1
|
Ayeni A, Evbuomwan O, Vangu MDTW. The Role of [ 18F]FDG PET/CT in Monitoring of Therapy Response in Lung Cancer. Semin Nucl Med 2025; 55:175-189. [PMID: 40021362 DOI: 10.1053/j.semnuclmed.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
Lung cancer remains a leading cause of cancer deaths worldwide, with an all stage 5-year relative survival rate of less than 30%. Multiple treatment strategies are available and continue to evolve, with therapy primarily tailored to the type and stage of the disease. Accurate monitoring of therapy response is crucial for optimizing treatment outcomes. PET/CT imaging with [18F]FDG has become the standard of care across various phases of lung cancer management due to its ability to assess metabolic activity. This review underscores the pivotal role of [18F]FDG PET/CT in evaluating therapy response in lung cancer, particularly in non-small cell lung cancer (NSCLC). It examines conventional response criteria and their adaptations in the era of immunotherapy, highlighting the value of integrating metabolic imaging with established criteria to improve treatment assessment and guide clinical decisions. The potential of non-[18F]FDG PET tracers targeting diverse biological pathways to provide deeper insights into tumor biology, therapy response and predictive outcomes is also explored. Additionally, the emerging role of radiomics in enhancing treatment efficacy assessment and improving patient management is briefly highlighted. Despite the challenges in the routine clinical application of various metabolic response criteria, [18F]FDG PET/CT remains a crucial tool in monitoring therapy response in lung cancer. Ongoing advancements in therapeutic strategies, radiopharmaceuticals, and imaging techniques continue to drive progress in lung cancer management, promising improved patient outcomes.
Collapse
Affiliation(s)
- Akinwale Ayeni
- Division of Nuclear Medicine, Department of Radiation Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; Nuclear Medicine, Klerksdorp/Tshepong Hospital Complex, Klerksdorp, North West Province, South Africa; Division of Nuclear Medicine, Department of Radiation Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Osayande Evbuomwan
- Department of Nuclear Medicine, Faculty of Health Sciences, University of The Free State, Bloemfontein, South Africa
| | - Mboyo-Di-Tamba Willy Vangu
- Division of Nuclear Medicine, Department of Radiation Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Zheng L, Bian Y, Hu Y, Tian C, Zhang X, Li S, Yang X, Qin Y. Baseline 18F-FDG PET/CT parameters in predicting the efficacy of immunotherapy in non-small cell lung cancer. Front Med (Lausanne) 2025; 12:1477275. [PMID: 39958820 PMCID: PMC11825783 DOI: 10.3389/fmed.2025.1477275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Objective To analyse positron emission tomography/ computed tomography (PET/CT) imaging and clinical data from patients with non-small cell lung cancer (NSCLC), to identify characteristics of survival beneficiaries of immune checkpoint inhibitors (ICIs) treatment and to establish a survival prediction model. Methods A retrospective analysis was conducted on PET/CT imaging and clinical parameters of 155 NSCLC patients who underwent baseline PET/CT examination at the Department of Nuclear Medicine, Hebei General Hospital. The Kaplan-Meier curve was employed to compare progression-free survival (PFS) and overall survival (OS) between the ICIs and non-ICIs group and to assess the impact of variables on PFS and OS in the ICIs group. Multivariate Cox proportional hazards regression analysis was conducted with parameters significantly associated with survival in univariate analysis. Results Significant differences were observed in PFS (χ2 = 11.910, p = 0.0006) and OS (χ2 = 8.343, p = 0.0039). Independent predictors of PFS in the ICIs group included smoking history[hazard ratio (HR) = 2.522, 95% confidence interval (CI): 1.044 ~ 6.091, p = 0.0398], SUVmax of the primary lesion(HR = 0.2376, 95%CI: 0.1018 ~ 0.5548, p = 0.0009), MTVp (HR = 0.0755, 95%CI: 0.0284 ~ 0.2003, p < 0.001), and TLGp (HR = 0.1820, 95%CI: 0.0754 ~ 0.4395, p = 0.0002). These were also independent predictors of OS in the ICIs group[HR(95%CI) were 2.729 (1.125 ~ 6.619), 0.2636 (0.1143 ~ 0.6079), 0.0715 (0.0268 ~ 0.1907), 0.2102 (0.0885 ~ 0.4992), both p < 0.05)]. Age was an additional independent predictor of OS (HR = 0.4140, 95%CI: 0.1748 ~ 0.9801, p = 0.0449). Conclusion Smoking history, primary lesion SUVmax, MTVp, and TLGp were independent predictors of PFS, whilst age, smoking history, SUVmax, MTVp, and TLGp were independent predictors of OS in the ICIs group. Patients without a history of smoking and with SUVmax ≤19.2, MTVp ≤20.745cm3, TLGp ≤158.62 g, and age ≤ 60 years benefited more from ICI treatment.
Collapse
Affiliation(s)
- Lu Zheng
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
| | - Yanzhu Bian
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, China
| | - Yujing Hu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Congna Tian
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Xinchao Zhang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Shuheng Li
- Department of Nuclear Medicine, Affiliated Hospital of Hebei University, Baoding, China
| | - Xin Yang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Yanan Qin
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
3
|
Mai H, Li L, Xin X, Jiang Z, Tang Y, Huang J, Lei Y, Chen L, Dong T, Zhong X. Prediction of immunotherapy response in nasopharyngeal carcinoma: a comparative study using MRI-based radiomics signature and programmed cell death ligand 1 expression score. Eur Radiol 2025:10.1007/s00330-025-11350-5. [PMID: 39853331 DOI: 10.1007/s00330-025-11350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025]
Abstract
OBJECTIVES To compare an MRI-based radiomics signature with the programmed cell death ligand 1 (PD-L1) expression score for predicting immunotherapy response in nasopharyngeal carcinoma (NPC). METHODS Consecutive patients with NPC who received immunotherapy between January 2019 and June 2022 were divided into training (n = 111) and validation (n = 66) sets. Tumor radiomics features were extracted from pretreatment MR images. PD-L1 combined positive score (CPS) was calculated using immunohistochemistry. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature selection and radiomics signature construction. Receiver operating characteristic (ROC) curve analysis was performed to assess prediction performance. RESULTS A total of eleven radiomics features with the greatest discrimination capability were identified by the LASSO algorithm to construct the radiomics signature. In predicting patients with objective response to immunotherapy, radiomics score (Rd-score) yielded a significantly higher area under the ROC curve than that of CPS in both the training (0.790 vs. 0.645, p = 0.025) and the validation (0.735 vs. 0.608, p = 0.038) sets. Multivariate analysis identified the Rd-score as an independent influencing factor in predicting immunotherapy response (odds ratio = 19.963, p < 0.001). Kaplan-Meier analysis indicated that patients with Rd-score ≥ 0.5 showed longer progression-free survival than patients with Rd-score < 0.5 (log-rank p < 0.01). CONCLUSION An MRI-based radiomics signature demonstrated greater efficacy than the PD-L1 expression score in predicting immunotherapy response in patients with NPC. KEY POINTS Question How does an MRI-based radiomics signature compare with the programmed cell death ligand 1 expression score for predicting immunotherapy response in nasopharyngeal carcinoma? Findings The MRI-based radiomics signature demonstrated superior predictive value compared with programmed cell death ligand 1 expression score in identifying immunotherapy responders. Clinical relevance MRI-based radiomics are a promising novel noninvasive tool for predicting immunotherapy outcomes in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Hui Mai
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Li Li
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin Xin
- Department of Medical Imaging, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhike Jiang
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongfang Tang
- Department of Medical Imaging, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Huang
- Department of Medical Imaging, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanxing Lei
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lianzhi Chen
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tianfa Dong
- Department of Radiology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xi Zhong
- Department of Medical Imaging, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Lee G, Moon SH, Kim JH, Jeong DY, Choi J, Choi JY, Lee HY. Multimodal Imaging Approach for Tumor Treatment Response Evaluation in the Era of Immunotherapy. Invest Radiol 2025; 60:11-26. [PMID: 39018248 DOI: 10.1097/rli.0000000000001096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
ABSTRACT Immunotherapy is likely the most remarkable advancement in lung cancer treatment during the past decade. Although immunotherapy provides substantial benefits, their therapeutic responses differ from those of conventional chemotherapy and targeted therapy, and some patients present unique immunotherapy response patterns that cannot be judged under the current measurement standards. Therefore, the response monitoring of immunotherapy can be challenging, such as the differentiation between real response and pseudo-response. This review outlines the various tumor response patterns to immunotherapy and discusses methods for quantifying computed tomography (CT) and 18 F-fluorodeoxyglucose positron emission tomography (PET) in the field of lung cancer. Emerging technologies in magnetic resonance imaging (MRI) and non-FDG PET tracers are also explored. With immunotherapy responses, the role for imaging is essential in both anatomical radiological responses (CT/MRI) and molecular changes (PET imaging). Multiple aspects must be considered when assessing treatment responses using CT and PET. Finally, we introduce multimodal approaches that integrate imaging and nonimaging data, and we discuss future directions for the assessment and prediction of lung cancer responses to immunotherapy.
Collapse
Affiliation(s)
- Geewon Lee
- From the Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (G.L., D.Y.J., J.C., H.Y.L.); Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea (G.L.); Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (S.H.M., J.Y.C.); Industrial Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea (J.H.K.); Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea (J.C.); and Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea (H.Y.L.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Chen YH, Lue KH, Chu SC, Lin CB, Liu SH. The value of 18F-fluorodeoxyglucose positron emission tomography-based radiomics in non-small cell lung cancer. Tzu Chi Med J 2025; 37:17-27. [PMID: 39850392 PMCID: PMC11753514 DOI: 10.4103/tcmj.tcmj_124_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 01/25/2025] Open
Abstract
Currently, the second most commonly diagnosed cancer in the world is lung cancer, and 85% of cases are non-small cell lung cancer (NSCLC). With growing knowledge of oncogene drivers and cancer immunology, several novel therapeutics have emerged to improve the prognostic outcomes of NSCLC. However, treatment outcomes remain diverse, and an accurate tool to achieve precision medicine is an unmet need. Radiomics, a method of extracting medical imaging features, is promising for precision medicine. Among all radiomic tools, 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)-based radiomics provides distinct information on glycolytic activity and heterogeneity. In this review, we collected relevant literature from PubMed and summarized the various applications of 18F-FDG PET-derived radiomics in improving the detection of metastasis, subtyping histopathologies, characterizing driver mutations, assessing treatment response, and evaluating survival outcomes of NSCLC. Furthermore, we reviewed the values of 18F-FDG PET-based deep learning. Finally, several challenges and caveats exist in the implementation of 18F-FDG PET-based radiomics for NSCLC. Implementing 18F-FDG PET-based radiomics in clinical practice is necessary to ensure reproducibility. Moreover, basic studies elucidating the underlying biological significance of 18F-FDG PET-based radiomics are lacking. Current inadequacies hamper immediate clinical adoption; however, radiomic studies are progressively addressing these issues. 18F-FDG PET-based radiomics remains an invaluable and indispensable aspect of precision medicine for NSCLC.
