1
|
Tang J, Wang L, Fang W, Su CM, Kim J, Du Y, Yoo D. Coinfection with bacterial pathogens and genetic modification of PRRSV-2 for suppression of NF-κB and attenuation of proinflammatory responses. Virology 2025; 606:110484. [PMID: 40086205 DOI: 10.1016/j.virol.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infects pulmonary alveolar macrophages and induces inflammation in the respiratory system. In swine farms, coinfection with PRRSV and bacterial pathogens is common and can result in clinically complicated outcomes, including porcine respiratory disease complex. Coinfection can cause excessive expressions of proinflammatory mediators and may lead to cytokine-storm-like syndrome. An immunological hallmark of PRRSV-2 is the bidirectional regulation of NF-κB with the nucleocapsid (N) protein identified as the NF-κB activator. We generated an NF-κB-silencing mutant PRRSV-2 by mutating the N gene to block its binding to PIAS1 [protein inhibitor of activated STAT-1 (signal transducer and activator of transcription 1)]. PIAS1 functions as an NF-κB repressor, and thus, the PIAS1-binding modified N-mutant PRRSV-2 became NF-κB activation-resistant in its phenotype. During coinfection of pigs with PRRSV-2 and Streptococcus suis, the N-mutant PRRSV-2 decreased the expression of proinflammatory cytokines and showed clinical attenuation. This review describes the coinfection of pigs with various pathogens, the generation of mutant PRRSV for NF-κB suppression, inflammatory profiles during bacterial coinfection, and the potential application of these findings to designing a new vaccine candidate for PRRSV-2.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chia-Ming Su
- Department of Biochemistry and Cell Biology, School of Medicine, Boston University, Boston, MA, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yijun Du
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Tu T, Zhang G, Du C, Luo Y, Yao X, Yang Z, Ren M, Wang Y, Jiang D. In vivo and in vitro study on the combination extract of Curcuma zedoaria and Astragalus membranaceus as an adjuvant for PRRSV inactivated vaccine and its preliminary application in piglets. Front Microbiol 2024; 15:1470297. [PMID: 39651347 PMCID: PMC11622496 DOI: 10.3389/fmicb.2024.1470297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
Background Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a single-stranded positive-sense RNA virus that severely impacts the global swine industry. Recently, variation and recombination of this pathogen have led to more recombinant strains. However, commercial PRRSV vaccines provide limited protection, and no effective therapeutic drugs are available in clinical settings. Astragalus membranaceus (AM) has anti-inflammatory and immune-enhancing properties, while Curcuma zedoaria (CZ) possesses anti-inflammatory, antibacterial, and antitumor effects. The combination of AM and CZ, originating from the "Lichong Tang" recorded in the "Intergrating Chinese and Western Medicine" offers complementary and synergistic benefits. Methods In this study, the AM extract, CZ extract, and various ratios of CZ-AM extracts were prepared using the decoction method. The NADC30-like PRRSV strain SCCD22 was used for viral challenge. The optimal ratio and mode of action of the CZ-AM extract on Pams-163 were assessed by measuring viral copies and mRNA expression of cytokines. Subsequently, the optimal ratio of combined extracts identified in vitro was used as an adjuvant for the PRRSV inactivated vaccine in 28-day-old piglets. Clinical symptom observations, peripheral blood lymphocyte proliferation assays, levels of PRRSV antibody, cytokine secretion, and NLRP3 inflammasome mRNA were conducted to evaluate the potential of the CZ-AM extract as an adjuvant for the PRRSV inactivated vaccine. Results Results showed that the CZ-AM extract inhibited PRRSV in vitro, with the best ratio of CZ to AM being 1:4. Animal experiments demonstrated that using the CZ-AM extract as an adjuvant for the PRRSV inactivated vaccine significantly increased the body weight of piglets, elevated serum PRRSV antibody levels, and enhanced the piglets' inflammatory response. mRNA analysis indicated that the CZ-AM extract inhibited key inflammatory pathways (TLR4/NLRP3/IL-1β), reducing the expression of inflammatory factors. Lymphocyte proliferation assays indicated that the CZ-AM extract significantly stimulated T and B lymphocyte proliferation. Conclusion This study not only deepens the understanding of the pharmacological effects of AM and CZ but also expands the application of traditional Chinese medicine in the prevention and control of animal diseases. Furthermore, it provides new insights and methods for optimizing PRRSV vaccines, offering significant scientific value and broad application prospects.
