1
|
Domingues LACS, Carriello GM, Pegoraro GM, Mambrini GP. Synthesis of TiO2 nanoparticles by the solvothermal method and application in the catalysis of esterification reactions. AN ACAD BRAS CIENC 2024; 96:e20240096. [PMID: 39630711 DOI: 10.1590/0001-3765202420240096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024] Open
Abstract
TiO2 nanoparticles have numerous applications, prompting extensive efforts to optimize their synthesis for various technologies. This study synthesized TiO2 nanoparticles via the solvothermal method, using a chemometric approach to vary time, temperature, and concentrations of both the precursor and crystallization agent, aiming to understand these variables' effects on crystallite size. Post-synthesis, a sample underwent treatment for sulfate adsorption to alter surface properties from hydrophobic to hydrophilic. Characterization techniques included X-ray diffraction (XRD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results indicated the formation of crystalline anatase phase nanoparticles, with particle sizes ranging from 25 to 38 nm and crystallite sizes from 8 to 10 nm. Sulfation was confirmed via FTIR, and SEM revealed particle agglomeration. Catalytic performance was assessed through esterification reactions, with two analyses: one comparing nanoparticles with and without surface modification, and the other examining the effects of variables like time, catalyst amount, and temperature on product formation. Sulfated samples exhibited excellent catalytic performance, achieving 60% conversion after 2 hours at 50 °C. Pure TiO2 samples also showed good conversion rates when synthesized at higher temperatures and Ti4+ concentrations.
Collapse
Affiliation(s)
- Luana A C S Domingues
- Universidade Federal de São Carlos, Rodovia João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil
| | - Giovanni M Carriello
- Universidade Federal de São Carlos, Rodovia João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil
| | - Guilherme M Pegoraro
- Universidade Federal de São Carlos, Rodovia João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil
| | - Giovanni P Mambrini
- Universidade Federal de São Carlos, Rodovia João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil
| |
Collapse
|
2
|
Bikbaeva VR, Artem’eva AS, Bubennov SV, Nikiforov AI, Kirsanov VY, Serebrennikov DV, Korzhova LF, Karchevsky SG, Khalilov LM, Kutepov BI, Grigoreva NG. Tailoring of the Properties of Amorphous Mesoporous Titanosilicates Active in Acetone Condensation. Gels 2024; 10:732. [PMID: 39590088 PMCID: PMC11593900 DOI: 10.3390/gels10110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Amorphous mesoporous materials are promising as catalysts for processes involving or forming bulk molecules. In a reaction such as acetone condensation to form mesitylene, an effective catalyst should not only have a developed porous structure but also have active centers of acidic and basic types. The sol-gel approach allows one to obtain titanosilicates with such characteristics. This work demonstrates the possibility of controlling their properties by varying the conditions for the synthesis of titanosilicate gels. It has been established that controlling hydrolysis allows one to increase the activity of amorphous mesoporous titanosilicates by 10 times: from acetone conversion of 6% to 60%. It has been shown that the use of titanium acetylacetonate complexes in the synthesis of gels leads to an increase in the content of tetracoordinated Ti in the structure and contributes to an increase in the acidity of titanosilicates. During the condensation of acetone on the obtained mesoporous titanosilicates, high acetone conversion (60-79%) and mesitylene selectivity of up to 83% were achieved.
Collapse
Affiliation(s)
- Vera R. Bikbaeva
- Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center, The Russian Academy of Sciences, Ufa 450075, Russia; (V.R.B.); (A.S.A.); (S.V.B.); (V.Y.K.); (D.V.S.); (L.M.K.); (B.I.K.)
| | - Anna S. Artem’eva
- Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center, The Russian Academy of Sciences, Ufa 450075, Russia; (V.R.B.); (A.S.A.); (S.V.B.); (V.Y.K.); (D.V.S.); (L.M.K.); (B.I.K.)
| | - Sergey V. Bubennov
- Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center, The Russian Academy of Sciences, Ufa 450075, Russia; (V.R.B.); (A.S.A.); (S.V.B.); (V.Y.K.); (D.V.S.); (L.M.K.); (B.I.K.)
| | | | - Viktor Y. Kirsanov
- Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center, The Russian Academy of Sciences, Ufa 450075, Russia; (V.R.B.); (A.S.A.); (S.V.B.); (V.Y.K.); (D.V.S.); (L.M.K.); (B.I.K.)
- Joint Stock Company “Institute of Petrochemical Processing” (JSC “INHP”), Ufa 450065, Russia; (L.F.K.); (S.G.K.)
| | - Dmitry V. Serebrennikov
- Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center, The Russian Academy of Sciences, Ufa 450075, Russia; (V.R.B.); (A.S.A.); (S.V.B.); (V.Y.K.); (D.V.S.); (L.M.K.); (B.I.K.)
| | - Lubov F. Korzhova
- Joint Stock Company “Institute of Petrochemical Processing” (JSC “INHP”), Ufa 450065, Russia; (L.F.K.); (S.G.K.)
| | - Stanislav G. Karchevsky
- Joint Stock Company “Institute of Petrochemical Processing” (JSC “INHP”), Ufa 450065, Russia; (L.F.K.); (S.G.K.)
| | - Leonard M. Khalilov
- Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center, The Russian Academy of Sciences, Ufa 450075, Russia; (V.R.B.); (A.S.A.); (S.V.B.); (V.Y.K.); (D.V.S.); (L.M.K.); (B.I.K.)
| | - Boris I. Kutepov
- Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center, The Russian Academy of Sciences, Ufa 450075, Russia; (V.R.B.); (A.S.A.); (S.V.B.); (V.Y.K.); (D.V.S.); (L.M.K.); (B.I.K.)
| | - Nellia G. Grigoreva
- Institute of Petrochemistry and Catalysis of the Ufa Federal Research Center, The Russian Academy of Sciences, Ufa 450075, Russia; (V.R.B.); (A.S.A.); (S.V.B.); (V.Y.K.); (D.V.S.); (L.M.K.); (B.I.K.)
| |
Collapse
|
3
|
Sánchez Reyna PA, Olea Mejía OF, González-Pedroza MG, Montiel-Bastida NM, Rebollo-Plata B, Morales-Luckie RA. Inhibition of the Growth of Escherichia coli and Staphylococcus aureus Microorganisms in Aesthetic Orthodontic Brackets through the In Situ Synthesis of Ag, TiO 2 and Ag/TiO 2 Nanoparticles. Microorganisms 2024; 12:1583. [PMID: 39203425 PMCID: PMC11356132 DOI: 10.3390/microorganisms12081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Plaque control is especially important during orthodontic treatment because areas of the teeth near brackets and wires are difficult to clean with a toothbrush, resulting in debris buildup of food or dental plaque, thus causing caries and periodontal disease. The objective of this study was to evaluate the antimicrobial properties of silver nanoparticles (AgNPs), titanium dioxide nanoparticles (TiO2NPs), and silver/titanium dioxide nanoparticles (Ag/TiO2NPs), synthesized on the surface of α-alumina ceramic brackets. The AgNPs and TiO2NPs were synthesized by a simple chemical method, and these were characterized by XRD, SEM, and XPS TEM; the antimicrobial activity was tested against Staphylococcus aureus and Escherichia coli by diffusion test. The results of this study demonstrated that by this simple chemical method, silver and titanium dioxide nanoparticles can be synthesized on the surface of α-alumina esthetic brackets, and these NPs possess good antimicrobial activity and the possibility of reducing dental caries, periodontal disease, and white spot generated during orthodontic treatment.