Collapse
Affiliation(s)
- Yu-Hung Chen
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Bin Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
6
|
McGale JP, Chen DL, Trebeschi S, Farwell MD, Wu AM, Cutler CS, Schwartz LH, Dercle L. Artificial intelligence in immunotherapy PET/SPECT imaging. Eur Radiol 2024; 34:5829-5841. [PMID: 38355986 DOI: 10.1007/s00330-024-10637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE Immunotherapy has dramatically altered the therapeutic landscape for oncology, but more research is needed to identify patients who are likely to achieve durable clinical benefit and those who may develop unacceptable side effects. We investigated the role of artificial intelligence in PET/SPECT-guided approaches for immunotherapy-treated patients. METHODS We performed a scoping review of MEDLINE, CENTRAL, and Embase databases using key terms related to immunotherapy, PET/SPECT imaging, and AI/radiomics through October 12, 2022. RESULTS Of the 217 studies identified in our literature search, 24 relevant articles were selected. The median (interquartile range) sample size of included patient cohorts was 63 (157). Primary tumors of interest were lung (n = 14/24, 58.3%), lymphoma (n = 4/24, 16.7%), or melanoma (n = 4/24, 16.7%). A total of 28 treatment regimens were employed, including anti-PD-(L)1 (n = 13/28, 46.4%) and anti-CTLA-4 (n = 4/28, 14.3%) monoclonal antibodies. Predictive models were built from imaging features using univariate radiomics (n = 7/24, 29.2%), radiomics (n = 12/24, 50.0%), or deep learning (n = 5/24, 20.8%) and were most often used to prognosticate (n = 6/24, 25.0%) or describe tumor phenotype (n = 5/24, 20.8%). Eighteen studies (75.0%) performed AI model validation. CONCLUSION Preliminary results suggest broad potential for the application of AI-guided immunotherapy management after further validation of models on large, prospective, multicenter cohorts. CLINICAL RELEVANCE STATEMENT This scoping review describes how artificial intelligence models are built to make predictions based on medical imaging and explores their application specifically in the PET and SPECT examination of immunotherapy-treated cancers. KEY POINTS • Immunotherapy has drastically altered the cancer treatment landscape but is known to precipitate response patterns that are not accurately accounted for by traditional imaging methods. • There is an unmet need for better tools to not only facilitate in-treatment evaluation but also to predict, a priori, which patients are likely to achieve a good response with a certain treatment as well as those who are likely to develop side effects. • Artificial intelligence applied to PET/SPECT imaging of immunotherapy-treated patients is mainly used to make predictions about prognosis or tumor phenotype and is built from baseline, pre-treatment images. Further testing is required before a true transition to clinical application can be realized.
Collapse
Affiliation(s)
- Jeremy P McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Delphine L Chen
- Department of Molecular Imaging and Therapy, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna M Wu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Lawrence H Schwartz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
7
|
Zheng J, Xu S, Wang G, Shi Y. Applications of CT-based radiomics for the prediction of immune checkpoint markers and immunotherapeutic outcomes in non-small cell lung cancer. Front Immunol 2024; 15:1434171. [PMID: 39238640 PMCID: PMC11374640 DOI: 10.3389/fimmu.2024.1434171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
In recent years, there has been significant research interest in the field of immunotherapy for non-small cell lung cancer (NSCLC) within the academic community. Given the observed variations in individual responses, despite similarities in histopathologic type, immunohistochemical index, TNM stage, or mutation status, the identification of a reliable biomarker for early prediction of therapeutic responses is of utmost importance. Conventional medical imaging techniques primarily focus on macroscopic tumor monitoring, which may no longer adequately fulfill the requirements of clinical diagnosis and treatment. CT (computerized tomography) or PEF/CT-based radiomics has the potential to investigate the molecular-level biological attributes of tumors, such as PD-1/PD-L1 expression and tumor mutation burden, which offers a novel approach to assess the effectiveness of immunotherapy and forecast patient prognosis. The utilization of cutting-edge radiological imaging techniques, including radiomics, PET/CT, machine learning, and artificial intelligence, demonstrates significant potential in predicting diagnosis, treatment response, immunosuppressive characteristics, and immune-related adverse events. The current review highlights that CT scan-based radiomics is a reliable and feasible way to predict the benefits of immunotherapy in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Radiology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang, China
| | - Shuang Xu
- Department of Radiology, Redcliffe Hospital, The University of Queensland, Redcliffe, QLD, Australia
| | - Guoyu Wang
- Department of Radiology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang, China
| | - Yiming Shi
- Department of Radiology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
8
|
HOU Y, ZHANG T, WANG H. [Advancements in Radiomics for Immunotherapy of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:637-644. [PMID: 39318257 PMCID: PMC11425675 DOI: 10.3779/j.issn.1009-3419.2024.102.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 09/26/2024]
Abstract
Lung cancer is the main cause of cancer-related deaths, with non-small cell lung cancer (NSCLC) being the predominant subtype. At present, immunotherapy represented by immune checkpoint inhibitors (ICIs) of programmed cell death receptor 1 or its ligand has been widely used in the clinical diagnosis and treatment of patients with NSCLC. However, only a few patients can benefit from it, and reliable predictive markers for immunotherapy are lacking. Radiomics is a tool that uses computer software and algorithms to extract a large amount of quantitative information from biomedical images. A large number of studies have confirmed that the radiomic model that predicts the immune efficacy of NSCLC can be used as a new type of immune efficacy predictive marker, which is expected to guide the individualized diagnosis and treatment decisions for patients with lung cancer and has a bright application prospect. This article reviews the research progress of radiomics in predicting the immune therapy response of NSCLC, identifying pseudo-progression and hyperprogression, ICIs-related pneumonia, cachexia risk, and combining with other genomics.
.
Collapse
|
9
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
McGale JP, Howell HJ, Beddok A, Tordjman M, Sun R, Chen D, Wu AM, Assi T, Ammari S, Dercle L. Integrating Artificial Intelligence and PET Imaging for Drug Discovery: A Paradigm Shift in Immunotherapy. Pharmaceuticals (Basel) 2024; 17:210. [PMID: 38399425 PMCID: PMC10892847 DOI: 10.3390/ph17020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The integration of artificial intelligence (AI) and positron emission tomography (PET) imaging has the potential to become a powerful tool in drug discovery. This review aims to provide an overview of the current state of research and highlight the potential for this alliance to advance pharmaceutical innovation by accelerating the development and deployment of novel therapeutics. We previously performed a scoping review of three databases (Embase, MEDLINE, and CENTRAL), identifying 87 studies published between 2018 and 2022 relevant to medical imaging (e.g., CT, PET, MRI), immunotherapy, artificial intelligence, and radiomics. Herein, we reexamine the previously identified studies, performing a subgroup analysis on articles specifically utilizing AI and PET imaging for drug discovery purposes in immunotherapy-treated oncology patients. Of the 87 original studies identified, 15 met our updated search criteria. In these studies, radiomics features were primarily extracted from PET/CT images in combination (n = 9, 60.0%) rather than PET imaging alone (n = 6, 40.0%), and patient cohorts were mostly recruited retrospectively and from single institutions (n = 10, 66.7%). AI models were used primarily for prognostication (n = 6, 40.0%) or for assisting in tumor phenotyping (n = 4, 26.7%). About half of the studies stress-tested their models using validation sets (n = 4, 26.7%) or both validation sets and test sets (n = 4, 26.7%), while the remaining six studies (40.0%) either performed no validation at all or used less stringent methods such as cross-validation on the training set. Overall, the integration of AI and PET imaging represents a paradigm shift in drug discovery, offering new avenues for more efficient development of therapeutics. By leveraging AI algorithms and PET imaging analysis, researchers could gain deeper insights into disease mechanisms, identify new drug targets, or optimize treatment regimens. However, further research is needed to validate these findings and address challenges such as data standardization and algorithm robustness.
Collapse
Affiliation(s)
- Jeremy P. McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Harrison J. Howell
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| | - Arnaud Beddok
- Department of Radiation Oncology, Institut Godinot, 51100 Reims, France
| | - Mickael Tordjman
- Department of Radiology, Hôtel Dieu Hospital, APHP, 75014 Paris, France
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy, 94800 Villejuif, France
| | - Delphine Chen
- Department of Molecular Imaging and Therapy, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Anna M. Wu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Tarek Assi
- International Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Samy Ammari
- Department of Medical Imaging, BIOMAPS, UMR1281 INSERM, CEA, CNRS, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France
- ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, 95200 Sarcelles, France
| | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA (H.J.H.)
| |
Collapse
|
11
|
Kifjak D, Hochmair M, Sobotka D, Haug AR, Ambros R, Prayer F, Heidinger BH, Roehrich S, Milos RI, Wadsak W, Fuereder T, Krenbek D, Fazekas A, Meilinger M, Mayerhoefer ME, Langs G, Herold C, Prosch H, Beer L. Metabolic tumor volume and sites of organ involvement predict outcome in NSCLC immune-checkpoint inhibitor therapy. Eur J Radiol 2024; 170:111198. [PMID: 37992608 DOI: 10.1016/j.ejrad.2023.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE The purpose of this study was to assess the ability of pretreatment PET parameters and peripheral blood biomarkers to predict progression-free survival (PFS) and overall survival (OS) in NSCLC patients treated with ICIT. METHODS We prospectively included 87 patients in this study who underwent pre-treatment [18F]-FDG PET/CT. Organ-specific and total metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were measured using a semiautomatic software. Sites of organ involvement (SOI) were assessed by PET/CT. The log-rank test and Cox-regression analysis were used to assess associations between clinical, laboratory, and imaging parameters with PFS and OS. Time dependent ROC were calculated and model performance was evaluated in terms of its clinical utility. RESULTS MTV increased with the number of SOI and was correlated with neutrophil and lymphocyte cell count (Spearman's rho = 0.27 or 0.32; p =.02 or 0.003; respectively). Even after adjustment for known risk factors, such as PD-1 expression and neutrophil cell count, the MTV and the number of SOI were independent risk factors for progression (per 100 cm3; adjusted hazard ratio [aHR]: 1.13; 95% confidence interval [95%CI]: 1.01-1.28; p =.04; single SOI vs. ≥ 4 SOI: aHR: 2.26, 95%CI: 1.04-4.94; p =.04). MTV and the number of SOI were independent risk factors for overall survival (per 100 cm3 aHR: 1.11, 95%CI: 1.01-1.23; p =.03; single SOI vs. ≥ 4 SOI: aHR: 4.54, 95%CI: 1.64-12.58; p =.04). The combination of MTV and the number of SOI improved the risk stratification for PFS and OS (log-rank test p <.001; C-index: 0.64 and 0.67). CONCLUSION The MTV and the number of SOI are simple imaging markers that provide complementary information to facilitate risk stratification in NSCLC patients scheduled for ICIT.