Collapse
Affiliation(s)
- Teng Tu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guidong Zhang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chengchao Du
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dike Jiang
- Chengdu Agricultural College, Chengdu, China
| |
Collapse
|
3
|
Grevelinger J, Bourry O, Meurens F, Perrin A, Hervet C, Dubreil L, Simon G, Bertho N. Impact of swine influenza A virus on porcine reproductive and respiratory syndrome virus infection in alveolar macrophages. Front Vet Sci 2024; 11:1454762. [PMID: 39253525 PMCID: PMC11381391 DOI: 10.3389/fvets.2024.1454762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Porcine respiratory disease complex represents a major challenge for the swine industry, with swine influenza A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV) being major contributors. Epidemiological studies have confirmed the co-circulation of these viruses in pig herds, making swIAV-PRRSV co-infections expected. A couple of in vivo co-infection studies have reported replication interferences between these two viruses. Herein, using a reductionist in vitro model, we investigated the potential mechanisms of these in vivo interferences. We first examined the impact of swIAV on porcine alveolar macrophages (AMs) and its effects on AMs co-infection by PRRSV. This was done either in monoculture or in co-culture with respiratory tracheal epithelial cells to represent the complexity of the interactions between the viruses and their respective target cells (epithelial cells for swIAV and AMs for PRRSV). AMs were obtained either from conventional or specific pathogen-free (SPF) pigs. SwIAV replication was abortive in AMs, inducing cell death at high multiplicity of infections. In AMs from three out of four conventional animals, swIAV showed no impact on PRRSV replication. However, inhibition of PRRSV multiplication was observed in AMs from one animal, accompanied by an early increase in the expression of interferon (IFN)-I and IFN-stimulated genes. In AMs from six SPF pigs, swIAV inhibited PRRSV replication in all animals, with an early induction of antiviral genes. Co-culture experiments involving tracheal epithelial cells and AMs from either SPF or conventional pigs all showed swIAV-induced inhibition of PRRSV replication, together with early induction of antiviral genes. These findings highlight the complex interactions between swIAV and PRRSV in porcine AMs, and would suggest a role of host factors, such as sanitary status, in modulating viral propagation. Our co-culture experiments demonstrated that swIAV inhibits PRRSV replication more effectively in the presence of respiratory tracheal epithelial cells, suggesting a synergistic antiviral response between AMs and epithelial cells, consistent with in vivo experiments.
Collapse
Affiliation(s)
- Janaïna Grevelinger
- Oniris, INRAE, BIOEPAR, Nantes, France
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - Olivier Bourry
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - François Meurens
- Oniris, INRAE, BIOEPAR, Nantes, France
- CRIPA, Fonds de Recherche du Québec, Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | | | | | - Gaëlle Simon
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | | |
Collapse
|
4
|
Sun W, Wu W, Fang X, Ge X, Zhang Y, Han J, Guo X, Zhou L, Yang H. Disruption of pulmonary microvascular endothelial barrier by dysregulated claudin-8 and claudin-4: uncovered mechanisms in porcine reproductive and respiratory syndrome virus infection. Cell Mol Life Sci 2024; 81:240. [PMID: 38806818 PMCID: PMC11133251 DOI: 10.1007/s00018-024-05282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1β and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.