Collapse
Affiliation(s)
- Paola Ariselda Sánchez Reyna
- Center for Advanced Studies and Research on Dentistry, Autonomous University of the State of Mexico (UAEMex), Toluca 50200, Mexico; (P.A.S.R.); (N.M.M.-B.)
| | - Oscar Fernando Olea Mejía
- Department of Materials Science, Center for Research in Sustainable Chemistry (CCIQS), Autonomous University of the State of Mexico (UAEMex), Km 14.5, Carr. Toluca-Atlacomulco, Toluca 50200, Mexico;
| | - María G. González-Pedroza
- Department of Biotechnology, Faculty of Sciences, Autonomous University of the State of Mexico (UAEMex), Km 14.5, Carr. Toluca-Atlacomulco, Toluca 50200, Mexico;
| | - Norma M. Montiel-Bastida
- Center for Advanced Studies and Research on Dentistry, Autonomous University of the State of Mexico (UAEMex), Toluca 50200, Mexico; (P.A.S.R.); (N.M.M.-B.)
| | - Bernabe Rebollo-Plata
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Irapuato, Carr. Irapuato-Silao Km 12.5, Irapuato 36821, Mexico;
| | - Raúl A. Morales-Luckie
- Department of Materials Science, Center for Research in Sustainable Chemistry (CCIQS), Autonomous University of the State of Mexico (UAEMex), Km 14.5, Carr. Toluca-Atlacomulco, Toluca 50200, Mexico;
| |
Collapse
|
4
|
Bachvarova-Nedelcheva A, Iordanova R, Kaneva N. The Solvent Role for the Decomposition of Paracetamol in Distilled and Drinking Water by Pure and Ag-Modified TiO 2 Sol-Gel Powders. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1791. [PMID: 38673148 PMCID: PMC11051041 DOI: 10.3390/ma17081791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
In this study, pure TiO2 gels were synthesized by applying the sol-gel method, using Ti(IV) butoxide with the addition of two different solvents, namely ethylene glycol (EG) and isopropanol (isop), with only air moisture present. It was established using XRD that the gel prepared with the addition of EG was amorphous even at 400 °C, while the other gel was amorphous up to 300 °C. It was found that TiO2 (anatase) had a dominant crystalline phase during heating to 600 °C, while at 700 °C, TiO2 (rutile) appeared. The as-obtained powdered materials were annealed at 500 °C and subsequently underwent photocatalytic tests with paracetamol. Additionally, the TiO2 samples were modified with Ag+ co-catalysts (10-2 M), using photofixation by UV illumination. The photocatalytic activity of the Ag-modified powders was also tested in the photodegradation of a commonly used paracetamol in aqueous solution under UV light illumination. The obtained data exhibited that the annealed samples had better photocatalytic efficiency and decomposed paracetamol faster in comparison to the non-annealed sol-gel powders. The highest degradation efficiency was observed for the TBT/isop/Ag material, with degradation efficiencies average values of 65.59% and 75.61% paracetamol achieved after the third cycle of photocatalytic treatment. The co-catalytically modified powders had higher photocatalytic efficiency in comparison to the pure nanosized powders. Moreover, the sol-gel powders of TBT/EG, TBT/EG/Ag (10-2 M), TBT/isop, and TBT/isop/Ag (10-2 M) demonstrated the ability to retain their photocatalytic activity even after three cycles of use, suggesting that they could find practical use in the treatment of pharmaceutical wastewater. The observed photocatalytic efficiency and positive impact of silver make the prepared powders a desirable choice for pharmaceutical drug degradation, helping to promote environmentally friendly and effective wastewater treatment technology.
Collapse
Affiliation(s)
- Albena Bachvarova-Nedelcheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bld. 11, 1113 Sofia, Bulgaria;
| | - Reni Iordanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bld. 11, 1113 Sofia, Bulgaria;
| | - Nina Kaneva
- Laboratory of Nanoparticle Science and Technology, Department of General and Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
5
|
Thakur N, Thakur N, Kumar A, Thakur VK, Kalia S, Arya V, Kumar A, Kumar S, Kyzas GZ. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169815. [PMID: 38184262 DOI: 10.1016/j.scitotenv.2023.169815] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a focal point of research due to their widespread daily use and diverse synthesis methods, including physical, chemical, and environmentally sustainable approaches. These nanoparticles possess unique attributes such as size, shape, and surface functionality, making them particularly intriguing for applications in the biomedical field. The continuous exploration of TiO2 NPs is driven by the quest to enhance their multifunctionality, aiming to create next-generation products with superior performance. Recent research efforts have specifically focused on understanding the anatase and rutile phases of TiO2 NPs and evaluating their potential in various domains, including photocatalytic processes, antibacterial properties, antioxidant effects, and nanohybrid applications. The hypothesis guiding this research is that by exploring different synthesis methods, particularly chemical and environmentally friendly approaches, and incorporating doping and co-doping techniques, the properties of TiO2 NPs can be significantly improved for diverse applications. The study employs a comprehensive approach, investigating the effects of nanoparticle size, shape, dose, and exposure time on performance. The synthesis methods considered encompass both conventional chemical processes and environmentally friendly alternatives, with a focus on how doping and co-doping can enhance the properties of TiO2 NPs. The research unveils valuable insights into the distinct phases of TiO2 NPs and their potential across various applications. It sheds light on the improved properties achieved through doping and co-doping, showcasing advancements in photocatalytic processes, antibacterial efficacy, antioxidant capabilities, and nanohybrid applications. The study concludes by emphasizing regulatory aspects and offering suggestions for product enhancement. It provides recommendations for the reliable application of TiO2 NPs, addressing a comprehensive spectrum of critical aspects in TiO2 NP research and application. Overall, this research contributes to the evolving landscape of TiO2 NP utilization, offering valuable insights for the development of innovative and high-performance products.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India.
| | - Nikesh Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India
| | - Anil Kumar
- School of chemical and metallurgical engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Susheel Kalia
- Department of Chemistry, ACC Wing (Academic Block) Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, Shahpur, Himachal Pradesh 176206, India
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, School of Science, International Hellenic University, Kavala, Greece.
| |
Collapse
|
6
|
Alabdallah NM, Alluqmani SM, Almarri HM, AL-Zahrani AA. Physical, chemical, and biological routes of synthetic titanium dioxide nanoparticles and their crucial role in temperature stress tolerance in plants. Heliyon 2024; 10:e26537. [PMID: 38420474 PMCID: PMC10900808 DOI: 10.1016/j.heliyon.2024.e26537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Nanotechnology is attracting significant attention worldwide due to its applicability across various sectors. Titanium dioxide nanoparticles (TiO2NPs) are among the key nanoparticles (NPs) that have gained extensive practical use and can be synthesized through a wide range of physical, chemical, and green approaches. However, TiO2NPs have attracted a significant deal of interest due to the increasing demand for enhancing the endurance to abiotic stresses such as temperature stress. In this article, we discuss the effects of temperature stresses such as low (4 °C) and high temperatures (35 °C) on TiO2NPs. Due to climate change, low and high temperature stress impair plant growth and development. However, there are still many aspects of how plants respond to low and high temperature stress and how they influence plant growth under TiO2NPs treatments which are poorly understood. TiO2NPs can be utilized efficiently for plant growth and development, particularly under temperature stress, however the response varies according to type, size, shape, dose, exposure time, metal species, and other variables. It has been demonstrated that TiO2NPs are effective at enhancing the photosynthetic and antioxidant systems of plants under temperature stress. This analysis also identifies key knowledge gaps and possible future perspectives for the reliable application of TiO2NPs to plants under abiotic stress.