Collapse
Affiliation(s)
- Daria Kifjak
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Department of Radiology, UMass Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; Christian Doppler Laboratory for Machine Learning Driven Precision, Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Maximilian Hochmair
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Daniel Sobotka
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Raphael Ambros
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Florian Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Benedikt H Heidinger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sebastian Roehrich
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ruxandra-Iulia Milos
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Center for Biomarker Research in Medicine, CBmed, Graz, Austria
| | - Thorsten Fuereder
- Department of Internal Medicine I & Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Dagmar Krenbek
- Department of Pathology and Bacteriology, Klinik Floridsdorf, Brünner Strasse 68, 1210 Vienna, Austria
| | - Andreas Fazekas
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Michael Meilinger
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Christian Doppler Laboratory for Machine Learning Driven Precision, Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria; Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Machine Learning Driven Precision, Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Machine Learning Driven Precision, Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| |
Collapse
|
12
|
van Delft FA, Schuurbiers MMF, Muller M, Burgers SA, van Rossum HH, IJzerman MJ, van den Heuvel MM, Koffijberg H. Comparing modeling strategies combining changes in multiple serum tumor biomarkers for early prediction of immunotherapy non-response in non-small cell lung cancer. Tumour Biol 2024; 46:S269-S281. [PMID: 37545289 DOI: 10.3233/tub-220022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Patients treated with immune checkpoint inhibitors (ICI) are at risk of adverse events (AEs) even though not all patients will benefit. Serum tumor markers (STMs) are known to reflect tumor activity and might therefore be useful to predict response, guide treatment decisions and thereby prevent AEs. OBJECTIVE This study aims to compare a range of prediction methods to predict non-response using multiple sequentially measured STMs. METHODS Nine prediction models were compared to predict treatment non-response at 6-months (n = 412) using bi-weekly CYFRA, CEA, CA-125, NSE, and SCC measurements determined in the first 6-weeks of therapy. All methods were applied to six different biomarker combinations including two to five STMs. Model performance was assessed based on sensitivity, while model training aimed at 95% specificity to ensure a low false-positive rate. RESULTS In the validation cohort, boosting provided the highest sensitivity at a fixed specificity across most STM combinations (12.9% -59.4%). Boosting applied to CYFRA and CEA achieved the highest sensitivity on the validation data while maintaining a specificity >95%. CONCLUSIONS Non-response in NSCLC patients treated with ICIs can be predicted with a specificity >95% by combining multiple sequentially measured STMs in a prediction model. Clinical use is subject to further external validation.
Collapse
Affiliation(s)
- Frederik A van Delft
- Health Technology and Services Research Department, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Milou M F Schuurbiers
- Department of Respiratory Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirte Muller
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjaak A Burgers
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Huub H van Rossum
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten J IJzerman
- Health Technology and Services Research Department, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Erasmus School of Health Policy and Management, Rotterdam, The Netherlands
- Centre for Cancer Research and Centre for Health Policy, University of Melbourne, Parkville, Melbourne, Australia
- Peter MacCallum Cancer Centre, Parkville, Melbourne, Australia
| | - Michel M van den Heuvel
- Department of Respiratory Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hendrik Koffijberg
- Health Technology and Services Research Department, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
13
|
Lohmann P, Bundschuh RA, Miederer I, Mottaghy FM, Langen KJ, Galldiks N. Clinical Applications of Radiomics in Nuclear Medicine. Nuklearmedizin 2023; 62:354-360. [PMID: 37935406 DOI: 10.1055/a-2191-3271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Radiomics is an emerging field of artificial intelligence that focuses on the extraction and analysis of quantitative features such as intensity, shape, texture and spatial relationships from medical images. These features, often imperceptible to the human eye, can reveal complex patterns and biological insights. They can also be combined with clinical data to create predictive models using machine learning to improve disease characterization in nuclear medicine. This review article examines the current state of radiomics in nuclear medicine and shows its potential to improve patient care. Selected clinical applications for diseases such as cancer, neurodegenerative diseases, cardiovascular problems and thyroid diseases are examined. The article concludes with a brief classification in terms of future perspectives and strategies for linking research findings to clinical practice.
Collapse
Affiliation(s)
- Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3/-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Isabelle Miederer
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Karl Josef Langen
- Institute of Neuroscience and Medicine (INM-3/-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Norbert Galldiks
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3/-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
14
|
Jin W, Tian Y, Xuzhang W, Zhu H, Zou N, Shen L, Dong C, Yang Q, Jiang L, Huang J, Yuan Z, Ye X, Luo Q. Non-linear modifications enhance prediction of pathological response to pre-operative PD-1 blockade in lung cancer: A longitudinal hybrid radiological model. Pharmacol Res 2023; 198:106992. [PMID: 37977237 DOI: 10.1016/j.phrs.2023.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Major pathologic remission (MPR, residual tumor <10%) is a promising clinical endpoint for prognosis analysis in patients with lung cancer receiving pre-operative PD-1 blockade therapy. Most of the current biomarkers for predicting MPR such as PD-L1 and tumor mutation burden (TMB) need to be obtained invasively. They cannot overcome the spatiotemporal heterogeneity or provide dynamic monitoring solutions. Radiomics and artificial intelligence (AI) models provide a practical tool enabling non-invasive follow-up observation of tumor structural information through high-throughput data analysis. Currently, AI-based models mainly focus on the single baseline scan or pipeline, namely sole radiomics or deep learning (DL). This work merged the delta-radiomics based on the slope of classic radiomics indexes within a time interval and the features extracted by deep networks from the subtraction between the baseline and follow-up images. The subtracted images describing the tumor changes were based on the transformation generated by registration. Stepwise optimization of components was performed by repeating experiments among various combinations of DL networks, registration methods, feature selection algorithms, and classifiers. The optimized model could predict MPR with a cross-validation AUC of 0.91 and an external validation AUC of 0.85. A core set of 27 features (eight classic radiomics, 15 delta-radiomics, one classic DL features, and three delta-DL features) was identified. The changes in delta-radiomics indexes during the treatment were fitted with mathematic models. The fitting results revealed that over half of the features were of non-linear dynamics. Therefore, non-linear modifications were made on eight features by replacing the original features with non-linear fitting parameters, and the modified model achieved an improved power. The dynamic hybrid model serves as a novel and promising tool to predict the response of lesions to PD-1 blockade, which implies the importance of introducing the non-linear dynamic effects and DL approaches to the original delta-radiomics in the future.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yu Tian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wendi Xuzhang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hongda Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ningyuan Zou
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Leilei Shen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, Shanghai 200032, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Changzi Dong
- Department of Bioengineering, School of Engineering and Science, University of Pennsylvania, Philadelphia 19104, USA
| | - Qisheng Yang
- School of Integrated Circuits & Beijing National Research on Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Long Jiang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Zheng Yuan
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Xiaodan Ye
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Medical Imaging, Shanghai 200032, China; Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
15
|
Evangelista L, Fiz F, Laudicella R, Bianconi F, Castello A, Guglielmo P, Liberini V, Manco L, Frantellizzi V, Giordano A, Urso L, Panareo S, Palumbo B, Filippi L. PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature. Cancers (Basel) 2023; 15:3258. [PMID: 37370869 PMCID: PMC10296704 DOI: 10.3390/cancers15123258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this review is to provide a comprehensive overview of the existing literature concerning the applications of positron emission tomography (PET) radiomics in lung cancer patient candidates or those undergoing immunotherapy. MATERIALS AND METHODS A systematic review was conducted on databases and web sources. English-language original articles were considered. The title and abstract were independently reviewed to evaluate study inclusion. Duplicate, out-of-topic, and review papers, or editorials, articles, and letters to editors were excluded. For each study, the radiomics analysis was assessed based on the radiomics quality score (RQS 2.0). The review was registered on the PROSPERO database with the number CRD42023402302. RESULTS Fifteen papers were included, thirteen were qualified as using conventional radiomics approaches, and two used deep learning radiomics. The content of each study was different; indeed, seven papers investigated the potential ability of radiomics to predict PD-L1 expression and tumor microenvironment before starting immunotherapy. Moreover, two evaluated the prediction of response, and four investigated the utility of radiomics to predict the response to immunotherapy. Finally, two papers investigated the prediction of adverse events due to immunotherapy. CONCLUSIONS Radiomics is promising for the evaluation of TME and for the prediction of response to immunotherapy, but some limitations should be overcome.
Collapse
Affiliation(s)
- Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Francesco Fiz
- Nuclear Medicine Department, E.O. “Ospedali Galliera”, 16128 Genoa, Italy;
- Nuclear Medicine Department and Clinical Molecular Imaging, University Hospital, 72076 Tübingen, Germany
| | - Riccardo Laudicella
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90100 Palermo, Italy;
| | - Francesco Bianconi
- Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti, 06125 Perugia, Italy;
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Priscilla Guglielmo
- Nuclear Medicine Unit, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy;
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy;
| | - Luigi Manco
- Medical Physics Unit, Azienda USL of Ferrara, 45100 Ferrara, Italy;
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Alessia Giordano
- Nuclear Medicine Unit, IRCCS CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41124 Modena, Italy;
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Medicine and Surgery, Università degli Studi di Perugia, 06125 Perugia, Italy;
| | - Luca Filippi
- Nuclear Medicine Section, Santa Maria Goretti Hospital, 04100 Latina, Italy;
| |
Collapse
|
16
|
Malet J, Ancel J, Moubtakir A, Papathanassiou D, Deslée G, Dewolf M. Assessment of the Association between Entropy in PET/CT and Response to Anti-PD-1/PD-L1 Monotherapy in Stage III or IV NSCLC. Life (Basel) 2023; 13:life13041051. [PMID: 37109580 PMCID: PMC10142835 DOI: 10.3390/life13041051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Anti-PD-1/PD-L1 therapy indications are broadened in non-small cell lung cancer (NSCLC) although immune checkpoint inhibitors (ICI) do not provide benefits for the entire population. Texture features based on positron emission tomography/computed tomography (PET/CT), especially entropy (based on a gray-level co-occurrence matrix (GLCM)), could be interesting as predictors in NSCLC. The aim of our retrospective study was to evaluate the association between GLCM-entropy and response to anti-PD-1/PD-L1 monotherapy at the first evaluation in stage III or IV NSCLC, comparing patients with progressive disease (PD) and non-progressive disease (non-PD). In total, 47 patients were included. Response Evaluation Criteria in Solid Tumors (RECIST 1.1) were used to evaluate the response to ICI treatment (nivolumab, pembrolizumab, or atezolizumab). At the first evaluation, 25 patients were PD and 22 were non-PD. GLCM-entropy was not predictive of response at the first evaluation. Furthermore, GLCM-entropy was not associated with progression-free survival (PFS) (p = 0.393) or overall survival (OS) (p = 0.220). Finally, GLCM-entropy measured in PET/CT performed before ICI initiation in stage III or IV NSCLC was not predictive of response at the first evaluation. However, this study demonstrates the feasibility of using texture parameters in routine clinical practice. The interest of measuring PET/CT texture parameters in NSCLC remains to be evaluated in larger prospective studies.
