1
|
Ye H, He Y, Zheng C, Wang F, Yang M, Lin J, Xu R, Zhang D. Type 2 Diabetes Complicated With Heart Failure: Research on Therapeutic Mechanism and Potential Drug Development Based on Insulin Signaling Pathway. Front Pharmacol 2022; 13:816588. [PMID: 35308248 PMCID: PMC8927800 DOI: 10.3389/fphar.2022.816588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and heart failure (HF) are diseases characterized by high morbidity and mortality. They often occur simultaneously and increase the risk of each other. T2DM complicated with HF, as one of the most dangerous disease combinations in modern medicine, is more common in middle-aged and elderly people, making the treatment more difficult. At present, the combination of blood glucose control and anti-heart failure is a common therapy for patients with T2DM complicated with HF, but their effect is not ideal, and many hypoglycemic drugs have the risk of heart failure. Abnormal insulin signaling pathway, as a common pathogenic mechanism in T2DM and HF, could lead to pathological features such as insulin resistance (IR), myocardial energy metabolism disorders, and vascular endothelial disorders. The therapy based on the insulin signaling pathway may become a specific therapeutic target for T2DM patients with HF. Here, we reviewed the mechanisms and potential drugs of insulin signaling pathway in the treatment of T2DM complicated with HF, with a view to opening up a new perspective for the treatment of T2DM patients with HF and the research and development of new drugs.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Wang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Zhu J, Song W, Xu S, Ma Y, Wei B, Wang H, Hua S. Shenfu Injection Promotes Vasodilation by Enhancing eNOS Activity Through the PI3K/Akt Signaling Pathway In Vitro. Front Pharmacol 2020; 11:121. [PMID: 32161546 PMCID: PMC7054240 DOI: 10.3389/fphar.2020.00121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Vasomotor dysfunction is one of the key pathological aspects of shock and heart failure (HF). Shenfu injection (SFI) has been widely used for the treatment of shock and HF in China. Pharmacological studies have suggested that SFI can reduce peripheral circulation resistance and improve microcirculation. However, whether it has a regulatory effect on macrovascular has not been elucidated. In this study, we used thoracic aorta rings isolated from Wistar rats and the human umbilical vein cell line (EA.hy926) to explore the vasodilative activity of SFI and its potential mechanisms. The relaxation due to SFI was measured after pre-treatment with selective soluble guanylate cyclase (sGC) inhibitor or cyclooxygenase (COX) inhibitor and compared with the vasodilation effect of SFI only treated with norepinephrine (NE). The contents of NO, endothelin-1 (ET-1), endothelial nitric oxide synthase (eNOS), COX-1, 6-K-PGF1α, and caveolin-1 were evaluated respectively. Additionally, the level of eNOS mRNA and total eNOS and its phosphorylation were studied to investigate the potential mechanisms involved. Experimental results showed that SFI markedly attenuated NE-induced vasoconstriction but that this effect was significantly eliminated after pre-incubation with the selective sGC inhibitor 1-H-[1, 2, 4] oxadiazolo [4, 3-α] quinoxaline-1-one (ODQ), instead of the COX inhibitor indomethacin (INDO). SFI significantly increased the eNOS content and up-regulated the eNOS mRNA expression, while it did not affect the content of COX-1 and 6-K-PGF1α. SFI also markedly increased NO content but significantly reduced the content of ET-1 and caveolin-1 in the cell supernatant. Furthermore, it promoted the expression of total eNOS and the phosphorylation of eNOS at serine (Ser) 1177 but inhibited the phosphorylation at threonine (Thr) 495, which was significantly reversed by PI3K-specific inhibitor LY294002. In conclusion, our study showed the vasodilation effect of SFI in thoracic aorta is mediated entirely by enhancing eNOS activity through the PI3K/Akt signaling pathway, providing novel knowledge on the effect of SFI on shock and HF for future clinical applications.
Collapse
Affiliation(s)
- Jinqiang Zhu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanshan Song
- Encephalopathy Acupuncture Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Ma
- Encephalopathy Acupuncture Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baoyu Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongwu Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyu Hua
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Firinu D, Bassareo PP, Zedda AM, Barca MP, Crisafulli A, Mercuro G, Del Giacco S. Impaired Endothelial Function in Hereditary Angioedema During the Symptom-Free Period. Front Physiol 2018; 9:523. [PMID: 29867566 PMCID: PMC5964294 DOI: 10.3389/fphys.2018.00523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction: The presence of coronary endothelial dysfunction was previously shown in Hereditary Angioedema (HAE) patients. The aim of our study was to evaluate the effect of HAE on systemic endothelial function and whether there was a relationship among endothelial function, asymmetric dimethylarginine (ADMA) -which is a strong inhibitor of nitric oxide synthesis-, and disease severity scores. Methods: Twenty-four HAE patients (18 females, aged 47.9 ± 2 years) without factors known to interfere with endothelial function were studied and compared with 24 healthy peers age- and gender-matched. Endothelial function was assessed by means of non-invasive finger plethysmography (reactive hyperaemia index: RHI) and ADMA levels by high-performance liquid chromatography. HAE severity scores have been calculated according to published literature. Results: In HAE patients RHI was lower (2.03 ± 0.46 vs. 2.82 ± 0.34, p < 0.0001) and ADMA higher (0.636 ± 7 vs. 585 ± 5 micromol/L, p < 0.01) than in controls. A statistically significant inverse correlation was revealed between RHI and patients' ADMA levels (r = -0.516, p = 0.009) as well as between RHI and patients' chronological age (r = -0.49, p = 0.015). A statistically significant correlation between RHI and ADMA was confirmed even when excluding the possible influence of cholesterol (r = -0.408, p = 0.048). No other significant correlations were found with the examined laboratory and clinical parameters (chronological age, age at disease onset, disease duration, severity scores, and gender). Conclusion: The dysfunction previously shown in HAE patients at the coronary arteries seems to involve the peripheral vessels as well, without a correlation with disease severity.
