1
|
Pace W. A history of Trypanosoma cruzi screening in domestic dogs throughout the Americas - A systematic review. Vet Parasitol Reg Stud Reports 2025; 60:101260. [PMID: 40280678 DOI: 10.1016/j.vprsr.2025.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025]
Abstract
Chagas disease is a known killer of humans and other species ranging from South America north into the United States with an estimated 6-7 million human infections globally. Interest in canine Chagas disease has been high since its discovery in 1909 due to the intertwined relationships between humans and domestic dogs but no agency exists that records or tracks canine infections. A systematic review was conducted with the objectives of compiling and examining all available data originally in English, Spanish or Portuguese containing raw numbers referencing a screening effort in naturally infected or exposed domestic dogs from the Americas since its discovery. A total of 170 publications were identified and included for review. Study areas, sample groups, infection rates, methods of diagnosis, and demographics were discussed for comparison and historical perspective. The passage of time has seen numerous advances in diagnostic methods and the promise of effective treatment options, for humans and dogs, but there is still a long way to go in establishing standard diagnostic methods and providing clinically accessible treatment options.
Collapse
Affiliation(s)
- Wendy Pace
- University of North Texas, 1510 Chestnut St. Denton, TX 76201. USA.
| |
Collapse
|
2
|
Barbosa JMC, Pedra-Rezende Y, Mata-Santos HA, Vilar-Pereira G, Melo TGD, Ramos IP, Gibaldi D, Moreira OC, Nunes DF, Batista MM, Lannes-Vieira J, Daliry A, Salomão K. Preclinical evaluation of combined therapy with amiodarone and low-dose benznidazole in a mouse model of chronic Trypanosoma cruzi infection. Biomed Pharmacother 2024; 175:116742. [PMID: 38754265 DOI: 10.1016/j.biopha.2024.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Chagasic chronic cardiomyopathy (CCC) is the primary clinical manifestation of Chagas disease (CD), caused by Trypanosoma cruzi. Current therapeutic options for CD are limited to benznidazole (Bz) and nifurtimox. Amiodarone (AMD) has emerged as most effective drug for treating the arrhythmic form of CCC. To address the effects of Bz and AMD we used a preclinical model of CCC. Female C57BL/6 mice were infected with T. cruzi and subjected to oral treatment for 30 consecutive days, either as monotherapy or in combination. AMD in monotherapy decreased the prolonged QTc interval, the incidence of atrioventricular conduction disorders and cardiac hypertrophy. However, AMD monotherapy did not impact parasitemia, parasite load, TNF concentration and production of reactive oxygen species (ROS) in cardiac tissue. Alike Bz therapy, the combination of Bz and AMD (Bz/AMD), improved cardiac electric abnormalities detected T. cruzi-infected mice such as decrease in heart rates, enlargement of PR and QTc intervals and increased incidence of atrioventricular block and sinus arrhythmia. Further, Bz/AMD therapy ameliorated the ventricular function and reduced parasite burden in the cardiac tissue and parasitemia to a degree comparable to Bz monotherapy. Importantly, Bz/AMD treatment efficiently reduced TNF concentration in the cardiac tissue and plasma and had beneficial effects on immunological abnormalities. Moreover, in the cardiac tissue Bz/AMD therapy reduced fibronectin and collagen deposition, mitochondrial damage and production of ROS, and improved sarcomeric and gap junction integrity. Our study underlines the potential of the Bz/AMD therapy, as we have shown that combination increased efficacy in the treatment of CCC.
Collapse
Affiliation(s)
- Juliana Magalhães Chaves Barbosa
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Fisiopatologia Clínica e Experimental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Hílton Antônio Mata-Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Análise e Desenvolvimento de Inibidores Enzimáticos e Laboratório Multiusuário de Análises por RMN, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tatiana Galvão de Melo
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Isalira Peroba Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Otacilio C Moreira
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daniela Ferreira Nunes
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Anissa Daliry
- Laboratório de Fisiopatologia Clínica e Experimental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Durães-Oliveira J, Palma-Marques J, Moreno C, Rodrigues A, Monteiro M, Alexandre-Pires G, da Fonseca IP, Santos-Gomes G. Chagas Disease: A Silent Threat for Dogs and Humans. Int J Mol Sci 2024; 25:3840. [PMID: 38612650 PMCID: PMC11011309 DOI: 10.3390/ijms25073840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.
Collapse
Affiliation(s)
- João Durães-Oliveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Cláudia Moreno
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Armanda Rodrigues
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Marta Monteiro
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Graça Alexandre-Pires
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| |
Collapse
|
4
|
Hunter RP, Madigan R. The effects of formulation on the pharmacokinetics of itraconazole and amiodarone in dogs after oral administration of a combination product, commercial products, and compounded products. J Vet Pharmacol Ther 2024; 47:65-72. [PMID: 37818972 DOI: 10.1111/jvp.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
This study evaluated four different formulations of itraconazole and amiodarone. Formulation 1 was Vida's combination tablet containing both active pharmaceutical ingredients (APIs). Formulation 2 was separate, commercially available human generic capsules and tablets of itraconazole and amiodarone, respectively. Formulation 3 was separate, compounded suspensions of itraconazole and amiodarone. Formulation 4 was a compounded chewable tablet of itraconazole. Eight female dogs were dosed with 5 mg/kg of itraconazole and 15 mg/kg amiodarone (except for formulation 4, which only received 5 mg/kg itraconazole) once weekly for 4 weeks using a modified Latin Square design, ensuring that all dogs received all formulations with a 7-day washout between treatments. Animals were fasted overnight prior to each dose administration, with food returned to all animals 4 h post-dose. Blood samples (3 mL) were collected pre-treatment (0) and at appropriate time points over 72 h after each dose for a total of 14 samples per dog per treatment. There was high variability in the serum concentration data within treatment groups for itraconazole. The compounded suspensions were difficult to dose due to the nature of the formulations. The volumes dosed were accurate and consistent, but the suspension was thin and settled immediately when shaking was stopped for both itraconazole and amiodarone. All serum samples following itraconazole chewable tablet administration were not detectable or just above itraconazole's LOQ and thus did not allow for pharmacokinetic determination.
