1
|
Clouthier S, Rosani U, Khan A, Ding Q, Emmenegger E, Wang Z, Nalpathamkalam T, Thiruvahindrapuram B. Genomic and Epidemiological Investigations Reveal Chromosomal Integration of the Acipenserid Herpesvirus 3 Genome in Lake Sturgeon Acipenser fulvescens. Viruses 2025; 17:534. [PMID: 40284977 PMCID: PMC12031113 DOI: 10.3390/v17040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
DNA sequence from a new alloherpesvirus named acipenserid herpesvirus 3 (AciHV-3) was found in sturgeon species that are vulnerable to decline globally. A study was undertaken to develop a better understanding of the virus genome and to develop diagnostic tools to support an epidemiological investigation. A 184,426 bp genome was assembled from PacBio HiFi sequences generated with DNA from a Lake Sturgeon Acipenser fulvescens gonad cell line. The AciHV-3 genome was contiguous with host chromosomal DNA and was structured with telomere-like terminal direct repeat regions, five internal direct repeat regions and a U region that included intact open reading frames encoding alloherpesvirus core proteins. Diagnostic testing conducted with a newly developed and analytically validated qPCR assay established the ubiquitous presence and high titer of AciHV-3 DNA in somatic and germline tissues from wild Lake Sturgeon in the Hudson Bay drainage basin. Phylogenetic reconstructions confirm that the monophyletic AciHV-3 lineage shares a common ancestor with AciHV-1 and that AciHV-3 taxa cluster according to their sturgeon host. The same genotype of AciHV-3 is found in disjunctive Lake Sturgeon populations within and among drainage basins. The results support the hypotheses that AciHV-3 has established latency through germline chromosomal integration, is vertically transmitted via a Mendelian pattern of inheritance, is evolving in a manner consistent with a replication competent virus and has co-evolved with its host reaching genetic fixation in Lake Sturgeon populations in central Canada.
Collapse
Affiliation(s)
- Sharon Clouthier
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35131 Padua, Italy;
| | - Arfa Khan
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Qiuwen Ding
- Department of Fisheries and Oceans, Freshwater Institute, Winnipeg, MB R3T 2N6, Canada; (A.K.); (Q.D.)
| | - Eveline Emmenegger
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA;
| | - Zhuozhi Wang
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| | - Bhooma Thiruvahindrapuram
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 1H3, Canada; (Z.W.); (T.N.); (B.T.)
| |
Collapse
|
2
|
Dichiera AM, Earhart ML, Bugg WS, Brauner CJ, Schulte PM. Too Hot to Handle: A Meta-Analytical Review of the Thermal Tolerance and Adaptive Capacity of North American Sturgeon. GLOBAL CHANGE BIOLOGY 2024; 30:e17564. [PMID: 39563555 DOI: 10.1111/gcb.17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024]
Abstract
Understanding how ectotherms may fare with rising global temperatures and more frequent heatwaves is especially concerning for species already considered at-risk, such as long-lived, late-maturing sturgeon. There have been concerted efforts to collect data on the movement behavior and thermal physiology of North American sturgeon to enhance conservation efforts; thus, we sought to synthesize these data to understand how sturgeon respond to thermal stress and what capacity they have to acclimate and adapt to warming. Here, we combined a systematic literature review and meta-analysis, integrating field-based observations (distribution and spawning) and laboratory-based experiments (survival, activity, growth, metabolism, and upper thermal limits) for large-scale insights to understand the vulnerability of North American sturgeon to rising global temperatures. We summarized the preferred thermal habitat and thermal limits of sturgeon in their natural environment and using meta-analytical techniques, quantified the effect of prolonged temperature change on sturgeon whole-animal physiology and acute upper thermal limits. While acclimation did not have significant effects on physiological rates or survival overall, there were positive trends of activity and metabolism in young-of-the-year sturgeons, likely offset by negative trends of survival in early life. Notably, North American sturgeon have a greater capacity for thermal tolerance plasticity than other fishes, increasing upper thermal limits by 0.56°C per 1°C change in acclimation temperature. But with limited laboratory-based studies, more research is needed to understand if this is a sturgeon trait, or perhaps that of basal fishes in general. Importantly, with these data gaps, the fate of sturgeon remains uncertain as climate change intensifies, and physiological impacts across life stages likely limit ecological success.
Collapse
Affiliation(s)
- Angelina M Dichiera
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, Virginia, USA
| | - Madison L Earhart
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - William S Bugg
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Liu Q, Naganuma T. Metabolomics in sturgeon research: a mini-review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1895-1910. [PMID: 38980504 PMCID: PMC11286732 DOI: 10.1007/s10695-024-01377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Sturgeons are ancient fish, with 27 species distributed in the Northern Hemisphere. This review first touches upon the significance of sturgeons in the context of their biological, ecological, and economic importance, highlighting their status as "living fossils" and the challenges they face in genomic research due to their diverse chromosome numbers. This review then discusses how omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have been used in sturgeon research, which so far has only been done on Acipenser species. It focuses on metabolomics as a way to better understand how sturgeons work and how they react to their environment. Specific studies in sturgeon metabolomics are cited, showing how metabolomics has been used to investigate various aspects of sturgeon biology, such as growth, reproduction, stress responses, and nutrition. These studies demonstrate the potential of metabolomics in improving sturgeon aquaculture practices and conservation efforts. Overall, the review suggests that metabolomics, as a relatively new scientific tool, has the potential to enhance our understanding of sturgeon biology and aid in their conservation and sustainable aquaculture, contributing to global food security efforts.
Collapse
Affiliation(s)
- Qi Liu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
4
|
Bogár K, Stanivuk J, Géczi A, Fazekas GL, Kovács B, Lázár B, Molnár M, Ardó L, Ljubobratović U, Kovács G, Péter D, Várkonyi E, Káldy J. Investigation of Sexes and Fertility Potential of Female Russian Sturgeon ( Acipenser gueldenstaedtii) and Male American Paddlefish ( Polyodon spathula) Hybrids. Life (Basel) 2024; 14:818. [PMID: 39063572 PMCID: PMC11277912 DOI: 10.3390/life14070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In the present study, 10 allotriploid (3nALT) and 10 allopentaploid (5nALP) six-month-old hybrid fish and two 3nALT and four 5nALP 40-month-old hybrid fish, which resulted by crossing female Russian sturgeon Acipenser gueldenstaedtii (Brandt and Ratzeberg, 1833) and male American paddlefish Polyodon spathula (Walbaum, 1792), were investigated. It was revealed that six-month-old 3nALT and 5nALP hybrids initially had "undifferentiated" gonads, while in the 40-month-old hybrids, only testes were observed in one case of 3nALT and one case of 5nALP hybrids. The testis of 3nALT hybrids was partially developed with spermatogonia, while the testis of one 5nALP hybrid was in the second developmental stage with low spermatogonia density. We could not determine gonad differentiation in any of the cases when the hybrid individuals had the W sex chromosome. We concluded that the gonad differentiation of these interfamilial hybrids follows a similar pattern to interspecific hybrids of different ploidy parent species of the family Acipenseridae, which is consistent with the classical Haldane's rule. However, it cannot be excluded that the testis of this/these hybrid(s) may produce fertile sperm after sexual maturity, depending on additional genetic, hormonal and environmental factors, and further research is required for its evaluation.
Collapse
Affiliation(s)
- Katalin Bogár
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Hungary; (K.B.); (J.S.); (A.G.); (G.L.F.); (L.A.); (U.L.); (G.K.)
- PhD School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Jelena Stanivuk
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Hungary; (K.B.); (J.S.); (A.G.); (G.L.F.); (L.A.); (U.L.); (G.K.)
- PhD School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Aliz Géczi
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Hungary; (K.B.); (J.S.); (A.G.); (G.L.F.); (L.A.); (U.L.); (G.K.)
- PhD School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Georgina Lea Fazekas
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Hungary; (K.B.); (J.S.); (A.G.); (G.L.F.); (L.A.); (U.L.); (G.K.)
- PhD School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Balázs Kovács
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (B.K.); (D.P.)
| | - Bence Lázár
- Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, H-2100 Gödöllő, Hungary; (B.L.); (E.V.)
