1
|
Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis 2024; 23:372. [PMID: 39538244 PMCID: PMC11558907 DOI: 10.1186/s12944-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Coronary artery disease has a high mortality rate and is a striking public health concern, affecting a substantial portion of the global population. On the early onset of myocardial ischemia, thrombolytic therapy and coronary revascularization could promptly restore the bloodstream and nutrient supply to the ischemic tissue, efficiently preserving less severely injured myocardium. However, the abrupt re-establishment of blood flow triggers the significant discharge of previously accumulated oxidative substances and inflammatory cytokines, leading to further harm referred to as ischemia/reperfusion (I/R) injury. Diabetes significantly raises the vulnerability of the heart to I/R injury due to disrupted glucose and lipid processing, impaired insulin sensitivity and metabolic signaling, and increased inflammatory responses. Numerous studies have indicated that adipokines are crucial in the etiology and pathogenesis of obesity, diabetes, hyperlipidemia, hypertension, and coronary artery disease. Adipokines such as adiponectin, adipsin, visfatin, chemerin, omentin, and apelin, which possess protective properties against inflammatory activity and insulin resistance, have been shown to confer myocardial protection in conditions such as atherosclerosis, myocardial hypertrophy, myocardial I/R injury, and diabetic complications. On the other hand, adipokines such as leptin and resistin, known for their pro-inflammatory characteristics, have been linked to elevated cardiac lipid deposition, insulin resistance, and fibrosis. Meteorin-like (metrnl) exhibits opposite effects in various pathological conditions. However, the data on adipokines in myocardial I/R, especially in diabetes, is still incomplete and controversial. This review focuses on recent research regarding the categorization and function of adipokines in the heart muscle, and the identification of different signaling pathways involved in myocardial I/R injury under diabetic conditions, aiming to facilitate the exploration of therapeutic strategies against myocardial I/R injury in diabetes.
Collapse
Affiliation(s)
- Ronghui Han
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Hemeng Huang
- Department of Emergency, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Jianyu Zhu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xiaogao Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yongyan Wang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, People's Republic of China.
- Faculty of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, People's Republic of China.
| | - Zhengyuan Xia
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, PR, China.
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Zhuang H, Li C, Wang L, Zhou B, Guo Z, Huang Y, Deng B, Ouyang Y, Qiu J, Chang X, Wang W, Wang J. High-Throughput Screening of an FDA-Approved Compound Library Reveals a Novel GAS6 Receptor Agonist for Therapeutic Intervention in Septic Myocardial and microvascular Injury via Modulation of Danger-Associated Molecular Patterns. Int J Biol Sci 2024; 20:6222-6240. [PMID: 39664568 PMCID: PMC11628332 DOI: 10.7150/ijbs.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/02/2024] [Indexed: 12/13/2024] Open
Abstract
PGAM5 and VDAC1 have both been reported to regulate mitophagy. However, the mechanisms by which they regulate sepsis-induced inflammatory microvascular injury remain unverified. In previous studies, we established the role of this regulatory axis in various phenotypic processes, including mitophagy, mitochondrial biogenesis, the mitochondrial unfolded protein response, and mitochondrial dynamics, while further confirming the interactive regulatory proteins within this axis. However, the validation and elucidation of these regulatory phenotypes have primarily focused on ischemic heart diseases such as ischemic myocardial injury and heart failure. Sepsis-related myocardial injury is currently recognized as a significant cardiac impairment, and although there are cardioprotective and nutritional agents available for supportive therapy, fundamental research validating the upstream targets and mechanisms of microvascular injury is still lacking. Based on our previous research, we further explored the role of mitophagy dysfunction mediated by VDAC1 and its upstream regulatory protein PGAM5 in sepsis-induced coronary microvascular injury. We also confirmed the material basis and metabolic pathway regulation targeting the PGAM5- VDAC1 interactive mechanism with relevant drugs. Our findings suggest that PGAM5-mediated mitophagy dysfunction may be a crucial factor leading to sepsis-induced microvascular injury, primarily interacting with VDAC1-mediated mitochondrial membrane dysfunction. Animal experiments revealed that cardiac-specific knockout of PGAM5 could reverse LPS-induced coronary microvascular injury and inflammatory damage, restoring cardiac ejection function and mitophagy functionality. In vitro studies also confirmed that the PGAM5-VDAC1 interaction can normalize mitophagy, restoring the normal morphology and structure of mitochondria while maintaining normal mitochondrial energy metabolism levels and respiratory chain function. Further pharmacological research indicated that the active ingredients of traditional Chinese medicine-Puerarin (TCM, a GAS6 Receptor Agonist) can target the PGAM5- VDAC1 axis to regulate mitophagy and inhibit LPS-induced necrotic apoptosis in cardiomyocytes, potentially reversing mitochondrial pathway-related cardiac injury. TCM may emerge as a prospective therapeutic agent targeting the PGAM5- VDAC1 axis.