Collapse
Affiliation(s)
| | - Roy Madigan
- Vida Pharmacal, Inc., Spring Branch, Texas, USA
| |
Collapse
|
5
|
Francisco AF, Chen G, Wang W, Sykes ML, Escudié F, Scandale I, Olmo F, Shackleford DM, Zulfiqar B, Kratz JM, Pham T, Saunders J, Hu M, Avery VM, Charman SA, Kelly JM, Chatelain E. Preclinical data do not support the use of amiodarone or dronedarone as antiparasitic drugs for Chagas disease at the approved human dosing regimen. FRONTIERS IN TROPICAL DISEASES 2023; 4. [DOI: 10.3389/fitd.2023.1254061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The repurposing of approved drugs is an appealing method to fast-track the development of novel therapies for neglected diseases. Amiodarone and dronedarone, two approved antiarrhythmic agents, have been reported to have potential for the management of Chagas disease patients displaying symptomatic heart pathology. More recently, it has been suggested that both molecules not only have an antiarrhythmic effect, but also have trypanocidal activity against Trypanosoma cruzi, the causative agent of Chagas disease. In this work, we assessed the in vitro activity of these compounds against T. cruzi, the in vivo pharmacokinetics, and pharmacodynamics, to determine the potential for repurposing these drugs as therapies for Chagas disease. Based on these results, we were unable to reproduce the in vitro potencies of amiodarone and dronedarone described in the literature, and both drugs were found to be inactive or cytotoxic against a variety of different mammalian cell lines. The evaluation of in vivo efficacy in a bioluminescent murine model of T. cruzi did not show antiparasitic activity at the highest tolerated dose tested. While the potential of amiodarone and dronedarone as antiarrhythmic agents in Chagas cardiomyopathic patients cannot be completely excluded, a trypanocidal effect in patients treated with these two drugs appears unlikely.
Collapse
|
6
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
7
|
Duschak VG, Paniz Mondolfi AE, Benaim G. Editorial: Chagas disease novel drug targets and treatments. Front Cell Infect Microbiol 2023; 13:1199715. [PMID: 37305423 PMCID: PMC10250960 DOI: 10.3389/fcimb.2023.1199715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Vilma G. Duschak
- National Council of Scientific and Technical Research (CONICET) and National Institute of Parasitology (INP), “Dr.Mario Fatala Chaben”, Administración Nacional de Laboratorios de Institutos de Salud (ANLIS)-Malbrán, National Health Department, Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires, Argentina
| | - Alberto E. Paniz Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Incubadora Venezolana de la Ciencia (IVC), Centro de Investigaciones Biomédicas IDB, Barquisimeto, Venezuela
| | - Gustavo Benaim
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
8
|
Hamer SA, Saunders AB. Veterinary Chagas Disease (American Trypanosomiasis) in the United States. Vet Clin North Am Small Anim Pract 2022; 52:1267-1281. [DOI: 10.1016/j.cvsm.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Bustamante JM, Padilla AM, White B, Auckland LD, Busselman RE, Collins S, Malcolm EL, Wilson BF, Saunders AB, Hamer SA, Tarleton RL. Prophylactic low-dose, bi-weekly benznidazole treatment fails to prevent Trypanosoma cruzi infection in dogs under intense transmission pressure. PLoS Negl Trop Dis 2022; 16:e0010688. [PMID: 36315597 PMCID: PMC9648846 DOI: 10.1371/journal.pntd.0010688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/10/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Trypanosoma cruzi naturally infects a wide variety of wild and domesticated mammals, in addition to humans. Depending on the infection dose and other factors, the acute infection can be life-threatening, and in all cases, the risk of chagasic heart disease is high in persistently infected hosts. Domestic, working, and semi-feral dogs in the Americas are at significant risk of T. cruzi infection and in certain settings in the southern United States, the risk of new infections can exceed 30% per year, even with the use of vector control protocols. In this study, we explored whether intermittent low-dose treatment with the trypanocidal compound benznidazole (BNZ) during the transmission season, could alter the number of new infections in dogs in an area of known, intense transmission pressure. Preliminary studies in mice suggested that twice-weekly administration of BNZ could prevent or truncate infections when parasites were delivered at the mid-point between BNZ doses. Pre-transmission season screening of 126 dogs identified 53 dogs (42.1%) as T. cruzi infection positive, based upon blood PCR and Luminex-based serology. Serial monitoring of the 67 uninfected dogs during the high transmission season (May to October) revealed 15 (22.4%) new infections, 6 in the untreated control group and 9 in the group receiving BNZ prophylaxis, indicating no impact of this prophylaxis regimen on the incidence of new infections. Although these studies suggest that rigorously timed and more potent dosing regimen may be needed to achieve an immediate benefit of prophylaxis, additional studies would be needed to determine if drug prophylaxis reduced disease severity despite this failure to prevent new infections.