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Mariann Molnár
- PhD School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
- Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, H-2100 Gödöllő, Hungary; (B.L.); (E.V.)
| | - László Ardó
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Hungary; (K.B.); (J.S.); (A.G.); (G.L.F.); (L.A.); (U.L.); (G.K.)
| | - Uroš Ljubobratović
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Hungary; (K.B.); (J.S.); (A.G.); (G.L.F.); (L.A.); (U.L.); (G.K.)
| | - Gyula Kovács
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Hungary; (K.B.); (J.S.); (A.G.); (G.L.F.); (L.A.); (U.L.); (G.K.)
| | - Dániel Péter
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (B.K.); (D.P.)
| | - Eszter Várkonyi
- Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, H-2100 Gödöllő, Hungary; (B.L.); (E.V.)
| | - Jenő Káldy
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-5540 Szarvas, Hungary; (K.B.); (J.S.); (A.G.); (G.L.F.); (L.A.); (U.L.); (G.K.)
| |
Collapse
|
5
|
Wang B, Wu B, Liu X, Hu Y, Ming Y, Bai M, Liu J, Xiao K, Zeng Q, Yang J, Wang H, Guo B, Tan C, Hu Z, Zhao X, Li Y, Yue Z, Mei J, Jiang W, Yang Y, Li Z, Gao Y, Chen L, Jian J, Du H. Whole-genome Sequencing Reveals Autooctoploidy in Chinese Sturgeon and Its Evolutionary Trajectories. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad002. [PMID: 38862424 PMCID: PMC11425059 DOI: 10.1093/gpbjnl/qzad002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 06/13/2024]
Abstract
The order Acipenseriformes, which includes sturgeons and paddlefishes, represents "living fossils" with complex genomes that are good models for understanding whole-genome duplication (WGD) and ploidy evolution in fishes. Here, we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis (Chinese sturgeon), a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes. Our results show that A. sinensis is a complex autooctoploid species containing four kinds of octovalents (8n), a hexavalent (6n), two tetravalents (4n), and a divalent (2n). An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs, and further provides insights into the timing of its ploidy evolution. This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploid fishes.
Collapse
Affiliation(s)
- Binzhong Wang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen 518083, China
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Xueqing Liu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yacheng Hu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yao Ming
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Mingzhou Bai
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby 2800, Denmark
| | - Juanjuan Liu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Qingkai Zeng
- River Basin Complex Administration Center, China Three Gorges Corporation, Yichang 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Hongqi Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Baifu Guo
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Chun Tan
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Zixuan Hu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Xun Zhao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yanhong Li
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhen Yue
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
| | - Wei Jiang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yuanjin Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Zhiyuan Li
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yong Gao
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Lei Chen
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- River Basin Complex Administration Center, China Three Gorges Corporation, Yichang 443100, China
| | - Jianbo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby 2800, Denmark
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Yangtze River Biodiversity Research Center, China Three Gorges Corporation, Wuhan 430014, China
| |
Collapse
|
6
|
Káldy J, Fazekas G, Kovács B, Molnár M, Lázár B, Pálinkás-Bodzsár N, Ljubobratović U, Fazekas G, Kovács G, Várkonyi E. Unidirectional hybridization between American paddlefish Polyodon spathula (Walbaum, 1792) and sterlet Acipenser ruthenus (Linnaeus, 1758). PeerJ 2024; 12:e16717. [PMID: 38259665 PMCID: PMC10802154 DOI: 10.7717/peerj.16717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Interspecific hybridizations among sturgeon species are feasible and often bidirectional. The American paddlefish (Polyodon spathula) from Family Polyodontidae and sturgeon species from Family Acipenseridae were reported capable of hybridization, but viable hybrids have been described only in crosses with the American paddlefish as paternal parents. In the reciprocal cross, the hybrids were not viable however embryos start to develop and reach late gastrula and early neurula stages. The goal of this study was to examine the hybridization between the sterlet sturgeon (Acipenser ruthenus) and the American paddlefish. Hybrid and purebred crosses were produced by artificial fertilization. Viable hybrid offspring were harvested (three month old) and verified in the families produced by female sterlet crossing with male American paddlefish. In the reciprocal hybrid crosses with female American paddlefish and male sterlet, the embryos development did not pass over 120 h post fertilization, indicating the unidirectional hybridization between American paddlefish and sterlet. Chromosome counting showed for the same ploidy level of viable hybrid and parent species. Analysis of three microsatellite markers confirmed the unidirectional hybridization between the American paddlefish and the sterlet species. Overall, the inferred genetic cause suggests that unidirectional hybridization between American paddlefish and sterlet may be the case not only for these two species but likely also between American paddlefish and other sturgeon species.
Collapse
Affiliation(s)
- Jenő Káldy
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Szarvas, Békés, Hungary
| | - Georgina Fazekas
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Szarvas, Békés, Hungary
- PhD School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Pest, Hungary
| | - Balázs Kovács
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Pest, Hungary
| | - Mariann Molnár
- PhD School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Pest, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, Gödöllő, Pest, Hungary
| | - Bence Lázár
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, Gödöllő, Pest, Hungary
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Pest, Hungary
| | - Nóra Pálinkás-Bodzsár
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, Gödöllő, Pest, Hungary
| | - Uroš Ljubobratović
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Szarvas, Békés, Hungary
| | - Gyöngyvér Fazekas
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Szarvas, Békés, Hungary
| | - Gyula Kovács
- Research Centre for Fisheries and Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Szarvas, Békés, Hungary
| | - Eszter Várkonyi
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation, Gödöllő, Pest, Hungary
| |
Collapse
|
7
|
Fatira E, Havelka M, Saito T, Landeira J, Rodina M, Gela D, Pšenička M. Intracytoplasmic sperm injection in sturgeon species: A promising reproductive technology of selected genitors. Front Vet Sci 2022; 9:1054345. [PMID: 36619956 PMCID: PMC9816131 DOI: 10.3389/fvets.2022.1054345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Sturgeons are the most endangered species group and their wild populations continue to decrease. In this study, we apply intracytoplasmic sperm injection (ICSI), an assisted reproductive technology, for the first time in endangered and critically endangered sturgeons. Using various egg-sperm species combinations we performed different ICSI experiments with immobilized pre- or non-activated spermatozoa, single or many, fresh or cryopreserved. Then we evaluated the fertilization success as well as the paternity of the resultant embryos and larvae. Surprisingly, all experimental groups exhibited embryonic development. Normal-shaped feeding larvae produced in all egg-sperm species-combination groups after ICSI using single fresh-stripped non-activated spermatozoa, in one group after ICSI using single fresh-stripped pre-activated spermatozoa, and in one group after ICSI using multiple fresh-stripped spermatozoa. ICSI with single cryopreserved non-activated spermatozoa produced neurula stage embryos. Molecular analysis showed genome integration of both egg- and sperm-donor species in most of the ICSI transplants. Overall, ICSI technology could be used as an assisted reproduction technique for producing sturgeons to rescue valuable paternal genomes.
Collapse
Affiliation(s)
- Effrosyni Fatira
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia,Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain,*Correspondence: Effrosyni Fatira ✉
| | - Miloš Havelka
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Matsuyama, Japan
| | - Taiju Saito
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia,Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Matsuyama, Japan
| | - José Landeira
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marek Rodina
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia
| | - David Gela
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia
| | - Martin Pšenička
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia Ceske Budejovice, Ceské Budějovice, Czechia
| |
Collapse
|
8
|
Salkova E, Gela D, Pecherkova P, Flajshans M. Examination of white blood cell indicators for three different ploidy level sturgeon species reared in an indoor recirculation aquaculture system for one year. VET MED-CZECH 2022; 67:138-149. [PMID: 39170595 PMCID: PMC11334767 DOI: 10.17221/215/2020-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 09/09/2021] [Indexed: 08/23/2024] Open
Abstract
Functional diploid Acipenser ruthenus, functional tetraploid Acipenser gueldenstaedtii and functional hexaploid Acipenser brevirostrum juveniles were sampled monthly for one year, and the white blood cell indicators were determined. The total number of leukocytes (TL) was 40.93 ± 17.24 × 109/l for the diploids, 20.63 ± 11.20 × 109/l for the tetraploids, 14.13 ± 7.72 × 109/l for the hexaploids. The TL decreased with an increasing ploidy level. The highest number of leukocytes was reached during September and October for A. ruthenus and A. brevirostrum, from October to January for A. gueldenstaedtii (a statistically significant finding). The lymphocytes dominated (76.89-80.14%) in the differential counts and were found to be reduced in June and July in each group. Granulocytes were represented by neutrophils and eosinophils. Counting from all the leukocytes, the neutrophils represented 13.0-18.7% and eosinophils represented 5.7-6.1%. Increasing number of nuclear segments in the granulocytes was dependent on the increasing ploidy level. Nuclear segmentation in the lymphocytes was a common finding in higher ploidy level groups. The data suggest a significant effect of ploidy level on the total number of leukocytes and morphological nuclear changes in the granulocytes and lymphocytes. The seasonal variation in the differential leukocyte counts depends on the species and the influence of various external conditions rather than the ploidy level.