Collapse
Affiliation(s)
- Haowen Zhuang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chun Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lingjun Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bei Zhou
- Center for Drug Evaluation, National Medical Products Administration, Beijing, 510260, China
| | - Zhijiang Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yusheng Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bo Deng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yulin Ouyang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Junxiong Qiu
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Wei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
3
|
Huang Y, Yang LH, Li YX, Chen H, Li JH, Su HB, Gui C, Su Q. The value of D-dimer in the prognosis of dilated cardiomyopathy: a retrospective cohort study. Sci Rep 2024; 14:26806. [PMID: 39500987 PMCID: PMC11538493 DOI: 10.1038/s41598-024-76716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
D-dimer is a biomarker of coagulation and fibrinolytic system activation in response to the hypercoagulable state of the body. The research aimed to analyze the value of D-dimer in the prognosis of patients with dilated cardiomyopathy (DCM). Patients admitted to our center for the first time with DCM were enrolled consecutively. The clinical characteristics variables were obtained from the electronic medical record system, and the prognostic information was obtained using telephone return visits and a review of repeated hospitalization records. Univariate and multivariate Cox regression was used to explore the association of D-dimer with all-cause mortality. Smooth curve fitting, threshold saturation effect analysis, and subgroup analysis were performed. Ultimately, 534 patients were included. After a follow-up of the enrolled patients, 485 patients obtained prognostic information, of which 159 died from all causes, and the main cause of death was heart failure (89/159), the sudden death accounted for about 17%. The independent positive association between D-dimer and all-cause mortality remained unchanged in both unadjusted and adjusted Cox regression models. In the fully adjusted model, each standard deviation increase in D-dimer was associated with a 14% increase in all-cause mortality (HR = 1.14; 95% CI: 1.02 ~ 1.27; P < 0.05). Curve fitting and threshold effect analysis showed an inflection point in the relationship between D-dimer and all-cause mortality (non-linear test: P = 0.03). When D-dimer was equal to 362ng/ml, HR = 1; and as the value increased, the risk of all-cause mortality increased by 34.7% for every 2-fold increase in D-dimer gradually (HR = 1.347; 95% CI: 1.069 ~ 1.697; P = 0.012). In subgroup analysis, D-dimer and BMI had a significant interaction on all-cause mortality, with a significantly increased risk of all-cause mortality in subjects with BMI ≥ 25 kg/m2 (HR = 1.99; 95% CI: 1.34 ~ 2.97; P < 0.01). The ROC curve showed that D-dimer was a good predictor of all-cause mortality, and the areas under the curve at 1-, 3-, and 5-year were 0.71, 0.64, and 0.59, respectively. In addition, D-dimer improved the predictive performance of the MAGGIC heart failure score in patients with DCM. D-dimer is not only independently associated with all-cause mortality in DCM patients, but also has good predictive value, suggesting that D-dimer may be an early and useful marker for improving the management of DCM patients.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Li-Hua Yang
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yu-Xin Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, China
| | - Hong Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, China
| | - Jia-Hao Li
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Hua-Bin Su
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, 530021, Guangxi, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, China.
| | - Qiang Su
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| |
Collapse
|
4
|
SHI J, XU ML, HE MJ, BO WL, ZHANG HY, SUN DH, WANG DY, WANG XY, SHAO Q, PAN YJ, ZHANG Y, DAI CG, WANG JY, ZHANG LW, LIU GZ, LI Y. Lipid-lowering effects of gefarnate in statin-treated patients with residual hypertriglyceridemia: a randomized controlled study. J Geriatr Cardiol 2024; 21:791-798. [PMID: 39308500 PMCID: PMC11411259 DOI: 10.26599/1671-5411.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND The prevention of coronary artery disease (CAD) faces dual challenges: the aspirin-induced gastrointestinal injury, and the residual cardiovascular risk after statin treatment. Geraniol acetate (Gefarnate) is an anti-ulcer drug. It was reported that geraniol might participate in lipid metabolism through a variety of pathways. The aim of this study was to assess the lipid-lowering effects of gefarnate in statin-treated CAD patients with residual hypertriglyceridemia. METHODS In this prospective, open-label, randomized, controlled trial, 69 statin-treated CAD patients with residual hypertriglyceridemia were randomly assigned to gefarnate group and control group, received gefarnate (100 mg/3 times a day) combined with statin and statin alone, respectively. At baseline and after one-month treatment, the levels of plasma triglyceride, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and total cholesterol were tested. RESULTS After one-month gefarnate treatment, triglyceride level was significantly lowered from 2.64 mmol/L to 2.12 mmol/L (P = 0.0018), LDL-C level lowered from 2.7 mmol/L to 2.37 mmol/L (P = 0.0004), HDL-C level increased from 0.97 mmol/L to 1.17 mmol/L (P = 0.0228). Based on statin therapy, gefarnate could significantly reduce the plasma triglyceride level (P = 0.0148) and increase the plasma HDL-C level (P = 0.0307). Although the LDL-C and total cholesterol levels tended to decrease, there was no statistically significant difference. CONCLUSIONS The addition of gefarnate to statin reduced triglyceride level and increased HDL-C level to a significant extent compared to statin alone in CAD patients with residual hypertriglyceridemia. This suggested that gefarnate might provide the dual benefits of preventing gastrointestinal injury and lipid lowering in CAD patients.