Collapse
Affiliation(s)
- Davide Firinu
- Unit of Internal Medicine, Department of Medical Sciences and Public Health, Allergy and Clinical Immunology, University of Cagliari, Cagliari, Italy
| | - Pier P. Bassareo
- Unit of Cardiology and Angiology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Angela M. Zedda
- Unit of Cardiology and Angiology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Maria P. Barca
- Unit of Internal Medicine, Department of Medical Sciences and Public Health, Allergy and Clinical Immunology, University of Cagliari, Cagliari, Italy
| | - Antonio Crisafulli
- Sports Physiology Lab., Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giuseppe Mercuro
- Unit of Cardiology and Angiology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stefano Del Giacco
- Unit of Internal Medicine, Department of Medical Sciences and Public Health, Allergy and Clinical Immunology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 2018; 14:185-201. [PMID: 29380817 DOI: 10.1038/nrneph.2017.189] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although intrinsic mechanisms that regulate arterial blood pressure (BP) are similar in men and women, marked variations exist at the molecular, cellular and tissue levels. These physiological disparities between the sexes likely contribute to differences in disease onset, susceptibility, prevalence and treatment responses. Key systems that are important in the development of hypertension and cardiovascular disease (CVD), including the sympathetic nervous system, the renin-angiotensin-aldosterone system and the immune system, are differentially activated in males and females. Biological age also contributes to sexual dimorphism, as premenopausal women experience a higher degree of cardioprotection than men of similar age. Furthermore, sex hormones such as oestrogen and testosterone as well as sex chromosome complement likely contribute to sex differences in BP and CVD. At the cellular level, differences in cell senescence pathways may contribute to increased longevity in women and may also limit organ damage caused by hypertension. In addition, many lifestyle and environmental factors - such as smoking, alcohol consumption and diet - may influence BP and CVD in a sex-specific manner. Evidence suggests that cardioprotection in women is lost under conditions of obesity and type 2 diabetes mellitus. Treatment strategies for hypertension and CVD that are tailored according to sex could lead to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia.,Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Dyukova E, Schreckenberg R, Arens C, Sitdikova G, Schlüter KD. The Role of Calcium-Sensing Receptors in Endothelin-1-Dependent Effects on Adult Rat Ventricular Cardiomyocytes: Possible Contribution to Adaptive Myocardial Hypertrophy. J Cell Physiol 2017; 232:2508-2518. [DOI: 10.1002/jcp.25612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Dyukova
- Physiologisches Institut; Justus-Liebig-Universität Gießen; Giessen Germany
- Institute of Fundamental Medicine and Biology; Kazan Federal University; Kazan Russia
| | - Rolf Schreckenberg
- Physiologisches Institut; Justus-Liebig-Universität Gießen; Giessen Germany
| | - Christoph Arens
- Physiologisches Institut; Justus-Liebig-Universität Gießen; Giessen Germany
| | - Guzel Sitdikova
- Institute of Fundamental Medicine and Biology; Kazan Federal University; Kazan Russia
| | | |
Collapse
|
6
|
Peroxisome Proliferator-Activated Receptor α Reduces Endothelin-1-Caused Cardiomyocyte Hypertrophy by Inhibiting Nuclear Factor- κB and Adiponectin. Mediators Inflamm 2016; 2016:5609121. [PMID: 27807394 PMCID: PMC5078655 DOI: 10.1155/2016/5609121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/19/2016] [Accepted: 09/15/2016] [Indexed: 01/21/2023] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) plays a role in the pathogenesis of cardiac hypertrophy, although its underlying mechanism remains unclear. The purpose of this study was to evaluate the effect of PPARα activation on endothelin-1- (ET-1-) caused cardiomyocyte hypertrophy and explore its underlying mechanisms. Human cardiomyocytes (HCMs) were cultured with or without ET-1, whereafter the inhibitory effects of fenofibrate, a PPARα activator, on cell size and adiponectin protein were tested. We examined the activation of extracellular signal-regulated kinase (ERK) and p38 proteins caused by ET-1 and the inhibition of the ERK and p38 pathways on ET-1-induced cell size and adiponectin expression. Moreover, we investigated the interaction of PPARα with adiponectin and nuclear factor-κB (NF-κB) by electrophoretic mobility shift assays and coimmunoprecipitation. ET-1 treatment significantly increased cell size, suppressed PPARα expression, and enhanced the expression of adiponectin. Pretreatment with fenofibrate inhibited the increase in cell size and enhancement of adiponectin expression. ET-1 significantly activated the ERK and p38 pathways, whereas PD98059 and SB205380, respectively, inhibited them. Our results suggest that activated PPARα can decrease activation of adiponectin and NF-κB and inhibit ET-1-induced cardiomyocyte hypertrophy.
Collapse
|
7
|
Vatta MS, Bianciotti LG, Guil MJ, Hope SI. Regulation of the Norepinephrine Transporter by Endothelins. HORMONES AND TRANSPORT SYSTEMS 2015; 98:371-405. [DOI: 10.1016/bs.vh.2014.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Polymorphisms of ECE1 may contribute to susceptibility to ischemic stroke in Han Chinese of Northern China. Cell Biochem Biophys 2014; 69:237-46. [PMID: 24595843 DOI: 10.1007/s12013-013-9789-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelin (ET) converting enzyme 1 (ECE1) is well known for its critical role in the process of ET. Recent studies have demonstrated that two genetic variants of ECE1 gene, rs212528 and rs213045 (C338A), are associated with hypertension and atherosclerosis formation. To investigate the association between the ECE1 gene polymorphisms and ischemic stroke (IS) in Chinese population. With a candidate loci strategy, we conducted a case-control study involving 381 IS cases and 366 non-IS controls in Han population of the Northern China. Two single nucleotide polymorphisms of ECE1 were genotyped and assessed the association with the risk of IS. Furthermore, stratified analyses were also carried out to evaluate the association between the gender or two etiologic subtypes [small-artery occlusion (SAO) and large-artery atherosclerosis (LAA)] and IS. Compared with rs213045 G homozygote, rs213045 TG genotype and rs213045 TT/TG genotypes are in dominant model significantly increased the risk of IS [adjusted odds ratio (OR) = 1.47, 95 % confidence interval (CI) = 1.04-2.07, P = 0.03; adjusted OR = 1.43, 95 % CI = 1.04-1.99, P = 0.029, respectively]. However, we did not find the significant association between the ECE1 gene polymorphisms and SAO or LAA of IS in this study. Our results indicated that ECE1 gene polymorphisms may contribute to the susceptibility of IS in Han population of the Northern China.
Collapse
|
9
|
Wagner MA, Siddiqui MAQ. The JAK-STAT pathway in hypertrophic stress signaling and genomic stress response. JAKSTAT 2014; 1:131-41. [PMID: 24058762 PMCID: PMC3670293 DOI: 10.4161/jkst.20702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The JAK-STAT signaling pathway plays a central role in transducing stress and growth signals in the hypertrophic heart. Unlike most signal transducers, JAKs and STATs signal in a number of different ways, both within the JAK-STAT pathway and in collaboration with other signaling pathways. In this review, we discuss how IL-6 activates cells lacking IL-6 receptors through trans-signaling and examine JAK-STAT pathway interaction with GPCR-linked pathways both within and between cells. Finally, we discuss recent studies showing how the JAK-STAT pathway can intersect with a general transcriptional regulatory mechanism to effect transcription of STAT-dependent stress response genes.