Collapse
Affiliation(s)
- Eva Salkova
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - David Gela
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Pavla Pecherkova
- Department of Applied Mathematics, Faculty of Transportation Sciences, Czech Technical University in Prague, Prague, Czech Republic
| | - Martin Flajshans
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Liu J, Wan H, Qi Q, Li Y, Wang Y, Zhou Y, Zheng R, Lu Y. The full-length transcriptome sequencing of three sturgeons reveals the occurrence of whole genome duplication event. Mar Genomics 2022; 61:100902. [DOI: 10.1016/j.margen.2021.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
|
10
|
Ruan R, Feng T, Li Y, Yue H, Ye H, Du H, Liu Q, Ruan J, Li C, Wei Q. Screening and identification of female-specific DNA sequences in octaploid sturgeon using comparative genomics with high-throughput sequencing. Genomics 2021; 113:4237-4244. [PMID: 34785350 DOI: 10.1016/j.ygeno.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/15/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
In this study, six candidate female-specific DNA sequences of octaploid Amur sturgeon (Acipenser schrenckii) were identified using comparative genomic approaches with high-throughput sequencing data. Their specificity was confirmed by traditional PCR. Two of these sex-specific sequences were also validated as female-specific in other eight sturgeon species and two hybrid sturgeons. The identified female-specific DNA fragments suggest that the family Acipenseridae has a ZZ/ZW sex-determining system. However, one of the two DNA sequences has been deleted in some sturgeons such as Sterlet sturgeon (Acipenser ruthenus), Beluga (Huso huso) and Kaluga (H. dauricus). The difference of sex-specific sequences among sturgeons indicates that there are different sex-specific regions among species of sturgeon. This study not only provided the sex-specific DNA sequences for management, conservation and studies of sex-determination mechanisms in sturgeons, but also confirmed the capability of the workflow to identify sex-specific DNA sequences in the polyploid species with complex genomes.
Collapse
Affiliation(s)
- Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Tong Feng
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Ying Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
11
|
Beridze T, Boscari E, Scheele F, Edisherashvili T, Anderson C, Congiu L. Interspecific hybridization in natural sturgeon populations of the Eastern Black Sea: the consequence of drastic population decline? CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe eastern part of the Black Sea and its tributaries are suitable habitats for several sturgeon species, among which Acipenser gueldenstaedtii, A. stellatus, A. nudiventris, A. persicus, A. sturio, and H. huso are well documented. However, different threats have led these species to a dramatic decline, all of them are currently listed as Critically Endangered, and some Locally Extinct, in that area. We tested 94 wild sturgeon samples from the Black Sea and Rioni River by analyzing the mitochondrial Control Region and nuclear markers for hybrid identification. The data analyses (1) assessed mitochondrial diversity among samples, (2) identified their species, as well as (3) indicated instances of hybridization. The data collected, besides confirming a sharp decrease of catches of Beluga and Stellate sturgeon in recent years, also revealed four juvenile hybrids between Russian and Stellate sturgeon, providing the first evidence of natural interspecific hybridization in the Rioni. The present communication raises concerns about the status of sturgeon species in this area and underlines the urgent need for conservation programs to restore self-sustaining populations.
Collapse
|
12
|
Lebeda I, Ráb P, Majtánová Z, Flajšhans M. Artificial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates. Sci Rep 2020; 10:19705. [PMID: 33184410 PMCID: PMC7665173 DOI: 10.1038/s41598-020-76680-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Critically endangered sturgeons, having undergone three whole genome duplication events, represent an exceptional example of ploidy plasticity in vertebrates. Three extant ploidy groups, combined with autopolyploidization, interspecific hybridization and the fertility of hybrids are important issues in sturgeon conservation and aquaculture. Here we demonstrate that the sturgeon genome can undergo numerous alterations of ploidy without severe physiological consequences, producing progeny with a range of ploidy levels and extremely high chromosome numbers. Artificial suppression of the first mitotic division alone, or in combination with suppression of the second meiotic division of functionally tetraploid zygotes (4n, C-value = 4.15) of Siberian sturgeon Acipenser baerii and Russian sturgeon A. gueldenstaedtii resulted in progeny of various ploidy levels—diploid/hexaploid (2n/6n) mosaics, hexaploid, octoploid juveniles (8n), and dodecaploid (12n) larvae. Counts between 477 to 520 chromosomes in octoploid juveniles of both sturgeons confirmed the modal chromosome numbers of parental species had been doubled. This exceeds the highest previously documented chromosome count among vertebrates 2n ~ 446 in the cyprinid fish Ptychobarbus dipogon.
Collapse
Affiliation(s)
- Ievgen Lebeda
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Martin Flajšhans
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
13
|
The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat Ecol Evol 2020; 4:841-852. [PMID: 32231327 PMCID: PMC7269910 DOI: 10.1038/s41559-020-1166-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Sturgeons seem to be frozen in time. The archaic characteristics of this ancient fish lineage place it in a key phylogenetic position at the base of the ~30,000 modern teleost fish species. Moreover, sturgeons are notoriously polyploid, providing unique opportunities to investigate the evolution of polyploid genomes. We assembled a high-quality chromosome-level reference genome for the sterlet, Acipenser ruthenus. Our analysis revealed a very low protein evolution rate that is at least as slow as in other deep branches of the vertebrate tree, such as that of the coelacanth. We uncovered a whole-genome duplication that occurred in the Jurassic, early in the evolution of the entire sturgeon lineage. Following this polyploidization, the rediploidization of the genome included the loss of whole chromosomes in a segmental deduplication process. While known adaptive processes helped conserve a high degree of structural and functional tetraploidy over more than 180 million years, the reduction of redundancy of the polyploid genome seems to have been remarkably random. A genome assembly of the sterlet, Acipenser ruthenus, reveals a whole-genome duplication early in the evolution of the entire sturgeon lineage and provides details about the rediploidization of the genome.
Collapse
|
14
|
Saito T, Güralp H, Iegorova V, Rodina M, Pšenicka M. Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation. Biol Reprod 2019; 99:556-564. [PMID: 29635315 PMCID: PMC6134207 DOI: 10.1093/biolre/ioy076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/06/2018] [Indexed: 11/14/2022] Open
Abstract
A technique for rescuing and propagating endangered species involves implanting germ line stem cells into surrogates of a host species whose primordial germ cells (PGCs) have been destroyed. We induced sterilization in sterlet (Acipenser ruthenus) embryos by means of ultraviolet (UV) irradiation at the vegetal pole, the source of early-stage PGCs of sturgeon eggs. The optimal cell stage and length of UV irradiation for the effective repression of the developing PGCs were determined by exposing embryos at the one- to four-cell stage to different doses of irradiation at a wavelength of 254 nm (the optimal absorbance spectrum for germplasm destruction). The vegetal pole region of the embryos was labeled immediately upon irradiation with GFP bucky ball mRNA to monitor the amount of germ plasm and FITC-dextran (M.W. 500,000) to obtain the number of PGCs in the embryos. The size of the germ plasm and number of surrounding mitochondria in the irradiated embryos and controls were observed using transmission electron microscopy, which revealed a drastic reduction in both on the surface of the vegetal pole in the treated embryos. Furthermore, the reduction in the number of PGCs was proportional to the dose of UV irradiation. Under the conditions tested, optimum irradiation for PGCs removal was seen at 360 mJ/cm2 at the one-cell stage. Although some PGCs were observed after the UV irradiation, they significantly reduced in number as the embryos grew. We conclude that UV irradiation is a useful and efficient technique to induce sterility in surrogate sturgeons.