Collapse
Affiliation(s)
- Weifeng Sun
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- China Institute of Veterinary Drug Control, Beijing, 100081, People's Republic of China
| | - Weixin Wu
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinyu Fang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Chrun T, Maze EA, Roper KJ, Vatzia E, Paudyal B, McNee A, Martini V, Manjegowda T, Freimanis G, Silesian A, Polo N, Clark B, Besell E, Booth G, Carr BV, Edmans M, Nunez A, Koonpaew S, Wanasen N, Graham SP, Tchilian E. Simultaneous co-infection with swine influenza A and porcine reproductive and respiratory syndrome viruses potentiates adaptive immune responses. Front Immunol 2023; 14:1192604. [PMID: 37287962 PMCID: PMC10242126 DOI: 10.3389/fimmu.2023.1192604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Porcine respiratory disease is multifactorial and most commonly involves pathogen co-infections. Major contributors include swine influenza A (swIAV) and porcine reproductive and respiratory syndrome (PRRSV) viruses. Experimental co-infection studies with these two viruses have shown that clinical outcomes can be exacerbated, but how innate and adaptive immune responses contribute to pathogenesis and pathogen control has not been thoroughly evaluated. We investigated immune responses following experimental simultaneous co-infection of pigs with swIAV H3N2 and PRRSV-2. Our results indicated that clinical disease was not significantly exacerbated, and swIAV H3N2 viral load was reduced in the lung of the co-infected animals. PRRSV-2/swIAV H3N2 co-infection did not impair the development of virus-specific adaptive immune responses. swIAV H3N2-specific IgG serum titers and PRRSV-2-specific CD8β+ T-cell responses in blood were enhanced. Higher proportions of polyfunctional CD8β+ T-cell subset in both blood and lung washes were found in PRRSV-2/swIAV H3N2 co-infected animals compared to the single-infected groups. Our findings provide evidence that systemic and local host immune responses are not negatively affected by simultaneous swIAV H3N2/PRRSV-2 co-infection, raising questions as to the mechanisms involved in disease modulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Noemi Polo
- The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Alejandro Nunez
- Pathology and Animal Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|
6
|
Burgher Pulgaron Y, Provost C, Pesant MJ, Gagnon CA. Porcine Circovirus Modulates Swine Influenza Virus Replication in Pig Tracheal Epithelial Cells and Porcine Alveolar Macrophages. Viruses 2023; 15:v15051207. [PMID: 37243291 DOI: 10.3390/v15051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The pathogenesis of porcine circovirus type 2b (PCV2b) and swine influenza A virus (SwIV) during co-infection in swine respiratory cells is poorly understood. To elucidate the impact of PCV2b/SwIV co-infection, newborn porcine tracheal epithelial cells (NPTr) and immortalized porcine alveolar macrophages (iPAM 3D4/21) were co-infected with PCV2b and SwIV (H1N1 or H3N2 genotype). Viral replication, cell viability and cytokine mRNA expression were determined and compared between single-infected and co-infected cells. Finally, 3'mRNA sequencing was performed to identify the modulation of gene expression and cellular pathways in co-infected cells. It was found that PCV2b significantly decreased or improved SwIV replication in co-infected NPTr and iPAM 3D4/21 cells, respectively, compared to single-infected cells. Interestingly, PCV2b/SwIV co-infection synergistically up-regulated IFN expression in NPTr cells, whereas in iPAM 3D4/21 cells, PCV2b impaired the SwIV IFN induced response, both correlating with SwIV replication modulation. RNA-sequencing analyses revealed that the modulation of gene expression and enriched cellular pathways during PCV2b/SwIV H1N1 co-infection is regulated in a cell-type-dependent manner. This study revealed different outcomes of PCV2b/SwIV co-infection in porcine epithelial cells and macrophages and provides new insights on porcine viral co-infections pathogenesis.