Collapse
Affiliation(s)
- Juan M. Bustamante
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Angel M. Padilla
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Brooke White
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Lisa D. Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Rachel E. Busselman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Stephanie Collins
- Chaparral Veterinary Center, Jourdanton, Texas, United States of America
| | - Elizabeth L. Malcolm
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Briana F. Wilson
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ashley B. Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
10
|
Freitas NEM, Habib FL, Santos EF, Silva ÂAO, Fontes ND, Leony LM, Sampaio DD, de Almeida MC, Dantas-Torres F, Santos FLN. Technological advances in the serological diagnosis of Chagas disease in dogs and cats: a systematic review. Parasit Vectors 2022; 15:343. [PMID: 36167575 PMCID: PMC9516836 DOI: 10.1186/s13071-022-05476-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Chagas disease (CD) is caused by Trypanosoma cruzi, which is transmitted mainly through the feces/urine of infected triatomine bugs. The acute phase lasts 2–3 months and is characterized by high parasitemia and nonspecific symptoms, whereas the lifelong chronic phase features symptoms affecting the heart and/or digestive tract occurring in 30–40% of infected individuals. As in humans, cardiac abnormalities are observed in T. cruzi-infected dogs and cats. We reviewed the technological advances in the serological diagnosis of CD in dogs and cats. Methods A review of the published literature during the last 54 years (1968–2022) on the epidemiology, clinical features, diagnosis, treatment and prevention of CD in dogs and cats was conducted. Results Using predefined eligibility criteria for a search of the published literature, we retrieved and screened 436 publications. Of these, 84 original studies were considered for inclusion in this review. Dogs and cats are considered as sentinels, potentially indicating an active T. cruzi transmission and thus the risk for human infection. Although dogs and cats are reputed to be important for maintaining the T. cruzi domestic transmission cycle, there are no commercial tests to detect past or active infections in these animals. Most published research on CD in dogs and cats have used in-house serological tests prepared with native and/or full-length recombinant antigens, resulting in variable diagnostic performance. In recent years, chimeric antigens have been used to improve the diagnosis of chronic CD in humans with encouraging results. Some of them have high performance values (> 95%) and extremely low cross-reactivity rates for Leishmania spp., especially the antigens IBMP-8.1 to IBMP-8.4. The diagnostic performance of IBMP antigens was also investigated in dogs, showing high diagnostic performance with negligible cross-reactivity with anti-Leishmania infantum antibodies. Conclusions The development of a commercial immunodiagnostic tool to identify past or active T. cruzi infections in dogs and cats is urgently needed. The use of chimeric recombinant T. cruzi antigens may help to fill this gap and is discussed in this review. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05476-4.
Collapse
Affiliation(s)
- Natália Erdens Maron Freitas
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Fernanda Lopes Habib
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Emily Ferreira Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Ângelo Antônio Oliveira Silva
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Natália Dantas Fontes
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Leonardo Maia Leony
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil
| | - Daniel Dias Sampaio
- Brazil's Family Health Strategy, Municipal Health Department, Tremedal City Hall, Bahia, Tremedal, Brazil
| | - Marcio Cerqueira de Almeida
- Pathology and Molecular Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Filipe Dantas-Torres
- Laboratory of Immunoparasitology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Fred Luciano Neves Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Waldemar Falcão Street, 121, Candeal, Bahia, Salvador, 40296-710, Brazil. .,Integrated Translational Program in Chagas Disease From Fiocruz (Fio-Chagas), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Barbosa JMC, Pedra-Rezende Y, Pereira LD, de Melo TG, Barbosa HS, Lannes-Vieira J, de Castro SL, Daliry A, Salomão K. Benznidazole and amiodarone combined treatment attenuates cytoskeletal damage in Trypanosoma cruzi-infected cardiac cells. Front Cell Infect Microbiol 2022; 12:975931. [PMID: 36093188 PMCID: PMC9452897 DOI: 10.3389/fcimb.2022.975931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, is an important public health problem mainly in Latin America, leading to approximately 12,000 annual deaths. Current etiological treatment for CD is limited to two nitro compounds, benznidazole (Bz) and nifurtimox (Nif), both presenting relevant limitations. Different approaches have been employed to establish more effective and safer schemes to treat T. cruzi infection, mostly based on drug repurposing and combination therapies. Amiodarone (AMD), an antiarrhythmic medicament of choice for patients with the chronic cardiac form of CD, is also recognized as a trypanocidal agent. Therefore, our aim is to investigate the combined treatment Bz + AMD on trypomastigote viability, control of T. cruzi intracellular form proliferation, and recovery of the infection-induced cytoskeleton alterations in cardiac cells. The combination of Bz + AMD did not improve the direct trypanocidal effect of AMD on the infective blood trypomastigote and replicative intracellular forms of the parasite. Otherwise, the treatment of T. cruzi-infected cardiac cells with Bz plus AMD attenuated the infection-triggered cytoskeleton damage of host cells and the cytotoxic effects of AMD. Thus, the combined treatment Bz + AMD may favor parasite control and hamper tissue damage.