Collapse
Affiliation(s)
- Taiju Saito
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Hilal Güralp
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Viktoriia Iegorova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Marek Rodina
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Martin Pšenicka
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| |
Collapse
|
15
|
Du H, Jian J, Wang B, Liu X, Chen J, Xiao K, Xia J, Yang J, Gao Y, Chen L. Hypothalamus-pituitary-gonad axis transcriptome profiling for sex differentiation in Acipenser sinensis. Sci Data 2019; 6:87. [PMID: 31197171 PMCID: PMC6565624 DOI: 10.1038/s41597-019-0099-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/15/2019] [Indexed: 11/24/2022] Open
Abstract
Chinese sturgeon (Acipenser sinensis), a critically endangered Acipenseridae family member, is one of the largest anadromous, native fish in China. Numerous research programmes and protection agencies have focused on breeding and preserving this endangered species. However, available information is limited on the different stages of sex development, especially on the reproductive regulation of the hypothalamus-pituitary-gonad (HPG) axis of A. sinensis. To unravel the mechanism of gene interactions during sex differentiation and gonad development of A. sinensis, we performed transcriptome sequencing using HPG samples from male and female A. sinensis in two developmental stages. In this study, 271.19 Gb high-quality transcriptome data were obtained from 45 samples belonging to 15 individuals (six in stage I, six males and three females in stage II). These transcriptomic data will help us understand the reproductive regulation of the HPG axis in the development stages of A. sinensis and provide important reference data for genomic and genetic studies in A. sinensis and related species.
Collapse
Affiliation(s)
- Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China.
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| | - Jianbo Jian
- BGI genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Binzhong Wang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Xueqing Liu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Jianwei Chen
- BGI genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong, 266555, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Jinquan Xia
- BGI genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Yong Gao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Lei Chen
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China.
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China.
| |
Collapse
|
16
|
Bard B, Kieffer JD. The effects of repeat acute thermal stress on the critical thermal maximum (CTmax) and physiology of juvenile shortnose sturgeon (Acipenser brevirostrum). CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The shortnose sturgeon (Acipenser brevirostrum Lesueur, 1818) is a species of special concern in Canada, but little is known about their thermal biology. Information on the upper thermal tolerance of shortnose sturgeon becomes valuable for predicting future survival particularly with climate change and improving species management. Using a modified critical thermal maximum (CTmax) methodology, the objective is to determine whether previous thermal stress affects the thermal tolerance of juvenile shortnose sturgeon when exposed to a second thermal stress event. Prior exposure to thermal stress (CTmax1) did not affect the thermal tolerance (CTmax2) of juvenile shortnose sturgeon when a 24 h recovery period was allotted between tests. However, a significant increase in thermal tolerance occurred when the recovery time between the two thermal challenges was 1 h. Plasma glucose, lactate, and osmolality were all significantly affected by thermal stress, but values returned to control levels within 24 h. Hematocrit and plasma chloride concentrations were not significantly affected by thermal stress. All fish survived the CTmax testing. The data indicate that the thermal tolerance of juvenile shortnose sturgeon is modified when multiple thermal stresses occur closer together (1 h) but not if separated by a longer time period (24 h).
Collapse
Affiliation(s)
- Brittany Bard
- Department of Biological Sciences and MADSAM Eco-Physiology Lab, University of New Brunswick, Saint John, NB E2L 4L5, Canada
- Department of Biological Sciences and MADSAM Eco-Physiology Lab, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - James D. Kieffer
- Department of Biological Sciences and MADSAM Eco-Physiology Lab, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| |
Collapse
|
17
|
Sun A, Zhu H, Dong Y, Wang W, Hu HX. Establishment of a novel testicular cell line from sterlet Acipenser ruthenus and evaluation of its applications. JOURNAL OF FISH BIOLOGY 2019; 94:804-809. [PMID: 30484862 DOI: 10.1111/jfb.13855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
In this study, a cell line, designated as Acipenser ruthenus testis (ART), was successfully established from testis tissues of the sterlet Acipenser ruthenus and characterized by studying and comparing the expression of specific genes between the cell line and the parent gonad tissues. The results suggested that the developed ART cell line was composed of a mixture of germ cells and somatic cells. Ploidy analysis indicated that the cell line exhibited a high degree of genetic stability and that the cells remained in a good proliferating state after being subcultured to passage 80.
Collapse
Affiliation(s)
- Ai Sun
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Hua Zhu
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Ying Dong
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Wei Wang
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| | - Hong Xia Hu
- Beijing Fisheries Research Institute & National Freshwater Fisheries Engineering Technology Research Center, Ministry of Science and Technology of China, Lab of Biological Technology and Breeding, Beijing Key Laboratory of Fishery Biotechnology, Beijing, China
| |
Collapse
|
18
|
Dnd1 Knockout in Sturgeons By CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production. Animals (Basel) 2019; 9:ani9040174. [PMID: 30999629 PMCID: PMC6523263 DOI: 10.3390/ani9040174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Sturgeons, also called archaic giants, are critically endangered fish species due to overfishing for caviar and interference in their natural habitats. Some sturgeon species have life spans of over 100 years and sexual maturity is attained between 20 to 25 years. Sterlet (Acipenser ruthenus) has fastest reproductive cycle; thus, this species can be used for surrogate production in sturgeons. Primordial germ cells are the origin of all germ cells in developing embryos. Dnd1 is essential for formation and migration of primordial germ cells and its inactivation results in sterility in fish. In our study, we have used a cutting-edge genome editing technology known as CRISPR/Cas9 to knockout dnd1 and to prepare a sterile sterlet host. CRISPR/Cas9 knocked-out embryos lacked primordial germ cells and can be used as a sterile host for surrogate production in sturgeons. Abstract Sturgeons also known as living fossils are facing threats to their survival due to overfishing and interference in natural habitats. Sterlet (Acipenser ruthenus) due to its rapid reproductive cycle and small body size can be used as a sterile host for surrogate production for late maturing and large sturgeon species. Dead end protein (dnd1) is essential for migration of Primordial Germ Cells (PGCs), the origin of all germ cells in developing embryos. Knockout or knockdown of dnd1 can be done in order to mismigrate PGCs. Previously we have used MO and UV for the aforementioned purpose, and in our present study we have used CRISPR/Cas9 technology to knockout dnd1. No or a smaller number of PGCs were detected in crispants, and we also observed malformations in some CRISPR/Cas9 injected embryos. Furthermore, we compared three established methods to achieve sterility in sterlet, and we found higher embryo survival and hatching rates in CRISPR/Cas9, UV and MO, respectively.
Collapse
|
19
|
Iegorova V, Havelka M, Psenicka M, Saito T. First evidence of viable progeny from three interspecific parents in sturgeon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1541-1550. [PMID: 30232571 DOI: 10.1007/s10695-018-0553-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Polyspermy is the most commonly observed cause of embryonic abnormalities in fertilization, often resulting in death. In sterlet (Acipenser ruthenus), however, polyspermic embryos have high survival (similar to a control group) and morphological development is similar to monospermic larvae. Ploidy of these individuals is n/2n mosaic (whereas the normal state for A. ruthenus is a functional diploid). This study was undertaken to test whether sturgeon eggs can be fertilized by several spermatozoa from different species to produce viable offspring from three interspecific parents: A. ruthenus (2n), A. gueldenstaedtii (4n), and A. baerii (4n). Four trials were performed: (1) and (2) A. baerii eggs were fertilized with a mixture of A. ruthenus and A. gueldenstaedtii sperm; (3) A. gueldenstaedtii eggs were fertilized with a mixture of A. baerii and A. ruthenus sperm; and (4) A. gueldenstaedtii eggs were fertilized with a mixture of A. gueldenstaedtii and A. ruthenus sperm. Fertilized embryos with abnormal cleavage (3, 5, 6, 7, 9, and 10 cells) were collected and kept separately until 14 days post-fertilization. Ploidy level of 25 larvae (hatched from abnormal cleaved embryos) was evaluated by flow cytometry. Forty-four percent of observed hybrids had a mosaic 2n/3n ploidy. Five larva were processed further with microsatellite analysis and demonstrated that three specimens were heterospecific polyspermic larvae, containing alleles from three parents, and two specimens were conspesific polyspermic larvae from two parents. This astonishing phenomenon was emphasized by the fact that it was generated without any significant intervention.
Collapse
Affiliation(s)
- Viktoriia Iegorova
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Milos Havelka
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Ehime, 798-4206, Japan
| | - Martin Psenicka
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Taiju Saito
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Ehime, 798-4206, Japan
| |
Collapse
|
20
|
Lebeda I, Steinbach C, Flajšhans M. Flow cytometry for assessing the efficacy of interspecific gynogenesis induction in sturgeon. JOURNAL OF FISH BIOLOGY 2018; 92:1819-1831. [PMID: 29577302 DOI: 10.1111/jfb.13623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The efficacy of ploidy analysis for separating progeny of Siberian sturgeon Acipenser baerii after induced gynogenesis was demonstrated using sperm of a paternal species differing in ploidy level from the maternal species. Gynogenesis was induced in tetraploid A. baerii with UV-C irradiated sperm from the diploid sterlet Acipenser ruthenus and vice-versa. The success of sperm UV irradiation and diploidy restoration by heat-shock was estimated based on the ploidy level of progeny, confirmed by microsatellite parentage assignment. Hatching rates of interspecific gynogenotes were comparable with rates reported for gynogenesis induction using sperm and eggs of the same species. Juvenile mortality was similar to that observed in the control hybrids. The efficiency and reliability of this method may foster its use for production of gynogenotes in aquaculture, potentially allowing interspecific gynogenesis to replace intraspecific.