Collapse
Affiliation(s)
- Yaima Burgher Pulgaron
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Chantale Provost
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Jeanne Pesant
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
7
|
Vereecke N, Zwickl S, Gumbert S, Graaf A, Harder T, Ritzmann M, Lillie-Jaschniski K, Theuns S, Stadler J. Viral and Bacterial Profiles in Endemic Influenza A Virus Infected Swine Herds Using Nanopore Metagenomic Sequencing on Tracheobronchial Swabs. Microbiol Spectr 2023; 11:e0009823. [PMID: 36853049 PMCID: PMC10100764 DOI: 10.1128/spectrum.00098-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Swine influenza A virus (swIAV) plays an important role in porcine respiratory infections. In addition to its ability to cause severe disease by itself, it is important in the multietiological porcine respiratory disease complex. Still, to date, no comprehensive diagnostics with which to study polymicrobial infections in detail have been offered. Hence, veterinary practitioners rely on monospecific and costly diagnostics, such as Reverse Transcription quantitative PCR (RT-qPCR), antigen detection, and serology. This prevents the proper understanding of the entire disease context, thereby hampering effective preventive and therapeutic actions. A new, nanopore-based, metagenomic diagnostic platform was applied to study viral and bacterial profiles across 4 age groups on 25 endemic swIAV-infected German farms with respiratory distress in the nursery. Farms were screened for swIAV using RT-qPCR on nasal and tracheobronchial swabs (TBS). TBS samples were pooled per age, prior to metagenomic characterization. The resulting data showed a correlation between the swIAV loads and the normalized reads, supporting a (semi-)quantitative interpretation of the metagenomic data. Interestingly, an in-depth characterization using beta diversity and PERMANOVA analyses allowed for the observation of an age-dependent interplay of known microbial agents. Also, lesser-known microbes, such as porcine polyoma, parainfluenza, and hemagglutinating encephalomyelitis viruses, were observed. Analyses of swIAV incidence and clinical signs showed differing microbial communities, highlighting age-specific observations of various microbes in porcine respiratory disease. In conclusion, nanopore metagenomics were shown to enable a panoramic view on viral and bacterial profiles as well as putative pathogen dynamics in endemic swIAV-infected herds. The results also highlighted the need for better insights into lesser studied agents that are potentially associated with porcine respiratory disease. IMPORTANCE To date, no comprehensive diagnostics for the study of polymicrobial infections that are associated with porcine respiratory disease have been offered. This precludes the proper understanding of the entire disease landscape, thereby hampering effective preventive and therapeutic actions. Compared to the often-costly diagnostic procedures that are applied for the diagnostics of porcine respiratory disease nowadays, a third-generation nanopore sequencing diagnostics workflow presents a cost-efficient and informative tool. This approach offers a panoramic view of microbial agents and contributes to the in-depth observation and characterization of viral and bacterial profiles within the respiratory disease context. While these data allow for the study of age-associated, swIAV-associated, and clinical symptom-associated observations, it also suggests that more effort should be put toward the investigation of coinfections and lesser-known pathogens (e.g., PHEV and PPIV), along with their potential roles in porcine respiratory disease. Overall, this approach will allow veterinary practitioners to tailor treatment and/or management changes on farms in a quicker, more complete, and cost-efficient way.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Sophia Zwickl
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Sophie Gumbert
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| | | | - Sebastiaan Theuns
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- PathoSense BV, Lier, Belgium
| | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Germany
| |
Collapse
|
8
|
Signaling Lymphocytic Activation Molecule Family Member 1 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication. Animals (Basel) 2022; 12:ani12243542. [PMID: 36552462 PMCID: PMC9774311 DOI: 10.3390/ani12243542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease in domestic swine. Signaling lymphocytic activation molecule family member 1 (SLAMF1) is a costimulatory factor that is involved in innate immunity, inflammation, and infection. Here, we demonstrate that overexpression of the SLAMF1 gene inhibited PRRSV replication significantly and reduced the levels of key signaling pathways, including MyD88, RIG-I, TLR2, TRIF, and inflammatory factors IL-6, IL-1β, IL-8, TNF-β, TNF-α, and IFN-α in vitro. However, the knockdown of the SLAMF1 gene could enhance replication of the PRRSV and the levels of key signaling pathways and inflammatory factors. Overall, our results identify a new, to our knowledge, antagonist of the PRRSV, as well as a novel antagonistic mechanism evolved by inhibiting innate immunity and inflammation, providing a new reference and direction for PRRSV disease resistance breeding.
Collapse
|
9
|
Successive Inoculations of Pigs with Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) and Swine H1N2 Influenza Virus Suggest a Mutual Interference between the Two Viral Infections. Viruses 2021; 13:v13112169. [PMID: 34834975 PMCID: PMC8625072 DOI: 10.3390/v13112169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A virus (swIAV) are major pathogens of the porcine respiratory disease complex, but little is known on their interaction in super-infected pigs. In this study, we investigated clinical, virological and immunological outcomes of successive infections with PRRSV-1 and H1N2 swIAV. Twenty-four specific pathogen-free piglets were distributed into four groups and inoculated either with PRRSV at study day (SD) 0, or with swIAV at SD8, or with PRRSV and swIAV one week apart at SD0 and SD8, respectively, or mock-inoculated. In PRRSV/swIAV group, the clinical signs usually observed after swIAV infection were attenuated while higher levels of anti-swIAV antibodies were measured in lungs. Concurrently, PRRSV multiplication in lungs was significantly affected by swIAV infection, whereas the cell-mediated immune response specific to PRRSV was detected earlier in blood, as compared to PRRSV group. Moreover, levels of interferon (IFN)-α measured from SD9 in the blood of super-infected pigs were lower than those measured in the swIAV group, but higher than in the PRRSV group at the same time. Correlation analyses suggested an important role of IFN-α in the two-way interference highlighted between both viral infections.
