1
|
Carbone K, Macchioni V. Evaluation of drying methods and green extraction techniques to enhance the recovery of bioactive compounds from hop leaves: A sustainable approach for the valorisation of agricultural by-products. ULTRASONICS SONOCHEMISTRY 2025; 116:107322. [PMID: 40147249 PMCID: PMC11987633 DOI: 10.1016/j.ultsonch.2025.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
This study investigated the effects of different drying techniques and green extraction methods on bioactive compounds in hop leaves, typically considered as waste material. Freeze-drying (FD) and oven-drying (OD) were compared for drying the leaves of five hop varieties, while the study focused on the use of microwave (MAE) and ultrasound (UAE) as innovative extraction techniques. The influence of these factors was then evaluated on several bioactive compounds, including polyphenols, flavonoids, pigments, and xanthohumol, as well as the antioxidant capacity and α-glucosidase inhibition of the extracts obtained. MAE yielded higher total polyphenol and flavan content (TPC and FLC, respectively) values than UAE. Similarly, FD samples showed higher TPC and FLC values than OD ones, whereas chlorophyll b was consistently more abundant than chlorophyll a in all samples. HPLC analysis identified catechin, epigallocatechin gallate, and p-hydroxybenzoic acid as the predominant phenolic compounds. Xanthohumol concentrations ranged from 0.04 ± 0.00 to 1.12 ± 0.03 mg g-1, with MAE yielding higher levels than UAE. Multivariate analysis revealed that the drying process accounted for the largest proportion of variation in the phytochemical profile (37.1 %), followed by the extraction technique (27.3 %) and hop variety (14.3 %). The hop leaf extracts showed α-glucosidase inhibitory activity, with FD samples showing greater inhibition than OD ones. PCA highlighted the significant influence of the extraction method and drying process on the phytochemical composition of hop leaf extracts. This research highlights the potential of hop leaves as a sustainable source of phytochemicals for the food, pharmaceutical, and nutraceutical sectors, and emphasises the importance of optimizing extraction and drying techniques.
Collapse
Affiliation(s)
- Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy.
| | - Valentina Macchioni
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| |
Collapse
|
2
|
Długosz A, Błaszak B, Czarnecki D, Szulc J. Mechanism of Action and Therapeutic Potential of Xanthohumol in Prevention of Selected Neurodegenerative Diseases. Molecules 2025; 30:694. [PMID: 39942798 PMCID: PMC11821245 DOI: 10.3390/molecules30030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Xanthohumol (XN), a bioactive plant flavonoid, is an antioxidant, and as such, it exhibits numerous beneficial properties, including anti-inflammatory, antimicrobial, and antioxidative effects. The main dietary source of XN is beer, where it is introduced through hops. Although the concentration of XN in beer is low, the large quantities of hop-related post-production waste present an opportunity to extract XN residues for technological or pharmaceutical purposes. The presented study focuses on the role of XN in the prevention of neurodegenerative diseases, analyzing its effect at a molecular level and including its signal transduction and metabolism. The paper brings up XN's mechanism of action, potential effects, and experimental and clinical studies on Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Additionally, challenges and future research directions on XN, including its bioavailability, safety, and tolerance, have been discussed.
Collapse
Affiliation(s)
- Anna Długosz
- Faculty of Chemical Technology and Engineering, Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Błażej Błaszak
- Faculty of Chemical Technology and Engineering, Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Damian Czarnecki
- Faculty of Health Sciences, Department of Preventive Nursing, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-821 Bydgoszcz, Poland;
| | - Joanna Szulc
- Faculty of Chemical Technology and Engineering, Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
3
|
Sabbatini G, Mari E, Ortore MG, Di Gregorio A, Fattorini D, Di Carlo M, Galeazzi R, Vignaroli C, Simoni S, Giorgini G, Guarrasi V, Chiancone B, Leto L, Cirlini M, Del Vecchio L, Mangione MR, Vilasi S, Minnelli C, Mobbili G. Hop leaves: From waste to a valuable source of bioactive compounds - A multidisciplinary approach to investigating potential applications. Heliyon 2024; 10:e37593. [PMID: 39328568 PMCID: PMC11425108 DOI: 10.1016/j.heliyon.2024.e37593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
After harvesting of cones used for beer production, the remaining hop vegetative biomass requires disposal. The hop plant contains bioactive compounds in all its parts-cones, leaves, and roots-exhibiting interesting antioxidant, antiviral, and antibacterial properties. In this work, extracts obtained from hop leaves, a plant material often neglected in the hop cultivation, have been investigated; the qualitative UHPLC-MS/MS and GC-TOF-MS characterization revealed the presence of bioactive compounds such as polyphenols, α- and β-acids and terpenes are present. The extract retained antioxidant activity, as verified by Folin-Ciocalteu, DPPH, ABTS and FRAP assays, and demonstrated some antimicrobial activity when combined with antibiotics, particularly against Gram-positive bacterial strains. Additionally, the extracts showed an ability to interact with proteins as human insulin, amyloid beta peptide, mucin and bovine serum albumin (BSA), has been detected, indicating their potential to counteract inflammatory processes and protect against Alzheimer's disease. These findings suggest that hop vegetative biomass, typically considered waste, can be potentially transformed into a valuable resource with applications in various fields, from nutraceuticals to pharmaceuticals and cosmetics, aligning with a circular economy perspective.