Collapse
Affiliation(s)
- Jing SHI
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ming-Lu XU
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Mei-Jiao HE
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wan-Lan BO
- Department of Gastroenterology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hai-Yu ZHANG
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dang-Hui SUN
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ding-Yu WANG
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao-Yu WANG
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qun SHAO
- Department of Cardiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu-Jiao PAN
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu ZHANG
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chen-Guang DAI
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing-Ying WANG
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lin-Wei ZHANG
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guang-Zhong LIU
- Department of Cardiology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yue LI
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, Heilongjiang Province Clinical Medical Research Center for Hypertension, the First Affiliated Hospital, Harbin Medical University, Harbin, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
5
|
Hu Y, Lin L, Zhang L, Li Y, Cui X, Lu M, Zhang Z, Guan X, Zhang M, Hao J, Wang X, Huan J, Yang W, Li C, Li Y. Identification of Circulating Plasma Proteins as a Mediator of Hypertension-Driven Cardiac Remodeling: A Mediation Mendelian Randomization Study. Hypertension 2024; 81:1132-1144. [PMID: 38487880 PMCID: PMC11025611 DOI: 10.1161/hypertensionaha.123.22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND This study focused on circulating plasma protein profiles to identify mediators of hypertension-driven myocardial remodeling and heart failure. METHODS A Mendelian randomization design was used to investigate the causal impact of systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure on 82 cardiac magnetic resonance traits and heart failure risk. Mediation analyses were also conducted to identify potential plasma proteins mediating these effects. RESULTS Genetically proxied higher SBP, DBP, and pulse pressure were causally associated with increased left ventricular myocardial mass and alterations in global myocardial wall thickness at end diastole. Elevated SBP and DBP were linked to increased regional myocardial radial strain of the left ventricle (basal anterior, mid, and apical walls), while higher SBP was associated with reduced circumferential strain in specific left ventricular segments (apical, mid-anteroseptal, mid-inferoseptal, and mid-inferolateral walls). Specific plasma proteins mediated the impact of blood pressure on cardiac remodeling, with FGF5 (fibroblast growth factor 5) contributing 2.96% (P=0.024) and 4.15% (P=0.046) to the total effect of SBP and DBP on myocardial wall thickness at end diastole in the apical anterior segment and leptin explaining 15.21% (P=0.042) and 23.24% (P=0.022) of the total effect of SBP and DBP on radial strain in the mid-anteroseptal segment. Additionally, FGF5 was the only mediator, explaining 4.19% (P=0.013) and 4.54% (P=0.032) of the total effect of SBP and DBP on heart failure susceptibility. CONCLUSIONS This mediation Mendelian randomization study provides evidence supporting specific circulating plasma proteins as mediators of hypertension-driven cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Yuanlong Hu
- First Clinical Medical College (Y.H., M.Z., J. Huan, Yunlun Li), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine (L.Z., X.C.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Li
- Experimental Center (Yuan Li), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinhai Cui
- College of Traditional Chinese Medicine (L.Z., X.C.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxin Zhang
- First Clinical Medical College (Y.H., M.Z., J. Huan, Yunlun Li), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojie Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China (X.W.)
