1
|
Neuhaus D, Rost T, Haas T, Wendebourg MJ, Schulze K, Schlaeger R, Scheurer E, Lenz C. Comparative analysis of in situ and ex situ postmortem brain MRI: Evaluating volumetry, DTI, and relaxometry. Magn Reson Med 2025; 93:213-227. [PMID: 39250425 DOI: 10.1002/mrm.30264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE To compare postmortem in situ with ex situ MRI parameters, including volumetry, diffusion tensor imaging (DTI), and relaxometry for assessing methodology-induced alterations, which is a crucial prerequisite when performing MRI biomarker validation. METHODS MRI whole-brain scans of five deceased patients with amyotrophic lateral sclerosis were performed at 3 T. In situ scans were conducted within 32 h after death (SD 18 h), and ex situ scans after brain extraction and 3 months of formalin fixation. The imaging protocol included MP2RAGE, DTI, and multi-contrast spin-echo and multi-echo gradient-echo sequences. Volumetry, fractional anisotropy, mean diffusivity, T1, T2, andT 2 * $$ {T}_2^{\ast } $$ have been assessed for specific brain regions. RESULTS When comparing ex situ to in situ values, the following results were obtained. Deep gray matter as well as the thalamus and the hippocampus showed a reduced volume. Fractional anisotropy was reduced in the cortex and the whole brain. Mean diffusivity was decreased in white matter and deep gray matter. T1 and T2 were reduced in all investigated structures, whereasT 2 * $$ {T}_2^{\ast } $$ was increased in the cortex. CONCLUSION The results of this study show that the volumes and MRI parameters of several brain regions are potentially affected by tissue extraction and subsequent formalin fixation, suggesting that methodological alterations are present in ex situ MRI. To avoid overlap of indistinguishable methodological and disease-related changes, we recommend performing in situ postmortem MRI as an additional intermediate step for in vivo MRI biomarker validation.
Collapse
Affiliation(s)
- Dominique Neuhaus
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Thomas Rost
- Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Tanja Haas
- Division of Radiological Physics, Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Maria Janina Wendebourg
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Katja Schulze
- Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Regina Schlaeger
- Neurology Clinic and Policlinic, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Eva Scheurer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| | - Claudia Lenz
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Institute of Forensic Medicine, Health Department Basel-Stadt, Basel, Switzerland
| |
Collapse
|
2
|
Yoshimaru D, Tsurugizawa T, Hayashi N, Hata J, Shibukawa S, Hagiya K, Oshiro H, Kishi N, Saito K, Okano H, Okano HJ. Relationship between regional volume changes and water diffusion in fixed marmoset brains: an in vivo and ex vivo comparison. Sci Rep 2024; 14:26901. [PMID: 39505977 PMCID: PMC11541870 DOI: 10.1038/s41598-024-78246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume. Therefore, the purpose of this study was to investigate the regional effect of brain volume and microstructural changes on the restricted diffusion of water molecules in the common marmoset brain using in vivo and ex vivo brains from the same individual. We used 9.4T magnetic resonance imaging and also compared the T2-weighted images and diffusion-weighted imaging (DWI) data between in vivo and ex vivo brains to investigate changes in brain volume and diffusion of water molecules in 12 common marmosets. We compared fractional anisotropy, mean diffusivity, AD (axial diffusivity), and radial diffusivity values in white matter and gray matter between in vivo and ex vivo brains. We observed that AD showed the strongest correlation with regional volume changes in gray matter. The results showed a strong correlation between AD and changes in brain volume. By comparing the in vivo and ex vivo brains of the same individual, we identified significant correlations between the local effects of perfusion fixation on microstructural and volumetric changes of the brain and alterations in the restricted diffusion of water molecules within the brain. These findings provide valuable insights into the complex relationships between tissue fixation, brain structure, and water diffusion properties in the marmoset brain.