Collapse
Affiliation(s)
- Giulia Sabbatini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Eleonora Mari
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Alessandra Di Gregorio
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Daniele Fattorini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
- Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| | - Marta Di Carlo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Serena Simoni
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giorgia Giorgini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Valeria Guarrasi
- Biophysics Institute, National Research Council, Palermo, 90143, Italy
| | - Benedetta Chiancone
- Biophysics Institute, National Research Council, Palermo, 90143, Italy
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Leandra Leto
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Lorenzo Del Vecchio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | - Silvia Vilasi
- Biophysics Institute, National Research Council, Palermo, 90143, Italy
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| |
Collapse
|
4
|
Leto L, Favari C, Agosti A, Del Vecchio L, Di Fazio A, Bresciani L, Mena P, Guarrasi V, Cirlini M, Chiancone B. Evaluation of In Vitro-Derived Hop Plantlets, cv. Columbus and Magnum, as Potential Source of Bioactive Compounds. Antioxidants (Basel) 2024; 13:909. [PMID: 39199155 PMCID: PMC11351401 DOI: 10.3390/antiox13080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The demand for bioactive secondary metabolites of natural origin is increasing every day. Micropropagation could be a strategy to respond more quickly to market demands, regardless of seasonality. This research aims to evaluate in vitro-grown plants of two hop varieties, namely Columbus and Magnum, as a potential source of bioactive compounds. The extracts were characterized in terms of total phenolic content by a Folin-Ciocalteu assay and antioxidant capacity by DPPH•, ABTS+, and FRAP assays. The bioactive compound profile of the extracts from both varieties was determined by using UPLC-ESI-QqQ-MS/MS. The results confirmed richness in (poly)phenols and other secondary metabolites of the in vitro-grown hop plantlets. Thirty-two compounds belonging to the major families of phytochemicals characteristic of the species were identified, and twenty-six were quantified, mainly flavonoids, including xanthohumol and isoxanthohumol, phenolic acids, as well as α- and β-acids. This study confirms the validity of in vitro-derived hop plantlets as source of bioactive compounds to be used in the nutraceutical, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Leandra Leto
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Claudia Favari
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Anna Agosti
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Lorenzo Del Vecchio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Andrea Di Fazio
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Letizia Bresciani
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Pedro Mena
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Valeria Guarrasi
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
| | - Benedetta Chiancone
- Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze 27/A, 43124 Parma, Italy; (L.L.); (C.F.); (A.A.); (L.D.V.); (A.D.F.); (L.B.); (P.M.); (M.C.)
- Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| |
Collapse
|
5
|
Alves MDR, Nascimento RDP, da Fonseca Machado AP, Dos Santos P, Aledo E, Morandi Vuolo M, Cavalheiro CO, Giaculi VO, Berilli P, Dos Santos NM, Marostica Junior MR. Hop ( Humulus lupulus L.) extract reverts glycaemic imbalance and cognitive impairment in an animal model of obesity. Food Funct 2024; 15:7669-7680. [PMID: 38961720 DOI: 10.1039/d4fo02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The rates of overweight and obesity around the world have increased in past years. The body's adipose tissue stimulates the antioxidant and oxidation imbalance capacity at the cellular level. This scenario favors an inflammatory low-grade systemic condition starting with insulin resistance, which in turn may involve diabetes mellitus type 2 and cognitive decline afterward. Neurological diseases have been correlated to senile age diseases over time. This scenario calls for a change in the incidence of obesity in the younger generation. An unhealthy dietary consumption together with sedentary habits might lead to poor gut absorption of nutrients. Several plants and foods have bioactive compounds that can reduce or inhibit radical scavengers, reactive oxygen species, and metal ion complexes that threaten the cerebral defense system. The bitter acids from hops (Humulus lupulus L.) have been demonstrated to have promising effects on lipid and carbohydrate metabolism improvement, reducing inflammatory responses through alpha acids, beta acids, and analogs action. Therefore, the current study aimed to investigate the bioactivity of hop bitter acids in obese and lean mice. For that, a dry hop extract (DHE) was obtained by applying carbon dioxide as the fluid of supercritical extraction. Afterward, seventy-eight male mice of the C57BL/6J strain were weighed and randomly distributed into six groups of 13 animals each according to the diet offered: (NO) normolipidic diet, (NO1) normolipidic diet containing 0.35% alpha acids, (NO2) normolipidic diet containing 3.5% alpha acids, (HP) hyperlipidic diet, (HP1) hyperlipidic diet containing 0.35% alpha acids, and (HP2) hyperlipidic diet containing 3.5% alpha acids. After applying the glycemic tolerance and insulin tolerance tests, a better stabilization of glycemia levels and weight gain among those animals fed with DHE (NO2 and HP2) were observed in comparison to the obese control group (HP) (p < 0.05). There was also an amelioration of antioxidant capacity observed by checking the enzymatic profile by SOD and an apparent mitigation of brain degeneration by checking GSK3β and p-IRS1 proteins expression (p < 0.05). The y-maze cognitive test applied to highlight possible obesity-harmful animal brains did not indicate a statistical difference between the groups. Although the weekly dietary intake between the obese HP2 group (33.32 ± 4.11, p < 0.05) and control HP (42.3 ± 5.88, p < 0.05) was different. The bioactive compounds present in DHE have demonstrated relevant effects on glycemic control, insulin signaling, and the consequent modulatory action of the obesity-related markers with the brain's inflammatory progression.
Collapse
Affiliation(s)
- Mariana da Rocha Alves
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Roberto de Paula Nascimento
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Ana Paula da Fonseca Machado
- Universidade Federal da Grande Dourados, Faculdade de Engenharia, Rod. Dourados-Itahum Km 12, C.P.: 79804-970 - Dourados, Mato Grosso do Sul, Brasil
| | - Philipe Dos Santos
- Rubian xtratos LTDA, Rua do Café, 375 Vila Valle, 13174-000, Sumaré, São Paulo, Brazil
| | - Eduardo Aledo
- Rubian xtratos LTDA, Rua do Café, 375 Vila Valle, 13174-000, Sumaré, São Paulo, Brazil
| | - Milena Morandi Vuolo
- Rubian xtratos LTDA, Rua do Café, 375 Vila Valle, 13174-000, Sumaré, São Paulo, Brazil
| | - Carolina Oliveira Cavalheiro
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Vinícius Oliveira Giaculi
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Patrícia Berilli
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Nathália Medina Dos Santos
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| | - Mario Roberto Marostica Junior
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Laboratory of Nutrition and Metabolism, 80 Rua Monteiro Lobato, 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Sentkowska A, Konarska J, Szmytke J, Grudniak A. Herbal Polyphenols as Selenium Reducers in the Green Synthesis of Selenium Nanoparticles: Antibacterial and Antioxidant Capabilities of the Obtained SeNPs. Molecules 2024; 29:1686. [PMID: 38675506 PMCID: PMC11052002 DOI: 10.3390/molecules29081686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Selenium is an essential trace element for the proper functioning of the human body. In recent years, great attention has been paid to selenium nanoparticles (SeNPs) due to their potential for medicinal applications. In this study, herbal extracts were used in the green synthesis of SeNPs. The influence of herbal species, the ratio of the reagents, and post-reaction heating on the antibacterial and antioxidant properties of obtained SeNPs were investigated. The relationship between these properties and the physical parameters of obtained nanoparticles (e.g., size, shape) was also studied. It has been proven that SeNPs showed higher antioxidant and antibacterial properties in comparison to herbal extracts taken for their synthesis. Heating of the post-reaction mixture did not affect the SeNP size, shape, or other studied properties.