Collapse
Affiliation(s)
- Michael A Wagner
- Department of Cell Biology; Center for Cardiovascular and Muscle Research; State University of New York Downstate Medical Center; Brooklyn, NY USA
| | | |
Collapse
|
10
|
Duarte JD, Hanson RL, Machado RF. Pharmacologic treatments for pulmonary hypertension: exploring pharmacogenomics. Future Cardiol 2014; 9:335-49. [PMID: 23668740 DOI: 10.2217/fca.13.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease with multiple etiologies and is categorized into five broad groups. Of these groups, pulmonary arterial hypertension (PAH) is the most studied and, therefore, all of the currently available drug classes (prostacyclin analogs, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors) were developed to treat PAH. Thus, limited treatment data exist for the less-studied non-PAH forms of PH. Pharmacogenomics can be a tool to better understand the pathways involved in PH, as well as to improve personalization of therapy. However, little pharmacogenomic research has been carried out on this disease. New treatments for PH are on the horizon, deriving from both repurposed currently available drugs and novel therapeutics.
Collapse
Affiliation(s)
- Julio D Duarte
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
11
|
Chen CC, Chen LL, Hsu YT, Liu KJ, Fan CS, Huang TS. The endothelin-integrin axis is involved in macrophage-induced breast cancer cell chemotactic interactions with endothelial cells. J Biol Chem 2014; 289:10029-44. [PMID: 24550382 DOI: 10.1074/jbc.m113.528406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Elevated macrophage infiltration in tumor tissues is associated with breast cancer metastasis. Cancer cell migration/invasion toward angiogenic microvasculature is a key step in metastatic spread. We therefore studied how macrophages stimulated breast cancer cell interactions with endothelial cells. Macrophages produced cytokines, such as interleukin-8 and tumor necrosis factor-α, to stimulate endothelin (ET) and ET receptor (ETR) expression in breast cancer cells and human umbilical vascular endothelial cells (HUVECs). ET-1 was induced to a greater extent from HUVECs than from breast cancer cells, resulting in a density difference that facilitated cancer cell chemotaxis toward HUVECs. Macrophages also stimulated breast cancer cell adhesion to HUVECs and transendothelial migration, which were repressed by ET-1 antibody or ETR inhibitors. The ET axis induced integrins, such as αV and β1, and their counterligands, such as intercellular adhesion molecule-2 and P-selectin, in breast cancer cells and HUVECs, and antibodies against these integrins efficiently suppressed macrophage-stimulated breast cancer cell interactions with HUVECs. ET-1 induced Ets-like kinase-1 (Elk-1), signal transducer and activator of transcription-3 (STAT-3), and nuclear factor-κB (NF-κB) phosphorylation in breast cancer cells. The use of inhibitors to prevent their phosphorylation or ectopic overexpression of dominant-negative IκBα perturbed ET-1-induced integrin αV and integrin β1 expression. The physical associations of these three transcriptional factors with the gene promoters of the two integrins were furthermore evidenced by a chromatin immunoprecipitation assay. Finally, our mouse orthotopic tumor model revealed an ET axis-mediated lung metastasis of macrophage-stimulated breast cancer cells, suggesting that the ET axis was involved in macrophage-enhanced breast cancer cell endothelial interactions.
Collapse
Affiliation(s)
- Chia-Chi Chen
- From the National Institute of Cancer Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli 350, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Shen X, Tan Z, Zhong X, Tian Y, Wang X, Yu B, Ramirez-Correa G, Murphy A, Gabrielson K, Paolocci N, Gao WD. Endocardial endothelium is a key determinant of force-frequency relationship in rat ventricular myocardium. J Appl Physiol (1985) 2013; 115:383-93. [PMID: 23703113 DOI: 10.1152/japplphysiol.01415.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We tested the hypothesis that removing endocardial endothelium (EE) negatively impacts the force-frequency relationship (FFR) of ventricular myocardium and dissected the signaling that underlies this phenomenon. EE of rat trabeculae was selectively damaged by brief (<1 s) exposure to 0.1% Triton X-100. Force, intracellular Ca(2+) transient (iCa(2+)), and activity of protein kinase A (PKA) and protein kinase C (PKC) were determined. In control muscles, force and iCa(2+) increased as the stimulation frequency increased in steps of 0.5 Hz up to 3.0 Hz. However, EE-denuded (EED) muscles exhibited a markedly blunted FFR. Neither isoproterenol (ISO; 0.1-5 nmol/l) nor endothelin-1 (ET-1; 10-100 nmol/l) alone restored the slope of FFR in EED muscles. Intriguingly, however, a positive FFR was restored in EED preparations by combining low concentrations of ISO (0.1 nmol/l) and ET-1 (20 nmol/l). In intact muscles, PKA and PKC activity increased proportionally with the increase in frequency. This effect was completely lost in EED muscles. Again, combining ISO and ET-1 fully restored the frequency-dependent rise in PKA and PKC activity in EED muscles. In conclusion, selective damage of EE leads to significantly blunted FFR. A combination of low concentrations of ISO and ET-1 successfully restores FFR in EED muscles. The interdependence of ISO and ET-1 in this process indicates cross-talk between the β1-PKA and ET-1-PKC pathways for a normal (positive) FFR. The results also imply that dysfunction of EE and/or EE-myocyte coupling may contribute to flat (or even negative) FFR in heart failure.
Collapse
Affiliation(s)
- Xiaoxu Shen
- Cardiology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors. J Mol Cell Cardiol 2013; 62:58-68. [PMID: 23684854 DOI: 10.1016/j.yjmcc.2013.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 04/11/2013] [Accepted: 05/07/2013] [Indexed: 01/19/2023]
Abstract
At the cell surface, βARs and endothelin receptors can regulate nitric oxide (NO) production. β-adrenergic receptors (βARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from the adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a β3AR-selective agonist, BRL 37344, increased NO synthesis whereas the β1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor l-NAME prevented isoproterenol from increasing either NO production or de novo transcription. l-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular β-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear β3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors.