Collapse
Affiliation(s)
| | | | | | | | - Helene Santos Barbosa
- Laboratóriode de Biologia Estrutural, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Anissa Daliry
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Kelly Salomão,
| |
Collapse
|
12
|
Pharmaceutical agents for the treatment of Chagas disease: patenting trends in 2016-2021 period. Pharm Pat Anal 2022; 11:97-110. [PMID: 35861035 DOI: 10.4155/ppa-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
American trypanosomiasis is a neglected tropical disease and an endemic problem in 21 Latin American countries, whose treatment relies on only two US FDA-approved drugs: benznidazole and nifurtimox. Patent literature reveals vital information on new trends in therapies for various diseases, including Chagas disease. The authors used the patent databases of the world's major patent offices to generate an overview of patent trends related to the treatment of Chagas disease. A total of 50 patent families were collected and grouped as 'small molecules', 'pharmaceutical compositions of known compounds' and vaccines. From the results and interpretation, it can be concluded that the treatment of Chagas disease receives little attention in the field of patents and that the upward trend is minimal.
Collapse
|
13
|
Malcolm EL, Saunders AB, Vitt JP, Boutet BG, Hamer SA. Antiparasitic treatment with itraconazole and amiodarone in 2 dogs with severe, symptomatic Chagas cardiomyopathy. J Vet Intern Med 2022; 36:1100-1105. [PMID: 35388923 PMCID: PMC9151465 DOI: 10.1111/jvim.16422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 01/06/2023] Open
Abstract
Chagas cardiomyopathy, caused by the protozoal parasite Trypanosoma cruzi, is characterized by arrhythmias, myocardial damage, heart failure, and sudden death. We describe 2 dogs with severe, symptomatic Chagas cardiomyopathy characterized by myocardial dysfunction and electrocardiographic abnormalities that were managed with a combination of cardiac medications and antiparasitic treatment with itraconazole and amiodarone. Both dogs died suddenly within 6 months of diagnosis. These cases highlight the need for early detection of Chagas disease in dogs and continued research to develop effective antiparasitic treatment protocols.
Collapse
Affiliation(s)
- Elizabeth L Malcolm
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ashley B Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jordan P Vitt
- Heart of Veterinary Cardiology PLLC, Seattle, Washington, USA
| | - Bruno G Boutet
- Caring Hearts Veterinary Cardiology, Grande-Digue, New Brunswick, Canada
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Baek KH, Phan TN, Malwal SR, Lee H, Li ZH, Moreno SNJ, Oldfield E, No JH. In Vivo Efficacy of SQ109 against Leishmania donovani, Trypanosoma spp. and Toxoplasma gondii and In Vitro Activity of SQ109 Metabolites. Biomedicines 2022; 10:biomedicines10030670. [PMID: 35327472 PMCID: PMC8944987 DOI: 10.3390/biomedicines10030670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
SQ109 is an anti-tubercular drug candidate that has completed Phase IIb/III clinical trials for tuberculosis and has also been shown to exhibit potent in vitro efficacy against protozoan parasites including Leishmania and Trypanosoma cruzi spp. However, its in vivo efficacy against protozoa has not been reported. Here, we evaluated the activity of SQ109 in mouse models of Leishmania, Trypanosoma spp. as well as Toxoplasma infection. In the T. cruzi mouse model, 80% of SQ109-treated mice survived at 40 days post-infection. Even though SQ109 did not cure all mice, these results are of interest since they provide a basis for future testing of combination therapies with the azole posaconazole, which acts synergistically with SQ109 in vitro. We also found that SQ109 inhibited the growth of Toxoplasma gondii in vitro with an IC50 of 1.82 µM and there was an 80% survival in mice treated with SQ109, whereas all untreated animals died 10 days post-infection. Results with Trypanosoma brucei and Leishmania donovani infected mice were not promising with only moderate efficacy. Since SQ109 is known to be extensively metabolized in animals, we investigated the activity in vitro of SQ109 metabolites. Among 16 metabolites, six mono-oxygenated forms were found active across the tested protozoan parasites, and there was a ~6× average decrease in activity of the metabolites as compared to SQ109 which is smaller than the ~25× found with mycobacteria.
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si 13488, Korea; (K.-H.B.); (T.-N.P.); (H.L.)
| | - Trong-Nhat Phan
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si 13488, Korea; (K.-H.B.); (T.-N.P.); (H.L.)
| | - Satish R. Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (S.R.M.); (E.O.)
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si 13488, Korea; (K.-H.B.); (T.-N.P.); (H.L.)
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; (Z.-H.L.); (S.N.J.M.)
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA; (Z.-H.L.); (S.N.J.M.)
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (S.R.M.); (E.O.)
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si 13488, Korea; (K.-H.B.); (T.-N.P.); (H.L.)
