induced chemotaxis of resting and M1 type MO/MФ. Moreover, administration of 300 ng/g rLjCCL25 effectively increased the survival of V. harveyi-infected fish and decreased bacterial load. Our study demonstrates that LjCCL25 functions as an MO/MФ chemoattractant via LjCCR9 in Japanese sea bass against V. harveyi.
Collapse
Affiliation(s)
- Ling-Ling Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
19
|
Liu L, Wang H, Xu M, Qiu TX, Chen J. Azoxystrobin increases the infection of spring viraemia of carp virus in fish. CHEMOSPHERE 2021; 285:131465. [PMID: 34329124 DOI: 10.1016/j.chemosphere.2021.131465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Azoxystrobin (AZ) has entered aquatic ecosystems and produced serious damages to fish associated with potentially increasing the susceptibility to pathogens. This study characterized the defense abilities of fish by exposed to AZ on challenging with the infection of spring viraemia of carp virus (SVCV). The results showed that SVCV replication increased significantly in EPC cells and zebrafish that were exposed to up to 50 μg/L of AZ at 3, 5, 7, and 14 d. Intracellular biochemical assays indicated that AZ at 5 and 50 μg/L inhibited the activation of Nrf2-ARE pathway including a decrease in Nrf2 expression, Nrf2 phosphorylation, HO-1 content, and three antioxidant activities. While no significant difference in ERK1/2 and JNK MAPKs in zebrafish was observed, P38 phosphorylation was significantly decreased at 7 and 14 d, and the changes in MAPKs were more evident in EPC cells previously exposed to AZ at 7 d. These results revealed that AZ initially induced low phosphorylation of MAPKs, triggering the attenuation of Nrf2 phosphorylation to weaken Nrf2 translocation into the nucleus in a longer exposure period (more than 5 d). The data in the cells and fish also showed that antioxidant activities were decreased to some extent at 5-7 d for the cells and 7-14 d for the fish. Furthermore, interferon-related factors were decreased in AZ-exposed zebrafish, explaining the reason that fish can't resist the virus infection. Overall, the present study provided a new adverse threat of AZ by amplifying the viral outbreak to endanger ecological safety in aquatic environment.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Meng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
20
|
Liu L, Shan LP, Xue MY, Lu JF, Hu Y, Liu GL, Chen J. Potential application of antiviral coumarin in aquaculture against IHNV infection by reducing viral adhesion to the epithelial cell surface. Antiviral Res 2021; 195:105192. [PMID: 34687821 DOI: 10.1016/j.antiviral.2021.105192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/01/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Due to the lack of relevant therapies for infectious haematopoietic necrosis virus (IHNV) infection, the viral outbreak invariably causes serious economic losses in salmonid species. In this study, we evaluated the anti-IHNV effects of 7-(6-benzimidazole) coumarin (C10) and 4-phenyl-2-thioxo-1,2,3,4-tetrahydro-5H-chromeno[4,3-d]pyrimidin-5-one (S5) in vitro and in vivo. The results revealed that C10 at 12.5 mg/L and S5 at 25 mg/L significantly inhibited IHNV replication in epithelioma papulosum cyprini (EPC) cells with a maximum inhibitory rate >90%, showing that IHNV-induced cytopathic effect (CPE) was alleviated by C10 and S5. There are two complementary effects on antiviral mechanism: 1. C10 completely inhibited IHNV infectivity when the virus was preincubated with C10 at 12.5 mg/L, determining that C10 may have a negative impact on IHNV binding to the cell; 2. C10 also up-regulated the gene expression of extracellular proto type galectin-1 (Gal1-L2) and a chimera galectin-3 (Gal3-L1) of EPC cells to inhibit IHNV adhesion. For the in vivo study, injection and immersion of the coumarins enhanced the survival rate of rainbow trout (Oncorhynchus mykiss) juveniles by 25% (at least) at 12 dpi. IHNV loads in the kidney and spleen were also obviously decreased at 96 h, and thus we considered that they had a delaying effect on IHNV replication in vivo. Meanwhile, C10 with a high stability in aquacultural water in immersion suppressed IHNV horizontal transmission by decreasing the viral loads in recipient fish. Overall, our data suggest that there is a positive effect of C10 and S5 against IHNV infection in aquaculture, and C10 had the potential to be a broad-spectrum antiviral against fish rhabdoviruses.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Ming-Yang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Guang-Lu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
21
|
Synthesis and biological evaluation of novel coumarin derivatives in rhabdoviral clearance. Eur J Med Chem 2021; 223:113739. [PMID: 34375787 DOI: 10.1016/j.ejmech.2021.113739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 01/11/2023]
Abstract