Collapse
|
14
|
Ho LT, Hsu YP, Hsiao CF, Ting CT, Shih KC, Chuang LM, Masaki K, Grove J, Quertermous T, Juan CC, Lin MW, Chiang SC, Chen YDI. Endothelin Type A Receptor Genotype is a Determinant of Quantitative Traits of Metabolic Syndrome in Asian Hypertensive Families: A SAPPHIRe Study. Front Endocrinol (Lausanne) 2013; 4:172. [PMID: 24348460 PMCID: PMC3842518 DOI: 10.3389/fendo.2013.00172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/25/2013] [Indexed: 02/01/2023] Open
Abstract
Co-heritability of hypertension and insulin resistance (IR) within families not only implies genetic susceptibility may be responsible for these complex traits but also suggests a rational that biological candidate genes for hypertension may serve as markers for features of the metabolic syndrome (MetS). Thus we determined whether the T323C polymorphism (rs5333) of endothelin type A (ETA) receptor, a predominant receptor evoking potent vasoconstrictive action of endothelin-1, contributes to susceptibility to IR-associated hypertension in 1694 subjects of Chinese and Japanese origins. Blood pressures (BPs) and biochemistries were measured. Fasting insulin level, insulin-resistance homeostasis model assessment (HOMAIR) score, and area under curve of insulin concentration (AUCINS) were selected for assessing insulin sensitivity. Genotypes were obtained by methods of polymerase chain reaction-restriction fragment length polymorphism. Foremost findings were that minor allele frequency of the T323C polymorphism was noticeable lower in our overall Asian subjects compared to multi-national population reported in gene database; moreover both the genotypic and allelic frequencies of the polymorphism were significantly different between the two ethnic groups we studied. The genotype distributions at TT/TC/CC were 65, 31, 4% in Chinese and 51, 41, 8% in Japanese, respectively (p < 0.0001). Additionally, carriers of the C homozygote revealed characteristics of IR, namely significantly higher levels of fasting insulin, HOMAIR score, and AUCINS at 29.3, 35.3, and 39.3%, respectively, when compared to their counterparts with TT/TC genotypes in Chinese. Meanwhile, the CC genotype was associated with a higher level of high density lipoprotein cholesterol in Japanese. No association of the polymorphism with BP was observed. This study demonstrated for the first time that T323C polymorphism of ETA receptor gene was associated with an adverse insulin response in Chinese and a favorite atherogenic index in Japanese.
Collapse
Affiliation(s)
- Low-Tone Ho
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- *Correspondence: Low-Tone Ho, Department of Medical Research and Education, Taipei Veterans General Hospital, No. 201 Shih-Pai Road Section 2, Taipei 11217, Taiwan e-mail:
| | - Yung-Pei Hsu
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Fu Hsiao
- Division of Biostatistics and Bioinformatics, National Health Research Institutes, Taipei, Taiwan
| | - Chih-Tai Ting
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | | | - John Grove
- Department of Public Health Sciences and Epidemiology, John A. Burns School of Medicine, University of Hawaii and Pacific Health Research Institute, Honolulu, Hawaii
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Falk Cardiovascular Research Center, Stanford University, Stanford, CA, USA
| | - Chi-Chung Juan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Wei Lin
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chiung Chiang
- Information Service Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yii-Der I. Chen
- Medical Genetics Institute, Cedars-Sinai Medical Center, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Calabrò P, Limongelli G, Maddaloni V, Vizza CD, D'Alto M, D'Alessandro R, Poscia R, Argiento P, Ziello B, Badagliacca R, Romeo E, Pacileo G, Russo MG, Fedele F, Calabrò R. Analysis of endothelin-1 and endothelin-1 receptor A gene polymorphisms in patients with pulmonary arterial hypertension. Intern Emerg Med 2012; 7:425-30. [PMID: 21773759 DOI: 10.1007/s11739-011-0643-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/24/2011] [Indexed: 01/25/2023]
Abstract
This study analyses the frequency and the potential role of two polymorphisms, the +134del/insA, located in the gene encoding for Endothelin-1 (EDN1), and the His323His in the gene encoding for Endothelin receptor type A (EDNRA) in a cohort of 98 consecutive patients with pulmonary arterial hypertension from two different Cardiology Units (Mid-South of Italy), and in 100 healthy Caucasian subjects randomly recruited from the same area. Cardiac anatomy and function were analysed by non invasive diagnostic imaging techniques (Echocardiography standard m-mode, 2D, colour-Doppler) and by invasive studies (cardiac catheterization). Molecular screening of the region of interest was performed by automated sequencing. At univariate analysis, patients with the His323His TT genotype show a lower cardiac index (2 ± 0.6 vs. 2.3 ± 0.6; p = 0.05) and a higher indexed pulmonary vascular resistance (18.8 ± 9.6 vs. 14.2 ± 6.9; p = 0.01) at cardiac catheterization. A logistic multivariate model shows idiopathic disease (p = 0.01; OR = 3.8; CI = 1.3-11) and indexed pulmonary vascular resistances (p = 0.01; OR = 1.1; CI = 1-1.2) as independent predictors of TT genotype. Our findings may suggest a potential link between specific genotypes in the EDNRA gene and susceptibility for PAH.
Collapse
Affiliation(s)
- Paolo Calabrò
- Division of Cardiology, Monaldi Hospital, Second University of Naples, Via L. Bianchi, 80131, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The role of the biomarker and the genetic polymorphism of endothelin-1 in pulmonary arterial hypertension among Egyptians. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2012. [DOI: 10.1016/j.ejcdt.2012.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Kopeć G, Tyrka A, Miszalski-Jamka T, Mikołajczyk T, Waligóra M, Guzik T, Podolec P. Changes in exercise capacity and cardiac performance in a series of patients with Eisenmenger's syndrome transitioned from selective to dual endothelin receptor antagonist. Heart Lung Circ 2012; 21:671-8. [PMID: 22819097 DOI: 10.1016/j.hlc.2012.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Differences in clinical effects between selective and dual endothelin (ET) receptor antagonists (ERA) in patients with pulmonary arterial hypertension (PAH) are currently unknown. We aimed to assess prospectively how transition from selective (sitaxsentan) to dual (bosentan) ERA affected exercise capacity and cardiocirculatory performance in patients with Eisenmenger's syndrome. METHODS A series of seven stable patients with Eisenmenger's syndrome aged 40.0 (30.0-56.0) years old treated with sitaxsentan were assessed before and three months after transition to bosentan. Six minute walk test and magnetic resonance to assess LV and RV mass, volume and ejection fraction, and pulmonary flow, and laboratory tests were performed. RESULTS We observed an increase in LV mass [96.5 (66.0-116.0) vs. 123.0 (93.0-146.0)g; p=0.03], LV ejection fraction [55.0 (44.0-63.0) vs. 65.0 (58.0-70.0)%; p=0.02)], and pulmonary flow [64 (53.0-71.0) vs. 69.0 (55.0-84.0)ml/beat; p=0.046]. This was accompanied by an increase of oxygen saturation, elongation of 6MWD [435.0 (378.0-482.3) vs. 474 (405.0-534.7); p=0.02], decrease of NTproBNP level and increase of ET-1 level. CONCLUSIONS Three month follow-up of stable patients with Eisenmenger's syndrome transitioned from sitaxsentan to bosentan revealed improvement of exercise capacity despite significant elevation of ET-1 level. Concurrent increase of LV ejection fraction and pulmonary flow might have contributed to these favourable effects.