Collapse
Affiliation(s)
- Daisuke Yoshimaru
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomokazu Tsurugizawa
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Hayashi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shuhei Shibukawa
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
- Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan
| | - Kei Hagiya
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Hinako Oshiro
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiro Saito
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
3
|
Oshiro H, Hata J, Nakashima D, Hayashi N, Haga Y, Hagiya K, Yoshimaru D, Okano H. Influence of Diffusion Time and Temperature on Restricted Diffusion Signal: A Phantom Study. Magn Reson Med Sci 2024; 23:136-145. [PMID: 36754420 PMCID: PMC11024708 DOI: 10.2463/mrms.mp.2022-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023] Open
Abstract
PURPOSE Diffusion MRI is a physical measurement method that quantitatively indicates the displacement of water molecules diffusing in voxels. However, there are insufficient data to characterize the diffusion process physically in a uniform structure such as a phantom. This study investigated the transitional relationship between structure scale, temperature, and diffusion time for simple restricted diffusion using a capillary phantom. METHODS We performed diffusion-weighted pulsed-gradient stimulated-echo acquisition mode (STEAM) MRI with a 9.4 Tesla MRI system (Bruker BioSpin, Ettlingen, Germany) and a quadrature coil with an inner diameter of 86 mm (Bruker BioSpin). We measured the diffusion coefficients (radial diffusivity [RD]) of capillary plates (pore sizes 6, 12, 25, 50, and 100 μm) with uniformly restricted structures at various temperatures (10ºC, 20ºC, 30ºC, and 40ºC) and multiple diffusion times (12-800 ms). We evaluated the characteristics of scale, temperature, and diffusion time for restricted diffusion. RESULTS The RD decayed and became constant depending on the structural scale. Diffusion coefficient fluctuations with temperature occurred mostly under conditions of a large structural scale and short diffusion time. We obtained data suggesting that temperature-dependent changes in the diffusion coefficients follow physical laws. CONCLUSION No water molecules were observed outside the glass tubes in the capillary plates, and the capillary plates only reflected a restricted diffusion process within the structure.We experimentally evaluated the characteristics of simple restricted diffusion to reveal the transitional relationship of the diffusion coefficient with diffusion time, structure scale, and temperature through composite measurement.
Collapse
Affiliation(s)
- Hinako Oshiro
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Naoya Hayashi
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Yawara Haga
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Kei Hagiya
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Daisuke Yoshimaru
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
4
|
Sakai T, Hata J, Shintaku Y, Ohta H, Sogabe K, Mori S, Miyabe-Nishiwaki T, Okano HJ, Hamada Y, Hirabayashi T, Minamimoto T, Sadato N, Okano H, Oishi K. The Japan Monkey Centre Primates Brain Imaging Repository of high-resolution postmortem magnetic resonance imaging: the second phase of the archive of digital records. Neuroimage 2023; 273:120096. [PMID: 37031828 DOI: 10.1016/j.neuroimage.2023.120096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/17/2022] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had been used as subjects in experiments, it is essential to investigate various species of nonhuman primates in order to elucidate and interpret the diversity of neuroanatomy features among humans and nonhuman primates. To develop a research platform for this purpose, it is necessary to harmonize the scientific contributions of studies with the standards of animal ethics, animal welfare, and the conservation of brain information for long-term continuation of the field. In previous research, we first developed a gated data-repository of anatomical images obtained using 9.4-T ex vivo MRI of postmortem brain samples from 12 nonhuman primate species, and which are stored at the Japan Monkey Centre. In the present study, as a second phase, we released a collection of T2-weighted images and diffusion tensor images obtained in nine species: white-throated capuchin, Bolivian squirrel monkey, stump-tailed macaque, Tibet monkey, Sykes' monkey, Assamese macaque, pig-tailed macaque, crested macaque, and chimpanzee. Our image repository should facilitate scientific discoveries in the field of comparative neuroscience. This repository can also promote animal ethics and animal welfare in experiments with nonhuman primate models by optimizing methods for in vivo and ex vivo MRI scanning of brains and supporting veterinary neuroradiological education. In addition, the repository is expected to contribute to conservation, preserving information about the brains of various primates, including endangered species, in a permanent digital form.