Diseases caused by rhabdoviruses have had a huge impact on the productive lives of the entire human population. The main problem is the lack of drugs for the treatment of this family of viruses. Infectious hematopoietic necrosis virus (IHNV), the causative agent of IHN, is a typical rhabdovirus which has caused huge losses to the salmonid industry. Therefore, in this study, IHNV was studied as a model to evaluate the antiviral activity of 35 novel coumarin derivatives. Coumarin A9 was specifically selected for further validation studies upon comparing the half maximum inhibitory concentration (IC50) of four screened candidate derivatives in epithelioma papulosum cyprinid (EPC) cells, as it exhibited an IC50 value of 2.96 μM against IHNV. The data revealed that A9 treatment significantly suppressed the virus-induced cytopathic effect (CPE) in EPC cells. In addition, A9 showed IC50 values of 1.68 and 2.12 μM for two other rhabdoviruses, spring viremia of carp virus and micropterus salmoides rhabdovirus, respectively. Furthermore, our results suggest that A9 exerts antiviral activity, but not by destroying the virus particles and interfering with the adsorption of IHNV. Moreover, we found that A9 had an inhibitory effect on IHNV-induced apoptosis in EPC cells, as reflected by the protection against cell swelling, formation of apoptotic bodies, and loss of cell morphology and nuclear division. There was a 19.05 % reduction in the number of apoptotic cells in the A9 treatment group compared with that in the IHNV group. In addition, enzyme activity assays proved that A9 suppressed the expression of caspase 3, 8 and 9. These results suggested that A9 inhibit viral replication, to some extent, by blocking IHNV-induced apoptosis. In an in vivo study, A9 exhibited an anti-rhabdovirus effect in virus-infected fish by substantially enhancing the survival rate. Consistent with the above results, A9 repressed IHNV gene expression in virus-sensitive tissues (brain, kidney and spleen) in the early stages of virus infection. Importantly, the data showed that horizontal transmission of IHNV was reduced by A9 in a static cohabitation challenge model, especially in fish that underwent bath treatment, suggesting that A9 might be a suitable therapeutic agent for IHNV in aquaculture. Therefore, coumarin derivatives can be developed as antiviral agents against rhabdoviruses.
Collapse
|
22
|
Qu S, Song C, Tan X, Wang G, Ling F. Comparative proteomic analysis provides insight into the key proteins as potential targets underlying the effect of malachite green against Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2021; 44:881-892. [PMID: 33560558 DOI: 10.1111/jfd.13346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Target identification is important for drug discovery. Unfortunately, no drug targets have been found in Ichthyophthirius multifiliis until now and further limited development of the novel drug for Ichthyophthiriasis. In this study, an iTRAQ-based quantitative proteomic analysis was used to find the target of malachite green (MG), exhibiting greater efficacy than the existing drugs, against I. multifiliis trophonts in situ. We also verified the proteomic results by RT-qPCR, TEM and cell apoptosis assay. Our results showed that major variations in protein abundance were found among many of the ribosome proteins, indicating ribosome might be a candidate target. Furthermore, GO and KEGG pathway analyses of differentially expressed proteins (DEPs) revealed that ribosome and PI3K-Akt signalling pathway were remarkably enriched. Taken together, the above DEPs were also verified by RT-qPCR and morphological observations. This study provides insights into the key proteins enriched in PI3K-Akt signal pathway and ribosome pathway as potential targets of MG killing I. multifiliis, which could be served as targets for other less toxic drugs and be tested as potential treatments for I. multifiliis.
Collapse
Affiliation(s)
- Shenye Qu
- Northwest A&F University, Yangling, Shaanxi, China
| | - Chenguang Song
- Northwest A&F University, Yangling, Shaanxi, China
- National Fishery Technology Extension Center, China Society of Fisheries, Peking, China
| | - Xiaoping Tan
- Northwest A&F University, Yangling, Shaanxi, China
| | - Gaoxue Wang
- Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Ling
- Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
23
|
Wang H, Qiu TX, Lu JF, Liu HW, Hu L, Liu L, Chen J. Potential aquatic environmental risks of trifloxystrobin: Enhancement of virus susceptibility in zebrafish through initiation of autophagy. Zool Res 2021; 42:339-349. [PMID: 33998181 PMCID: PMC8175947 DOI: 10.24272/j.issn.2095-8137.2021.