Collapse
Affiliation(s)
- Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, City Dammam, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Saleh M. Alluqmani
- Department of Physics. Faculty of Applied Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hana Mohammed Almarri
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Asla A. AL-Zahrani
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| |
Collapse
|
7
|
López-Mercado J, González-Domínguez MI, Reynoso-Marin FJ, Acosta B, Smolentseva E, Nambo A. Green synthesis of TiO 2 for furfural production by photohydrolysis of tortilla manufacturing waste. Sci Rep 2023; 13:15355. [PMID: 37717045 PMCID: PMC10505206 DOI: 10.1038/s41598-023-41529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/28/2023] [Indexed: 09/18/2023] Open
Abstract
Corn nixtamalization generates a waste byproduct that requires diverse environmental preservation measures depending on the country. Such measures could include catalytic and advanced oxidation processes. This study aims to exploit the hemicellulose within the nejayote (32.5%) to create added value chemicals such as furfural using photocatalytic hydrolysis. In the present work, titania (TiO2) nanoparticles (NPs) were greenly synthesized using Ricinus Communis (RC), Moringa Oleifera (MO) or Bougainvillea Spectabilis (BS) plant extracts. Obtained nanoparticles were characterized using XRD, SEM, EDS, BET, XPS and UV-vis techniques. Furthermore, the photocatalytic performance of the obtained samples was evaluated in the furfural production from nejayote. Furfural yield reached 44% in 30 min using the BS synthesized material, which is 1.6 × the yield obtained by the material synthesized with MO extract (26.4% at 45 min) and 6 × the yield obtained by the material obtained with RC (7.2% at 90 min). Such results have not been reported before in the literature and could be the groundwork for novel waste treatments in the tortilla-making industry.
Collapse
Affiliation(s)
- Janneth López-Mercado
- Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, 59103, Sahuayo, Mexico.
| | | | | | - Brenda Acosta
- Cátedras CONACYT, Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
| | - Elena Smolentseva
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860, Ensenada, Baja California, Mexico
| | - Apolo Nambo
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, 40292, USA
| |
Collapse
|
8
|
Gomes BR, Lopes JL, Coelho L, Ligonzo M, Rigoletto M, Magnacca G, Deganello F. Development and Upscaling of SiO 2@TiO 2 Core-Shell Nanoparticles for Methylene Blue Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2276. [PMID: 37630862 PMCID: PMC10458987 DOI: 10.3390/nano13162276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
SiO2@TiO2 core-shell nanoparticles were successfully synthesized via a simple, reproducible, and low-cost method and tested for methylene blue adsorption and UV photodegradation, with a view to their application in wastewater treatment. The monodisperse SiO2 core was obtained by the classical Stöber method and then coated with a thin layer of TiO2, followed by calcination or hydrothermal treatments. The properties of SiO2@TiO2 core-shell NPs resulted from the synergy between the photocatalytic properties of TiO2 and the adsorptive properties of SiO2. The synthesized NPs were characterized using FT-IR spectroscopy, HR-TEM, FE-SEM, and EDS. Zeta potential, specific surface area, and porosity were also determined. The results show that the synthesized SiO2@TiO2 NPs that are hydrothermally treated have similar behaviors and properties regardless of the hydrothermal treatment type and synthesis scale and better performance compared to the SiO2@TiO2 calcined and TiO2 reference samples. The generation of reactive species was determined by EPR, and the photocatalytic activity was evaluated by the methylene blue (MB) removal in aqueous solution under UV light. Hydrothermally treated SiO2@TiO2 showed the highest adsorption capacity and photocatalytic removal of almost 100% of MB after 15 min in UV light, 55 and 89% higher compared to SiO2 and TiO2 reference samples, respectively, while the SiO2@TiO2 calcined sample showed 80%. It was also observed that the SiO2-containing samples showed a considerable adsorption capacity compared to the TiO2 reference sample, which improved the MB removal. These results demonstrate the efficient synergy effect between SiO2 and TiO2, which enhances both the adsorption and photocatalytic properties of the nanomaterial. A possible photocatalytic mechanism was also proposed. Also noteworthy is that the performance of the upscaled HT1 sample was similar to one of the lab-scale synthesized samples, demonstrating the potentiality of this synthesis methodology in producing candidate nanomaterials for the removal of contaminants from wastewater.
Collapse
Affiliation(s)
- Bárbara R. Gomes
- CeNTItvc—Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão 4760-034, Portugal; (B.R.G.); (J.L.L.)
| | - Joana L. Lopes
- CeNTItvc—Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão 4760-034, Portugal; (B.R.G.); (J.L.L.)
| | - Lorena Coelho
- CeNTItvc—Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão 4760-034, Portugal; (B.R.G.); (J.L.L.)
| | - Mattia Ligonzo
- Dipartimento di Chimica, Università degli Studi di Torino (UNITO), Via Pietro Giuria 7, 10124 Torino, Italy; (M.L.); (M.R.); (G.M.)
| | - Monica Rigoletto
- Dipartimento di Chimica, Università degli Studi di Torino (UNITO), Via Pietro Giuria 7, 10124 Torino, Italy; (M.L.); (M.R.); (G.M.)
| | - Giuliana Magnacca
- Dipartimento di Chimica, Università degli Studi di Torino (UNITO), Via Pietro Giuria 7, 10124 Torino, Italy; (M.L.); (M.R.); (G.M.)
- NIS Interdepartmental Centre, Università degli Studi di Torino, Via Pietro Giuria 7, 10124 Torino, Italy
| | - Francesca Deganello
- Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| |
Collapse
|
9
|
Gackowski M, Osmałek T, Froelich A, Otto F, Schneider R, Lulek J. Phototoxic or Photoprotective?-Advances and Limitations of Titanium (IV) Oxide in Dermal Formulations-A Review. Int J Mol Sci 2023; 24:ijms24098159. [PMID: 37175865 PMCID: PMC10179435 DOI: 10.3390/ijms24098159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The widespread role of titanium (IV) oxide (TiO2) in many industries makes this substance of broad scientific interest. TiO2 can act as both a photoprotector and photocatalyst, and the potential for its role in both applications increases when present in nanometer-sized crystals. Its sunlight-scattering properties are used extensively in sunscreens. Furthermore, attempts have been made to incorporate TiO2 into dermal formulations of photolabile drugs. However, the propensity to generate reactive oxygen species (ROS) rendering this material potentially cytotoxic limits its role. Therefore, modifications of TiO2 nanoparticles (e.g., its polymorphic form, size, shape, and surface modifications) are used in an effort to reduce its photocatalytic effects. This review provides an overview of the potential risks arising from and opportunities presented by the use of TiO2 in skin care formulations.
Collapse
Affiliation(s)
- Michał Gackowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Filip Otto
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | | | - Janina Lulek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
10
|
Mikhailova MA, Tekle TH, Bachinin SV, Smirnov AA, Pogosian TN, Milichko VA, Vinogradov AV, Morozov MI. Water-alcohol-TiO 2 dispersions as sustainable ink. SOFT MATTER 2023; 19:1482-1491. [PMID: 36723372 DOI: 10.1039/d2sm01590k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanocrystalline titanium dioxide (TiO2) is a widespread multifunctional and environmentally friendly material that has numerous applications requiring micro-/nanofabrication or thin film deposition. In most cases, the fabrication of titania films can be achieved using cost-efficient solution chemistry combined with various coating or printing techniques. The practical implementation of these methods requires the preparation of a suitable ink with properly adjusted rheological properties. Conventionally, such adjustments are achieved based on TiO2 hydrosols containing various organic surfactants and stabilizing agents. However, the use of such additives may affect the properties of the deposited functional layer, which can be crucial for electronic and optical applications. In this work, we address a comprehensive study of simple surfactant-free TiO2 dispersion systems based on various water-alcohol solvents and demonstrate the possibility of controlling the rheological properties of the titania ink in a wide range that is suitable for several printing applications. As a particular example, we demonstrate the application of a water-i-propanol-TiO2 dispersion as a functional ink for the offset printing of interference images.