Collapse
Affiliation(s)
- Julie Malet
- Department of Respiratory Diseases, Reims University Hospital, 45, Rue Cognacq-Jay, 51100 Reims, France
| | - Julien Ancel
- Department of Respiratory Diseases, Reims University Hospital, 45, Rue Cognacq-Jay, 51100 Reims, France
- INSERM UMRS 1250, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Abdenasser Moubtakir
- Department of Nuclear Medicine, Institut Godinot, 1, Rue du Général Koenig, 51100 Reims, France
| | - Dimitri Papathanassiou
- Department of Nuclear Medicine, Institut Godinot, 1, Rue du Général Koenig, 51100 Reims, France
- UFR de Médecine, Reims-Champagne Ardenne University, 1, Rue Cognacq-Jay, CEDEX 51095 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l'Information et de la Communication), EA 3804, University of Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, CEDEX 51687 Reims, France
| | - Gaëtan Deslée
- Department of Respiratory Diseases, Reims University Hospital, 45, Rue Cognacq-Jay, 51100 Reims, France
- INSERM UMRS 1250, University of Reims Champagne-Ardenne, 51100 Reims, France
| | - Maxime Dewolf
- Department of Respiratory Diseases, Reims University Hospital, 45, Rue Cognacq-Jay, 51100 Reims, France
| |
Collapse
|
17
|
Zhang-Yin J, Girard A, Marchal E, Lebret T, Homo Seban M, Uhl M, Bertaux M. PET Imaging in Bladder Cancer: An Update and Future Direction. Pharmaceuticals (Basel) 2023; 16:ph16040606. [PMID: 37111363 PMCID: PMC10144644 DOI: 10.3390/ph16040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Molecular imaging with positron emission tomography is a powerful tool in bladder cancer management. In this review, we aim to address the current place of the PET imaging in bladder cancer care and offer perspectives on potential future radiopharmaceutical and technological advancements. A special focus is given to the following: the role of [18F] 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography in the clinical management of bladder cancer patients, especially for staging and follow-up; treatment guided by [18F]FDG PET/CT; the role of [18F]FDG PET/MRI, the other PET radiopharmaceuticals beyond [18F]FDG, such as [68Ga]- or [18F]-labeled fibroblast activation protein inhibitor; and the application of artificial intelligence.
Collapse
Affiliation(s)
- Jules Zhang-Yin
- Department of Nuclear Medicine, Clinique Sud Luxembourg, Vivalia, B-6700 Arlon, Belgium
| | - Antoine Girard
- Department of Nuclear Medicine, Amiens-Picardy University Hospital, 80054 Amiens, France
| | - Etienne Marchal
- Department of Nuclear Medicine, Amiens-Picardy University Hospital, 80054 Amiens, France
| | - Thierry Lebret
- Department of Urology, Foch Hospital, 92150 Suresnes, France
| | - Marie Homo Seban
- Department of Nuclear Medicine, Foch Hospital, 92150 Suresnes, France
| | - Marine Uhl
- Department of Urology and Renal Transplantation, Amiens-Picardy University Hospital, 80054 Amiens, France
| | - Marc Bertaux
- Department of Nuclear Medicine, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
18
|
Ventura D, Schindler P, Masthoff M, Görlich D, Dittmann M, Heindel W, Schäfers M, Lenz G, Wardelmann E, Mohr M, Kies P, Bleckmann A, Roll W, Evers G. Radiomics of Tumor Heterogeneity in 18F-FDG-PET-CT for Predicting Response to Immune Checkpoint Inhibition in Therapy-Naïve Patients with Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15082297. [PMID: 37190228 DOI: 10.3390/cancers15082297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
We aimed to evaluate the predictive and prognostic value of baseline 18F-FDG-PET-CT (PET-CT) radiomic features (RFs) for immune checkpoint-inhibitor (CKI)-based first-line therapy in advanced non-small-cell lung cancer (NSCLC) patients. In this retrospective study 44 patients were included. Patients were treated with either CKI-monotherapy or combined CKI-based immunotherapy-chemotherapy as first-line treatment. Treatment response was assessed by the Response Evaluation Criteria in Solid Tumors (RECIST). After a median follow-up of 6.4 months patients were stratified into "responder" (n = 33) and "non-responder" (n = 11). RFs were extracted from baseline PET and CT data after segmenting PET-positive tumor volume of all lesions. A Radiomics-based model was developed based on a Radiomics signature consisting of reliable RFs that allow classification of response and overall progression using multivariate logistic regression. These RF were additionally tested for their prognostic value in all patients by applying a model-derived threshold. Two independent PET-based RFs differentiated well between responders and non-responders. For predicting response, the area under the curve (AUC) was 0.69 for "PET-Skewness" and 0.75 predicting overall progression for "PET-Median". In terms of progression-free survival analysis, patients with a lower value of PET-Skewness (threshold < 0.2014; hazard ratio (HR) 0.17, 95% CI 0.06-0.46; p < 0.001) and higher value of PET-Median (threshold > 0.5233; HR 0.23, 95% CI 0.11-0.49; p < 0.001) had a significantly lower probability of disease progression or death. Our Radiomics-based model might be able to predict response in advanced NSCLC patients treated with CKI-based first-line therapy.
Collapse
Affiliation(s)
- David Ventura
- Department of Nuclear Medicine, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center (WTZ), 48149 Muenster, Germany
| | - Philipp Schindler
- West German Cancer Center (WTZ), 48149 Muenster, Germany
- Clinic for Radiology, University and University Hospital Muenster, 48149 Muenster, Germany
| | - Max Masthoff
- West German Cancer Center (WTZ), 48149 Muenster, Germany
- Clinic for Radiology, University and University Hospital Muenster, 48149 Muenster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster, 48149 Muenster, Germany
| | - Matthias Dittmann
- Department of Nuclear Medicine, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center (WTZ), 48149 Muenster, Germany
| | - Walter Heindel
- West German Cancer Center (WTZ), 48149 Muenster, Germany
- Clinic for Radiology, University and University Hospital Muenster, 48149 Muenster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center (WTZ), 48149 Muenster, Germany
| | - Georg Lenz
- West German Cancer Center (WTZ), 48149 Muenster, Germany
- Department of Medicine A-Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
| | - Eva Wardelmann
- West German Cancer Center (WTZ), 48149 Muenster, Germany
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Michael Mohr
- West German Cancer Center (WTZ), 48149 Muenster, Germany
- Department of Medicine A-Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
| | - Peter Kies
- Department of Nuclear Medicine, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center (WTZ), 48149 Muenster, Germany
| | - Annalen Bleckmann
- West German Cancer Center (WTZ), 48149 Muenster, Germany
- Department of Medicine A-Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Muenster, 48149 Muenster, Germany
- West German Cancer Center (WTZ), 48149 Muenster, Germany
| | - Georg Evers
- West German Cancer Center (WTZ), 48149 Muenster, Germany
- Department of Medicine A-Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
19
|
Xue C, Zhou Q, Xi H, Zhou J. Radiomics: A review of current applications and possibilities in the assessment of tumor microenvironment. Diagn Interv Imaging 2023; 104:113-122. [PMID: 36283933 DOI: 10.1016/j.diii.2022.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
With the recent success in the application of immunotherapy for treating various advanced cancers, the tumor microenvironment has rapidly become an important field of research. The tumor microenvironment is complex and its characteristics strongly influence disease biology and potentially responses to systemic therapy. Accurate preoperative assessment of tumor microenvironment is of great significance for the formulation of an immunotherapy strategy and evaluation of patient prognosis. As a research hotspot in medical image analysis technology, radiomics has been applied in the auxiliary diagnosis of the tumor microenvironment. This article reviews the current status of radiomics in the elective application on tumor microenvironment and discusses potential prospects.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China.
| |
Collapse
|
20
|
Levi J, Song H. The other immuno-PET: Metabolic tracers in evaluation of immune responses to immune checkpoint inhibitor therapy for solid tumors. Front Immunol 2023; 13:1113924. [PMID: 36700226 PMCID: PMC9868703 DOI: 10.3389/fimmu.2022.1113924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Unique patterns of response to immune checkpoint inhibitor therapy, discernable in the earliest clinical trials, demanded a reconsideration of the standard methods of radiological treatment assessment. Immunomonitoring, that characterizes immune responses, offers several significant advantages over the tumor-centric approach currently used in the clinical practice: 1) better understanding of the drugs' mechanism of action and treatment resistance, 2) earlier assessment of response to therapy, 3) patient/therapy selection, 4) evaluation of toxicity and 5) more accurate end-point in clinical trials. PET imaging in combination with the right agent offers non-invasive tracking of immune processes on a whole-body level and thus represents a method uniquely well-suited for immunomonitoring. Small molecule metabolic tracers, largely neglected in the immuno-PET discourse, offer a way to monitor immune responses by assessing cellular metabolism known to be intricately linked with immune cell function. In this review, we highlight the use of small molecule metabolic tracers in imaging immune responses, provide a view of their value in the clinic and discuss the importance of image analysis in the context of tracking a moving target.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Incorporated, San Francisco, CA, United States,*Correspondence: Jelena Levi,
| | - Hong Song
- Department of Radiology, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
21
|
Zhou H, Luo Q, Wu W, Li N, Yang C, Zou L. Radiomics-guided checkpoint inhibitor immunotherapy for precision medicine in cancer: A review for clinicians. Front Immunol 2023; 14:1088874. [PMID: 36936913 PMCID: PMC10014595 DOI: 10.3389/fimmu.2023.1088874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) is a breakthrough in oncology development and has been applied to multiple solid tumors. However, unlike traditional cancer treatment approaches, immune checkpoint inhibitors (ICIs) initiate indirect cytotoxicity by generating inflammation, which causes enlargement of the lesion in some cases. Therefore, rather than declaring progressive disease (PD) immediately, confirmation upon follow-up radiological evaluation after four-eight weeks is suggested according to immune-related Response Evaluation Criteria in Solid Tumors (ir-RECIST). Given the difficulty for clinicians to immediately distinguish pseudoprogression from true disease progression, we need novel tools to assist in this field. Radiomics, an innovative data analysis technique that quantifies tumor characteristics through high-throughput extraction of quantitative features from images, can enable the detection of additional information from early imaging. This review will summarize the recent advances in radiomics concerning immunotherapy. Notably, we will discuss the potential of applying radiomics to differentiate pseudoprogression from PD to avoid condition exacerbation during confirmatory periods. We also review the applications of radiomics in hyperprogression, immune-related biomarkers, efficacy, and immune-related adverse events (irAEs). We found that radiomics has shown promising results in precision cancer immunotherapy with early detection in noninvasive ways.