Collapse
Affiliation(s)
- Grzegorz Kopeć
- John Paul II Hospital in Krakow, Department of Cardiac and Vascular Diseases, Pradnicka 80, 31-202 Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
19
|
New perspectives on the endothelin axis in pain. Pharmacol Res 2011; 63:532-40. [PMID: 21352917 DOI: 10.1016/j.phrs.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 01/14/2023]
|
20
|
Pagán RM, Prieto D, Hernández M, Correa C, García-Sacristán A, Benedito S, Martínez AC. Regulation of NO-dependent acetylcholine relaxation by K+ channels and the Na+-K+ ATPase pump in porcine internal mammary artery. Eur J Pharmacol 2010; 641:61-6. [PMID: 20519140 DOI: 10.1016/j.ejphar.2010.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/10/2010] [Accepted: 05/06/2010] [Indexed: 11/19/2022]
Abstract
This study was designed to determine whether K+ channels play a role in nitric oxide (NO)-dependent acetylcholine relaxation in porcine internal mammary artery (IMA). IMA segments were isolated and mounted in organ baths to record isometric tension. Acetylcholine-elicited vasodilation was abolished by muscarinic receptor blockade with atropine (10(-6)M). Incubation with indomethacin (3 x 10(-6)M), superoxide dismutase (150 U/ml) and bosentan (10(-5)M) did not modify the acetylcholine response ruling out the participation of cyclooxygenase-derivates, reactive oxygen species or endothelin. The relaxation response to acetylcholine was strongly diminished by NO synthase- or soluble guanylyl cyclase-inhibition using L-NOArg (10(-4)M) or ODQ (3 x 10(-6)M), respectively. The vasodilation induced by acetylcholine and a NO donor (NaNO(2)) was reduced when rings were contracted with an enriched K+ solution (30 mM), by voltage-dependent K+ (K(v)) channel blockade with 4-amynopiridine (4-AP; 10(-4)M), by Ca(2+)-activated K+ (K(Ca)) channel blockade with tetraethylammonium (TEA; 10(-3)M), and by apamin (5 x 10(-7)M) plus charybdotoxin (ChTx; 10(-7)M) but not when these were added alone. In contrast, large conductance K(Ca) (BK(Ca)), ATP-sensitive K+ (K(ATP)) and inwardly rectifying K+ (K(ir)) channel blockade with iberiotoxin (IbTx; 10(-7)M), glibenclamide (10(-6)M) and BaCl(2) (3 x 10(-5)M), respectively, did not alter the concentration-response curves to acetylcholine and NaNO(2). Na+-K+ ATPase pump inhibition with ouabain (10(-5)M) practically abolished acetylcholine and NaNO(2) relaxations. Our findings suggest that acetylcholine-induced relaxation is largely mediated through the NO-cGMP pathway, involving apamin plus ChTx-sensitive K+ and K(v) channels, and Na+-K+-ATPase pump activation.
Collapse
Affiliation(s)
- Rosa María Pagán
- Sección Departamental de Fisiología Animal, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Quaile MP, Kubo H, Kimbrough CL, Douglas SA, Margulies KB. Direct inotropic effects of exogenous and endogenous urotensin-II: divergent actions in failing and nonfailing human myocardium. Circ Heart Fail 2009; 2:39-46. [PMID: 19808314 DOI: 10.1161/circheartfailure.107.748343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Urotensin-II (U-II) is an endogenous peptide upregulated in failing hearts. To date, insights into the myocardial actions of U-II have been obscured by its potent vasoconstrictor effects and interspecies differences in physiological responses to U-II. METHODS AND RESULTS We examined the direct effects of exogenous U-II on in vitro contractility in nonfailing and failing human myocardial trabeculae (n=47). Rapid cooling contractures (RCC) were used to examine sarcoplasmic reticulum Ca(2+) load. In nonfailing myocardium, exogenous U-II increased developed force (DF), rates of force generation and decline and RCC amplitude suggesting increased sarcoplasmic reticulum Ca(2+) load. In isolated myocyte suspensions from nonfailing hearts, U-II increased phospholamban phosphorylation. In failing myocardium, exogenous U-II reduced DF and rates of force generation and decline without a significant change in RCC amplitude in trabeculae or a change in phospholamban phosphorylation in myocytes. To examine the effects of endogenous U-II, we administered the peptidic U-II receptor antagonist (UT-A) GSK248451A to isolated trabeculae. UT-A induced a decrease in DF in nonfailing myocardium and an increase in DF in failing myocardium. UT-A increased RCC amplitude slightly in both nonfailing and failing myocardium. During ongoing UT-A, exogenous U-II had little effect on DF and RCC amplitude, confirming effective receptor blockade. CONCLUSIONS U-II modulates contractility independent of vasoconstriction with opposite effects in failing and nonfailing hearts. Positive inotropic responses to UT-A alone suggests that increased endogenous U-II constrains contractility in failing hearts via an autocrine or paracrine mechanism. These findings support a potential therapeutic role for UT-A in heart failure.