Collapse
Affiliation(s)
- Mariia A Mikhailova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova str. 9, St.Petersburg, 191002, Russian Federation.
| | - Tsegai H Tekle
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova str. 9, St.Petersburg, 191002, Russian Federation.
| | - Semyon V Bachinin
- Faculty of Physics and Engineering, ITMO University, St. Petersburg, Lomonosova str. 9, St.Petersburg, 191002, Russian Federation
| | - Artyom A Smirnov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova str. 9, St.Petersburg, 191002, Russian Federation.
| | - Tamara N Pogosian
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova str. 9, St.Petersburg, 191002, Russian Federation.
| | - Valentin A Milichko
- Faculty of Physics and Engineering, ITMO University, St. Petersburg, Lomonosova str. 9, St.Petersburg, 191002, Russian Federation
| | - Alexandr V Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova str. 9, St.Petersburg, 191002, Russian Federation.
| | - Maxim I Morozov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova str. 9, St.Petersburg, 191002, Russian Federation.
| |
Collapse
|
11
|
Shaarawy HH, Hussein HS, Hussien NH, Al Bazedi GA, Hawash SI. Green production of titanium dioxide nanometric particles through electrolytic anodic dissolution of titanium metal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24043-24061. [PMID: 36333636 PMCID: PMC9938833 DOI: 10.1007/s11356-022-23766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Nanometric titanium derivatives such as hydroxide and dioxide compounds have a great attention because they are significant industrial material of commercial importance and applications in photocatalyst, semiconductors, and wastewater treatment. The present investigation gives the results of anodic dissolution preparation of titanium hydroxide nanometric particles followed by calcination for complete conversion to nanometric titanium dioxide product. The optimum conditions for the anodic dissolution of titanium metal were pH 4, C.D. 65 mA/cm2, 25 °C, 150 rpm, electrode gap distance 3 cm, and NaCl 3 g/l for electrolysis time 240 min and thermally calcinated at 600 °C for 240 min., to reach complete conversion to anatase titanium dioxide nanopowder of main particles size of 77 nm with major percentage of 70%. Chemical and physical characterizations were carried out for evaluation of the obtained products including transmission electron microscope, EDX, XRD, and the scanning advanced electronic diffraction pattern. Preliminary economic indicators were calculated to show that the capital cost of the plant is $1.613 million, with annual operating cost of $0.915 million which means the required investment is $2.528 million. The operating cost for the production of nanometric anatase TiO2 is $30.5/kg with depreciation excluding the land price.
Collapse
Affiliation(s)
- Hassan H Shaarawy
- Chemical Engineering & Pilot Plant Dep, Engineering Research and Renewable Energy Institute, National Research Centre (NRC), Cairo, 12311, Egypt
| | - Hala S Hussein
- Chemical Engineering & Pilot Plant Dep, Engineering Research and Renewable Energy Institute, National Research Centre (NRC), Cairo, 12311, Egypt.
| | - Nabila H Hussien
- Chemical Engineering & Pilot Plant Dep, Engineering Research and Renewable Energy Institute, National Research Centre (NRC), Cairo, 12311, Egypt
| | - Ghada A Al Bazedi
- Chemical Engineering & Pilot Plant Dep, Engineering Research and Renewable Energy Institute, National Research Centre (NRC), Cairo, 12311, Egypt
- Center of Applied Research On the Environment and Sustainability(CARES), School of Science and Engineering, The American University, Cairo, Egypt
| | - Salwa I Hawash
- Chemical Engineering & Pilot Plant Dep, Engineering Research and Renewable Energy Institute, National Research Centre (NRC), Cairo, 12311, Egypt
| |
Collapse
|
12
|
Zaheer M, Bacha AUR, Nabi I, Lan J, Wang W, Shen M, Chen K, Zhang G, Zhou F, Lin L, Irshad M, Faridullah F, Arifeen A, Li Y. All Solution-Processed Inorganic, Multilevel Memristors Utilizing Liquid Metals Electrodes Suitable for Analog Computing. ACS OMEGA 2022; 7:40911-40919. [PMID: 36406554 PMCID: PMC9670282 DOI: 10.1021/acsomega.2c03893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report a solution-processable memristive device based on bismuth vanadate (BiVO4) and titanium dioxide (TiO2) with gallium-based eutectic gallium-indium (EGaIn) and gallium-indium-tin alloy (GaInSn) liquid metal as the top electrode. Scanning electron microscopy (SEM) shows the formation of a nonporous structure of BiVO4 and TiO2 for efficient resistive switching. Additionally, the gallium-based liquid metal (GLM)-contacted memristors exhibit stable memristor behavior over a wide temperature range from -10 to +90 °C. Gallium atoms in the liquid metal play an important role in the conductive filament formation as well as the device's operation stability as elucidated by I-V characteristics. The synaptic behavior of the GLM-memristors was characterized, with excellent long-term potentiation (LTP) and long-term depression (LTD) linearity. Using the performance of our device in a multilayer perceptron (MLP) network, a ∼90% accuracy in the handwriting recognition of modified national institute of standards and technology database (MNIST) was achieved. Our findings pave a path for solution-processed/GLM-based memristors which can be used in neuromorphic applications on flexible substrates in a harsh environment.
Collapse
Affiliation(s)
- Muhammad Zaheer
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Aziz-Ur-Rahim Bacha
- Department
of Environmental Science and Engineering, Fudan University, Shanghai200433, China
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Iqra Nabi
- Department
of Environmental Science and Engineering, Fudan University, Shanghai200433, China
| | - Jun Lan
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Wenhui Wang
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Mei Shen
- SUSTech
Academy for Advanced Interdisciplinary Studies, Shenzhen518055, China
| | - Kai Chen
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Guobiao Zhang
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Feichi Zhou
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Longyang Lin
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Muhammad Irshad
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Faridullah Faridullah
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Awais Arifeen
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Yida Li
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| |
Collapse
|
13
|
Guzman M, Tian W, Walker C, Herrera JE. Copper oxide nanoparticles doped with lanthanum, magnesium and manganese: optical and structural characterization. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220485. [PMID: 36405645 PMCID: PMC9667144 DOI: 10.1098/rsos.220485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Copper oxide (Cu2O) is a promising semiconductor for photovoltaic and photocatalytic applications since this material has a high optical absorption coefficient and lower band gap (2.17 eV). Doped lanthanum (La), magnesium (Mg) and manganese (Mn) Cu2O nanoparticles (Cu2O Nps) were prepared by a displacement reaction. The doped and undoped Cu2O Nps were characterized with scanning electron microscopy-energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. The EDS results confirm the presence of La, Mg and Mn in the Cu2O Nps. The XRD results confirm the formation a single cubic phase of Cu2O with a cuprite structure. TEM images confirm the formation of Nps with mean diameters between 12.0 ± 6.1 and 30.8 ± 11.0 nm. Doped and undoped Nps present a narrow band gap (2.40 eV), blue shifted with respect to bulk Cu2O.
Collapse
Affiliation(s)
- Maribel Guzman
- Department of Engineering, Pontifical Catholic University of Peru, Avenida Universitaria 1801, Lima 15088, Peru
| | - Wei Tian
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada
| | - Chantal Walker
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada
| | - Jose E. Herrera
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada
| |
Collapse
|
14
|
Haruna A, Chong FK, Ho YC, Merican ZMA. Preparation and modification methods of defective titanium dioxide-based nanoparticles for photocatalytic wastewater treatment-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70706-70745. [PMID: 36044146 DOI: 10.1007/s11356-022-22749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The rapid population growth and industrial expansion worldwide have created serious water contamination concerns. To curb the pollution issue, it has become imperative to use a versatile material for the treatment. Titanium dioxide (TiO2) has been recognized as the most-studied nanoparticle in various fields of science and engineering due to its availability, low cost, efficiency, and other fascinating properties with a wide range of applications in modern technology. Recent studies revealed the photocatalytic activity of the material for the treatment of industrial effluents to promote environmental sustainability. With the wide band gap energy of 3.2 eV, TiO2 can be activated under UV light; thus, many strategies have been proposed to extend its photoabsorption to the visible light region. In what follows, this has generated increasing attention to study its characteristics and structural modifications in different forms for photocatalytic applications. The present review provides an insight into the understanding of the synthesis methods of TiO2, the current progress in the treatment techniques for the degradation of wide environmental pollutants employing modified TiO2 nanoparticles, and the factors affecting its photocatalytic activities. Further, recent developments in using titania for practical applications, the approach for designing novel nanomaterials, and the prospects and opportunities in this exciting area have been discussed.