Collapse
Affiliation(s)
| | - Julia Konarska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland (J.S.); (A.G.)
| | - Jakub Szmytke
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland (J.S.); (A.G.)
| | - Anna Grudniak
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland (J.S.); (A.G.)
| |
Collapse
|
7
|
Stasiłowicz-Krzemień A, Sip S, Szulc P, Walkowiak J, Cielecka-Piontek J. The Antioxidant and Neuroprotective Potential of Leaves and Inflorescences Extracts of Selected Hemp Varieties Obtained with scCO 2. Antioxidants (Basel) 2023; 12:1827. [PMID: 37891906 PMCID: PMC10604441 DOI: 10.3390/antiox12101827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Cannabis sativa, a versatile plant with numerous varieties, holds promising potential for a wide range of biological activity. As raw materials for research, we chose leaves and inflorescences of hemp varieties such as Białobrzeskie, Henola, and Tygra, which are cultivated mainly for their fibers or seeds. The choice of extraction is a key step in obtaining the selected compositions of active compounds from plant material. Bearing in mind the lipophilic nature of cannabinoids, we performed supercritical carbon dioxide (scCO2) extraction at 50 °C under 2000 (a) and 6000 PSI (b). The cannabinoid contents were determined with the use of the HPLC-DAD method. The antioxidant capabilities were assessed through a series of procedures, including the DPPH, ABTS, CUPRAC, and FRAP methods. The capacity to inhibit enzymes that play a role in the progression of neurodegenerative diseases, such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase was also studied. The dominant cannabinoids in the extracts were cannabidiol (CBD) and cannabidiolic acid (CBDA). The highest concentration of eight cannabinoids was detected in the Tygra inflorescences extract (b). The most notable antioxidant properties were provided by the Tygra inflorescences extract (b). Nonetheless, it was the Henola inflorescences extract (b) that demonstrated the most efficient inhibition of AChE and BChE, and tyrosinase was inhibited the most significantly by the Białobrzeskie inflorescences extract (b). Multidimensional comparative analysis enrolled all assays and revealed that the Henola inflorescences extract (b) showed the most substantial neuroprotective potential.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
8
|
Stasiłowicz-Krzemień A, Cielecka-Piontek J. Hop Flower Supercritical Carbon Dioxide Extracts Coupled with Carriers with Solubilizing Properties-Antioxidant Activity and Neuroprotective Potential. Antioxidants (Basel) 2023; 12:1722. [PMID: 37760025 PMCID: PMC10525257 DOI: 10.3390/antiox12091722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lupuli flos shows many biological activities like antioxidant potential, extended by a targeted effect on selected enzymes, the expression of which is characteristic for neurodegenerative changes within the nervous system. Lupuli flos extracts (LFE) were prepared by supercritical carbon dioxide (scCO2) extraction with various pressure and temperature parameters. The antioxidant, chelating activity, and inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase by extracts were studied. The extracts containing ethanol were used as references. The most beneficial neuroprotective effects were shown by the extract obtained under 5000 PSI and 50 °C. The neuroprotective effect of active compounds is limited by poor solubility; therefore, carriers with solubilizing properties were used for scCO2 extracts, combined with post-scCO2 ethanol extract. Hydroxypropyl-β-cyclodextrin (HP-β-CD) in combination with magnesium aluminometasilicate (Neusilin US2) in the ratio 1:0.5 improved dissolution profiles to the greatest extent, while the apparent permeability coefficients of these compounds determined using the parallel artificial membrane permeability assay in the gastrointestinal (PAMPA GIT) model were increased the most by only HP-β-CD.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
9
|
The hop cones (Humulus lupulus L.): Chemical composition, antioxidant properties and molecular docking simulations. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Zugravu CA, Bohiltea RE, Salmen T, Pogurschi E, Otelea MR. Antioxidants in Hops: Bioavailability, Health Effects and Perspectives for New Products. Antioxidants (Basel) 2022; 11:antiox11020241. [PMID: 35204124 PMCID: PMC8868281 DOI: 10.3390/antiox11020241] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hop plant (Humulus lupulus L.) has been used by humans for ages, presumably first as a herbal remedy, then in the manufacturing of different products, from which beer is the most largely consumed. Female hops cones have different useful chemical compounds, an important class being antioxidants, mainly polyphenols. This narrative review describes the main antioxidants in hops, their bioavailability and biological effects, and the results obtained by now in the primary and secondary prevention of several non-communicable diseases, such as the metabolic syndrome related diseases and oncology. This article presents in vitro and in vivo data in order to better understand what was accomplished in terms of knowledge and practice, and what needs to be clarified by additional studies, mainly regarding xantohumol and its derivates, as well as regarding the bitter acids of hops. The multiple protective effects found by different studies are hindered up to now by the low bioavailability of some of the main antioxidants in hops. However, there are new promising products with important health effects and perspectives of use as food supplements, in a market where consumers increasingly search for products originating directly from plants.