- Correspondence:
| |
Collapse
|
15
|
Busselman RE, Hamer SA. Chagas Disease Ecology in the United States: Recent Advances in Understanding Trypanosoma cruzi Transmission Among Triatomines, Wildlife, and Domestic Animals and a Quantitative Synthesis of Vector-Host Interactions. Annu Rev Anim Biosci 2021; 10:325-348. [PMID: 34758274 DOI: 10.1146/annurev-animal-013120-043949] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chagas disease, a neglected tropical disease present in the Americas, is caused by the parasite Trypanosoma cruzi and is transmitted by triatomine kissing bug vectors. Hundreds of vertebrate host species are involved in the ecology of Chagas disease. The sylvatic nature of most triatomines found in the United States accounts for high levels of animal infections but few reports of human infections. This review focuses on triatomine distributions and animal infections in the southern United States. A quantitative synthesis of available US data from triatomine bloodmeal analysis studies shows that dogs, humans, and rodents are key taxa for feeding triatomines. Imperfect and unvalidated diagnostic tools in wildlife complicate the study of animal T. cruzi infections, and integrated vector management approaches are needed to reduce parasite transmission in nature. The diversity of animal species involved in Chagas disease ecology underscores the importance of a One Health approach for disease research and management. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rachel E Busselman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA;
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
16
|
McGraw AL, Thomas TM. Military Working Dogs: An Overview of Veterinary Care of These Formidable Assets. Vet Clin North Am Small Anim Pract 2021; 51:933-944. [PMID: 34059265 DOI: 10.1016/j.cvsm.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
For the clinician treating military working dogs, an understanding of how they are sourced, preventive medicine policies, and common disease conditions is paramount in optimizing the delivery of health care. Military personnel rely heavily on the availability of these K-9s, which bring a diverse array of capabilities to myriad operational settings. Anticipating and mitigating common diseases will ensure these dogs continue to serve the needs of US military and allied forces.
Collapse
Affiliation(s)
- Andrew L McGraw
- Auburn Veterinary Specialists-Gulf Shores, Auburn University Educational Complex, 21541 Coastal Gateway Boulevard (County Road 8), Gulf Shores, AL 36542, USA.
| | - Todd M Thomas
- Auburn Veterinary Specialists-Gulf Shores, Auburn University Educational Complex, 21541 Coastal Gateway Boulevard (County Road 8), Gulf Shores, AL 36542, USA
| |
Collapse
|
17
|
Benaim G, Paniz-Mondolfi AE, Sordillo EM. The Rationale for Use of Amiodarone and its Derivatives for the Treatment of Chagas' Disease and Leishmaniasis. Curr Pharm Des 2021; 27:1825-1833. [PMID: 32988342 DOI: 10.2174/1381612826666200928161403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
The repurposing or repositioning of previously-approved drugs has become an accepted strategy for the expansion of the pharmacopeia for neglected diseases. Accordingly, amiodarone, an inexpensive and extensively- used class III antiarrhythmic has been proposed as a treatment for Chagas' disease and leishmaniasis. Amiodarone has a potent trypanocidal and leishmanicidal action, mainly acting through the disruption of parasite intracellular Ca2+ homeostasis, which is a recognized target of different drugs that have activity against trypanosomatids. Amiodarone collapses the mitochondrial electrochemical potential (Δφm) and induces the rapid alkalinization of parasite acidocalcisomes, driving a large increase in the intracellular Ca2+ concentration. Amiodarone also inhibits oxidosqualene cyclase activity, a key enzyme in the ergosterol synthesis pathway that is essential for trypanosomatid survival. In combination, these three effects lead to parasite death. Dronedarone, a drug synthesized to minimize some of the adverse effects of amiodarone, displays trypanocidal and leishmanicidal activity through the same mechanisms, but curiously, being more potent on Leishmaniasis than its predecessor. In vitro studies suggest that other recently-synthesized benzofuran derivatives can act through the same mechanisms, and produce similar effects on different trypanosomatid species. Recently, the combination of amiodarone and itraconazole has been used successfully to treat 121 dogs naturally-infected by T. cruzi, strongly supporting the potential therapeutic use of this combination against human trypanosomatid infections.
Collapse
Affiliation(s)
- Gustavo Benaim
- Instituto de Estudios Avanzados (IDEA) , Caracas, Venezuela
| | | | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
18
|
de Lana M, Giunchetti RC. Dogs as a Model for Chemotherapy of Chagas Disease and Leishmaniasis. Curr Pharm Des 2021; 27:1741-1756. [PMID: 33371843 DOI: 10.2174/1381612826666201228142703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dogs are natural reservoir of Chagas disease (CD) and leishmaniasis and have been used for studies of these infections as they develop different clinical forms of these diseases similar to humans. OBJECTIVE This article describes publications on the dog model relative to CD and leishmaniasis chemotherapy. METHODS The search of articles was based on PubMed, Scopus and MESH using the keywords: dog, Trypanosoma cruzi, treatment (T. cruzi chemotherapy analysis), Leishmania chagasi, Leishmania infantum, canine visceral leishmaniasis, treatment (Leishmania chemotherapy evaluation). RESULTS Benznidazole and nifurtimox were used as a reference in the treatment of CD and in combination with other compounds. Eleven out of the fifteen studies have authors from the same team, using similar protocols and post-treatment evaluations, which assured more reproducibility and credibility. Twenty leishmaniasis studies, especially on visceral leishmaniasis, presenting at least one parasitological analysis tested in distinct monochemotherapy and polychemotherapy approaches were accessed. Data demonstrated that polychemotherapy was more effective in improving the clinical signs and parasitism control. CONCLUSION The benefits of treatment in terms of reducing or eliminating lesions and/or cardiac dysfunctions were demonstrated at acute and/or chronic phases relative to parasite load and/or the T. cruzi strain resistance to treatment. BZ presented better therapeutic results than the two EBI compounds evaluated. Although treatment of the canine visceral leishmaniasis was not able to induce complete parasite clearance, it can improve clinical recovery. Thus, the dog is a good model for CD and leishmaniasis studies of chemotherapy and may be indicated for pre-clinical trials of new treatments.