Collapse
Affiliation(s)
- Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria.
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia.
| | - Fai-Kait Chong
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructures & Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre for Urban Resource Sustainability, Institute for Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Institute of Contaminant Management for Oil & Gas, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
15
|
Shang C, Bu J, Song C. Preparation, Antimicrobial Properties under Different Light Sources, Mechanisms and Applications of TiO 2: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175820. [PMID: 36079203 PMCID: PMC9457460 DOI: 10.3390/ma15175820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/27/2023]
Abstract
Traditional antimicrobial methods, such as antibiotics and disinfectants, may cause adverse effects, such as bacterial resistance and allergic reactions. Photocatalysts based on titanium dioxide (TiO2) have shown great potential in the field of antimicrobials because of their high efficiency, lack of pollution, and lack of side effects. This paper focuses on the antimicrobial activity of TiO2 under different light sources. To improve the photocatalytic efficiency of TiO2, we can reduce electron-hole recombination and extend the photocatalytic activity to the visible light region by doping with different ions or compounds and compounding with polymers. We can also improve the surface properties of materials, increase the contact area with microorganisms, and further enhance the resistance to microorganisms. In addition, we also reviewed their main synthesis methods, related mechanisms, and main application fields to provide new ideas for the enhancement of photocatalytic microorganism performance and application popularization in the future.
Collapse
|
16
|
Moreira AJ, Lemos SG, Coelho D, Mascaro LH, Freschi GPG, Pereira EC. UV-Vis spectrophotometry coupled to chemometric analysis for the performance evaluation of atrazine photolysis and photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24010-24023. [PMID: 34820752 DOI: 10.1007/s11356-021-17687-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In this study, a spectrophotometric-chemometric (Spec-Chem) approach was applied as an alternative to chromatography to monitor ATZ and by-products after photolytic and photocatalytic oxidation aiming to unveil the ATZ degradation mechanism. Spec-Chem is an accessible, easy-to-operate, low-cost analytical approach to monitor atrazine (ATZ) and by-products, and its applicability was validated by HPLC, the reference technique for the evaluation of pollutant degradation mechanisms. The chromatographic (DChro) and spectrophotometric (DSpec) data found 95% and 57% ATZ removal after 30 min, respectively, proving that the DSpec erroneously induces a 38% loss in removal efficiency. When DSpec was treated by multivariate curve resolution (MCR) analysis for providing chemometric data (DChem), it found ATZ removal and hydroxyatrazine (HAT) formation statistically equal to DChro (t-test, p = 0.05). After unraveling the ATZ degradation mechanism using Spec-Chem, a new hypothesis for the kinetic calculation of ATZ degradation was presented, where the concentrations of ATZ and HAT were used to find k and R2 values representative for the ATZ degradation mechanism. The values found for k were compatible with the literature under similar conditions of ATZ degradation, and the linear correlation coefficients (R2 = 0.99) showed an optimal fit for the proposed hypothesis. Thus, Spec-Chem was successfully applied to unravel the mechanism of photocatalytic degradation of ATZ in the presence of TiO2, while k was obtained by the new hypothesis proposed that considered ATZ and HAT concentration as parameters of kinetic interest. Therefore, the importance of monitoring quantitatively ATZ and HAT were provided in this study, providing new information for the scientific community.
Collapse
Affiliation(s)
- Ailton J Moreira
- Chemistry Department, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
- Universidade Federal de Alfenas, Campus Poços de Caldas, Poços de Caldas, MG, Brazil.
| | - Sherlan G Lemos
- Department of Chemistry, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Dyovani Coelho
- Chemistry Department, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Lucia H Mascaro
- Chemistry Department, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Gian P G Freschi
- Universidade Federal de Alfenas, Campus Poços de Caldas, Poços de Caldas, MG, Brazil
| | - Ernesto C Pereira
- Chemistry Department, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
17
|
Shah V, Bhaliya J, Patel GM, Joshi P. Room-Temperature Chemiresistive Gas Sensing of SnO2 Nanowires: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02198-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Birkett M, Dover L, Cherian Lukose C, Wasy Zia A, Tambuwala MM, Serrano-Aroca Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int J Mol Sci 2022; 23:1162. [PMID: 35163084 PMCID: PMC8835042 DOI: 10.3390/ijms23031162] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Lynn Dover
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Abdul Wasy Zia
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
19
|
Synthesis and Characterization of Manganese-Modified Black TiO 2 Nanoparticles and Their Performance Evaluation for the Photodegradation of Phenolic Compounds from Wastewater. MATERIALS 2021; 14:ma14237422. [PMID: 34885576 PMCID: PMC8658776 DOI: 10.3390/ma14237422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
The release of phenolic-contaminated treated palm oil mill effluent (TPOME) poses a severe threat to human and environmental health. In this work, manganese-modified black TiO2 (Mn-B-TiO2) was produced for the photodegradation of high concentrations of total phenolic compounds from TPOME. A modified glycerol-assisted technique was used to synthesize visible-light-sensitive black TiO2 nanoparticles (NPs), which were then calcined at 300 °C for 60 min for conversion to anatase crystalline phase. The black TiO2 was further modified with manganese by utilizing a wet impregnation technique. Visible light absorption, charge carrier separation, and electron–hole pair recombination suppression were all improved when the band structure of TiO2 was tuned by producing Ti3+ defect states. As a result of the enhanced optical and electrical characteristics of black TiO2 NPs, phenolic compounds were removed from TPOME at a rate of 48.17%, which is 2.6 times higher than P25 (18%). When Mn was added to black TiO2 NPs, the Ti ion in the TiO2 lattice was replaced by Mn, causing a large redshift of the optical absorption edges and enhanced photodegradation of phenolic compounds from TPOME. The photodegradation efficiency of phenolic compounds by Mn-B-TiO2 improved to 60.12% from 48.17% at 0.3 wt% Mn doping concentration. The removal efficiency of phenolic compounds from TPOME diminished when Mn doping exceeded the optimum threshold (0.3 wt%). According to the findings, Mn-modified black TiO2 NPs are the most effective, as they combine the advantages of both black TiO2 and Mn doping.
Collapse
|
20
|
Zhang Y, Fang ZZ, Sun P, Huang Z, Zheng S. A study on the synthesis of coarse TiO2 powder with controlled particle sizes and morphology via hydrolysis. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Siuzdak K, Haryński Ł, Wawrzyniak J, Grochowska K. Review on robust laser light interaction with titania – Patterning, crystallisation and ablation processes. PROG SOLID STATE CH 2021. [DOI: 10.1016/j.progsolidstchem.2020.100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Abstract
The unique properties and numerous applications of nanocrystalline titanium dioxide (TiO2) are stimulating research on improving the existing and developing new titanium dioxide synthesis methods. In this work, we demonstrate for the first time the possibilities of the extraction–pyrolytic method (EPM) for the production of nanocrystalline TiO2 powders. A titanium-containing precursor (extract) was prepared by liquid–liquid extraction using valeric acid C4H9COOH without diluent as an extractant. Simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA–DSC), as well as the Fourier-transform infrared (FTIR) spectroscopy were used to determine the temperature conditions to fabricate TiO2 powders free of organic impurities. The produced materials were also characterized by X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). The results showed the possibility of the fabrication of storage-stable liquid titanium (IV)-containing precursor, which provided nanocrystalline TiO2 powders. It was established that the EPM permits the production of both monophase (anatase polymorph or rutile polymorph) and biphase (mixed anatase–rutile polymorphs), impurity-free nanocrystalline TiO2 powders. For comparison, TiO2 powders were also produced by the precipitation method. The results presented in this study could serve as a solid basis for further developing the EPM for the cheap and simple production of nanocrystalline TiO2-based materials in the form of doped nanocrystalline powders, thin films, and composite materials.