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic pollution in aquatic ecosystems can lead to many adverse effects, including a greater susceptibility to pathogens among resident biota. Trifloxystrobin (TFS) is a strobilurin fungicide widely used in Asia to control soybean rust. However, it has the potential to enter aquatic ecosystems, where it may impair fish resistance to viral infections. To explore the potential environmental risks of TFS, we characterized the antiviral capacities of fish chronically exposed to TFS and subsequently infected with spring viraemia of carp virus (SVCV). Although TFS exhibited no significant cytotoxicity at the tested environmental concentrations during viral challenge, SVCV replication increased significantly in a time-dependent manner within epithelioma papulosum cyprini (EPC) cells and zebrafish exposed to 25 μg/L TFS. Results showed that the highest viral load was more than 100-fold that of the controls. Intracellular biochemical assays indicated that autophagy was induced by TFS, and associated changes included an increase in autophagosomes, conversion of LC3-II, accumulation of Beclin-1, and degradation of P62 in EPC cells and zebrafish. In addition, TFS markedly decreased the expression and phosphorylation of mTOR, indicating that activation of TFS may be associated with the mTOR-mediated autophagy pathway. This study provides new insights into the mechanism of the immunosuppressive effects of TFS on non-target aquatic hosts and suggests that the existence of TFS in aquatic environments may contribute to outbreaks of viral diseases.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Han-Wei Liu
- Ningbo Customs District Technology Center, Ningbo, Zhejiang 315832, China
| | - Ling Hu
- Ningbo Customs District Technology Center, Ningbo, Zhejiang 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
24
|
Liu L, Shan LP, Zhou Y, Chen J. Small Molecule Inhibitors of White Spot Syndrome Virus: Promise in Shrimp Seedling Culture. Int J Mol Sci 2021; 22:ijms22073450. [PMID: 33810591 PMCID: PMC8036603 DOI: 10.3390/ijms22073450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Rapid production of prawn (Litopenaeus vannamei) under artificial pressure can result in a series of obvious challenges and is vulnerable to serious losses related to aquatic environmental issues and the unrestrained outbreak of white spot syndrome (WSS). However, to date, there are no therapeutic strategies to contain the spread of the virus. Here, we synthesized 27 coumarin derivatives and evaluated their anti-white spot syndrome virus (WSSV) activity in L. vannamei larvae. We demonstrated that electron-withdrawing and electron-giving substituent groups play an important role in reducing toxicity and WSSV replication, respectively. Two coumarin C2 (2-amino-5-oxo-4-(p-tolyl)-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile) and C7 (2-amino-4-(4-chlorophenyl)-5-oxo-4H,5H-pyrano[3,2-c]chromene-3-carbonitrile) were regarded as the most promising anti-WSSV compounds with maximum antiviral response <5% and median effective concentration <10 mg/L. The mortality of WSSV-infected larvae decreased by more than 60% after exposure to C2 and C7. With continuous immersion of C2 and C7 exchange, the mortality further decreased to 40% at 120 h. Additionally, C2 and C7 are the relatively stable in aquacultural water, making these agents suitable for use in inhibiting WSSV horizontal transmission in static aquaculture systems. These results showed the marked advantages of using C2 and C7 in the shrimp industry, and suggest that they hold potential for the treatment and prevention of WSSV infection in shrimp seedling culture.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; (L.L.); (L.-P.S.); (Y.Z.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; (L.L.); (L.-P.S.); (Y.Z.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Yan Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; (L.L.); (L.-P.S.); (Y.Z.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; (L.L.); (L.-P.S.); (Y.Z.)
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo 315832, China
- Correspondence:
| |
Collapse
|
25
|
A novel antiviral coumarin derivative as a potential agent against WSSV infection in shrimp seedling culture. Virus Res 2021; 297:198387. [PMID: 33716181 DOI: 10.1016/j.virusres.2021.198387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
White spot syndrome virus (WSSV), a double-stranded DNA virus that infects crustaceans, is the most serious viral pathogen affecting shrimp farming worldwide. To reduce the economic losses caused by WSSV, we screened a novel coumarin derivative from a small molecule drug library, N-(4-((4-(((2-oxo-2H-chromen-7-yl)oxy)methyl)-1H-1,2,3-triazol-1-yl)sulfonyl)phenyl)acetamide (N2905), to evaluate its anti-WSSV effects in vivo. We determined that compound N2905, up to a concentration of 20 mg/L, significantly decreased the number of WSSV copies in Litopenaeus vannamei post-larvae, with a maximum inhibitory rate of > 90 %, and increased the survival rate of WSSV-infected post-larvae. Pre-treatment and post-treatment assays indicated that N2905 could treat, but not prevent, WSSV infections. When WSSV was preincubated with N2905 for 1-4 h, the incidence of viral infections was significantly reduced and survival time of post-larvae extended to 120 h. A stability study of N2905 provided a reference for its practical use. Considering the antiviral stability of N2905 in culture water within 2 d, continuous N2905 exchange was performed, showing a significant decrease in viral load at 120 h post-infection (hpi) and a 55 % increase in survival of WSSV-infected post-larvae. Overall, our study demonstrated the potential of N2905 as an antiviral agent.