Collapse
Affiliation(s)
- Marta de Lana
- Programa de Pos-Graduacao em Ciencias Farmaceuticas (CiPHARMA), Escola de Farmacia, Programa Pos-Graduacao em de Ciencias Biologicas, Nucleo de Pesquisas em Ciencias Biologicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Departamento de Morfologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, MG, Brazil
| |
Collapse
|
19
|
Rodriguez-Morales AJ, Paniz-Mondolfi AE, Faccini-Martínez ÁA, Henao-Martínez AF, Ruiz-Saenz J, Martinez-Gutierrez M, Alvarado-Arnez LE, Gomez-Marin JE, Bueno-Marí R, Carrero Y, Villamil-Gomez WE, Bonilla-Aldana DK, Haque U, Ramirez JD, Navarro JC, Lloveras S, Arteaga-Livias K, Casalone C, Maguiña JL, Escobedo AA, Hidalgo M, Bandeira AC, Mattar S, Cardona-Ospina JA, Suárez JA. The Constant Threat of Zoonotic and Vector-Borne Emerging Tropical Diseases: Living on the Edge. FRONTIERS IN TROPICAL DISEASES 2021; 2:676905. [PMID: 34010366 PMCID: PMC8132189 DOI: 10.3389/fitd.2021.676905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
- Coordinación Nacional de Investigación, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia
- Master Program on Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru
| | - Alberto E. Paniz-Mondolfi
- Department of Pathology, Molecular and Cell-Based Medicine, Laboratory of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Instituto de Investigaciones Biomédicas IDB/Incubadora Venezolana de la Ciencia, Barquisimeto, Venezuela
| | | | - Andrés F. Henao-Martínez
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales - GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Lucia E. Alvarado-Arnez
- Coordinación Nacional de Investigación, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia
| | - Jorge E. Gomez-Marin
- Grupo de Estudio en Parasitologia Molecular (GEPAMOL) Group, Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - Ruben Bueno-Marí
- Departamento de Investigación y Desarrollo (I+D), Laboratorios Lokímica, Paterna, Spain
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmaceútica y Parasitología, Universidad de Valencia, Burjasot, Spain
| | - Yenddy Carrero
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Técnica de Ambato, Ambato, Ecuador
| | - Wilmer E. Villamil-Gomez
- Infectious Diseases and Infection Control Research Group, Hospital Universitario de Sincelejo, Sincelejo, Colombia
- Programa Del Doctorado de Medicina Tropical, SUE Caribe, Universidad Del Atlántico, Barranquilla, Colombia
| | - D. Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigación BIOECOS, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
| | - Ubydul Haque
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Juan D. Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan-Carlos Navarro
- Research Group of Emerging Diseases, Ecoepidemiology and Biodiversity, Health Sciences Faculty, Universidad Internacional SEK, Quito, Ecuador
| | - Susana Lloveras
- Sección Zoopatología Médica, Hospital de Infecciosas FJ Muñiz, Buenos Aires, Argentina
| | - Kovy Arteaga-Livias
- Master Program on Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru
- Faculty of Medicine, Universidad Nacional Hermilio Valdizán, Huánuco, Peru
| | | | - Jorge L. Maguiña
- Master Program on Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru
| | - Angel A. Escobedo
- Department of Epidemiology, Institute of Gastroenterology, Havana, Cuba
| | - Marylin Hidalgo
- Infectious Diseases Group, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Salim Mattar
- Instituto de Investigaciones Biologicas del Tropico, Universidad de Cordoba, Monteria, Colombia
| | - Jaime A. Cardona-Ospina
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
| | - Jose A. Suárez
- Investigador SNI Senacyt Panamá, Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama, Panama
| |
Collapse
|
20
|
Mazzeti AL, Capelari-Oliveira P, Bahia MT, Mosqueira VCF. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J Exp Pharmacol 2021; 13:409-432. [PMID: 33833592 PMCID: PMC8020333 DOI: 10.2147/jep.s267378] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Currently, only nitroheterocyclic nifurtimox (NFX) and benznidazole (BNZ) are available for the treatment of Chagas disease, with limitations such as variable efficacy, long treatment regimens and toxicity. Different strategies have been used to discover new active molecules for the treatment of Chagas disease. Target-based and phenotypic screening led to thousands of compounds with anti-T. cruzi activity, notably the nitroheterocyclic compounds, fexinidazole and its metabolites. In addition, drug repurposing, drug combinations, re-dosing regimens and the development of new formulations have been evaluated. The CYP51 antifungal azoles, as posaconazole, ravuconazole and its prodrug fosravuconazole presented promising results in experimental Chagas disease. Drug combinations of nitroheterocyclic and azoles were able to induce cure in murine infection. New treatment schemes using BNZ showed efficacy in the experimental chronic stage, including against dormant forms of T. cruzi. And finally, sesquiterpene lactone formulated in nanocarriers displayed outstanding efficacy against different strains of T. cruzi, susceptible or resistant to BNZ, the reference drug. These pre-clinical results are encouraging and provide interesting evidence to improve the treatment of patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.,Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Patricia Capelari-Oliveira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