Collapse
|
23
|
Gonçalves RA, Toledo RP, Joshi N, Berengue OM. Green Synthesis and Applications of ZnO and TiO 2 Nanostructures. Molecules 2021; 26:2236. [PMID: 33924397 PMCID: PMC8068979 DOI: 10.3390/molecules26082236] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Over the last two decades, oxide nanostructures have been continuously evaluated and used in many technological applications. The advancement of the controlled synthesis approach to design desired morphology is a fundamental key to the discipline of material science and nanotechnology. These nanostructures can be prepared via different physical and chemical methods; however, a green and ecofriendly synthesis approach is a promising way to produce these nanostructures with desired properties with less risk of hazardous chemicals. In this regard, ZnO and TiO2 nanostructures are prominent candidates for various applications. Moreover, they are more efficient, non-toxic, and cost-effective. This review mainly focuses on the recent state-of-the-art advancements in the green synthesis approach for ZnO and TiO2 nanostructures and their applications. The first section summarizes the green synthesis approach to synthesize ZnO and TiO2 nanostructures via different routes such as solvothermal, hydrothermal, co-precipitation, and sol-gel using biological systems that are based on the principles of green chemistry. The second section demonstrates the application of ZnO and TiO2 nanostructures. The review also discusses the problems and future perspectives of green synthesis methods and the related issues posed and overlooked by the scientific community on the green approach to nanostructure oxides.
Collapse
Affiliation(s)
- Rosana A. Gonçalves
- Department of Physics, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Sao Paulo 12516-410, Brazil; (R.A.G.); (R.P.T.)
| | - Rosimara P. Toledo
- Department of Physics, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Sao Paulo 12516-410, Brazil; (R.A.G.); (R.P.T.)
| | - Nirav Joshi
- São Carlos Institute of Physics, University of São Paulo, 369, São Carlos, Sao Paulo 13560-970, Brazil
| | - Olivia M. Berengue
- Department of Physics, School of Engineering, São Paulo State University (UNESP), Guaratinguetá, Sao Paulo 12516-410, Brazil; (R.A.G.); (R.P.T.)
| |
Collapse
|
24
|
Anderson NJ, Xu T, Ouyang M, Bisson PJ, Davies RG, Marmolejos JM, Shultz MJ. Photosynthesis of a Photocatalyst: Single Atom Platinum Captured and Stabilized by an Iron(III) Engineered Defect. J Phys Chem A 2021; 125:88-98. [PMID: 33372517 DOI: 10.1021/acs.jpca.0c08527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single atom (SA), noble metal catalysts are of interest due to high projected catalytic activity while minimizing cost. Common issues facing many synthesis methodologies include complicated processes, low yields of SA product, and production of mixtures of SA and nanoparticles (NPs). Herein we report a simple, room-temperature synthesis of single Pt-atom decorated, anatase Fe-doped TiO2 particles that leverages the Fe dopant as an engineered defect site to photodeposit and stabilize atomically dispersed Pt. Both particle morphology and Fe dopant location are based on thermodynamic principles (Gibbs-Wulff construction). CO-DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) reveals absence of bridge-bonded CO signal, confirming atomically dispersed Pt. XAS (X-ray absorption spectroscopy) of both Pt and Fe indicates Fe-O-Pt bonding that persists through catalytic cycling. Mass balance indicates that the Pt loading on single particles is 2.5 wt % Pt; the single Pt-atom decorated nanoparticle yield is 17%. Pt-containing particles show more than an order-of-magnitude increased photooxidation efficiency relative to particles containing only Fe. High single-atom-Pt yield, ease of synthesis, and high catalytic activity demonstrate the utility and promise of this method. The principles of this photodeposition synthesis allow for its generalizability toward other SA metals of catalytic interest.
Collapse
Affiliation(s)
- Nicholas J Anderson
- Department of Chemistry, Laboratory for Water and Surface Studies, Pearson Laboratory, Tufts University, Medford, Massachusetts 02155, United States
| | - Tongzhou Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Mengyao Ouyang
- Department of Chemical and Biochemical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Patrick J Bisson
- Department of Chemistry, Laboratory for Water and Surface Studies, Pearson Laboratory, Tufts University, Medford, Massachusetts 02155, United States
| | - Rebecca G Davies
- Department of Chemistry, Laboratory for Water and Surface Studies, Pearson Laboratory, Tufts University, Medford, Massachusetts 02155, United States
| | - Joam M Marmolejos
- Department of Chemistry, Laboratory for Water and Surface Studies, Pearson Laboratory, Tufts University, Medford, Massachusetts 02155, United States
| | - Mary Jane Shultz
- Department of Chemistry, Laboratory for Water and Surface Studies, Pearson Laboratory, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
25
|
Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, Valiev GH, Kianfar E. Nanomaterial by Sol‐Gel Method: Synthesis and Application. ADVANCES IN MATERIALS SCIENCE AND ENGINEERING 2021; 2021. [DOI: 10.1155/2021/5102014] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2025]
Abstract
The sol‐gel process is a more chemical method (wet chemical method) for the synthesis of various nanostructures, especially metal oxide nanoparticles. In this method, the molecular precursor (usually metal alkoxide) is dissolved in water or alcohol and converted to gel by heating and stirring by hydrolysis/alcoholysis. Since the gel obtained from the hydrolysis/alcoholysis process is wet or damp, it should be dried using appropriate methods depending on the desired properties and application of the gel. For example, if it is an alcoholic solution, the drying process is done by burning alcohol. After the drying stage, the produced gels are powdered and then calcined. The sol‐gel method is a cost‐effective method and due to the low reaction temperature there is good control over the chemical composition of the products. The sol‐gel method can be used in the process of making ceramics as a molding material and can be used as an intermediate between thin films of metal oxides in various applications. The materials obtained from the sol‐gel method are used in various optical, electronic, energy, surface engineering, biosensors, and pharmaceutical and separation technologies (such as chromatography). The sol‐gel method is a conventional and industrial method for the synthesis of nanoparticles with different chemical composition. The basis of the sol‐gel method is the production of a homogeneous sol from the precursors and its conversion into a gel. The solvent in the gel is then removed from the gel structure and the remaining gel is dried. The properties of the dried gel depend significantly on the drying method. In other words, the “removing solvent method” is selected according to the application in which the gel will be used. Dried gels in various ways are used in industries such as surface coating, building insulation, and the production of special clothing. It is worth mentioning that, by grinding the gel by special mills, it is possible to achieve nanoparticles.
Collapse
|
26
|
Svora P, Ecorchard P, Pližingrová E, Komárková B, Svorová Pawełkowicz S, Murafa N, Maříková M, Smržová D, Wagner B, Machálková A, Bezdička P. Influence of Inorganic Bases on the Structure of Titanium Dioxide-Based Microsheets. ACS OMEGA 2020; 5:23703-23717. [PMID: 32984689 PMCID: PMC7513341 DOI: 10.1021/acsomega.0c02570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Laboratory synthesis of microsheets of titanium dioxide from titanyl sulfate involves the use of ammonia solution, whereas another inorganic base is most likely to be employed at the industrial level, as ammonia is a toxic agent and therefore should be avoided according to European Union (EU) regulations. Selected nontoxic bases such as sodium, potassium, and lithium hydroxides have been tested as an alternative to ammonia solution to obtain amorphous and crystalline TiO2-based microsheets. The final products obtained at each step of the procedure (samples lyophilized and annealed at 230 and 800 °C) were analyzed with electron and atomic force microscopy, X-ray powder diffraction, thermal analysis, and Fourier transform infrared (FTIR) and Raman spectroscopies to determine their morphology and phase composition. The differences in the morphology of the obtained products were described in detail as well as phase and structural composition throughout the process. It was found that, in the last step of the synthesis, microsheets annealed at 800 °C were built of small rods and oval or platy crystalline particles depending on the base used. The temperature of formation of anatase, rutile, and alkali-metal titanates in correlation with the ionic radius of the alkali metal present in the sample was discussed.