Collapse
Affiliation(s)
- Tomoko Sakai
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan; Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Junichi Hata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama, Japan
| | - Yuta Shintaku
- Wildlife Research Center, Kyoto University, Kyoto, Japan; Japan Monkey Centre, Inuyama, Aichi, Japan
| | - Hiroki Ohta
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazumi Sogabe
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan; Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kenney Krieger Institute, Baltimore, MD, USA
| | - Takako Miyabe-Nishiwaki
- Center for Model Human Evolution Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuzuru Hamada
- Center for Model Human Evolution Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; RIKEN Brain Science Institute, Laboratory for Marmoset Neural Architecture, Wako, Saitama, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| |
Collapse
|
5
|
Pušnik L, Serša I, Umek N, Cvetko E, Snoj Ž. Correlation between diffusion tensor indices and fascicular morphometric parameters of peripheral nerve. Front Physiol 2023; 14:1070227. [PMID: 36909220 PMCID: PMC9995878 DOI: 10.3389/fphys.2023.1070227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that measures the anisotropy of water diffusion. Clinical magnetic resonance imaging scanners enable visualization of the structural integrity of larger axonal bundles in the central nervous system and smaller structures like peripheral nerves; however, their resolution for the depiction of nerve fascicular morphology is limited. Accordingly, high-field strength MRI and strong magnetic field gradients are needed to depict the fascicular pattern. The study aimed to quantify diffusion tensor indices with high-field strength MRI within different anatomical compartments of the median nerve and determine if they correlate with nerve structure at the fascicular level. Methods: Three-dimensional pulsed gradient spin-echo (PGSE) imaging sequence in 19 different gradient directions and b value 1,150 s/mm2 was performed on a 9.4T wide-bore vertical superconducting magnet. Nine-millimeter-long segments of five median nerve samples were obtained from fresh cadavers and acquired in sixteen 0.625 mm thick slices. Each nerve sample had the fascicles, perineurium, and interfascicular epineurium segmented. The diffusion tensor was calculated from the region-average diffusion-weighted signals for all diffusion gradient directions. Subsequently, correlations between diffusion tensor indices of segmentations and nerve structure at the fascicular level (number of fascicles, fascicular ratio, and cross-sectional area of fascicles or nerve) were assessed. The acquired diffusion tensor imaging data was employed for display with trajectories and diffusion ellipsoids. Results: The nerve fascicles proved to be the most anisotropic nerve compartment with fractional anisotropy 0.44 ± 0.05. In the interfascicular epineurium, the diffusion was more prominent in orthogonal directions with fractional anisotropy 0.13 ± 0.02. Diffusion tensor indices within the fascicles and perineurium differed significantly between the subjects (p < 0.0001); however, there were no differences within the interfascicular epineurium (p ≥ 0.37). There were no correlations between diffusion tensor indices and nerve structure at the fascicular level (p ≥ 0.29). Conclusion: High-field strength MRI enabled the depiction of the anisotropic diffusion within the fascicles and perineurium. Diffusion tensor indices of the peripheral nerve did not correlate with nerve structure at the fascicular level. Future studies should investigate the relationship between diffusion tensor indices at the fascicular level and axon- and myelin-related parameters.
Collapse
Affiliation(s)
- Luka Pušnik
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Serša
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Snoj
- Department of Radiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Xiao J, Hornburg KJ, Cofer G, Cook JJ, Pratson F, Qi Y, Johnson GA. A time-course study of actively stained mouse brains: Diffusion tensor imaging parameters and connectomic stability over 1 year. NMR IN BIOMEDICINE 2022; 35:e4611. [PMID: 34558744 PMCID: PMC10461792 DOI: 10.1002/nbm.4611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
While the application of diffusion tensor imaging (DTI), tractography, and connectomics to fixed tissue is a common practice today, there have been limited studies examining the effects of fixation on brain microstructure over extended periods. This mouse model time-course study reports the changes of regional brain volumes and diffusion scalar parameters, such as fractional anisotropy, across 12 representative brain regions as measures of brain structural stability. The scalar DTI parameters and regional volumes were highly variable over the first 2 weeks after fixation. The same parameters were consistent over a 2-8-week window after fixation, which means confounds from tissue stability over that scanning window were minimal. Quantitative connectomes were analyzed over the same time with extension out to 1 year. While there was some change in the scalar metrics at 1 year after fixation, these changes were sufficiently small, particularly in white matter, to support reproducible connectomes over a period ranging from 2-weeks to 1-year post-fixation. These findings delineate a scanning period, during which brain volumes, diffusion scalar metrics, and connectomes are remarkably consistent.