Collapse
Affiliation(s)
- Michael P Quaile
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pa, USA
| | | | | | | | | |
Collapse
|
22
|
Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol 2009; 157:527-36. [PMID: 19630832 PMCID: PMC2707964 DOI: 10.1111/j.1476-5381.2009.00240.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 01/20/2009] [Accepted: 02/05/2009] [Indexed: 12/14/2022] Open
Abstract
The endothelium is a crucial regulator of vascular physiology, producing in healthy conditions several substances with a potent antiatherosclerotic properties. Accordingly, the presence of endothelial dysfunction is associated with subclinical atherosclerosis and with an increased future risk of cardiovascular events. A large body of evidence supports the fundamental role of nitric oxide (NO) as the main endothelium-derived relaxing factor. However, in the presence of pathological conditions, such as hypertension, endothelial cells, in response to a number of agents and physical stimuli, become also a source of endothelium-derived contracting factors (EDCFs), including endothelins and angiotensin II and particularly cyclooxygenase-derived prostanoids and superoxide anions. These latter were at first identified as responsible for impaired endothelium-dependent vasodilation in patients with essential hypertension. However, cyclooxygenase-dependent EDCFs production is characteristic of the aging process, and essential hypertension seems to only anticipate the phenomenon. It is worth noting that both in aging and hypertension EDCF production is associated with a parallel decrease in NO availability, suggesting that this substance could be oxygen free radicals themselves. Accordingly, in hypertension both indomethacin, a cyclooxygenase inhibitor, and vitamin C, an antioxidant, increase the vasodilation to acetylcholine by restoring NO availability. In conclusion, hypertension is characterized by a decline in endothelial function, associated with a progressive decrease in NO bioavailability and increase in the production of EDCF. The mechanisms that regulate the balance between NO and EDCF, and the processes transforming the endothelium from a protective organ to a source of vasoconstrictor, proaggregatory and promitogenic mediators remain to be determined.
Collapse
Affiliation(s)
- Daniele Versari
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
23
|
Tamama K, Sen CK, Wells A. Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells Dev 2008; 17:897-908. [PMID: 18564029 DOI: 10.1089/scd.2007.0155] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Smooth muscle cells (SMCs) are major components of blood vessels and other hollow visceral organs required for tissue engineering of these organs. This study aims to evaluate whether adult bone marrow-derived mesenchymal stem cells (BMMSCs), multipotent cells, can be converted into SMCs. We examined the ERK/MAPK pathway as it exerts anti-myogenic signals in SMCs. Undifferentiated BMMSCs express most SMC marker genes, albeit mainly at low levels, except smooth muscle myosin heavy chain (SMMHC), the most definitive marker of differentiated SMC. The treatment of BMMSC with MEK inhibitor up-regulated the expression of alpha-smooth muscle actin (ASMA), h-caldesmon, and SMMHC in BMMSC in low serum condition. MEK inhibitor-treated BMMSC also contracted a collagen gel in response to endothelin. Interestingly, inhibition of MEK induced myocardin expression in BMMSC. In conclusion, BMMSCs treated MEK inhibitor gain a SMC-like phenotype with ligand-induced cell contractility to endothelin in vitro. This approach has obvious implications for cell therapeutics and tissue engineering of hollow visceral organs such as blood vessels.
Collapse
Affiliation(s)
- Kenichi Tamama
- Department of Pathology, Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
24
|
Labonté J, Brochu I, Simard E, D'Orléans-Juste P. Distinct modulation of the endothelin-1 pathway in iNOS-/- and eNOS-/- mice. Can J Physiol Pharmacol 2008; 86:516-25. [PMID: 18758499 DOI: 10.1139/y08-042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that constitutive endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) have opposite effects on the regulation of endothelin and its receptors. We therefore sought to determine whether deletions of iNOS or eNOS genes in mice modulate pressor responses to endothelin and the expression of ETA and ETB receptors in a similar fashion. Despite unchanged baseline hemodynamic parameters, anesthetized iNOS-/- mice displayed reduced pressor responses to endothelin-1, but not to that of IRL-1620, a selective ETB agonist. Protein content of cardiac ETA receptors was reduced in iNOS-/- mice compared with wild-type mice, but that of ETB receptors was unchanged. Anesthetized eNOS-/- mice presented a hypertensive state, accompanied by an enhanced pressor response to intravenous endothelin-1, whereas the pressor response to IRL-1620 was reduced. Protein levels were also found to be increased for ETA receptors, but reduced for ETB receptors, in cardiac tissues of eNOS-/- mice. In conscious animals, both strains responded equally to the hypotensive effect of an ETA antagonist, ABT-627, whereas orally administered A-192621, an ETB antagonist, increased MAP to a greater extent in eNOS-/- than in wild-type mice. Furthermore, significant levels of immunoreactive endothelin were found in mesenteric arteries in eNOS-/- but not in iNOS-/- or wild-type congeners. Our study shows that repression of iNOS or eNOS has differential effects on endothelin-1 and its receptors. We have also shown that the heart is the main organ in which iNOS or eNOS repression induces important alterations in protein content of endothelin receptors in adult mice.
Collapse
Affiliation(s)
- Julie Labonté
- Department of Pharmacology, Medical School, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW There is considerable increase in the use of left ventricular assist devices for the treatment of severe heart failure. Traditionally viewed as a bridge to transplantation and more recently as a destination therapy, left ventricular assist device support is now recognized to offer potential for myocardial recovery through reverse remodeling, a potential that is further enhanced by combination with pharmacologic therapy. In this study, we examine the molecular changes associated with left ventricular assist device support and how these may contribute to the recovery process. RECENT FINDINGS Studies in both patients and experimental models have demonstrated that improved function is associated with alterations in several key pathways including cell survival, cytokine signaling, calcium handling, adrenergic receptor signaling, cytoskeletal and contractile proteins, energy metabolism, extracellular matrix, and endothelial and microvascular functions. Moreover, the unique research opportunities offered by left ventricular assist device analysis are beginning to distinguish changes associated with recovery from those of mechanical unloading alone and identify potential predictors and novel therapeutic targets capable of enhancing myocardial repair. SUMMARY Significant progress has been made toward revealing molecular changes associated with myocardial recovery from heart failure. These studies also offer new insight into the pathogenesis of heart failure and point to novel therapeutic strategies.