Collapse
Affiliation(s)
- Petr Svora
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
- Institute
of Physics of the Czech Academy
of Sciences, Na Slovance
1999/2, 182 21 Prague
8, Czech Republic
| | - Petra Ecorchard
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Eva Pližingrová
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Bára Komárková
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
- Department
of Chemistry, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
| | | | - Natalija Murafa
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Monika Maříková
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Darina Smržová
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Barbara Wagner
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Aneta Machálková
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Petr Bezdička
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
27
|
Abstract
We report the synthesis of mesoporous TiO2 nanostructures based on the decomposition of TiOSO4 in aqueous alkaline solution at room temperature, followed by mild thermal treatment (110 °C) in an oven and suitable to yield up to 40 g of product per batch. The duration of the thermal treatment was found to be crucial to control crystalline phase composition, specific surface area, surface chemistry and, accordingly, the photocatalytic properties of the obtained TiO2 nanocrystals. The thorough investigation of the prepared samples allowed us to explain the relationship between the structure of the obtained nanoparticles and their photocatalytic behavior, that was tested in a model reaction. In addition, the advantage of the mild treatment against a harsher calcination at 450 °C was illustrated. The proposed approach represents a facile and sustainable route to promptly access an effective photocatalyst, thus holding a significant promise for the development of solutions suitable to real technological application in environmental depollution.
Collapse
|
28
|
Zhao Z, Omer AA, Qin Z, Osman S, Xia L, Singh RP. Cu/N-codoped TiO 2 prepared by the sol-gel method for phenanthrene removal under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17530-17540. [PMID: 31317433 DOI: 10.1007/s11356-019-05787-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Cu/N-codoped TiO2 nanoparticles were prepared by the modified sol-gel method, to study its efficiency for the removing of polyaromatic hydrocarbon (phenanthrene) from an aqueous solution. Urea and copper sulfate pentahydrate were used as sources of doping element for Cu/N-codoped TiO2, respectively. The characterizations of the nanoparticles were done by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra. XRD revealed that all the nanoparticles were indexed to the anatase phase structure, with crystallite size range from 11 to 30 nm, which decreased with the doping of copper and nitrogen. The photocatalytic activities of Cu/N-codoped TiO2 showed the highest activities than other TiO2 nanoparticles (TiO2 and N-doped TiO2). The photodegradation efficiency of Cu/N-codoped TiO2 on phenanthrene under visible light irradiation was slightly higher (96%) comparing to UV light irradiation (94%). Cu/N-codoped TiO2 was found to be very efficient and economical for phenanthrene removal, because the smallest amount of Cu/N-codoped TiO2 exhibited the best removal efficiency on phenanthrene.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Abduelrahman Adam Omer
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
- Department of Civil Engineering, College of Engineering Science, Nyala University, Nyala, Sudan.
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Salaheldein Osman
- Department of Civil Engineering, College of Engineering Science, Nyala University, Nyala, Sudan
- Water Harvesting center, Nyala University, Nyala, Sudan
| | - Liling Xia
- Nanjing Institute of Industry Technology, People's Republic of, Nanjing, 210016, China
| | | |
Collapse
|
29
|
Photocatalytic Bi2O3/TiO2:N Thin Films with Enhanced Surface Area and Visible Light Activity. COATINGS 2020. [DOI: 10.3390/coatings10050445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bi2O3 nanocone films functionalized with an overlayer of TiO2 were deposited by d.c. reactive magnetron sputtering. The aforementioned nanocone structures were formed via a vapour-liquid-solid (VLS) growth, starting from a catalytic bismuth seed layer. The resultant nanocones exhibit an improved surface area, measured by atomic force microscopy, when compared to non-VLS deposition of the same metal oxide. X-ray diffraction texture analysis enabled the determination of the crystallographic β-phase of Bi2O3. A very thin TiO2 overlayer (6 nm thick), undoped and doped with nitrogen, was deposited onto the nanocones template, in order to functionalize these structures with a photocatalytic, self-cleaning, cap material. N-doped TiO2 overlayers increased the selective absorption of visible light due to nitrogen doping in the anatase cell, thus, resulting in a concomitant increase in the overall photocatalytic efficiency.
Collapse
|
30
|
da Silva DM, de Menezes BRC, Bezzon VDN, Montanheiro TLDA, de Macedo EF, Tada DB, Petraconi G, Thim GP. Phase transition of TiO2 nanoparticles into titanate nanorods via hydrothermal reactions. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1004-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Bengalli R, Ortelli S, Blosi M, Costa A, Mantecca P, Fiandra L. In Vitro Toxicity of TiO 2:SiO 2 Nanocomposites with Different Photocatalytic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1041. [PMID: 31330895 PMCID: PMC6669742 DOI: 10.3390/nano9071041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023]
Abstract
The enormous technological relevance of titanium dioxide (TiO2) nanoparticles (NPs) and the consequent concerns regarding potentially hazardous effects that exposure during production, use, and disposal can generate, encourage material scientists to develop and validate intrinsically safe design solution (safe-by-design). Under this perspective, the encapsulation in a silica dioxide (SiO2) matrix could be an effective strategy to improve TiO2 NPs safety, preserving photocatalytic and antibacterial properties. In this work, A549 cells were used to investigate the toxic effects of silica-encapsulated TiO2 having different ratios of TiO2 and SiO2 (1:1, 1:3, and 3:1). NPs were characterized by electron microscopy and dynamic light scattering, and cell viability, oxidative stress, morphological changes, and cell cycle alteration were evaluated. Resulting data demonstrated that NPs with lower content of SiO2 are able to induce cytotoxic effects, triggered by oxidative stress and resulting in cell necrosis and cell cycle alteration. The physicochemical properties of NPs are responsible for their toxicity. Particles with small size and high stability interact with pulmonary cells more effectively, and the different ratio among silica and titania plays a crucial role in the induced cytotoxicity. These results strengthen the need to take into account a safe(r)-by-design approach in the development of new nanomaterials for research and manufacturing.
Collapse
Affiliation(s)
- Rossella Bengalli
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy.
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Anna Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| | - Luisa Fiandra
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, MI, Italy
| |
Collapse
|
32
|
Wu F, Zhou Z, Hicks AL. Life Cycle Impact of Titanium Dioxide Nanoparticle Synthesis through Physical, Chemical, and Biological Routes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4078-4087. [PMID: 30912646 DOI: 10.1021/acs.est.8b06800] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The sustainable manufacturing of nanoparticles (NPs) has become critical to reduce life cycle energy use and the associated environmental impact. With the ever-growing production volume, titanium dioxide (TiO2) NPs have been produced through various synthesis routes with differing input materials and reactions, which result in differential reactivity, crystallinity, surface areas, and size distributions. In this study, life cycle assessment is used to analyze and compare the environmental impact of TiO2 NPs produced via seven routes covering physical, chemical, and biological syntheses. The synthesis routes are chosen to represent mainstream NP manufacturing and future trends. Mass-, surface area-, and photocatalytic reactivity-based functional units are selected to evaluate the environmental impact and reflect the corresponding changes. The results show that impact associated with the upstream production of different precursors are dominant for the chemical route. Compared to the chemical route, the physical route requires substantial quantities of supporting gas and high-energy inputs to maintain high temperature; therefore, a higher environmental burden is generated. A high environmental burden is also modeled for the biological route due to the required bacterial culture media. This present study aims to identify the most efficient synthesis route for TiO2 NP production, lower the potential environmental impact, and improve green synthesis and sustainability.