21
|
Benaim G, Paniz-Mondolfi AE, Sordillo EM, Martinez-Sotillo N. Disruption of Intracellular Calcium Homeostasis as a Therapeutic Target Against Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10:46. [PMID: 32133302 PMCID: PMC7040492 DOI: 10.3389/fcimb.2020.00046] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
There is no effective cure for Chagas disease, which is caused by infection with the arthropod-borne parasite, Trypanosoma cruzi. In the search for new drugs to treat Chagas disease, potential therapeutic targets have been identified by exploiting the differences between the mechanisms involved in intracellular Ca2+ homeostasis, both in humans and in trypanosomatids. In the trypanosomatid, intracellular Ca2+ regulation requires the concerted action of three intracellular organelles, the endoplasmic reticulum, the single unique mitochondrion, and the acidocalcisomes. The single unique mitochondrion and the acidocalcisomes also play central roles in parasite bioenergetics. At the parasite plasma membrane, a Ca2+-−ATPase (PMCA) with significant differences from its human counterpart is responsible for Ca2+ extrusion; a distinctive sphingosine-activated Ca2+ channel controls Ca2+ entrance to the parasite interior. Several potential anti-trypansosomatid drugs have been demonstrated to modulate one or more of these mechanisms for Ca2+ regulation. The antiarrhythmic agent amiodarone and its derivatives have been shown to exert trypanocidal effects through the disruption of parasite Ca2+ homeostasis. Similarly, the amiodarone-derivative dronedarone disrupts Ca2+ homeostasis in T. cruzi epimastigotes, collapsing the mitochondrial membrane potential (ΔΨm), and inducing a large increase in the intracellular Ca2+ concentration ([Ca2+]i) from this organelle and from the acidocalcisomes in the parasite cytoplasm. The same general mechanism has been demonstrated for SQ109, a new anti-tuberculosis drug with potent trypanocidal effect. Miltefosine similarly induces a large increase in the [Ca2+]i acting on the sphingosine-activated Ca2+ channel, the mitochondrion and acidocalcisomes. These examples, in conjunction with other evidence we review herein, strongly support targeting Ca2+ homeostasis as a strategy against Chagas disease.
Collapse
Affiliation(s)
- Gustavo Benaim
- Instituto de Estudios Avanzados, Caracas, Venezuela.,Facultad de Ciencias, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | - Alberto E Paniz-Mondolfi
- Instituto de Estudios Avanzados, Caracas, Venezuela.,Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Institute for Health Sciences, Mount Sinai St. Luke's & Mount Sinai West, New York, NY, United States
| | | |
Collapse
|
22
|
Franco-Paredes C, Villamil-Gómez WE, Schultz J, Henao-Martínez AF, Parra-Henao G, Rassi A, Rodríguez-Morales AJ, Suarez JA. A deadly feast: Elucidating the burden of orally acquired acute Chagas disease in Latin America - Public health and travel medicine importance. Travel Med Infect Dis 2020; 36:101565. [PMID: 32004732 DOI: 10.1016/j.tmaid.2020.101565] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/27/2023]
Abstract
Over the past two decades, several countries in Latin American, particularly Brazil, Venezuela, and Colombia, have experienced multiple outbreaks of oral Chagas disease. Transmission occurs secondary to contamination of food or beverages by triatomine (kissing bug) feces containing infective Trypanosoma cruzi metacyclic trypomastigotes. Orally transmitted infections are acute and potentially fatal. Oral Chagas transmission carries important clinical implications from management to public health policies compared to vector-borne transmission. This review aims to discuss the contemporary situation of orally acquired Chagas disease, and its eco-epidemiology, pathogenesis, and clinical management. We also propose preventive public health interventions to reduce the burden of disease and provide important perspectives for travel medicine. Travel health advisors need to counsel intending travellers to South America on avoidance of "deadly feasts" - risky beverages such as fruit juices including guava juice, bacaba, babaçu and palm wine (vino de palma), açai pulp, sugar cane juice and foodstuffs such as wild animal meats that may be contaminated with T. cruzi.