Collapse
Affiliation(s)
- I Lebeda
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - C Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - M Flajšhans
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
21
|
Fatira E, Havelka M, Labbé C, Depincé A, Iegorova V, Pšenička M, Saito T. Application of interspecific Somatic Cell Nuclear Transfer (iSCNT) in sturgeons and an unexpectedly produced gynogenetic sterlet with homozygous quadruple haploid. Sci Rep 2018; 8:5997. [PMID: 29662093 PMCID: PMC5902484 DOI: 10.1038/s41598-018-24376-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a very promising cloning technique for reconstruction of endangered animals. The aim of the present research is to implement the interspecific SCNT (iSCNT) technique to sturgeon; one fish family bearing some of the most critically endangered species. We transplanted single cells enzymatically isolated from a dissociated fin-fragment of the Russian sturgeon (Acipenser gueldenstaedtii) into non-enucleated eggs of the sterlet (Acipenser ruthenus), two species bearing different ploidy (4n and 2n, respectively). Up to 6.7% of the transplanted eggs underwent early development, and one feeding larva (0.5%) was successfully produced. Interestingly, although this transplant displayed tetraploidism (4n) as the donor species, the microsatellite and species-specific analysis showed recipient-exclusive homozygosis without any donor markers. Namely, with regards to this viable larva, host genome duplication occurred twice to form tetraploidism during its early development, probably due to iSCNT manipulation. The importance of this first attempt is to apply iSCNT in sturgeon species, establishing the crucial first steps by adjusting the cloning-methodology in sturgeon's biology. Future improvements in sturgeon's cloning are necessary for providing with great hope in sturgeon's reproduction.
Collapse
Affiliation(s)
- Effrosyni Fatira
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Miloš Havelka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Catherine Labbé
- INRA, Fish Physiology and Genomics department, Campus de Beaulieu, F-35000, Rennes, France
| | - Alexandra Depincé
- INRA, Fish Physiology and Genomics department, Campus de Beaulieu, F-35000, Rennes, France
| | - Viktoriia Iegorova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Taiju Saito
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Ehime, 798-4206, Japan
| |
Collapse
|
22
|
Panagiotopoulou H, Austin JD, Zalewska K, Gonciarz M, Czarnogórska K, Gawor J, Weglenski P, Popovic D. Microsatellite Mutation Rate in Atlantic Sturgeon (Acipenser oxyrinchus). J Hered 2017; 108:686-692. [PMID: 28821182 DOI: 10.1093/jhered/esx057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/02/2017] [Indexed: 11/14/2022] Open
Abstract
Understanding mutation rates can greatly extend the utility of population and conservation genetic analyses. Herein, we present an estimate of genome-wide microsatellite mutation rate in Atlantic sturgeon (Acipenser oxyrinchus) based on parent-offspring transmission patterns. We screened 307 individuals for parentage and mutation-rate analysis applying 43 variable markers. Out of 13228 allele transfers, 11 mutations were detected, producing a mutation rate of 8.3 × 10-4 per locus per generation (95% confidence interval: 1.48 × 10-3, 4.15 × 10-4). Single-step mutations predominated and there were trends toward mutations in loci with greater polymorphism and allele length. Two of the detected mutations were most probably cluster mutations, being identified in 12 and 28 sibs, respectively. Finally, we observed evidences of polyploidy based on the sporadic presence of 3 or 4 alleles per locus in the genotyped individuals, supporting previous reports of incomplete diploidization in Atlantic sturgeon.
Collapse
Affiliation(s)
- Hanna Panagiotopoulou
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611; Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611; Institute of Genetics and Biotechnology, Department of Biology, University of Warsaw, Warsaw, Poland; University of Newcastle, Callaghan, Australia; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - James D Austin
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611; Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611; Institute of Genetics and Biotechnology, Department of Biology, University of Warsaw, Warsaw, Poland; University of Newcastle, Callaghan, Australia; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Katarzyna Zalewska
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611; Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611; Institute of Genetics and Biotechnology, Department of Biology, University of Warsaw, Warsaw, Poland; University of Newcastle, Callaghan, Australia; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Magdalena Gonciarz
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611; Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611; Institute of Genetics and Biotechnology, Department of Biology, University of Warsaw, Warsaw, Poland; University of Newcastle, Callaghan, Australia; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Kinga Czarnogórska
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611; Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611; Institute of Genetics and Biotechnology, Department of Biology, University of Warsaw, Warsaw, Poland; University of Newcastle, Callaghan, Australia; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jan Gawor
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611; Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611; Institute of Genetics and Biotechnology, Department of Biology, University of Warsaw, Warsaw, Poland; University of Newcastle, Callaghan, Australia; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Piotr Weglenski
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611; Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611; Institute of Genetics and Biotechnology, Department of Biology, University of Warsaw, Warsaw, Poland; University of Newcastle, Callaghan, Australia; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Danijela Popovic
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland; Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611; Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611; Institute of Genetics and Biotechnology, Department of Biology, University of Warsaw, Warsaw, Poland; University of Newcastle, Callaghan, Australia; Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Nuclear DNA markers for identification of Beluga and Sterlet sturgeons and their interspecific Bester hybrid. Sci Rep 2017; 7:1694. [PMID: 28490748 PMCID: PMC5431886 DOI: 10.1038/s41598-017-01768-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/30/2017] [Indexed: 11/09/2022] Open
Abstract
Sturgeons (Acipenseriformes) are among the most endangered species in the world due to fragmentation and destruction of their natural habitats and to overexploitation, mainly for highly priced caviar. This has led to the development of sturgeon culture, originally for reintroduction, but more recently for caviar production. In both cases, accurate species identification is essential. We report a new tool for accurate identification of Huso huso and Acipenser ruthenus based on nuclear DNA markers. We employed ddRAD sequencing to identify species-specific nucleotide variants, which served as specific binding sites for diagnostic primers. The primers allowed identification of Huso huso and Acipenser ruthenus as well as their discrimination from A. baerii, A. schrenckii, A. gueldenstaedtii, A. stellatus, A. persicus, A. mikadoi, A. transmontanus, and H. dauricus and identification of A. ruthenus and H. huso hybrids with these species, except hybrid between A. ruthenus and A. stellatus. The species-specific primers also allowed identification of bester (H. huso × A. ruthenus), the most commercially exploited sturgeon hybrid. The tool, based on simple PCR and gel electrophoresis, is rapid, inexpensive, and reproducible. It will contribute to conservation of remaining wild populations of A. ruthenus and H. huso, as well as to traceability of their products.
Collapse
|
24
|
Laurent S, Salamin N, Robinson-Rechavi M. No evidence for the radiation time lag model after whole genome duplications in Teleostei. PLoS One 2017; 12:e0176384. [PMID: 28426792 PMCID: PMC5398669 DOI: 10.1371/journal.pone.0176384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
The short and long term effects of polyploidization on the evolutionary fate of lineages is still unclear despite much interest. First recognized in land plants, it has become clear that polyploidization is widespread in eukaryotes, notably at the origin of vertebrates and teleost fishes. Many hypotheses have been proposed to link the species richness of lineages and whole genome duplications. For instance, the radiation time lag model suggests that paleopolyploidy would favour the apparition of new phenotypic traits, although the radiation of the lineage would not occur before a later dispersion event. Some results indicate that this model may be observed during land plant evolution. In this work, we test predictions of the radiation time lag model using both fossil data and molecular phylogenies in ancient and more recent teleost whole genome duplications. We fail to find any evidence of delayed increase of the species number after any of these events and conclude that paleopolyploidization still remains to be unambiguously linked to taxonomic diversity in teleosts.