Collapse
Affiliation(s)
- Huijie Zhou
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Qian Luo
- Department of Hematology, the Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, China
| | - Wanchun Wu
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Na Li
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Chunli Yang
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
| | - Liqun Zou
- Division of Medical Oncology, Cancer Center and State Key Laboratory of Biotherapy, Sichuan University West China Hospital, Chengdu, China
- *Correspondence: Liqun Zou,
| |
Collapse
|
22
|
Ling T, Zhang L, Peng R, Yue C, Huang L. Prognostic value of 18F-FDG PET/CT in patients with advanced or metastatic non-small-cell lung cancer treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2022; 13:1014063. [PMID: 36466905 PMCID: PMC9713836 DOI: 10.3389/fimmu.2022.1014063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/20/2022] [Indexed: 08/30/2023] Open
Abstract
PURPOSE This study aimed to investigate the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in predicting early immunotherapy response of immune checkpoint inhibitors (ICIs) in patients with advanced or metastatic non-small-cell lung cancer (NSCLC). METHODS A comprehensive search of PubMed, Web of science, Embase and the Cochrane library was performed to examine the prognostic value of 18F-FDG PET/CT in predicting early immunotherapy response of ICIs in patients with NSCLC. The main outcomes for evaluation were overall survival (OS) and progression-free survival (PFS). Detailed data from each study were extracted and analyzed using STATA 14.0 software. RESULTS 13 eligible articles were included in this systematic review. Compared to baseline 18F-FDG PET/CT imaging, the pooled hazard ratios (HR) of maximum and mean standardized uptake values SUVmax, SUVmean, MTV and TLG for OS were 0.88 (95% CI: 0.69-1.12), 0.79 (95% CI: 0.50-1.27), 2.10 (95% CI: 1.57-2.82) and 1.58 (95% CI: 1.03-2.44), respectively. The pooled HR of SUVmax, SUVmean, MTV and TLG for PFS were 1.06 (95% CI: 0.68-1.65), 0.66 (95% CI: 0.48-0.90), 1.50 (95% CI: 1.26-1.79), 1.27 (95% CI: 0.92-1.77), respectively. Subgroup analysis showed that high MTV group had shorter OS than low MTV group in both first line group (HR: 1.97, 95% CI: 1.39-2.79) and undefined line group (HR: 2.11, 95% CI: 1.61-2.77). High MTV group also showed a shorter PFS in first line group (HR: 1.85, 95% CI: 1.28-2.68), and low TLG group had a longer OS in undefined group (HR: 1.37, 95% CI: 1.00-1.86). No significant differences were in other subgroup analysis. CONCLUSION Baseline MTV and TLG may have predictive value and should be prospectively studied in clinical trials. Baseline SUVmax and SUVmean may not be appropriate prognostic markers in advanced or metastatic NSCLC patients treated with ICIs. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=323906, identifier CRD42022323906.
Collapse
Affiliation(s)
- Tao Ling
- Department of Pharmacy, Suqian First Hospital, Suqian, China
| | - Lianghui Zhang
- Department of Oncology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Rui Peng
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Yue
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lingli Huang
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Cui Y, Lin Y, Zhao Z, Long H, Zheng L, Lin X. Comprehensive 18F-FDG PET-based radiomics in elevating the pathological response to neoadjuvant immunochemotherapy for resectable stage III non-small-cell lung cancer: A pilot study. Front Immunol 2022; 13:994917. [PMID: 36466929 PMCID: PMC9713843 DOI: 10.3389/fimmu.2022.994917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
PURPOSE To develop a comprehensive PET radiomics model to predict the pathological response after neoadjuvant toripalimab with chemotherapy in resectable stage III non-small-cell lung cancer (NSCLC) patients. METHODS Stage III NSCLC patients who received three cycles of neoadjuvant toripalimab with chemotherapy and underwent 18F-FDG PET/CT were enrolled. Baseline 18F-FDG PET/CT was performed before treatment, and preoperative 18F-FDG PET/CT was performed three weeks after the completion of neoadjuvant treatment. Surgical resection was performed 4-5 weeks after the completion of neoadjuvant treatment. Standardized uptake value (SUV) statistics features and radiomics features were derived from baseline and preoperative PET images. Delta features were derived. The radiologic response and metabolic response were assessed by iRECIST and iPERCIST, respectively. The correlations between PD-L1 expression, driver-gene status, peripheral blood biomarkers, and the pathological responses (complete pathological response [CPR]; major pathological response [MPR]) were assessed. Associations between PET features and pathological responses were evaluated by logistic regression. RESULTS Thirty patients underwent surgery and 29 of them performed preoperative PET/CT. Twenty patients achieved MPR and 16 of them achieved CPR. In univariate analysis, five SUV statistics features and two radiomics features were significantly associated with pathological responses. In multi-variate analysis, SUVmax, SUVpeak, SULpeak, and End-PET-GLDM-LargeDependenceHighGrayLevelEmphasis (End-GLDM-LDHGLE) were independently associated with CPR. SUVpeak and SULpeak performed better than SUVmax and SULmax for MPR prediction. No significant correlation, neither between the radiologic response and the pathological response, nor among PD-L1, driver gene status, and baseline PET features was found. Inflammatory response biomarkers by peripheral blood showed no difference in different treatment responses. CONCLUSION The logistic regression model using comprehensive PET features contributed to predicting the pathological response after neoadjuvant toripalimab with chemotherapy in resectable stage III NSCLC patients.
Collapse
Affiliation(s)
- Yingpu Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yaobin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zerui Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hao Long
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lie Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaoping Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
24
|
Berz AM, Dromain C, Vietti-Violi N, Boughdad S, Duran R. Tumor response assessment on imaging following immunotherapy. Front Oncol 2022; 12:982983. [PMID: 36387133 PMCID: PMC9641095 DOI: 10.3389/fonc.2022.982983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, various systemic immunotherapies have been developed for cancer treatment, such as monoclonal antibodies (mABs) directed against immune checkpoints (immune checkpoint inhibitors, ICIs), oncolytic viruses, cytokines, cancer vaccines, and adoptive cell transfer. While being estimated to be eligible in 38.5% of patients with metastatic solid or hematological tumors, ICIs, in particular, demonstrate durable disease control across many oncologic diseases (e.g., in melanoma, lung, bladder, renal, head, and neck cancers) and overall survival benefits. Due to their unique mechanisms of action based on T-cell activation, response to immunotherapies is characterized by different patterns, such as progression prior to treatment response (pseudoprogression), hyperprogression, and dissociated responses following treatment. Because these features are not encountered in the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1), which is the standard for response assessment in oncology, new criteria were defined for immunotherapies. The most important changes in these new morphologic criteria are, firstly, the requirement for confirmatory imaging examinations in case of progression, and secondly, the appearance of new lesions is not necessarily considered a progressive disease. Until today, five morphologic (immune-related response criteria (irRC), immune-related RECIST (irRECIST), immune RECIST (iRECIST), immune-modified RECIST (imRECIST), and intra-tumoral RECIST (itRECIST)) criteria have been developed to accurately assess changes in target lesion sizes, taking into account the specific response patterns after immunotherapy. In addition to morphologic response criteria, 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) is a promising option for metabolic response assessment and four metabolic criteria are used (PET/CT Criteria for Early Prediction of Response to Immune Checkpoint Inhibitor Therapy (PECRIT), PET Response Evaluation Criteria for Immunotherapy (PERCIMT), immunotherapy-modified PET Response Criteria in Solid Tumors (imPERCIST5), and immune PERCIST (iPERCIST)). Besides, there is evidence that parameters on 18F-FDG-PET/CT, such as the standardized uptake value (SUV)max and several radiotracers, e.g., directed against PD-L1, may be potential imaging biomarkers of response. Moreover, the emerge of human intratumoral immunotherapy (HIT-IT), characterized by the direct injection of immunostimulatory agents into a tumor lesion, has given new importance to imaging assessment. This article reviews the specific imaging patterns of tumor response and progression and available imaging response criteria following immunotherapy.
Collapse
Affiliation(s)
- Antonia M. Berz
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Radiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Naïk Vietti-Violi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
25
|
Ter Maat LS, van Duin IAJ, Elias SG, van Diest PJ, Pluim JPW, Verhoeff JJC, de Jong PA, Leiner T, Veta M, Suijkerbuijk KPM. Imaging to predict checkpoint inhibitor outcomes in cancer. A systematic review. Eur J Cancer 2022; 175:60-76. [PMID: 36096039 DOI: 10.1016/j.ejca.2022.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Checkpoint inhibition has radically improved the perspective for patients with metastatic cancer, but predicting who will not respond with high certainty remains difficult. Imaging-derived biomarkers may be able to provide additional insights into the heterogeneity in tumour response between patients. In this systematic review, we aimed to summarise and qualitatively assess the current evidence on imaging biomarkers that predict response and survival in patients treated with checkpoint inhibitors in all cancer types. METHODS PubMed and Embase were searched from database inception to 29th November 2021. Articles eligible for inclusion described baseline imaging predictive factors, radiomics and/or imaging machine learning models for predicting response and survival in patients with any kind of malignancy treated with checkpoint inhibitors. Risk of bias was assessed using the QUIPS and PROBAST tools and data was extracted. RESULTS In total, 119 studies including 15,580 patients were selected. Of these studies, 73 investigated simple imaging factors. 45 studies investigated radiomic features or deep learning models. Predictors of worse survival were (i) higher tumour burden, (ii) presence of liver metastases, (iii) less subcutaneous adipose tissue, (iv) less dense muscle and (v) presence of symptomatic brain metastases. Hazard rate ratios did not exceed 2.00 for any predictor in the larger and higher quality studies. The added value of baseline fluorodeoxyglucose positron emission tomography parameters in predicting response to treatment was limited. Pilot studies of radioactive drug tracer imaging showed promising results. Reports on radiomics were almost unanimously positive, but numerous methodological concerns exist. CONCLUSIONS There is well-supported evidence for several imaging biomarkers that can be used in clinical decision making. Further research, however, is needed into biomarkers that can more accurately identify which patients who will not benefit from checkpoint inhibition. Radiomics and radioactive drug labelling appear to be promising approaches for this purpose.
Collapse
Affiliation(s)
- Laurens S Ter Maat
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Isabella A J van Duin
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Josien P W Pluim
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Tim Leiner
- Utrecht University, Utrecht, the Netherlands; Department of Radiology, Mayo Clinical, Rochester, MN, USA
| | - Mitko Veta
- Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
26
|
Dercle L, McGale J, Sun S, Marabelle A, Yeh R, Deutsch E, Mokrane FZ, Farwell M, Ammari S, Schoder H, Zhao B, Schwartz LH. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005292. [PMID: 36180071 PMCID: PMC9528623 DOI: 10.1136/jitc-2022-005292] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.