Collapse
|
10
|
Bakre AA, Jones LP, Murray J, Reneer ZB, Meliopoulos VA, Cherry S, Schultz-Cherry S, Tripp RA. Innate Antiviral Cytokine Response to Swine Influenza Virus by Swine Respiratory Epithelial Cells. J Virol 2021; 95:e0069221. [PMID: 33980596 PMCID: PMC8274599 DOI: 10.1128/jvi.00692-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
Swine influenza virus (SIV) can cause respiratory illness in swine. Swine contribute to influenza virus reassortment, as avian, human, and/or swine influenza viruses can infect swine and reassort, and new viruses can emerge. Thus, it is important to determine the host antiviral responses that affect SIV replication. In this study, we examined the innate antiviral cytokine response to SIV by swine respiratory epithelial cells, focusing on the expression of interferon (IFN) and interferon-stimulated genes (ISGs). Both primary and transformed swine nasal and tracheal respiratory epithelial cells were examined following infection with field isolates. The results show that IFN and ISG expression is maximal at 12 h postinfection (hpi) and is dependent on cell type and virus genotype. IMPORTANCE Swine are considered intermediate hosts that have facilitated influenza virus reassortment events that have given rise pandemics or genetically related viruses have become established in swine. In this study, we examine the innate antiviral response to swine influenza virus in primary and immortalized swine nasal and tracheal epithelial cells, and show virus strain- and host cell type-dependent differential expression of key interferons and interferon-stimulated genes.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Les P Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Z Beau Reneer
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis Tennessee
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Saeng-Chuto K, Madapong A, Kaeoket K, Piñeyro PE, Tantituvanont A, Nilubol D. Coinfection of porcine deltacoronavirus and porcine epidemic diarrhea virus increases disease severity, cell trophism and earlier upregulation of IFN-α and IL12. Sci Rep 2021; 11:3040. [PMID: 33542409 PMCID: PMC7862360 DOI: 10.1038/s41598-021-82738-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) cause an enteric disease characterized by diarrhea clinically indistinguishable. Both viruses are simultaneously detected in clinical cases, but a study involving the co-infection has not been reported. The study was therefore conducted to investigate the disease severity following a co-infection with PEDV and PDCoV. In the study, 4-day-old pigs were orally inoculated with PEDV and PDCoV, either alone or in combination. Following challenge, fecal score was monitored on a daily basis. Fecal swabs were collected and assayed for the presence of viruses. Three pigs per group were necropsied at 3 and 5 days post inoculation (dpi). Microscopic lesions and villous height to crypt depth (VH:CD) ratio, together with the presence of PEDV and PDCoV antigens, were evaluated in small intestinal tissues. Expressions of interferon alpha (IFN-α) and interleukin 12 (IL12) were investigated in small intestinal mucosa. The findings indicated that coinoculation increased the disease severity, demonstrated by significantly prolonged fecal score and virus shedding and decreasing VH:CD ratio in the jejunum compared with pigs inoculated with either PEDV or PDCoV alone. Notably, in single-inoculated groups, PEDV and PDCoV antigens were detected only in villous enterocytes wile in the coinoculated group, PDCoV antigen was detected in both villous enterocytes and crypts. IFN-α and IL12 were significantly up-regulated in coinoculated groups in comparison with single-inoculated groups. In conclusion, co-infection with PEDV and PDCoV exacerbate clinical signs and have a synergetic on the regulatory effect inflammatory cytokines compared to a single infection with either virus.