Collapse
Affiliation(s)
- Sacha Laurent
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
25
|
Anderson EC, Ng TC, Crandall ED, Garza JC. Genetic and individual assignment of tetraploid green sturgeon with SNP assay data. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0963-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, Gela D, Ráb P. Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula). BMC Genet 2017; 18:19. [PMID: 28253860 PMCID: PMC5335500 DOI: 10.1186/s12863-017-0484-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/11/2017] [Indexed: 02/01/2023] Open
Abstract
Background Acipenseriformes is a basal lineage of ray-finned fishes and comprise 27 extant species of sturgeons and paddlefishes. They are characterized by several specific genomic features as broad ploidy variation, high chromosome numbers, presence of numerous microchromosomes and propensity to interspecific hybridization. The presumed palaeotetraploidy of the American paddlefish was recently validated by molecular phylogeny and Hox genes analyses. A whole genome duplication in the paddlefish lineage was estimated at approximately 42 Mya and was found to be independent from several genome duplications evidenced in its sister lineage, i.e. sturgeons. We tested the ploidy status of available chromosomal markers after the expected rediploidization. Further we tested, whether paralogs of Hox gene clusters originated from this paddlefish specific genome duplication are cytogenetically distinguishable. Results We found that both paralogs HoxA alpha and beta were distinguishable without any overlapping of the hybridization signal - each on one pair of large metacentric chromosomes. Of the HoxD, only the beta paralog was unequivocally identified, whereas the alpha paralog did not work and yielded only an inconclusive diffuse signal. Chromosomal markers on three diverse ploidy levels reflecting different stages of rediploidization were identified: quadruplets retaining their ancestral tetraploid condition, semi-quadruplets still reflecting the ancestral tetraploidy with clear signs of advanced rediploidization, doublets were diploidized with ancestral tetraploidy already blurred. Also some of the available microsatellite data exhibited diploid allelic band patterns at their loci whereas another locus showed more than two alleles. Conclusions Our exhaustive staining of paddlefish chromosomes combined with cytogenetic mapping of ribosomal genes and Hox paralogs and with microsatellite data, brings a closer look at results of the process of rediploidization in the course of paddlefish genome evolution. We show a partial rediploidization represented by a complex mosaic structure comparable with segmental paleotetraploidy revealed in sturgeons (Acipenseridae). Sturgeons and paddlefishes with their high propensity for whole genome duplication thus offer suitable animal model systems to further explore evolutionary processes that were shaping the early evolution of all vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0484-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic. .,Research Institute for Limnology, University of Innsbruck, Mondseestr. 9, Mondsee, Austria.
| | - Miloš Havelka
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 389 25, Vodňany, Czech Republic
| | - Chris T Amemiya
- Benaroya Research Institute & University of Washington, Seattle, WA, 98101, USA
| | - William Mike Howell
- Department of Biological and Environmental Sciences, Samford University, 800 Lakeshore Drive, Birmingham, AL, 35229, USA
| | - Tereza Kořínková
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic
| | - Martin Flajšhans
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 389 25, Vodňany, Czech Republic
| | - David Gela
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 389 25, Vodňany, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic
| |
Collapse
|
27
|
Havelka M, Šachlová H, Shaliutina-Kolešová A, Rodina M. Fertilization success of sterlet Acipenser ruthenus and Siberian sturgeon Acipenser baerii gametes under conditions of heterospecific mating. Anim Reprod Sci 2016; 174:107-113. [PMID: 27692499 DOI: 10.1016/j.anireprosci.2016.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
Species may be prevented from interspecific hybridization by a number of different reproductive barriers that operate precopulatory and postcopulatory. In situation, when natural precopulatory reproductive barriers are affected by anthropogenic factors, postcopulatory reproductive barriers may be important for maintaining gametic isolation and hence preventing interspecific hybridization. This is highly topical in sturgeon (order Acipenseriformes) which exhibits remarkable ease of interspecific hybridization. The objectives of the present study were to evaluate the fertilization success of Acipenser ruthenus and Acipenser baerii spermatozoa under the interspecific competitive conditions and assessed, whether their spermatozoa tend to differentially fertilize eggs of conspecifics. We set up several in vitro fertilization experiments: (i) pooled eggs of both species were fertilized by sperm of each species separately; (ii) eggs of each species were fertilized by pooled sperm; (iii) pooled eggs were fertilized by pooled sperm and (iv) purebred and hybrid control groups. Using parental assignment by molecular markers, we found that when these species competed in pooled sperm, 78.9% of progeny were sired by A. ruthenus and 21.1% by A. baerii, demonstrating higher fertilization success for the former, irrespective of conspecificity of fertilized eggs. When pooled eggs were inseminated by A. ruthenus or A. baerii sperm separately, progeny almost equally comprised hybrid and purebred individuals. Hence, neither A. ruthenus nor A. baerii eggs showed a tendency to biased fertilization by spermatozoa of conspecific males. These findings together show that there may not be postcopulatory mechanisms preventing hybridization between A. ruthenus and A. baerii.
Collapse
Affiliation(s)
- M Havelka
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - H Šachlová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - A Shaliutina-Kolešová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - M Rodina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
28
|
Trifonov VA, Romanenko SS, Beklemisheva VR, Biltueva LS, Makunin AI, Lemskaya NA, Kulemzina AI, Stanyon R, Graphodatsky AS. Evolutionary plasticity of acipenseriform genomes. Chromosoma 2016; 125:661-8. [DOI: 10.1007/s00412-016-0609-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
29
|
Havelka M, Bytyutskyy D, Symonová R, Ráb P, Flajšhans M. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol 2016; 48:12. [PMID: 26867760 PMCID: PMC4751722 DOI: 10.1186/s12711-016-0194-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the five basal actinopterygian lineages, the Chondrostei, including sturgeon, shovelnose, and paddlefish (Order Acipenseriformes) show extraordinary ploidy diversity associated with three rounds of lineage-specific whole-genome duplication, resulting in three levels of ploidy in sturgeon. Recently, incidence of spontaneous polyploidization has been reported among cultured sturgeon and it could have serious negative implications for the economics of sturgeon farming. We report the occurrence of seven spontaneous heptaploid (7n) Siberian sturgeon Acipenser baerii, which is a functional tetraploid species (4n) with ~245 chromosomes. Our aims were to assess ploidy level and chromosome number of the analysed specimens and to identify the possible mechanism that underlies the occurrence of spontaneous additional chromosome sets in their genome. RESULTS Among 150 specimens resulting from the mating of a tetraploid (4n) A. baerii (~245 chromosomes) dam with a hexaploid (6n) A. baerii (~368 chromosomes) sire, 143 displayed a relative DNA content that corresponds to pentaploidy (5n) with an absolute DNA content of 8.98 ± 0.03 pg DNA per nucleus and nuclear area of 35.3 ± 4.3 μm(2) and seven specimens exhibited a relative DNA content that corresponds to heptaploidy (7n), with an absolute DNA content of 15.02 ± 0.04 pg DNA per nucleus and nuclear area of 48.4 ± 5.1 μm(2). Chromosome analyses confirmed a modal number of ~437 chromosomes in these heptaploid (7n) individuals. DNA genotyping of eight microsatellite loci followed by parental assignment confirmed spontaneous duplication of the maternal chromosome sets via retention of the second polar body in meiosis II as the mechanism for the formation of this unusual chromosome number and ploidy level in a functional tetraploid A. baerii. CONCLUSIONS We report the second highest chromosome count among vertebrates in cultured sturgeon (~437) after the schizothoracine cyprinid Ptychobarbus dipogon with ~446 chromosomes. The finding also represents the highest documented chromosome count in Acipenseriformes, and the first report of a functional heptaploid (7n) genome composition in sturgeon. To our knowledge, this study provides the first clear evidence of a maternal origin for spontaneous polyploidization in cultured A. baerii. To date, all available data indicate that spontaneous polyploidization occurs frequently among cultured sturgeons.