Collapse
Affiliation(s)
- Laurent Dercle
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Jeremy McGale
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Shawn Sun
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Aurelien Marabelle
- Therapeutic Innovation and Early Trials, Gustave Roussy, Villejuif, Île-de-France, France
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Deutsch
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Michael Farwell
- Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samy Ammari
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France.,Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Heiko Schoder
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Binsheng Zhao
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
27
|
Zhao M, Kluge K, Papp L, Grahovac M, Yang S, Jiang C, Krajnc D, Spielvogel CP, Ecsedi B, Haug A, Wang S, Hacker M, Zhang W, Li X. Multi-lesion radiomics of PET/CT for non-invasive survival stratification and histologic tumor risk profiling in patients with lung adenocarcinoma. Eur Radiol 2022; 32:7056-7067. [PMID: 35896836 DOI: 10.1007/s00330-022-08999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES This study investigates the ability of machine learning (ML) models trained on clinical data and 2-deoxy-2-[18F]fluoro-D-glucose(FDG) positron emission tomography/computed tomography (PET/CT) radiomics to predict overall survival (OS), tumor grade (TG), and histologic growth pattern risk (GPR) in lung adenocarcinoma (LUAD) patients. METHODS A total of 421 treatment-naive patients with histologically-proven LUAD and available FDG PET/CT imaging were retrospectively included. Four cohorts were assessed for predicting 4-year OS (n = 276), 3-year OS (n = 280), TG (n = 298), and GPR (n = 265). FDG-avid lesions were delineated, and 2082 radiomics features were extracted and combined with endpoint-specific clinical parameters. ML models were built for the prediction of 4-year OS (M4OS), 3-year OS (M3OS), tumor grading (MTG), and histologic growth pattern risk (MGPR). A 100-fold Monte Carlo cross-validation with 80:20 training to validation split was employed as a performance evaluation for all models. The association between the M4OS and M3OS predictions with OS was assessed by the Kaplan-Meier survival analysis. RESULTS The area under the receiver operator characteristics curve (AUC) was the highest for M4OS (AUC 0.88, 95% confidence interval (CI) 86.7-88.7), followed by M3OS (AUC 0.84, CI 82.9-84.9), while MTG and MGPR performed equally well (AUC 0.76, CI 74.4-77.9, CI 74.6-78, respectively). Predictions of M4OS (hazard ratio (HR) -2.4, CI -2.47 to -1.64, p < 0.05) and M3OS (HR -2.36, CI -2.79 to -1.93, p < 0.05) were independently associated with OS. CONCLUSION ML models are able to predict long-term survival outcomes in LUAD patients with high accuracy. Furthermore, histologic grade and predominant growth pattern risk can be predicted with satisfactory accuracy. KEY POINTS • Machine learning models trained on pre-therapeutic PET/CT radiomics enable highly accurate long-term survival prediction of patients with lung adenocarcinoma. • Highly accurate survival predictions are achieved in lung adenocarcinoma patients despite heterogenous histologies and treatment regimens. • Radiomic machine learning models are able to predict lung adenocarcinoma tumor grade and histologic growth pattern risk with satisfactory accuracy.
Collapse
Affiliation(s)
- Meixin Zhao
- Department of Nuclear Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Kilian Kluge
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Floor 3L, 1090, Vienna, Austria.,Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Vienna, Austria
| | - Laszlo Papp
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marko Grahovac
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Floor 3L, 1090, Vienna, Austria
| | - Shaomin Yang
- Department of Pathology, Peking University Health Science Center, Beijing, China
| | - Chunting Jiang
- Department of Nuclear Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Denis Krajnc
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Clemens P Spielvogel
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Floor 3L, 1090, Vienna, Austria.,Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Vienna, Austria
| | - Boglarka Ecsedi
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Alexander Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Floor 3L, 1090, Vienna, Austria.,Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Vienna, Austria
| | - Shiwei Wang
- Evomics Medical Technology Co., Ltd., Shanghai, China
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Floor 3L, 1090, Vienna, Austria
| | - Weifang Zhang
- Department of Nuclear Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, People's Republic of China.
| | - Xiang Li
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Floor 3L, 1090, Vienna, Austria.
| |
Collapse
|
28
|
Sun R, Henry T, Laville A, Carré A, Hamaoui A, Bockel S, Chaffai I, Levy A, Chargari C, Robert C, Deutsch E. Imaging approaches and radiomics: toward a new era of ultraprecision radioimmunotherapy? J Immunother Cancer 2022; 10:e004848. [PMID: 35793875 PMCID: PMC9260846 DOI: 10.1136/jitc-2022-004848] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Strong rationale and a growing number of preclinical and clinical studies support combining radiotherapy and immunotherapy to improve patient outcomes. However, several critical questions remain, such as the identification of patients who will benefit from immunotherapy and the identification of the best modalities of treatment to optimize patient response. Imaging biomarkers and radiomics have recently emerged as promising tools for the non-invasive assessment of the whole disease of the patient, allowing comprehensive analysis of the tumor microenvironment, the spatial heterogeneity of the disease and its temporal changes. This review presents the potential applications of medical imaging and the challenges to address, in order to help clinicians choose the optimal modalities of both radiotherapy and immunotherapy, to predict patient's outcomes and to assess response to these promising combinations.
Collapse
Affiliation(s)
- Roger Sun
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Théophraste Henry
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Nuclear Medicine, Gustave Roussy, Villejuif, France
| | - Adrien Laville
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Alexandre Carré
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Anthony Hamaoui
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Sophie Bockel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Ines Chaffai
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Cyrus Chargari
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Brachytherapy Unit, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- Radiothérapie Moléculaire et Innovation Thérapeutique, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- INSERM U1030, Gustave Roussy, Villejuif, France
| |
Collapse
|
29
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
30
|
When artificial intelligence meets PD-1/PD-L1 inhibitors: Population screening, response prediction and efficacy evaluation. Comput Biol Med 2022; 145:105499. [DOI: 10.1016/j.compbiomed.2022.105499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
|
31
|
Maniar A, Wei AZ, Dercle L, Bien HH, Fojo T, Bates SE, Schwartz LH. Assessing Outcomes in NSCLC: Radiomic analysis, kinetic analysis and circulating tumor DNA. Semin Oncol 2022; 49:298-305. [PMID: 35914982 DOI: 10.1053/j.seminoncol.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022]
Abstract
Current radiographic methods of measuring treatment response for patients with nonsmall cell lung cancer have significant limitations. Recently, new modalities using standard of care images or minimally invasive blood-based DNA tests have gained interest as methods of evaluating treatment response. This article highlights three emerging modalities: radiomic analysis, kinetic analysis and serum-based measurement of circulating tumor DNA, with a focus on the clinical evidence supporting these methods. Additionally, we discuss the possibility of combining these modalities to develop a robust biomarker with strong correlation to clinically meaningful outcomes that could impact clinical trial design and patient care. At Last, we focus on how these methods specifically apply to a Veteran population.
Collapse
Affiliation(s)
- Ashray Maniar
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY
| | - Alexander Z Wei
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY
| | - Laurent Dercle
- Columbia University Irving Medical Center, Division of Radiology, New York, NY
| | - Harold H Bien
- Northport VA Medical Center, Division of Hematology and Oncology, Northport, NY
| | - Tito Fojo
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY; James J. Peters Bronx VA Medical Center, Division of Hematology and Oncology, Bronx, NY
| | - Susan E Bates
- Columbia University Irving Medical Center, Division of Hematology and Oncology, New York, NY; Northport VA Medical Center, Division of Hematology and Oncology, Northport, NY.
| | - Lawrence H Schwartz
- Columbia University Irving Medical Center, Division of Radiology, New York, NY
| |
Collapse
|
32
|
Kothari G. Role of radiomics in predicting immunotherapy response. J Med Imaging Radiat Oncol 2022; 66:575-591. [PMID: 35581928 PMCID: PMC9323544 DOI: 10.1111/1754-9485.13426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Immunotherapies have revolutionised cancer management. Despite their success, durable responses are limited to a subset of patients. Prediction of immunotherapy response in patients has proven to be difficult due to a lack of robust biomarkers. Routinely collected imaging may offer an additional information source to personalise patient treatment, with advantages over tissue-based biomarkers. Quantitative image analysis or radiomics, which involves the high-throughput extraction of imaging features, has the potential to non-invasively predict cancer histology, outcomes and prognosis. This review evaluates the value of radiomics in patients undergoing immunotherapy, with a summary provided of the performance of radiomics models in predicting immunotherapy response and toxicity, as well as immune correlates. Much of the literature focussed on clinical endpoints and correlates to tissue biomarkers, particularly in lung cancer, while few studies investigated association with immune-related adverse events. Strengths of the studies included more frequent use of clinical trial datasets, homogenous patient cohorts and high-quality diagnostic scans. Limitations of the studies include heterogeneity in study methodology, lack of well-defined homogenous imaging datasets, limited open publishing of imaging datasets, coding and parameters used for radiomics signature development and limited use of external validation datasets. Future research should address the above limitations, as well as further explore the relationship between radiomics and immune-related adverse effects and less well-studied biological correlates such tumour mutational burden, and incorporate known clinical prognostic scores into radiomics models.
Collapse
Affiliation(s)
- Gargi Kothari
- Department of Radiation OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of Oncology, University of MelbournePeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
33
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
34
|
Léger MA, Routy B, Juneau D. FDG PET/CT for Evaluation of Immunotherapy Response in Lung Cancer Patients. Semin Nucl Med 2022; 52:707-719. [DOI: 10.1053/j.semnuclmed.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/11/2022]
|
35
|
The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. J Clin Med 2022; 11:jcm11061740. [PMID: 35330068 PMCID: PMC8948743 DOI: 10.3390/jcm11061740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The introduction of immune checkpoint inhibitors has represented a milestone in cancer treatment. Despite PD-L1 expression being the standard biomarker used before the start of therapy, there is still a strict need to identify complementary non-invasive biomarkers in order to better select patients. In this context, radiomics is an emerging approach for examining medical images and clinical data by capturing multiple features hidden from human eye and is potentially able to predict response assessment and survival in the course of immunotherapy. We reviewed the available studies investigating the role of radiomics in cancer patients, focusing on non-small cell lung cancer treated with immune checkpoint inhibitors. Although preliminary research shows encouraging results, different issues need to be solved before radiomics can enter into clinical practice. Abstract Immune checkpoint inhibitors (ICI) have demonstrated encouraging results in terms of durable clinical benefit and survival in several malignancies. Nevertheless, the search to identify an “ideal” biomarker for predicting response to ICI is still far from over. Radiomics is a new translational field of study aiming to extract, by dedicated software, several features from a given medical image, ranging from intensity distribution and spatial heterogeneity to higher-order statistical parameters. Based on these premises, our review aims to summarize the current status of radiomics as a potential predictor of clinical response following immunotherapy treatment. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2021 were selected, comprising those that explored computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for radiomic analyses in the setting of ICI. Several studies have demonstrated the potential applicability of radiomic features in the monitoring of the therapeutic response beyond the traditional morphologic and metabolic criteria, as well as in the prediction of survival or non-invasive assessment of the tumor microenvironment. Nevertheless, important limitations emerge from our review in terms of standardization in feature selection, data sharing, and methods, as well as in external validation. Additionally, there is still need for prospective clinical trials to confirm the potential significant role of radiomics during immunotherapy.