Collapse
|
26
|
Perfume G, Nabhen SL, Riquelme Barrera K, Otero MG, Bianciotti LG, Vatta MS. Long-term modulation of tyrosine hydroxylase activity and expression by endothelin-1 and -3 in the rat anterior and posterior hypothalamus. Am J Physiol Regul Integr Comp Physiol 2008; 294:R905-14. [DOI: 10.1152/ajpregu.00555.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Brain catecholamines are involved in the regulation of biological functions, including cardiovascular activity. The hypothalamus presents areas with high density of catecholaminergic neurons and the endothelin system. Two hypothalamic regions intimately related with the cardiovascular control are distinguished: the anterior (AHR) and posterior (PHR) hypothalamus, considered to be sympathoinhibitory and sympathoexcitatory regions, respectively. We previously reported that endothelins (ETs) are involved in the short-term tyrosine hydroxylase (TH) regulation in both the AHR and PHR. TH is crucial for catecholaminergic transmission and is tightly regulated by well-characterized mechanisms. In the present study, we sought to establish the effects and underlying mechanisms of ET-1 and ET-3 on TH long-term modulation. Results showed that in the AHR, ETs decreased TH activity through ETBreceptor activation coupled to the nitric oxide, phosphoinositide, and CaMK-II pathways. They also reduced total TH level and TH phosphorylated forms (Ser 19 and 40). Conversely, in the PHR, ETs increased TH activity through a G protein-coupled receptor, likely an atypical ET receptor or the ETCreceptor, which stimulated the phosphoinositide and adenylyl cyclase pathways, as well as CaMK-II. ETs also increased total TH level and the Ser 19, 31, and 40 phosphorylated sites of the enzyme. These findings support that ETs are involved in the long-term regulation of TH activity, leading to reduced sympathoinhibition in the AHR and increased sympathoexcitation in the PHR. Present and previous studies may partially explain the cardiovascular effects produced by ETs when applied to the brain.
Collapse
|
27
|
UDYAVAR AMEYAR, CHEN YAOCHANG, CHEN YIJEN, CHENG CHENCHUAN, LIN CHENGI, CHEN SHIHANN. Endothelin-1 Modulates the Arrhythmogenic Activity of Pulmonary Veins. J Cardiovasc Electrophysiol 2008; 19:285-92. [DOI: 10.1111/j.1540-8167.2007.01033.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Abstract
The ETs (endothelins) comprise a family of three 21-amino-acid peptides (ET-1, ET-2 and ET-3) and 31-amino-acid ETs (ET-1(1-31), ET-2(1-31) and ET-3(1-31)). ET-1 is synthesized from a biologically inactive precursor, big ET-1, by ECEs (ET-converting enzymes). The actions of ET-1 are mediated through activation of the G-protein-coupled ET(A) and ET(B) receptors, which are found in a variety of cells in the cardiovascular and renal systems. ET-1 has potent vasoconstrictor, mitogenic, pro-inflammatory and antinatriuretic properties, which have been implicated in the pathophysiology of a number of cardiovascular diseases. Overexpression of ET-1 has been consistently described in salt-sensitive models of hypertension and in models of renal failure, and has been associated with disease progression. Sex differences are observed in many aspects of mammalian cardiovascular function and pathology. Hypertension, as well as other cardiovascular diseases, is more common in men than in women of similar age. In experimental models of hypertension, males develop an earlier and more severe form of hypertension than do females. Although the reasons for these differences are not well established, the effects of gonadal hormones on arterial, neural and renal mechanisms that control blood pressure are considered contributing factors. Sex differences in the ET-1 pathway, with males displaying higher ET-1 levels, greater ET-1-mediated vasoconstrictor and enhanced pressor responses in comparison with females, are addressed in the present review. Sex-associated differences in the number and function of ET(B) receptors appear to be particularly important in the specific characteristics of hypertension between females and males. Although the gonadal hormones modulate some of the differences in the ET pathway in the cardiovascular system, a better understanding of the exact mechanisms involved in sex-related differences in this peptidergic system is needed. With further insights into these differences, we may learn that men and women could require different antihypertensive regimens.
Collapse
|
29
|
Namekata I, Fujiki S, Kawakami Y, Moriwaki R, Takeda K, Kawanishi T, Takahara A, Shigenobu K, Tanaka H. Intracellular mechanisms and receptor types for endothelin-1-induced positive and negative inotropy in mouse ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol 2008; 376:385-95. [PMID: 18172614 DOI: 10.1007/s00210-007-0228-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 11/18/2007] [Indexed: 11/29/2022]
Abstract
We examined the intracellular mechanisms for endothelin-1-induced positive and negative inotropic components that coexist in the mouse ventricular myocardium using isolated ventricular tissue and myocytes from 4-week-old mice. In the presence of SEA0400, a specific inhibitor of the Na+-Ca2+ exchanger, endothelin-1 produced positive inotropy. Endothelin-1, when applied to cardiomyocytes in the presence of SEA0400, did not change the peak amplitude of the Ca2+ transient but increased intracellular pH and Ca2+ sensitivity of contractile proteins. On the other hand, in the presence of dimethylamiloride (DMA), a specific inhibitor of the Na+-H+ exchanger, endothelin-1 produced negative inotropy. In cardiomyocytes, in the presence of DMA, endothelin-1 produced a decrease in peak amplitude of the Ca2+ transient. In the presence of both DMA and SEA0400, endothelin-1 produced neither positive nor negative inotropy. Positive inotropy was blocked by BQ-123 and negative inotropy by BQ-788. These results suggested that endothelin-1-induced positive inotropy is mediated by ET(A) receptors, activation of the Na+-H+ exchanger and an increase in intracellular pH and Ca2+ sensitivity and that the negative inotropy is mediated by ET(B) receptors, activation of the Na+-Ca2+ exchanger and decrease in Ca2+ transient amplitude.
Collapse
Affiliation(s)
- Iyuki Namekata
- Department of Pharmacology, Toho University Faculty of Pharmaceutical Sciences, Miyama 2-2-1 Funabashi, Chiba, 274-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Haworth SG. The cell and molecular biology of right ventricular dysfunction in pulmonary hypertension. Eur Heart J Suppl 2007. [DOI: 10.1093/eurheartj/sum025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Meidan R, Levy N. The ovarian endothelin network: an evolving story. Trends Endocrinol Metab 2007; 18:379-85. [PMID: 17997104 DOI: 10.1016/j.tem.2007.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/09/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022]
Abstract
The endothelin (ET) system consists of three ET isopeptides, several converting enzyme isoforms and two G-protein-coupled receptors, ETA and ETB, which are linked to multiple signaling pathways. Less than 20 years after the initial detection of ET-1 in granulosa cells, the ovarian ET network continues to expand with the discovery of new members and functions. ETs influence a broad range of essential reproductive processes, such as ovulation, steroidogenesis and luteolysis. Therefore, a more comprehensive understanding of the ovarian ET network might provide new strategies for controlling reproduction. This review presents up-to-date findings on the ET network in the ovary.