Collapse
Affiliation(s)
- Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Adthakorn Madapong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Pablo Enrique Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Henry Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
Respiratory viral infections drive different lung cytokine profiles in pigs. BMC Vet Res 2021; 17:5. [PMID: 33407470 PMCID: PMC7786461 DOI: 10.1186/s12917-020-02722-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Swine influenza A virus (IAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are considered key viral pathogens involved in the porcine respiratory disease complex. Concerning the effect of one virus on another with respect to local immune response is still very limited. Determination of presence and quantity of cytokines in the lung tissue and its relation to the lung pathology can lead to a better understanding of the host inflammatory response and its influence on the lung pathology during single or multi-virus infection. The aim of the present study was to explore and compare the patterns of lung cytokine protein response in pigs after single or dual infection with swine IAV and/or PRRSV. Results Inoculation with IAV alone causes an increase in lung concentration of IFN-α, IFN-ɣ, TNF-α, IL-6, IL-8 and IL-10, especially at 2 and 4 DPI. In PRRSV group, beyond early IFN-α, IFN-ɣ, IL-6, IL-8 and IL-10 induction, elevated levels of cytokines at 10 and 21 DPI have been found. In IAV+PRRSV inoculated pigs the lung concentrations of all cytokines were higher than in control pigs. Conclusions Current results indicate that experimental infection of pigs with IAV or PRRSV alone and co-infection with both pathogens induce different kinetics of local cytokine response. Due to strong positive correlation between local TNF-α and IL-10 concentration and lung pathology, we hypothesize that these cytokines are involved in the induction of lung lesions during investigates infection. Nevertheless, no apparent increase in lung cytokine response was seen in pigs co-inoculated simultaneously with both pathogens compared to single inoculated groups. It may also explain no significant effect of co-infection on the lung pathology and pathogen load, compared to single infections. Strong correlation between local concentration of TNF-α, IFN-ɣ, IL-8 and SwH1N1 load in the lung, as well as TNF-α, IL-8 and PRRSV lung titres suggested that local replication of both viruses also influenced the local cytokine response during infection.
Collapse
|
13
|
Pomorska-Mól M, Podgórska K, Czyżewska-Dors E, Turlewicz-Podbielska H, Gogulski M, Włodarek J, Łukomska A. Kinetics of single and dual simultaneous infection of pigs with swine influenza A virus and porcine reproductive and respiratory syndrome virus. J Vet Intern Med 2020; 34:1903-1913. [PMID: 32618394 PMCID: PMC7517861 DOI: 10.1111/jvim.15832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
Background Simultaneous viral infections exhibit the phenomenon of viral interference, but understanding of the effect of one virus on another is limited. Objective Evaluate and compare clinical characteristics, immune and acute phase response, viral shedding and viral load in pigs singly and doubly inoculated with swine influenza A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV). Animals Fifty‐four 7‐week‐old piglets. Methods Clinical status and gross lung lesions were scored. Titration of swIAV was carried out in Madin‐Darby canine kidney cells. The PRRSV RNA was quantified using a commercial qPCR kit. Antibodies were detected by hemagglutination inhibition assay and commercial ELISA. A lymphocyte proliferation assay was used to measure antigen‐specific T‐cell responses. Acute phase proteins were determined using ELISA. Results No differences were found between mean clinical scores, swIAV and PRRSV shedding, and magnitude of the humoral and T‐cell response between single‐inoculated and dual‐inoculated groups. Concentrations of C‐reactive protein and haptoglobin increased in PRRSV‐inoculated and coinoculated groups, whereas serum amyloid A concentration was increased in groups inoculated or coinoculated with swIAV. Mean swIAV TCID50 titers in the lungs did not differ significantly between coinoculated and swIAV single‐inoculated pigs. A significantly higher mean copy number of PRRSV was found in the lungs of PRRSV only‐inoculated pigs at 2 day postinoculation (DPI). From 4 DPI, no significant differences in PRRSV load were identified. Conclusions and Clinical Importance Coinfection of pigs with swIAV and PRRSV did not potentiate clinical signs, lung lesions, immune response, and replication of the viruses in the respiratory tract.
Collapse
Affiliation(s)
- Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Pulawy, Poland
| | | | - Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| | - Maciej Gogulski
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| | - Jan Włodarek
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| | - Anna Łukomska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| |
Collapse
|