Collapse
Affiliation(s)
- Fan Wu
- Department of Civil and Environmental Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Zheng Zhou
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Andrea L Hicks
- Department of Civil and Environmental Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
33
|
Mendiola-Alvarez SY, Guzmán-Mar JL, Turnes-Palomino G, Maya-Alejandro F, Caballero-Quintero A, Hernández-Ramírez A, Hinojosa-Reyes L. Synthesis of Cr 3+-doped TiO 2 nanoparticles: characterization and evaluation of their visible photocatalytic performance and stability. ENVIRONMENTAL TECHNOLOGY 2019; 40:144-153. [PMID: 28914168 DOI: 10.1080/09593330.2017.1380715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Cr3+-doped TiO2 nanoparticles (Ti-Cr) were synthesized by microwave-assisted sol-gel method. The Ti-Cr catalyst was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, N2 adsorption-desorption analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy (XPS) and zetametry. The anatase mesoporous Ti-Cr material exhibited a specific surface area of 54.5 m2/g. XPS analysis confirmed the proper substitution of Ti4+ cations by Cr3+ cations in the TiO2 matrix. The particle size was of average size of 17 nm for the undoped TiO2 but only 9.5 nm for Ti-Cr. The Cr atoms promoted the formation of hydroxyl radicals and modified the surface adsorptive properties of TiO2 due to the increase in surface acidity of the material. The photocatalytic evaluation demonstrated that the Ti-Cr catalyst completely degraded (4-chloro-2-methylphenoxy) acetic acid under visible light irradiation, while undoped TiO2 and P25 allowed 45.7% and 31.1%, respectively. The rate of degradation remained 52% after three cycles of catalyst reuse. The higher visible light photocatalytic activity of Ti-Cr was attributed to the beneficial effect of Cr3+ ions on the TiO2 surface creating defects within the TiO2 crystal lattice, which can act as charge-trapping sites, reducing the electron-hole recombination process.
Collapse
Affiliation(s)
| | - Jorge Luis Guzmán-Mar
- a Facultad de Ciencias Químicas , Universidad Autónoma de Nuevo León, UANL , San Nicolás de los Garza , México
| | - Gemma Turnes-Palomino
- b Department of Chemistry , University of the Balearic Islands , Palma de Mallorca , Spain
| | | | - Adolfo Caballero-Quintero
- c Laboratorio de Química Forense, Criminalística y Servicios Periciales , Procuraduría General de Justicia del Estado de Nuevo León , Monterrey , México
| | - Aracely Hernández-Ramírez
- a Facultad de Ciencias Químicas , Universidad Autónoma de Nuevo León, UANL , San Nicolás de los Garza , México
| | - Laura Hinojosa-Reyes
- a Facultad de Ciencias Químicas , Universidad Autónoma de Nuevo León, UANL , San Nicolás de los Garza , México
| |
Collapse
|
34
|
Zhai L, Qian Y, Wang Y, Cheng Y, Dong J, Peh SB, Zhao D. In Situ Formation of Micropore-Rich Titanium Dioxide from Metal-Organic Framework Templates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36933-36940. [PMID: 30295021 DOI: 10.1021/acsami.8b11920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phase and porosity control in titanium dioxide (TiO2) is essential for the optimization of its photocatalytic activity. However, concurrent control over these two parameters remains challenging. Here, a novel metal-organic framework templating strategy is demonstrated for the preparation of highly microporous anatase TiO2. In situ encapsulation of Ti precursor in ZIF-8 cavities, followed by hydrolysis and etching, produces anatase TiO2 with a high Brunauer-Emmett-Teller surface area of 335 m2·g-1 and a micropore surface area ratio of 48%. Photocatalytic hydrogen generation catalyzed by the porous TiO2 can reach a rate of 2459 μmol·g-1·h-1. The measured photocatalytic activity is found to be positively correlated to the surface area, highlighting the importance of porosity control in heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Linzhi Zhai
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212003 , China
| | - Yuhong Qian
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore
| | - Youdong Cheng
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore
| | - Jinqiao Dong
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , 117585 Singapore
| |
Collapse
|
35
|
Robust fabrication of thin film polyamide-TiO 2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Sci Rep 2018; 8:784. [PMID: 29335585 PMCID: PMC5768769 DOI: 10.1038/s41598-017-18724-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022] Open
Abstract
The development of nano-enabled composite materials has led to a paradigm shift in the manufacture of high-performance nanocomposite membranes with enhanced permeation, thermo-mechanical, and antibacterial properties. The major challenges to the successful incorporation of nanoparticles (NPs) to polymer films are the severe aggregation of the NPs and the weak compatibility of NPs with polymers. These two phenomena lead to the formation of non-selective voids at the interface of the polymer and NPs, which adversely affect the separation performance of the membrane. To overcome these challenges, we have developed a new method for the fabrication of robust TFN reverse osmosis membranes. This approach relies on the simultaneous synthesis and surface functionalization of TiO2 NPs in an organic solvent (heptane) via biphasic solvothermal reaction. The resulting stable suspension of the TiO2 NPs in heptane was then utilized in the interfacial (in-situ) polymerization reaction where the NPs were entrapped within the matrix of the polyamide (PA) membrane. TiO2 NPs of 10 nm were effectively incorporated into the thin PA layer and improved the thermal stability and anti-biofouling properties of the resulting TFN membranes. These features make our synthesized membranes potential candidates for applications where the treatment of high-temperature streams containing biomaterials is desirable.
Collapse
|
36
|
Mendiola-Alvarez SY, Guzmán-Mar JL, Turnes-Palomino G, Maya-Alejandro F, Hernández-Ramírez A, Hinojosa-Reyes L. UV and visible activation of Cr(III)-doped TiO 2 catalyst prepared by a microwave-assisted sol-gel method during MCPA degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12673-12682. [PMID: 27832437 DOI: 10.1007/s11356-016-8034-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.
Collapse
Affiliation(s)
- S Y Mendiola-Alvarez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, Cd. Universitaria, C.P. 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - J L Guzmán-Mar
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, Cd. Universitaria, C.P. 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - G Turnes-Palomino
- Department of Chemistry, University of the Balearic Islands, 07122, Palma de Mallorca, Spain
| | - F Maya-Alejandro
- Department of Chemistry, University of the Balearic Islands, 07122, Palma de Mallorca, Spain
| | - A Hernández-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, Cd. Universitaria, C.P. 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - L Hinojosa-Reyes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, Cd. Universitaria, C.P. 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
37
|
Sol-Gel-Assisted Microwave-Derived Synthesis of Anatase Ag/TiO2/GO Nanohybrids toward Efficient Visible Light Phenol Degradation. Catalysts 2017. [DOI: 10.3390/catal7050133] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Zhu T, Chong MN, Chan ES. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. CHEMSUSCHEM 2014; 7:2974-2997. [PMID: 25274424 DOI: 10.1002/cssc.201402089] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/30/2014] [Indexed: 06/03/2023]
Abstract
The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future.
Collapse
Affiliation(s)
- Tao Zhu
- Advanced Engineering Platform and School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 46150 (Malaysia)
| | | | | |
Collapse
|
39
|
Nithiyanantham U, Ramadoss A, Ede SR, Kundu S. DNA mediated wire-like clusters of self-assembled TiO₂ nanomaterials: supercapacitor and dye sensitized solar cell applications. NANOSCALE 2014; 6:8010-8023. [PMID: 24905088 DOI: 10.1039/c4nr01836b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new route for the formation of wire-like clusters of TiO₂ nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO₂ nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO₂ NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 ± 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO₂ nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO₂ nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g(-1) was observed for TiO₂ having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO₂ nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO₂ nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.
Collapse
Affiliation(s)
- U Nithiyanantham
- Electrochemical Materials Science (ECMS) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630006, Tamil Nadu, India.
| | | | | | | |
Collapse
|
40
|
Watanabe N, Kaneko T, Uchimaru Y, Yanagida S, Yasumori A, Sugahara Y. Preparation of water-dispersible TiO2 nanoparticles from titanium tetrachloride using urea hydrogen peroxide as an oxygen donor. CrystEngComm 2013. [DOI: 10.1039/c3ce41561a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|