Collapse
Affiliation(s)
- Rina Meidan
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
32
|
Dai J, Lee CH, Poburko D, Szado T, Kuo KH, van Breemen C. Endothelin-1-mediated wave-like [Ca2+]i oscillations in intact rabbit inferior vena cava. J Vasc Res 2007; 44:495-503. [PMID: 17657165 DOI: 10.1159/000106553] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/13/2007] [Indexed: 11/19/2022] Open
Abstract
Endothelin-1 (ET1) is an endogenous vasoconstrictor released by the vascular system to regulate the contractility of vascular smooth muscle cells (VSMC). It is implicated in the pathogenesis of hypertension and diabetic vasculopathy. In rabbit inferior vena cava (IVC), 10 nM ET1 induces tonic contraction mainly via type A endothelin receptor activation. Using confocal imaging of Fluo-3 loaded in thein situ VSMC within the intact IVC, we found that ET1 elicited [Ca2+]i oscillations with an average frequency of 0.31 +/- 0.01 Hz. These [Ca2+]i oscillations occurred as repetitive Ca2+ waves traveling along the longitudinal axis of the cells with an average velocity of 29 +/- 3 microm/s. The Ca2+ waves were not synchronized between neighboring VSMC nor were they propagated between them. Nifedipine (10 microM) inhibited the tonic contraction by 27.0 +/- 5.0% while SKF96365 (50 microM) abolished the remaining contraction. In a parallel Ca2+ study, nifedipine reduced the frequency of the oscillations to 0.22 +/- 0.01 Hz while SKF96365 abolished the remaining [Ca2+]i oscillations. Subsequent application of 25 mM caffeine elicited no further Ca2+ signal. Thus, we conclude that ET1 stimulates tonic contraction in the rabbit IVC by inducing [Ca2+]i oscillations and that stimulated Ca2+ entry through both the L-type voltage-gated Ca2+ channels and a nifedipine-resistant and SKF96365-sensitive pathway is crucial for the maintenance of [Ca2+]i oscillations and tonic contraction.
Collapse
MESH Headings
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/drug effects
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Female
- Imidazoles/pharmacology
- In Vitro Techniques
- Microscopy, Confocal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nifedipine/pharmacology
- Oligopeptides/pharmacology
- Peptides, Cyclic/pharmacology
- Piperidines/pharmacology
- Rabbits
- Receptor, Endothelin A/drug effects
- Receptor, Endothelin A/metabolism
- Time Factors
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/metabolism
- Vasoconstrictor Agents/pharmacology
- Vena Cava, Inferior/metabolism
Collapse
Affiliation(s)
- Jiazhen Dai
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, University of British Columbia, Vancouver, B.C., Canada
| | | | | | | | | | | |
Collapse
|
33
|
Mahmud M, Champion HC. Right ventricular failure complicating heart failure: pathophysiology, significance, and management strategies. Curr Cardiol Rep 2007; 9:200-8. [PMID: 17470333 DOI: 10.1007/bf02938351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Right heart failure most commonly results from the complication of left heart failure (systolic or nonsystolic dysfunction) or pulmonary hypertension. Over the past decade, greater attention has been paid to the role of right ventricular failure in the morbidity and mortality associated with cardiomyopathy and pulmonary hypertension. The right ventricle is distinct from the left ventricle not only in its spatial localization, but also in its response to increased afterload and signaling mechanisms. This article discusses the role of right ventricular failure in the setting of heart failure as well as the clinical diagnosis and management of right ventricular failure.
Collapse
Affiliation(s)
- Mobusher Mahmud
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 720 Rutland Avenue, Ross 850, Baltimore, MD 21205, USA
| | | |
Collapse
|
34
|
Callera G, Tostes R, Savoia C, Muscara MN, Touyz RM. Vasoactive peptides in cardiovascular (patho)physiology. Expert Rev Cardiovasc Ther 2007; 5:531-52. [PMID: 17489676 DOI: 10.1586/14779072.5.3.531] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous vasoactive agents play an important physiological role in regulating vascular tone, reactivity and structure. In pathological conditions, alterations in the regulation of vasoactive peptides result in endothelial dysfunction, vascular remodeling and vascular inflammation, which are important processes underlying vascular damage in cardiovascular disease. Among the many vasoactive agents implicated in vascular (patho)biology, angiotensin II (Ang II), endothelin (ET), serotonin and natriuretic peptides appear to be particularly important because of their many pleiotropic actions and because they have been identified as potential therapeutic targets in cardiovascular disease. Ang II, ET-1, serotonin and natriuretic peptides mediate effects via specific receptors, which belong to the group of G-protein-coupled receptors. ET, serotonin and Ang II are primarily vasoconstrictors with growth-promoting actions, whereas natriuretic peptides, specifically atrial, brain and C-type natriuretic peptides, are vasodilators with natriuretic effects. Inhibition of vasoconstrictor actions with drugs that block peptide receptors, compounds that inhibit enzymes that generate vasoactive peptides or agents that increase levels of natriuretic peptides are potentially valuable therapeutic tools in the management of cardiovascular diseases. This review focuses on ET, natriuretic peptides and serotonin. The properties and distribution of these vasoactive agents and their receptors, mechanisms of action and implications in cardiovascular (patho)physiology will be discussed.
Collapse
Affiliation(s)
- Glaucia Callera
- University of Ottawa/Ottawa Health Research Institute, Kidney Research Centre, Ottawa, ON, Canada
| | | | | | | | | |
Collapse
|
35
|
Sultana N, Nag K, Kato A, Hirose S. Pillar cell and erythrocyte localization of fugu ETA receptor and its implication. Biochem Biophys Res Commun 2007; 355:149-55. [PMID: 17286960 DOI: 10.1016/j.bbrc.2007.01.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 01/23/2023]
Abstract
Endothelin, a vasoconstrictor peptide, plays important roles not only in the mammalian circulatory system but also in non-mammalian systems, such as the gill lamellar vascular network with complex structural characteristics. Here, we show that (i) the contraction of pillar cells that delimit the lamellar vasculature is controlled by endothelin through the type A endothelin receptor (ET(A)) linked to the intracellular calcium signaling system and (ii) ET(A) receptor is also highly expressed on fugu erythrocytes, a hitherto unexpected finding. Database mining revealed the presence of five endothelin receptor (ETR) sequences in the fugu genome. By Northern blotting, cDNA cloning, and fura-2 monitoring, the branchial ETR subtype was shown to be ET(A) able to induce a Ca(2+) transit. Immunohistochemistry revealed its pillar cell and erythrocyte localization. These results suggest an endothelin/ET(A)-mediated coordinated regulation of the pillar cell shape and erythrocyte membrane flexibility.
Collapse
Affiliation(s)
- Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|