Collapse
Affiliation(s)
- Jaclyn Xiao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Kathryn J. Hornburg
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Gary Cofer
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - James J. Cook
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Forrest Pratson
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yi Qi
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - G. Allan Johnson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Nakashima D, Fujita N, Hata J, Komaki Y, Suzuki S, Nagura T, Fujiyoshi K, Watanabe K, Tsuji T, Okano H, Jinzaki M, Matsumoto M, Nakamura M. Quantitative analysis of intervertebral disc degeneration using Q-space imaging in a rat model. J Orthop Res 2020; 38:2220-2229. [PMID: 32458477 DOI: 10.1002/jor.24757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 02/04/2023]
Abstract
The degree of intervertebral disc (IVD) degeneration is qualitatively evaluated on T2-weighted imaging (T2WI). However, it is difficult to assess subtle changes in IVD degeneration using T2WI. Q-space imaging (QSI) is a quantitative diffusion-weighted imaging modality used to detect subtle changes in microenvironments. This study aimed to evaluate whether QSI can detect the inhibitory effects of the antioxidant N-acetylcysteine (NAC) in IVD degeneration. We classified female Wistar rats into control, puncture, and NAC groups (n = 5 per group). In the puncture and NAC groups, IVDs were punctured using a needle. The antioxidant NAC, which suppresses the progression of IVD degeneration, was orally administered in the NAC group 1 week prior to puncture. The progression and inhibitory effect of NAC in IVD degeneration were assessed using magnetic resonance imaging (MRI): IVD height, T2 mapping, apparent diffusion coefficient (ADC), and QSI. MRI was performed using a 7-Tesla system with a conventional probe (20 IVDs in each group). QSI parameters that were assessed included Kurtosis, the probability at zero displacement (ZDP), and full width at half maximum (FWHM). IVD degeneration by puncture was confirmed by histology, IVD height, T2 mapping, ADC, and all QSI parameters (P < .001); however, the inhibitory effect of NAC was confirmed only by QSI parameters (Kurtosis and ZDP: both P < .001; FWHM: P < .01). Kurtosis had the largest effect size (Kurtosis: 1.13, ZDP: 1.06, and FWHM: 1.02) when puncture and NAC groups were compared. QSI has a higher sensitivity than conventional quantitative methods for detecting the progressive change and inhibitory effect of NAC in IVD degeneration.
Collapse
Affiliation(s)
- Daisuke Nakashima
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, Jikei University Graduate School of Medicine, Minato, Tokyo, Japan.,Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Yuji Komaki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Satoshi Suzuki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, Japan
| | - Takeo Nagura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Clinical Biomechanics, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kanehiro Fujiyoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Murayama Medical Center, Murayama, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takashi Tsuji
- Department of Orthopaedic Surgery, National Hospital Organization Tokyo Medical Center, Meguro, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, Japan.,Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
8
|
Matsubara Y, Higaki T, Tani C, Kamioka S, Harada K, Aoyama H, Nakamura Y, Akita T, Awai K. Demonstration of Human Fetal Bone Morphology with MR Imaging: A Preliminary Study. Magn Reson Med Sci 2019; 19:310-317. [PMID: 31611543 PMCID: PMC7809137 DOI: 10.2463/mrms.mp.2019-0105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose: CT is a useful modality for the evaluation of fetal skeletal dysplasia but radiation exposure is unavoidable. The purpose of this study is to compare the usefulness of MRI and CT for evaluating the fetal skeletal shape. Methods: This study was approved by our Institutional Review Board. Fetal specimens (n = 14) were scanned on a 3T MRI scanner using our newly-developed sequence. It is based on T2*-weighted imaging (TR, 12 ms; TE for opposed-phase imaging, 6.1 ms, for in-phase imaging, 7.3 ms; flip angle, 40°). The specimens were also scanned on a 320 detector-row CT scanner. Four radiologists visually graded and compared the visibility of the bone shape of eight regions on MRI- and CT-scans using a 5-point grading system. Results: The diagnostic ability of MRI with respect to the 5th metacarpals, femur, fibula, and pelvis was superior to CT (all, P < 0.050); there was no significant difference in the evaluation results of observers with respect to the cervical and lumbar spine, and the 5th metatarsal (0.058 ≤ P ≤ 1.000). However, the diagnostic ability of MRI was significantly inferior to CT for the assessment of the bone shape of the thoracic spine (observers A and C: P = 0.002, observers B and D: P = 0.001). Conclusion: The MRI method we developed represents a potential alternative to CT imaging for the evaluation of the fetal bone structure.
Collapse
Affiliation(s)
- Yoshiko Matsubara
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Toru Higaki
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Chihiro Tani
- Department of Diagnostic Radiology, Hiroshima City Hospital
| | - Shogo Kamioka
- Department of Diagnostic Radiology, Hiroshima University Hospital
| | | | - Hirohiko Aoyama
- Department of Medical Science and Technology, Faculty of Health Sciences, Hiroshima International University
| | - Yuko Nakamura
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|