Collapse
Affiliation(s)
- Corina-Aurelia Zugravu
- Department of Hygiene and Ecology, “Carol Davila” University of Medicine and Pharmacy, 050463 Bucharest, Romania; or
| | - Roxana-Elena Bohiltea
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; or
| | - Teodor Salmen
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N.C.Paulescu” National Institute of Diabetes, 030167 Bucharest, Romania
- Correspondence: ; Tel.: +40-743526731
| | - Elena Pogurschi
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 57 Marasti Blvd, 011464 Bucharest, Romania; or
| | - Marina Ruxandra Otelea
- Clinical Department 5, “Carol Davila” University of Medicine and Pharmacy, 050463 Bucharest, Romania; or
| |
Collapse
|
11
|
Macchioni V, Picchi V, Carbone K. Hop Leaves as an Alternative Source of Health-Active Compounds: Effect of Genotype and Drying Conditions. PLANTS 2021; 11:plants11010099. [PMID: 35009102 PMCID: PMC8747731 DOI: 10.3390/plants11010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 01/15/2023]
Abstract
In hop cultivation, one-third of the crop is a valuable product (hop cones), and two-thirds is unexploited biomass, consisting mainly of leaves and stems, which, in a circular economy approach, can be recovered and, once stabilized, supplied to industrial sectors, such as cosmetics, pharmaceuticals and phytotherapy, with high added value. In this regard, this study aimed to investigate the effects of two different drying methods: oven drying (OD) at 45 °C and freeze-drying (FD), on the overall nutraceutical profile (i.e., total phenols, total flavans and total thiols), pigment content (i.e., carotenoids and chlorophylls) and the antioxidant potential of leaves from five different Humulus lupulus varieties grown in central Italy. Moreover, attenuated total reflectance infrared (ATR-FTIR) spectroscopy was applied to dried leaf powders to study the influence of both the variety and treatment on their molecular fingerprints. The spectral data were then analyzed by principal component analysis (PCA), which was able to group the samples mainly based on the applied treatment. Considering the overall phytochemical profile, FD appeared to be the most suitable drying method, while OD provided higher carotenoid retention, depending on the genotype considered. Finally, unsupervised chemometric tools (i.e., PCA and hierarchical clustering) revealed that the two main clusters contained subclusters based on the drying treatment applied; these subgroups were related to the susceptibility of the variety to the drying conditions studied.
Collapse
Affiliation(s)
- Valentina Macchioni
- CREA-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Valentina Picchi
- CREA-Research Centre for Engineering and Agro-Food Processing, Via G. Venezian 26, 20133 Milan, Italy;
| | - Katya Carbone
- CREA-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
- Correspondence:
| |
Collapse
|
12
|
Humulus lupulus L. as a Natural Source of Functional Biomolecules. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hops (Humulus lupulus L.) are used traditionally in the brewing industry to confer bitterness, aroma, and flavor to beer. However, in recent years, it has been reported that female inflorescences contain a huge variety of bioactive compounds. Due to the growing interest of the consumers by natural ingredients, intense research has been carried out in the last years to find new sources of functional molecules. This review collects the works about the bioactive potential of hops with applications in the food, pharmaceutical, or cosmetic industries. Moreover, an overview of the main extraction technologies to recover biomolecules from hops is shown. Bioactivities of hop extracts such as antibacterial, antifungal, cardioprotective, antioxidant, anti-inflammatory, anticarcinogenic, and antiviral are also summarized. It can be concluded that hops present a high potential of bioactive ingredients with high quality that can be used as preservative agents in fresh foods, extending their shelf life, and they can be incorporated in cosmetic formulation for skincare as well.
Collapse
|