Collapse
|
36
|
Tian Y, Komolafe TE, Chen T, Zhou B, Yang X. Prediction of TACE Treatment Response in a Preoperative MRI via Analysis of Integrating Deep Learning and Radiomics Features. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00692-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Kang CY, Duarte SE, Kim HS, Kim E, Park J, Lee AD, Kim Y, Kim L, Cho S, Oh Y, Gim G, Park I, Lee D, Abazeed M, Velichko YS, Chae YK. OUP accepted manuscript. Oncologist 2022; 27:e471-e483. [PMID: 35348765 PMCID: PMC9177100 DOI: 10.1093/oncolo/oyac036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
The recent, rapid advances in immuno-oncology have revolutionized cancer treatment and spurred further research into tumor biology. Yet, cancer patients respond variably to immunotherapy despite mounting evidence to support its efficacy. Current methods for predicting immunotherapy response are unreliable, as these tests cannot fully account for tumor heterogeneity and microenvironment. An improved method for predicting response to immunotherapy is needed. Recent studies have proposed radiomics—the process of converting medical images into quantitative data (features) that can be processed using machine learning algorithms to identify complex patterns and trends—for predicting response to immunotherapy. Because patients undergo numerous imaging procedures throughout the course of the disease, there exists a wealth of radiological imaging data available for training radiomics models. And because radiomic features reflect cancer biology, such as tumor heterogeneity and microenvironment, these models have enormous potential to predict immunotherapy response more accurately than current methods. Models trained on preexisting biomarkers and/or clinical outcomes have demonstrated potential to improve patient stratification and treatment outcomes. In this review, we discuss current applications of radiomics in oncology, followed by a discussion on recent studies that use radiomics to predict immunotherapy response and toxicity.
Collapse
Affiliation(s)
| | | | - Hye Sung Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eugene Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Alice Daeun Lee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yeseul Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leeseul Kim
- Department of Internal Medicine, AMITA Health Saint Francis Hospital, Evanston, IL, USA
| | - Sukjoo Cho
- Department of Pediatrics, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yoojin Oh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gahyun Gim
- Department of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Inae Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongyup Lee
- Department of Physical Medicine and Rehabilitation, Geisinger Health System, Danville, PA, USA
| | - Mohamed Abazeed
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yury S Velichko
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Young Kwang Chae
- Corresponding author: Young Kwang Chae, Department of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
38
|
Guo H, Xu K, Duan G, Wen L, He Y. Progress and future prospective of FDG-PET/CT imaging combined with optimized procedures in lung cancer: toward precision medicine. Ann Nucl Med 2022; 36:1-14. [PMID: 34727331 DOI: 10.1007/s12149-021-01683-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
With a 5-year overall survival of approximately 20%, lung cancer has always been the number one cancer-specific killer all over the world. As a fusion of positron emission computed tomography (PET) and computed tomography (CT), PET/CT has revolutionized cancer imaging over the past 20 years. In this review, we focused on the optimization of the function of 18F-flurodeoxyglucose (FDG)-PET/CT in diagnosis, prognostic prediction and therapy management of lung cancers by computer programs. FDG-PET/CT has demonstrated a surprising role in development of therapeutic biomarkers, prediction of therapeutic responses and long-term survival, which could be conducive to solving existing dilemmas. Meanwhile, novel tracers and optimized procedures are also developed to control the quality and improve the effect of PET/CT. With the continuous development of some new imaging agents and their clinical applications, application value of PET/CT has broad prospects in this area.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ling Wen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
39
|
Li C, Han C, Duan S, Li P, Alam I, Xiao Z. Visualizing T cell responses: The T cell PET imaging toolbox. J Nucl Med 2021; 63:183-188. [PMID: 34887338 DOI: 10.2967/jnumed.121.261976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
T lymphocytes are key mediators of the adaptive immune response. Inappropriate or imbalanced T cell responses are underlying factors in cancer progression, allergy and other immune disorders. Monitoring the spatiotemporal dynamics of T cells and their functional status has the potential to provide unique biological insights in health and disease. Non-invasive positron emission tomography (PET) imaging represents an ideal whole-body modality for achieving this goal. With the appropriate PET imaging probes, T cell dynamics can be monitored in vivo, with high specificity and sensitivity. Herein, we provide a comprehensive overview of the applications of this state-of-the-art T cell PET imaging toolbox, and the potential it has to improve the clinical management of cancer immunotherapy and T cell- driven diseases. We also discuss future directions and prospects for clinical translation.
Collapse
Affiliation(s)
- Chao Li
- Harbin Medical University, China
| | | | | | - Ping Li
- Department of Radiology and Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University
| | - Israt Alam
- MIPS, Department of Radiology, Stanford University School of Medicine
| | | |
Collapse
|
40
|
Chen Q, Zhang L, Mo X, You J, Chen L, Fang J, Wang F, Jin Z, Zhang B, Zhang S. Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2021; 49:345-360. [PMID: 34402924 DOI: 10.1007/s00259-021-05509-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE Prediction of immunotherapy response and outcome in patients with non-small cell lung cancer (NSCLC) is challenging due to intratumoral heterogeneity and lack of robust biomarkers. The aim of this study was to systematically evaluate the methodological quality of radiomic studies for predicting immunotherapy response or outcome in patients with NSCLC. METHODS We systematically searched for eligible studies in the PubMed and Web of Science datasets up to April 1, 2021. The methodological quality of included studies was evaluated using the phase classification criteria for image mining studies and the radiomics quality scoring (RQS) tool. A meta-analysis of studies regarding the prediction of immunotherapy response and outcome in patients with NSCLC was performed. RESULTS Fifteen studies were identified with sample sizes ranging from 30 to 228. Seven studies were classified as phase II, and the remaining as discovery science (n = 2), phase 0 (n = 4), phase I (n = 1), and phase III (n = 1). The mean RQS score of all studies was 29.6%, varying from 0 to 68.1%. The pooled diagnostic odds ratio for predicting immunotherapy response in NSCLC using radiomics was 14.99 (95% confidence interval [CI] 8.66-25.95). In addition, radiomics could divide patients into high- and low-risk group with significantly different overall survival (pooled hazard ratio [HR]: 1.96, 95%CI 1.61-2.40, p < 0.001) and progression-free survival (pooled HR: 2.39, 95%CI 1.69-3.38, p < 0.001). CONCLUSIONS Radiomics has potential to noninvasively predict immunotherapy response and outcome in patients with NSCLC. However, it has not yet been implemented as a clinical decision-making tool. Further external validation and evaluation within clinical pathway can facilitate personalized treatment for patients with NSCLC.
Collapse
Affiliation(s)
- Qiuying Chen
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
- Graduate College, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
- Graduate College, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaokai Mo
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Jingjing You
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
- Graduate College, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Luyan Chen
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
- Graduate College, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Jin Fang
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China
- Graduate College, Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China.
- Graduate College, Jinan University, Guangzhou, Guangdong, People's Republic of China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, People's Republic of China.
- Graduate College, Jinan University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
41
|
Lopci E. Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [ 18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer. J Clin Med 2021; 10:jcm10215160. [PMID: 34768681 PMCID: PMC8584484 DOI: 10.3390/jcm10215160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy with checkpoint inhibitors has prompted a major change not only in cancer treatment but also in medical imaging. In parallel with the implementation of new drugs modulating the immune system, new response criteria have been developed, aiming to overcome clinical drawbacks related to the new, unusual, patterns of response characterizing both solid tumors and lymphoma during the course of immunotherapy. The acknowledgement of pseudo-progression, hyper-progression, immune-dissociated response and so forth, has become mandatory for all imagers dealing with this clinical scenario. A long list of acronyms, i.e., irRC, iRECIST, irRECIST, imRECIST, PECRIT, PERCIMT, imPERCIST, iPERCIST, depicts the enormous effort made by radiology and nuclear medicine physicians in the last decade to optimize imaging parameters for better prediction of clinical benefit in immunotherapy regimens. Quite frequently, a combination of clinical-laboratory data with imaging findings has been tested, proving the ability to stratify patients into various risk groups. The next steps necessarily require a large scale validation of the most robust criteria, as well as the clinical implementation of immune-targeting tracers for immuno-PET or the exploitation of radiomics and artificial intelligence as complementary tools during the course of immunotherapy administration. For the present review article, a summary of PET/CT role for immunotherapy monitoring will be provided. By scrolling into various cancer types and applied response criteria, the reader will obtain necessary information for better understanding the potentials and limitations of the modality in the clinical setting.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy
| |
Collapse
|
42
|
Eze C, Schmidt-Hegemann NS, Sawicki LM, Kirchner J, Roengvoraphoj O, Käsmann L, Mittlmeier LM, Kunz WG, Tufman A, Dinkel J, Ricke J, Belka C, Manapov F, Unterrainer M. PET/CT imaging for evaluation of multimodal treatment efficacy and toxicity in advanced NSCLC-current state and future directions. Eur J Nucl Med Mol Imaging 2021; 48:3975-3989. [PMID: 33760957 PMCID: PMC8484219 DOI: 10.1007/s00259-021-05211-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The advent of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced NSCLC, leading to a string of approvals in recent years. Herein, a narrative review on the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in the ever-evolving treatment landscape of advanced NSCLC is presented. METHODS This comprehensive review will begin with an introduction into current treatment paradigms incorporating ICIs; the evolution of CT-based criteria; moving onto novel phenomena observed with ICIs and the current state of hybrid imaging for diagnosis, treatment planning, evaluation of treatment efficacy and toxicity in advanced NSCLC, also taking into consideration its limitations and future directions. CONCLUSIONS The advent of ICIs marks the dawn of a new era bringing forth new challenges particularly vis-à-vis treatment response assessment and observation of novel phenomena accompanied by novel systemic side effects. While FDG PET/CT is widely adopted for tumor volume delineation in locally advanced disease, response assessment to immunotherapy based on current criteria is of high clinical value but has its inherent limitations. In recent years, modifications of established (PET)/CT criteria have been proposed to provide more refined approaches towards response evaluation. Not only a comprehensive inclusion of PET-based response criteria in prospective randomized controlled trials, but also a general harmonization within the variety of PET-based response criteria is pertinent to strengthen clinical implementation and widespread use of hybrid imaging for response assessment in NSCLC.
Collapse
Affiliation(s)
- Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | | | - Lino Morris Sawicki
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Julian Kirchner
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Olarn Roengvoraphoj
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lena M Mittlmeier
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Amanda Tufman
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V, Thoracic Oncology Center Munich, University of Munich (LMU), Munich, Germany
| | - Julien Dinkel
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, Asklepios Lung Center Munich-Gauting, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
43
|
Tian Y, Komolafe TE, Zheng J, Zhou G, Chen T, Zhou B, Yang X. Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features. Diagnostics (Basel) 2021; 11:1875. [PMID: 34679573 PMCID: PMC8534850 DOI: 10.3390/diagnostics11101875] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
To assess if quantitative integrated deep learning and radiomics features can predict the PD-L1 expression level in preoperative MRI of hepatocellular carcinoma (HCC) patients. The data in this study consist of 103 hepatocellular carcinoma patients who received immunotherapy in a single center. These patients were divided into a high PD-L1 expression group (30 patients) and a low PD-L1 expression group (73 patients). Both radiomics and deep learning features were extracted from their MRI sequence of T2-WI, which were merged into an integrative feature space for machine learning for the prediction of PD-L1 expression. The five-fold cross-validation was adopted to validate the performance of the model, while the AUC was used to assess the predictive ability of the model. Based on the five-fold cross-validation, the integrated model achieved the best prediction performance, with an AUC score of 0.897 ± 0.084, followed by the deep learning-based model with an AUC of 0.852 ± 0.043 then the radiomics-based model with AUC of 0.794 ± 0.035. The feature set integrating radiomics and deep learning features is more effective in predicting PD-L1 expression level than only one feature type. The integrated model can achieve fast and accurate prediction of PD-L1 expression status in preoperative MRI of HCC patients.