Collapse
|
26
|
Zhang C, Zhang PQ, Guo S, Chen G, Zhao Z, Wang GX, Zhu B. Application of Biomimetic Cell-Derived Nanoparticles with Mannose Modification as a Novel Vaccine Delivery Platform against Teleost Fish Viral Disease. ACS Biomater Sci Eng 2020; 6:6770-6777. [DOI: 10.1021/acsbiomaterials.0c01302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peng-Qi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sheng Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
27
|
Song DW, Liu GL, Xue MY, Qiu TX, Wang H, Shan LP, Liu L, Chen J. In vitro and in vivo evaluation of antiviral activity of a phenylpropanoid derivative against spring viraemia of carp virus. Virus Res 2020; 291:198221. [PMID: 33152382 DOI: 10.1016/j.virusres.2020.198221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Phenylpropanoids, common natural compounds, possess many different biological activities such as antioxidant, anti-inflammatory and antiviral. Spring viraemia of carp virus (SVCV) can cause a high mortality in common carp (Cyprinus carpio). However, there are currently no licenced drugs that effectively cure this disease. In this study, we designed and synthesized a phenylpropanoid derivative 4-(4-methoxyphenyl)-3,4-dihydro-2H-chromeno[4,3-d]pyrimidine-2,5(1 H)-dione (E2), and explored the antiviral effect against SVCV in vitro and in vivo. Up to 25 mg/L of E2 significantly inhibited the expression levels of SVCV protein genes in the epithelioma papulosum cyprini (EPC) cell line by a maximum inhibitory rate of >90%. As expected, E2 remarkably declined the apoptotic of SVCV-infected cells and suppressed potential enhancement of the mitochondrial membrane potential (ΔΨm), these data implied that E2 could protect mitochondria from structural damage in response to SVCV. Meanwhile, E2 was added to EPC cells under four different conditions: time-of-addition, time-of-removal, pre-treatment of viruses and pre-treatment of cells indicated that E2 may block the post-entry transport process of the virus. Additionally, the up-regulation of six interferon (IFN)-related genes also demonstrated that E2 indirectly activated IFNs for the clearance of SVCV in common carp. Drug cure effect showed that treatment with E2 at 0.5 d post infection (dpi) is more effective than at 0, 1 or 2 dpi. Most importantly, intraperitoneal therapy of E2 markedly improved common carp survival rate and reduced virus copies in body. Therefore, the E2 has potential to be developed into a novel anti-SVCV agent.
Collapse
Affiliation(s)
- Da-Wei Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Guang-Lu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Ming-Yang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
28
|
Liu GY, Wang EL, Qu XY, Yang KC, Zhang ZY, Liu JY, Zhang C, Zhu B, Wang GX. Single-walled carbon nanotubes enhance the immune protective effect of a bath subunit vaccine for pearl gentian grouper against Iridovirus of Taiwan. FISH & SHELLFISH IMMUNOLOGY 2020; 106:510-517. [PMID: 32777462 DOI: 10.1016/j.fsi.2020.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/26/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Iridovirus of Taiwan (TGIV) has been threatening the grouper farming since 1997, effective prophylaxis method is urgently needed. Subunit vaccine was proved to be useful to against the virus. Bath is the simplest method of vaccination and easy to be administrated without any stress to fish. In this research, we constructed a prokaryotic expression vector of TGIV's major capsid protein (MCP) to acquire the vaccine. Single-walled carbon nanotubes (SWCNTs) were used as the carrier to enhance the protective effect of bath vaccination for juvenile pearl gentian grouper (bath with concentrations of 5, 10, 20 mg/L for 6 h). Virus challenge was done after 28 days. Survival rates were calculated after 14 days. The level of antibody, activities of related enzymes in serums and expression of immune-related genes in kidneys and spleens were test. The results showed that vaccine with SWCNTs as carrier induced a higher level of antibody than that without. In addition, the activities of related enzymes (acid phosphatase, alkaline phosphatase, superoxide dismutase) and the expression of immune-related genes (Mx1, IgM, TNFαF, Lysozyme, CC chemokine 1, IL1-β, IL-8) had a significantly increase. What's more, higher survival rates (42.10%, 77.77%, 89.47%) were provided by vaccine with SWCNTs than vaccine without SWCNTs (29.41%, 38.09%, 43.75%). This study suggests that the protective effect of vaccine that against TGIV with the method of bath vaccination could be enhanced by SWCNTs and SWCNTs could be a potential carrier for other subunit vaccines.
Collapse
Affiliation(s)
- Gao-Yang Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China
| | - Er-Long Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China
| | - Xiang-Yu Qu
- College of Life Sciences, Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China
| | - Ke-Chen Yang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China
| | - Zhong-Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China
| | - Jing-Yao Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
29
|
Shen YF, Liu YH, Li BY, Liu TQ, Wang GX. Evaluation on antiviral activity of a novel arctigenin derivative against multiple rhabdoviruses in aquaculture. Virus Res 2020; 285:198019. [DOI: 10.1016/j.virusres.2020.198019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 12/15/2022]
|