Collapse
Affiliation(s)
- Carlos Franco-Paredes
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA; Hospital Infantil de México Federico Gómez, México City, Mexico; Committe on Travel Medicine, Pan-American Association of Infectious Diseases (API), Panama City, Panama
| | - Wilmer E Villamil-Gómez
- Committe on Travel Medicine, Pan-American Association of Infectious Diseases (API), Panama City, Panama; Committe on Tropical Medicine, Zoonoses and Travel Medicine, Colombian Association of Infectious Diseases (ACIN), Bogota, Colombia; Infectious Diseases and Infection Control Research Group, Hospital Universitario de Sincelejo, Sincelejo, Sucre, Colombia; Programa del Doctorado de Medicina Tropical, SUE Caribe, Universidad del Atlántico, Barranquilla, Colombia
| | - Jonathan Schultz
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Andrés F Henao-Martínez
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Gabriel Parra-Henao
- National Institute of Health, Bogota, Colombia; Centro de Investigación en Salud para el Trópico (CIST), Universidad Cooperativa de Colombia, Santa Marta, Colombia
| | - Anis Rassi
- Division of Cardiology, Anis Rassi Heart Hospital, Goiânia, GO, Brazil
| | - Alfonso J Rodríguez-Morales
- Committe on Travel Medicine, Pan-American Association of Infectious Diseases (API), Panama City, Panama; Committe on Tropical Medicine, Zoonoses and Travel Medicine, Colombian Association of Infectious Diseases (ACIN), Bogota, Colombia; Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia; Universidad Franz Tamayo/UNIFRANZ, Cochabamba, Bolivia; Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia.
| | - José Antonio Suarez
- Committe on Travel Medicine, Pan-American Association of Infectious Diseases (API), Panama City, Panama; Investigador SNI Senacyt Panamá, Clinical Research Deparment, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Panama
| |
Collapse
|
23
|
Zao CL, Yang YC, Tomanek L, Cooke A, Berger R, Chien LC, Madigan R. PCR monitoring of parasitemia during drug treatment for canine Chagas disease. J Vet Diagn Invest 2019; 31:742-746. [PMID: 31378166 DOI: 10.1177/1040638719868508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date, there is no clear standard to monitor drug treatment for canine Chagas disease. We used 2 real-time PCR (rtPCR) assays targeting Trypanosoma cruzi kinetoplast DNA (kDNA) and nuclear satellite DNA (nDNA) to detect T. cruzi in canine whole blood. Samples were collected randomly from 131 untreated dogs with unknown T. cruzi infection status in Texas. The kDNA-based rtPCR was slightly more sensitive (diagnostic sensitivity of kDNA = 49% vs. nDNA = 44%; p = 0.5732) but slightly less specific (diagnostic specificity of kDNA = 96% vs. nDNA = 97%; p > 0.9999) than the nDNA-based rtPCR. However, the differences in sensitivity and specificity between the nDNA- and kDNA-based rtPCR assays were not statistically significant. Using the nDNA- and kDNA-based qualitative rtPCR assays to monitor parasitemia from 137 itraconazole- and amiodarone-treated cases with nDNA- and kDNA-based PCR-positive baselines showed that the PCR positive rate decreased to 0% in 30 d. Using kDNA-based quantitative rtPCR to monitor normalized T. cruzi DNA copies in 4 representative dogs demonstrated that drug treatment could reduce parasite loads within 7-30 d. The kDNA-based qualitative rtPCR may be used for routine parasitemia screening of drug-treated Chagas-positive dogs, whereas nDNA-based qualitative rtPCR may be used for confirmation.
Collapse
Affiliation(s)
- Chih-Ling Zao
- VRL-San Antonio, San Antonio, TX (Zao, Yang, Tomanek, Cooke, Berger).,Epidemiology and Biostatistics, Department of Environmental and Occupational Health, University of Nevada, Las Vegas, NV (Chien).,Animal Hospital of Smithson Valley, Spring Branch, TX (Madigan)
| | - Ya-Chin Yang
- VRL-San Antonio, San Antonio, TX (Zao, Yang, Tomanek, Cooke, Berger).,Epidemiology and Biostatistics, Department of Environmental and Occupational Health, University of Nevada, Las Vegas, NV (Chien).,Animal Hospital of Smithson Valley, Spring Branch, TX (Madigan)
| | - Lisa Tomanek
- VRL-San Antonio, San Antonio, TX (Zao, Yang, Tomanek, Cooke, Berger).,Epidemiology and Biostatistics, Department of Environmental and Occupational Health, University of Nevada, Las Vegas, NV (Chien).,Animal Hospital of Smithson Valley, Spring Branch, TX (Madigan)
| | - Anthony Cooke
- VRL-San Antonio, San Antonio, TX (Zao, Yang, Tomanek, Cooke, Berger).,Epidemiology and Biostatistics, Department of Environmental and Occupational Health, University of Nevada, Las Vegas, NV (Chien).,Animal Hospital of Smithson Valley, Spring Branch, TX (Madigan)
| | - Ron Berger
- VRL-San Antonio, San Antonio, TX (Zao, Yang, Tomanek, Cooke, Berger).,Epidemiology and Biostatistics, Department of Environmental and Occupational Health, University of Nevada, Las Vegas, NV (Chien).,Animal Hospital of Smithson Valley, Spring Branch, TX (Madigan)
| | - Lung-Chang Chien
- VRL-San Antonio, San Antonio, TX (Zao, Yang, Tomanek, Cooke, Berger).,Epidemiology and Biostatistics, Department of Environmental and Occupational Health, University of Nevada, Las Vegas, NV (Chien).,Animal Hospital of Smithson Valley, Spring Branch, TX (Madigan)
| | - Roy Madigan
- VRL-San Antonio, San Antonio, TX (Zao, Yang, Tomanek, Cooke, Berger).,Epidemiology and Biostatistics, Department of Environmental and Occupational Health, University of Nevada, Las Vegas, NV (Chien).,Animal Hospital of Smithson Valley, Spring Branch, TX (Madigan)
| |
Collapse
|