Collapse
Affiliation(s)
- Miloš Havelka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan.
| | - Dmytro Bytyutskyy
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Radka Symonová
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, 5310, Mondsee, Austria.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic.
| | - Martin Flajšhans
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
30
|
Romanenko SA, Biltueva LS, Serdyukova NA, Kulemzina AI, Beklemisheva VR, Gladkikh OL, Lemskaya NA, Interesova EA, Korentovich MA, Vorobieva NV, Graphodatsky AS, Trifonov VA. Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Mol Cytogenet 2015; 8:90. [PMID: 26587056 PMCID: PMC4652396 DOI: 10.1186/s13039-015-0194-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/07/2015] [Indexed: 11/21/2022] Open
Abstract
Background Acipenseriformes take a basal position among Actinopteri and demonstrate a striking ploidy variation among species. The sterlet (Acipenser ruthenus, Linnaeus, 1758; ARUT) is a diploid 120-chromosomal sturgeon distributed in Eurasian rivers from Danube to Enisey. Despite a high commercial value and a rapid population decline in the wild, many genomic characteristics of sterlet (as well as many other sturgeon species) have not been studied. Results Cell lines from different tissues of 12 sterlet specimens from Siberian populations were established following an optimized protocol. Conventional cytogenetic studies supplemented with molecular cytogenetic investigations on obtained fibroblast cell lines allowed a detailed description of sterlet karyotype and a precise localization of 18S/28S and 5S ribosomal clusters. Localization of sturgeon specific HindIII repetitive elements revealed an increased concentration in the pericentromeric region of the acrocentric ARUT14, while the total sterlet repetitive DNA fraction (C0t30) produced bright signals on subtelomeric segments of small chromosomal elements. Chromosome and region specific probes ARUT1p, 5, 6, 7, 8 as well as 14 anonymous small sized chromosomes (probes A-N) generated by microdissection were applied in chromosome painting experiments. According to hybridization patterns all painting probes were classified into two major groups: the first group (ARUT5, 6, 8 as well as microchromosome specific probes C, E, F, G, H, and I) painted only a single region each on sterlet metaphases, while probes of the second group (ARUT1p, 7 as well as microchromosome derived probes A, B, D, J, K, M, and N) marked two genomic segments each on different chromosomes. Similar results were obtained on male and female metaphases. Conclusions The sterlet genome represents a complex mosaic structure and consists of diploid and tetraploid chromosome segments. This may be regarded as a transition stage from paleotetraploid (functional diploid) to diploid genome condition. Molecular cytogenetic and genomic studies of other 120- and 240-chromosomal sturgeons are needed to reconstruct genome evolution of this vertebrate group.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia ; Novosibirsk State University, Novosibirsk, Russia
| | - Larisa S Biltueva
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | | | | | | | - Olga L Gladkikh
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | | | - Elena A Interesova
- Novosibirsk Branch of the Federal State Budgetary Scientific Institution "State Scientific-and-Production Centre for Fisheries (Gosrybcenter)", Novosibirsk, Russia ; Tomsk State University, Tomsk, Russia
| | - Marina A Korentovich
- Federal State Budgetary Scientific Institution "State Scientific-and-Production Centre for Fisheries (Gosrybcenter)", Tyumen, Russia
| | - Nadezhda V Vorobieva
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia ; Novosibirsk State University, Novosibirsk, Russia
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia ; Novosibirsk State University, Novosibirsk, Russia
| | | |
Collapse
|
31
|
Prokopchuk G, Dzyuba B, Rodina M, Cosson J. Control of sturgeon sperm motility: Antagonism between K+ ions concentration and osmolality. Anim Reprod Sci 2015; 164:82-9. [PMID: 26633858 DOI: 10.1016/j.anireprosci.2015.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/30/2015] [Accepted: 11/15/2015] [Indexed: 11/18/2022]
Abstract
Spermatozoa are stored in a quiescent state in the male reproductive tract and motility is induced in response to various environmental stimuli, such as change of osmolality (general case) and a decrease of extracellular K+ in fish from Acipenseridae family. This study was aimed to investigate the relationship between osmolality and extracellular K+ concentration in controlling sperm motility in sturgeon. Pre-incubation of sturgeon sperm for 5s in hypertonic solutions of glycerol, NaCl, or sucrose (each of 335 mOsm/kg osmolality) prepares sturgeon spermatozoa to become fully motile in presence of high concentration of K+ ions (15 mM), which has previously been demonstrated to fully repress motility. Furthermore, presence of 0.5mM KCl during the high osmolality pre-incubation exposure completely prevented subsequent spermatozoa activation in a K+-rich media. Manipulating the transport of K+ ions by the presence of K+ ionophore (valinomycin), it was concluded that once an efflux of K+ ions, the precursor of sturgeon sperm motility activation, is taking place, spermatozoa then become insensitive to a large extracellular K+ concentration.
Collapse
Affiliation(s)
- Galina Prokopchuk
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, Vodnany 389 25, Czech Republic.
| | - Borys Dzyuba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Marek Rodina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Jacky Cosson
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, Vodnany 389 25, Czech Republic
| |
Collapse
|
32
|
Aramli MS, Golshahi K, Nazari RM, Aramli S, Banan A. Effectiveness of glucose–methanol extender for cryopreservation of Huso huso spermatozoa. Anim Reprod Sci 2015; 162:37-42. [DOI: 10.1016/j.anireprosci.2015.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/09/2015] [Accepted: 09/13/2015] [Indexed: 12/13/2022]
|
33
|
Aramli MS, Golshahi K, Nazari RM, Sotoudeh E, Aramli S, Habibi E. Effect of freezing rate for cryopreservation of Persian sturgeon (Acipenser persicus) spermatozoa. Theriogenology 2015; 85:734-9. [PMID: 26549121 DOI: 10.1016/j.theriogenology.2015.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/17/2022]
Abstract
This study examined the effect of freezing rate (-10 °C, -15 °C, -20 °C, -30 °C, and -40 °C/min) on motility parameters, rates of fertilization and hatching, ATP content, and indices of oxidative stress including thiobarbituric acid reactive substances and carbonyl derivatives of proteins in Persian sturgeon (Acipenser persicus) sperm. After sampling, sperm was diluted in an extender composed of 23.4-mM sucrose, 0.25-mM KCl, and 30-mM Tris-HCl, pH 8.0, containing 10% methanol and subsequently frozen in a programmable freezer. For postthaw sperm that were frozen at a rate of -40 °C/min, sperm motile duration (134 ± 27.01 seconds), sperm motile percent (60 ± 4.1%), fertilizability (72 ± 8.36% for fertilization rate and 65 ± 7.58% for hatching rate), and ATP content (4.8 ± 0.57 nmol/10(8) sperm) were significantly higher than for sperm frozen at any of the four slower rates (P < 0.05). Moreover, sperm cryopreserved using the fastest freezing rate had significantly lower levels of thiobarbituric acid reactive substances (0.5 ± 0.05 nmol/10(8) sperm) and carbonyl derivatives of proteins (41.3 ± 4.9 nmol/10(8) sperm) than sperm cryopreserved using all other freezing rates (P < 0.05). In addition, there is a significant difference (P < 0.05) between fresh sperm and the recovery of cryopreserved Persian sturgeon sperm using programmable freezing with -40 °C/min being the optimal freezing rate among those tested.
Collapse
Affiliation(s)
| | - Karim Golshahi
- Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Ebrahim Sotoudeh
- Fisheries Department, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, Iran
| | - Salim Aramli
- Medicine Laboratory, Alavi Educational and Treatment Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ensieh Habibi
- Biotechnology Laboratory, Faculty of Agriculture and Natural Resources, Tehran University, Karaj, Iran
| |
Collapse
|
34
|
Linhartová Z, Saito T, Kašpar V, Rodina M, Prášková E, Hagihara S, Pšenička M. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology 2015; 84:1246-1255.e1. [PMID: 26248520 DOI: 10.1016/j.theriogenology.2015.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 11/29/2022]
Abstract
Sturgeons (chondrostean, acipenseridae) are ancient fish species, widely known for their caviar. Nowadays, most of them are critically endangered. The sterlet (Acipenser ruthenus) is a common Eurasian sturgeon species with a small body size and the fastest reproductive cycle among sturgeons. Such species can be used as a host for surrogate production; application is of value for recovery of critically endangered and huge sturgeon species with an extremely long reproductive cycle. One prerequisite for production of the donor's gametes only is to have a sterile host. Commonly used sterilization techniques in fishes such as triploidization or hybridization do not guarantee sterility in sturgeon. Alternatively, sterilization can be achieved by using a temporary germ cell exclusion-specific gene by a knockdown agent, the antisense morpholino oligonucleotide (MO). The targeted gene for the MO is the dead end gene (dnd) which is a vertebrate-specific gene encoding a RNA-binding protein which is crucial for migration and survival of primordial germ cells (PGCs). For this purpose, a dnd homologue of Russian sturgeon (Agdnd), resulting in the same sequence in the start codon region with isolated fragments of sterlet dnd (Ardnd), was used. Reverse transcription polymerase chain reaction confirmed tissue-specific expression of Ardnd only in the gonads of both sexes. Dnd-MO for depletion of PGCs together with fluorescein isothiocyanate (FITC)-biotin-dextran for PGCs labeling was injected into the vegetal region of one- to four-cell-stage sterlet embryos. In the control groups, only FITC was injected to validate the injection method and labeling of PGCs. After optimization of MO concentration together with volume injection, 250-μM MO was applied for sterilization of sturgeon embryos. Primordial germ cells were detected under a fluorescent stereomicroscope in the genital ridge of the FITC-labeled control group only, whereas no PGCs were present in the body cavities of morphants at 21 days after fertilization. Moreover, the body cavities of MO-treated and nontreated fish were examined by histology and in situ hybridization, showing gonads which had no germ cells in morphants at various stages (60, 150, and 210 days after fertilization). Taken together, these results report the first known and functional method of sturgeon sterilization.