Collapse
Affiliation(s)
- Yuchi Tian
- Academy of Engineering and Technology, Fudan University, Shanghai 200433, China;
| | | | - Jian Zheng
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| | - Guofeng Zhou
- Department of Radiology, Zhongshan Hospital, Shanghai 200032, China;
| | - Tao Chen
- School of Information Science and Technology, Fudan University, Shanghai 200433, China;
| | - Bo Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaodong Yang
- Academy of Engineering and Technology, Fudan University, Shanghai 200433, China;
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| |
Collapse
|
44
|
Liberini V, Mariniello A, Righi L, Capozza M, Delcuratolo MD, Terreno E, Farsad M, Volante M, Novello S, Deandreis D. NSCLC Biomarkers to Predict Response to Immunotherapy with Checkpoint Inhibitors (ICI): From the Cells to In Vivo Images. Cancers (Basel) 2021; 13:4543. [PMID: 34572771 PMCID: PMC8464855 DOI: 10.3390/cancers13184543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death, and it is usually diagnosed in advanced stages (stage III or IV). Recently, the availability of targeted strategies and of immunotherapy with checkpoint inhibitors (ICI) has favorably changed patient prognosis. Treatment outcome is closely related to tumor biology and interaction with the tumor immune microenvironment (TME). While the response in molecular targeted therapies relies on the presence of specific genetic alterations in tumor cells, accurate ICI biomarkers of response are lacking, and clinical outcome likely depends on multiple factors that are both host and tumor-related. This paper is an overview of the ongoing research on predictive factors both from in vitro/ex vivo analysis (ranging from conventional pathology to molecular biology) and in vivo analysis, where molecular imaging is showing an exponential growth and use due to technological advancements and to the new bioinformatics approaches applied to image analyses that allow the recovery of specific features in specific tumor subclones.
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Turin, Italy;
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy
| | - Annapaola Mariniello
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Luisella Righi
- Pathology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (L.R.); (M.V.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Marco Donatello Delcuratolo
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Mohsen Farsad
- Nuclear Medicine, Central Hospital Bolzano, 39100 Bolzano, Italy;
| | - Marco Volante
- Pathology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (L.R.); (M.V.)
| | - Silvia Novello
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
45
|
Response Prediction and Evaluation Using PET in Patients with Solid Tumors Treated with Immunotherapy. Cancers (Basel) 2021; 13:cancers13123083. [PMID: 34205572 PMCID: PMC8234914 DOI: 10.3390/cancers13123083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In cancer treatment, immunotherapy is increasingly becoming important as a component of first-line treatment and has improved the prognosis of patients since its introduction. A large group of patients, however, do not respond to immunotherapy, and predicting a treatment response remains challenging. Furthermore, evaluating a response using conventional computed tomography (CT) scans is not straightforward due to the different mechanism of action of immunotherapy compared to chemotherapy. This review provides an overview of positron emission tomography (PET) in predicting and evaluating treatment response to immunotherapy. Abstract In multiple malignancies, checkpoint inhibitor therapy has an established role in the first-line treatment setting. However, only a subset of patients benefit from checkpoint inhibition, and as a result, the field of biomarker research is active. Molecular imaging with the use of positron emission tomography (PET) is one of the biomarkers that is being studied. PET tracers such as conventional 18F-FDG but also PD-(L)1 directed tracers are being evaluated for their predictive power. Furthermore, the use of artificial intelligence is under evaluation for the purpose of response prediction. Response evaluation during checkpoint inhibitor therapy can be challenging due to the different response patterns that can be observed compared to traditional chemotherapy. The additional information provided by PET can potentially be of value to evaluate a response early after the start of treatment and provide the clinician with important information about the efficacy of immunotherapy. Furthermore, the use of PET to stratify between patients with a complete response and those with a residual disease can potentially guide clinicians to identify patients for which immunotherapy can be discontinued and patients for whom the treatment needs to be escalated. This review provides an overview of the use of positron emission tomography (PET) to predict and evaluate treatment response to immunotherapy.
Collapse
|
46
|
A CT-Based Radiomic Signature Can Be Prognostic for 10-Months Overall Survival in Metastatic Tumors Treated with Nivolumab: An Exploratory Study. Diagnostics (Basel) 2021; 11:diagnostics11060979. [PMID: 34071518 PMCID: PMC8229740 DOI: 10.3390/diagnostics11060979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/06/2023] Open
Abstract
Baseline clinical prognostic factors for recurrent and/or metastatic (RM) head and neck squamous cell carcinoma (HNSCC) treated with immunotherapy are lacking. CT-based radiomics may provide additional prognostic information. A total of 85 patients with RM-HNSCC were enrolled for this study. For each tumor, radiomic features were extracted from the segmentation of the largest tumor mass. A pipeline including different feature selection steps was used to train a radiomic signature prognostic for 10-month overall survival (OS). Features were selected based on their stability to geometrical transformation of the segmentation (intraclass correlation coefficient, ICC > 0.75) and their predictive power (area under the curve, AUC > 0.7). The predictive model was developed using the least absolute shrinkage and selection operator (LASSO) in combination with the support vector machine. The model was developed based on the first 68 enrolled patients and tested on the last 17 patients. Classification performance of the radiomic risk was evaluated accuracy and the AUC. The same metrics were computed for some baseline predictors used in clinical practice (volume of largest lesion, total tumor volume, number of tumor lesions, number of affected organs, performance status). The AUC in the test set was 0.67, while accuracy was 0.82. The performance of the radiomic score was higher than the one obtainable with the clinical variables (largest lesion volume: accuracy 0.59, AUC = 0.55; number of tumoral lesions: accuracy 0.71, AUC 0.36; number of affected organs: accuracy 0.47; AUC 0.42; total tumor volume: accuracy 0.59, AUC 0.53; performance status: accuracy 0.41, AUC = 0.47). Radiomics may provide additional baseline prognostic value compared to the variables used in clinical practice.
Collapse
|
47
|
Heinzerling JH, Mileham KF, Simone CB. The utilization of immunotherapy with radiation therapy in lung cancer: a narrative review. Transl Cancer Res 2021; 10:2596-2608. [PMID: 35116573 PMCID: PMC8797746 DOI: 10.21037/tcr-20-2241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
Despite decreasing smoking rates, lung cancer remains the leading cause of death from cancer in the United States. Radiation therapy has been established as an effective locoregional therapy for both early stage and locally advanced disease and is known to stimulate local immune response. Past treatment paradigms have established the role of combining cytotoxic chemotherapy regimens and radiation therapy to help address the local and systemic nature of lung cancer. However, these regimens have limitations in their tolerability due to toxicity. Additionally, cytotoxic chemotherapy has limited efficacy in preventing systemic spread of lung cancer. Newer systemic agents such as immune checkpoint inhibitors have shown improved survival in metastatic and locally advanced lung cancer and have the advantage of more limited toxicity profiles compared to cytotoxic chemotherapy. Furthermore, improved overall response rates and systemic tumor responses have been observed with the combination of radiation therapy and immunotherapy, leading to numerous active clinical trials evaluating the combination of immune checkpoint inhibition with radiotherapy. This comprehensive review discusses the current clinical data and ongoing studies evaluating the combination of radiation therapy and immunotherapy in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC).
Collapse
Affiliation(s)
- John H. Heinzerling
- Levine Cancer Institute, Atrium Health, Southeast Radiation Oncology, Charlotte, NC, USA
| | | | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- New York Proton Center, New York, NY, USA
| |
Collapse
|
48
|
Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, Terreno E, Deandreis D. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Molecules 2021; 26:2201. [PMID: 33920423 PMCID: PMC8069316 DOI: 10.3390/molecules26082201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is an effective therapeutic option for several cancers. In the last years, the introduction of checkpoint inhibitors (ICIs) has shifted the therapeutic landscape in oncology and improved patient prognosis in a variety of neoplastic diseases. However, to date, the selection of the best patients eligible for these therapies, as well as the response assessment is still challenging. Patients are mainly stratified using an immunohistochemical analysis of the expression of antigens on biopsy specimens, such as PD-L1 and PD-1, on tumor cells, on peritumoral immune cells and/or in the tumor microenvironment (TME). Recently, the use and development of imaging biomarkers able to assess in-vivo cancer-related processes are becoming more important. Today, positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is used routinely to evaluate tumor metabolism, and also to predict and monitor response to immunotherapy. Although highly sensitive, FDG-PET in general is rather unspecific. Novel radiopharmaceuticals (immuno-PET radiotracers), able to identify specific immune system targets, are under investigation in pre-clinical and clinical settings to better highlight all the mechanisms involved in immunotherapy. In this review, we will provide an overview of the main new immuno-PET radiotracers in development. We will also review the main players (immune cells, tumor cells and molecular targets) involved in immunotherapy. Furthermore, we report current applications and the evidence of using [18F]FDG PET in immunotherapy, including the use of artificial intelligence (AI).
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Artificial Intelligence
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Fluorodeoxyglucose F18/administration & dosage
- Fluorodeoxyglucose F18/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/chemistry
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/diagnostic imaging
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Positron-Emission Tomography/methods
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemical synthesis
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
- Department of Nuclear Medicine, Kantonsspital Baden, 5004 Baden, Switzerland
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
49
|
Wu G, Jochems A, Refaee T, Ibrahim A, Yan C, Sanduleanu S, Woodruff HC, Lambin P. Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging 2021; 48:3961-3974. [PMID: 33693966 PMCID: PMC8484174 DOI: 10.1007/s00259-021-05242-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Lung cancer ranks second in new cancer cases and first in cancer-related deaths worldwide. Precision medicine is working on altering treatment approaches and improving outcomes in this patient population. Radiological images are a powerful non-invasive tool in the screening and diagnosis of early-stage lung cancer, treatment strategy support, prognosis assessment, and follow-up for advanced-stage lung cancer. Recently, radiological features have evolved from solely semantic to include (handcrafted and deep) radiomic features. Radiomics entails the extraction and analysis of quantitative features from medical images using mathematical and machine learning methods to explore possible ties with biology and clinical outcomes. METHODS Here, we outline the latest applications of both structural and functional radiomics in detection, diagnosis, and prediction of pathology, gene mutation, treatment strategy, follow-up, treatment response evaluation, and prognosis in the field of lung cancer. CONCLUSION The major drawbacks of radiomics are the lack of large datasets with high-quality data, standardization of methodology, the black-box nature of deep learning, and reproducibility. The prerequisite for the clinical implementation of radiomics is that these limitations are addressed. Future directions include a safer and more efficient model-training mode, merge multi-modality images, and combined multi-discipline or multi-omics to form "Medomics."
Collapse
Affiliation(s)
- Guangyao Wu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands. .,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Arthur Jochems
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, Liege, Belgium.,Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Chenggong Yan
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, 6229, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
50
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|