| | - Jiaming Huan
- First Clinical Medical College (Y.H., M.Z., J. Huan, Yunlun Li), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine (L.L., M.L., Z.Z., X.G., J. Hao, W.Y., C.L.), Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- First Clinical Medical College (Y.H., M.Z., J. Huan, Yunlun Li), Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China (Yunlun Li)
| |
Collapse
|
6
|
Lv L, Chen Q, Lu J, Zhao Q, Wang H, Li J, Yuan K, Dong Z. Potential regulatory role of epigenetic modifications in aging-related heart failure. Int J Cardiol 2024; 401:131858. [PMID: 38360101 DOI: 10.1016/j.ijcard.2024.131858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Heart failure (HF) is a serious clinical syndrome and a serious development or advanced stage of various heart diseases. Aging is an independent factor that causes pathological damage in cardiomyopathy and participates in the occurrence of HF at the molecular level by affecting mechanisms such as telomere shortening and mitochondrial dysfunction. Epigenetic changes have a significant impact on the aging process, and there is increasing evidence that genetic and epigenetic changes are key features of aging and aging-related diseases. Epigenetic modifications can affect genetic information by changing the chromatin state without changing the DNA sequence. Most of the genetic loci that are highly associated with cardiovascular diseases (CVD) are located in non-coding regions of the genome; therefore, the epigenetic mechanism of CVD has attracted much attention. In this review, we focus on the molecular mechanisms of HF during aging and epigenetic modifications mediating aging-related HF, emphasizing that epigenetic mechanisms play an important role in the pathogenesis of aging-related CVD and can be used as potential diagnostic and prognostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Lin Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - QiuYu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HongYan Wang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - JiaHao Li
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - KeYing Yuan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - ZengXiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
7
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
8
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
9
|
Ghoshal K. Cardiac Adipocytes: Friends or Foes? Arterioscler Thromb Vasc Biol 2023; 43:1805-1807. [PMID: 37589140 DOI: 10.1161/atvbaha.123.319836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Affiliation(s)
- Kakali Ghoshal
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
10
|
Zhou B, Wang Z, Dou Q, Li W, Li Y, Yan Z, Sun P, Zhao B, Li X, Shen F, Zhang B, Guo M. Long-term outcomes of esophageal and gastric cancer patients with cardiovascular and metabolic diseases: A two-center propensity score-matched cohort study. J Transl Int Med 2023; 11:234-245. [PMID: 37818156 PMCID: PMC10561076 DOI: 10.2478/jtim-2023-0112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Background and Objectives An increased risk of cardiovascular and metabolic diseases (CVMDs) among patients with cancer suggests a potential link between CVMD and cancer. The impact of CVMD on the survival time of patients with esophageal and gastric cancer remains unknown. We aimed to determine the incidence of CVMD and its impact on the longterm outcomes in esophageal and gastric cancer patients. Methods A total of 2074 cancer patients were enrolled from January 1, 2007 to December 31, 2017 in two hospitals, including 1205 cases of esophageal cancer and 869 cases of gastric cancer, who were followed up for a median of 79.8 and 79.3 months, respectively. Survival time was analyzed using the Kaplan-Meier method before and after propensity score matching. Results The incidence of CVMD in patients with esophageal and gastric cancer was 34.1% (411/1205) and 34.3% (298/869), respectively. The effects of hypertension, diabetes, and stroke on the long-term survival of esophageal and gastric cancer patients were not significant (all P > 0.05). The survival time was significantly longer in esophageal cancer patients without ischemic heart disease than in patients with ischemic heart disease, both before matching (36.5 vs. 29.1 months, P = 0.027) and after matching (37.4 vs. 27.9 months, P = 0.011). The survival time in gastric cancer patients without ischemic heart disease was significantly longer than in patients with ischemic heart disease, both before (28.4 vs.17.5 months, P = 0.032) and after matching (29.5 vs.17.5 months, P = 0.02). Conclusion The survival time of esophageal and gastric cancer patients with ischemic heart disease was significantly reduced compared to that of esophageal and gastric cancer patients without ischemic heart disease.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing100853, China
| | - Zhixin Wang
- Department of Gastroenterology and Hepatology, the First Medical Center, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang453003, Henan Province, China
| | - Qifeng Dou
- Department of Urology Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang453199, Henan Province, China
| | - Wenbin Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital affiliated to Capital Medical University, Beijing100029, China
| | - Yangyang Li
- Department of Cardiovascular Surgery, Henan Provincial Chest Hospital, Zhengzhou450008, Henan Province, China
| | - Zhengqiang Yan
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang453199, Henan Province, China
| | - Peisheng Sun
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang453199, Henan Province, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang453199, Henan Province, China
| | - Xiumin Li
- Department of Gastroenterology and Hepatology, the First Medical Center, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang453003, Henan Province, China
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang Medical University, Xinxiang453003, Henan Province, China
| | - Fangfang Shen
- The Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang453003, Henan Province, China
| | - Bangjie Zhang
- Department of Gastroenterology and Hepatology, the First Medical Center, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang453003, Henan Province, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing100853, China
- Department of Gastroenterology and Hepatology, the First Medical Center, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang453003, Henan Province, China
| |
Collapse
|