Collapse
Affiliation(s)
- Zuzana Linhartová
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| | - Taiju Saito
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Vojtěch Kašpar
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Marek Rodina
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Eva Prášková
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Seishi Hagihara
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Martin Pšenička
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
35
|
Aramli MS, Nazari RM, Gharibi MR. Retracted: Effect of Post-Thaw Storage Time on Motility and Fertility of Cryopreserved Beluga Sturgeon (Huso huso) Sperm. Reprod Domest Anim 2015; 50:349-352. [DOI: 10.1111/rda.12484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- MS Aramli
- Department of Fisheries; Faculty of Natural Resources; Urmia University; Urmia Iran
| | - RM Nazari
- Rajaee Sturgeon Propagation Center; Sari Mazandaran Iran
| | - MR Gharibi
- Department of Fisheries; Faculty of Marine Science and Technology; Hormozgan University; Bandar Abass Iran
| |
Collapse
|
36
|
Aramli MS, Nazari RM. Motility and fertility of cryopreserved semen in Persian sturgeon, Acipenser persicus, stored for 30–60min after thawing. Cryobiology 2014; 69:500-2. [DOI: 10.1016/j.cryobiol.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
|
37
|
Aramli MS, Kalbassi MR, Gharibi MR. Retracted
: Effects of multiple collections on spermatozoa quality of Persian sturgeon, Acipenser persicus
: motility, density and seminal plasma composition. J Anim Physiol Anim Nutr (Berl) 2014; 99:66-72. [DOI: 10.1111/jpn.12212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/06/2014] [Indexed: 11/27/2022]
Affiliation(s)
- M. S. Aramli
- Young Researchers and Elite Club, Ardabil Branch; Islamic Azad University; Ardabil Iran
- Department of Fisheries; Marine Sciences Faculty; Tarbiat Modares University; Noor Iran
| | - M. R. Kalbassi
- Department of Fisheries; Marine Sciences Faculty; Tarbiat Modares University; Noor Iran
| | - M. R. Gharibi
- Department of Fisheries; Marine Sciences Faculty; Hormozgan University; Bandar Abbas Iran
| |
Collapse
|
38
|
Bytyutskyy D, Kholodnyy V, Flajšhans M. 3-D structure, volume, and DNA content of erythrocyte nuclei of polyploid fish. Cell Biol Int 2014; 38:708-15. [PMID: 24446105 DOI: 10.1002/cbin.10247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 01/07/2014] [Indexed: 11/11/2022]
Abstract
We have explored the potential relationship between ploidy level, DNA content (pg DNA nucleus(-1)), and dimensional characteristics, such as volume (μm(3)), surface area (μm(2)), and 3-D structure of erythrocyte nuclei in a series of fish ploidy level models using Feulgen image analysis densitometry, flow cytometry, and confocal laser scanning microscopy. The species were diploid tench (Tinca tinca) (2n), Cuban gar (Atractosteus tristoechus) (2n), triploid tench (3n), evolutionary tetraploid sterlet (Acipenser ruthenus) (4n), evolutionary octaploid Siberian sturgeon (A. baerii) (8n), triploid Siberian sturgeon exhibiting dodecaploidy (12n), evolutionary 12n shortnose sturgeon (A. brevirostrum), and experimentally obtained sturgeon hybrids that were tetraploid, hexaploid (6n), heptaploid (7n), octaploid, decaploid (10n), dodecaploid and/or tetradecaploid (14n). Increase in ploidy was accompanied by growth of the nucleus and an increase in the number of flattened ellipsoid nuclei with increased transverse diameter. The volume (Vvoxel ) of erythrocyte nuclei, as the sum of voxels calculated from live cells, seems more accurate than volume (Vaxis ) calculated from measuring the major and minor axis, especially at higher and odd ploidy levels. Data of absolute and relative DNA content were in agreement with previously published reports. Species of the same ploidy level, but differing in DNA content, had a similar mean erythrocyte nuclear volume (Vvoxel ), as demonstrated in sterlet and a hybrid of sterlet and beluga (48.3 and 48.9 μm(3), respectively), with a respective mean DNA content of 3.74 and 3.10 pg DNA nucleus(-1). A similar relationship was found for the ploidy 6n, 10n, 12n. The surface-to-volume ratio decreased non-linearly with increasing ploidy. The DNA in erythrocyte nuclei appeared to be more densely packed with increase in ploidy level.
Collapse
Affiliation(s)
- Dmytro Bytyutskyy
- University of South Bohemia České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | | | | |
Collapse
|
39
|
Aramli MS, Kalbassi MR, Nazari RM, Aramli S. Effects of short-term storage on the motility, oxidative stress, and ATP content of Persian sturgeon (Acipenser persicus) sperm. Anim Reprod Sci 2013; 143:112-7. [PMID: 24238724 DOI: 10.1016/j.anireprosci.2013.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/18/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
Abstract
The effective short-term storage of semen is essential when processing multiple sperm samples and when semen must be transported from collection sites to hatcheries for the fertilization of ova, or to laboratories for cryopreservation. In the present study, the spermatozoa of Persian sturgeon (Acipenser persicus) were used to evaluate the effects of short-term storage on quality parameters (the percentage of motile cells and the total period of sperm motility), oxidative stress indices, and the ATP content. Spermatozoa cells exhibited >50% motility during 6 days of storage where the average total duration of sperm motility varied from 376.42 ± 80.86 s initially to 19.28 ± 10.96 s after 6 days. No motile spermatozoa were recorded after 9 days of storage. The levels of oxidative stress indices (TBARS and CP) and antioxidant activity (SOD) increased significantly with the storage time. The ATP content also decreased significantly after 2 days of storage. The results of this study may facilitate successful reproduction management and cryopreservation protocols for this endangered fish.
Collapse
Affiliation(s)
- Mohammad Sadegh Aramli
- Aquaculture Department, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | | | | | | |
Collapse
|
40
|
Hulak M, Gazo I, Shaliutina A, Linhartova P. In vitro effects of bisphenol A on the quality parameters, oxidative stress, DNA integrity and adenosine triphosphate content in sterlet (Acipenser ruthenus) spermatozoa. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:64-71. [PMID: 23680852 DOI: 10.1016/j.cbpc.2013.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/06/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
Among endocrine disruptors, the xenoestrogen bisphenol A (BPA) deserves particular attention due to widespread human exposure. Besides hormonal effects, BPA has been suspected to be responsible for adverse effect on reproductive ability of various species. In the present study the effect of BPA on the quality parameters, oxidative stress, the DNA integrity and intracellular ATP content of sterlet (Acipenser ruthenus) spermatozoa were investigated in vitro. Fish spermatozoa were exposed to concentrations of BPA possibly occurring in nature (0.5, 1.75, 2.5, 5 and 10μg/L) for 2h. Results revealed that BPA significantly decreased spermatozoa motility and velocity of spermatozoa at concentration of BPA 2.5-10μg/L. Significant positive correlation (r=0.713, P<0.05) was found between percent motile spermatozoa and ATP content. Oxidative stress was observed at concentrations 1.75-10μg/L, as reflected by significantly higher levels of protein and lipid oxidation and superoxide dismutase activity. Intracellular ATP content of spermatozoa decreased with increasing concentrations of BPA. A dramatic increase in DNA fragmentation expressed as percent tail DNA (2.2%±0.46) and Olive tail moment (0.37±0.09 arbitrary units) was recorded at concentrations of 1.75μg/L and above. The present study confirms that concentrations of BPA that can be encountered in nature are capable to induce oxidative stress, leading to impaired sperm quality, DNA fragmentation and intracellular ATP content.
Collapse
Affiliation(s)
- Martin Hulak
- Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia, Zatisi 728/II, Vodnany, Czech Republic
| | | | | | | |
Collapse
|
41
|
Linhartova Z, Rodina M, Nebesarova J, Cosson J, Psenicka M. Morphology and ultrastructure of beluga (Huso huso) spermatozoa and a comparison with related sturgeons. Anim Reprod Sci 2013; 137:220-9. [DOI: 10.1016/j.anireprosci.2013.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/04/2013] [Accepted: 01/06/2013] [Indexed: 02/08/2023]
|