1
|
de Oliveira MJK, Babatunde OO, Rodrigues LA, Erinle TJ, Htoo JK, Mendoza SM, Columbus DA. Development of an indigestible dietary protein index to investigate the effects of dietary protein content in postweaned pigs. J Anim Sci 2025; 103:skae374. [PMID: 39657758 PMCID: PMC11705088 DOI: 10.1093/jas/skae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
Proteolytic fermentation induces negative effects on gut health and function, which may affect pig performance. The objective was to conduct a meta-analysis to develop an index of dietary indigestible dietary protein (IDP) to investigate growth performance outcomes of mixed-sex weanling pigs (average body weight of 7.59 kg). Eighty-nine articles reporting growth performance variables [average daily gain (ADG), average daily feed intake (ADFI), gain:feed ratio (GF), initial (IBW), and final body weight] in pigs fed different dietary protein (DP) content (from 12% to 33.6%) and protein sources (plant and animal) were included. DP and IDP index was calculated in all experiments using a common database, with the IDP index defined as the difference between total DP and standardized ileal digestible DP. A DP- and an IDP-based model were developed to predict the ADG, GF, and ADFI (by their relationship) of weaning pigs using a multivariable linear mixed model regression approach with estimates of variable effects obtained using the residual maximum likelihood method. Based on a stepwise manual forward selection, significant predictor variables with improvement of at least 2 points in the Bayesian information criterion were included in the final regression model. Statistical significance was set at P ≤ 0.05 and a trend at P < 0.10. Initial exploratory analysis of the database showed a quadratic increase (P < 0.01) in the IDP index with increasing inclusion of plant protein sources in diet formulation and a linear decrease (P < 0.01) in the IDP index with increasing synthetic amino acid inclusion. Regarding the models, the DP-based model could not account for the inclusion of protein sources compared to the IDP-based model. There was a tendency for DP to positively affect (P < 0.10) ADG and GF. Increasing the IDP index tended to negatively impact (P < 0.10) ADG while reducing (P < 0.05) ADFI. Using a practical and hypothetical feed formulation simulation, the final regression models predicted the expected negative impact of a high IDP index on newly weaned pig performance when compared to a low IDP diet. The IDP-based model predicted a stronger negative effect of high IDP when compared to the DP-based model. Results indicate that IDP may be an improved and more reliable index to investigate the impact of DP on pig performance in the postweaning phase.
Collapse
Affiliation(s)
| | | | - Lucas A Rodrigues
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - Taiwo J Erinle
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | | | - Daniel A Columbus
- Prairie Swine Centre Inc., Saskatoon, SK, Canada S7H 5N9
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| |
Collapse
|
2
|
Hu B, Liu T, Xia B, Dong Y, Liu M, Zhou J. Precise evaluation of the nutritional value of yeast culture and its effect on pigs fed low-protein diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:325-338. [PMID: 39640552 PMCID: PMC11617308 DOI: 10.1016/j.aninu.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 12/07/2024]
Abstract
The purpose of the present study was to assess the nutritional value of yeast culture (YC) and to explore the effect of YC on growth performance and health of piglets fed low-protein diets. In Exp. 1, 12 growing barrows were allocated into control diet and YC diet treatments to determine the available energy of YC. Results showed that the digestible energy and metabolizable energy of YC are 12.12 and 11.66 MJ/kg dry matter (DM), respectively. In Exp. 2, 12 growing barrows were surgically equipped with a T-cannula near the distal ileum and were assigned to 2 dietary treatments (nitrogen-free diet and YC diet), and the amino acid digestibility of YC was determined. In Exp. 3, a total of 96 weaned piglets were randomly divided into 4 treatments, including low-protein basal diet (Basal), Basal + 0.5% YC (0.5%YC), Basal + 1.0% YC (1.0%YC), and Basal + 1.5% YC (1.5%YC). The results were as follows: YC supplementation linearly improved the weight gain and feed intake ratio (P < 0.001), linearly increased the activity of glutathione peroxidase on d 14 (P = 0.032) and linearly decreased the concentration of malondialdehyde on d 14 (P = 0.008) and d 32 (P = 0.004) in serum, and linearly decreased the concentration of total short-chain fatty acid on d 14 in feces (P = 0.045). Compared with other treatments, 1.5%YC group showed a greater abundance of various probiotics, such as Prevotellaceae, Prevotella and Turicibacter. In Exp. 4, twelve growing barrows with an ileal T-cannula were randomly assigned to Control and 1.5%YC treatments to clarify the impact of YC supplementation on nitrogen balance and nutrient digestibility. Results showed that YC had no significant effect on nitrogen efficiency and nutrient digestibility, except for trend of reducing the total tract digestibility of organic matter (P = 0.067). In conclusion, the present study assessed the digestible and metabolizable energy values (12.12 and 11.66 MJ/kg DM, respectively) and standardized ileal digestibility of amino acid (from 43.93% to 82.65%) of YC in pig feed and demonstrated that moderate supplementation of YC (1.5% of diet) can effectively improve feed conversion efficiency, enhance antioxidant capacity, and promote a balanced gut microbiota in piglets.
Collapse
Affiliation(s)
- Baocheng Hu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Tairan Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Bing Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanjun Dong
- Beijing China-Agri Hong Ke Bio-Technology Co, Ltd., Beijing 100226, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Junyan Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
3
|
James D, Poveda C, Walton GE, Elmore JS, Linden B, Gibson J, Griffin BA, Robertson MD, Lewis MC. Do high-protein diets have the potential to reduce gut barrier function in a sex-dependent manner? Eur J Nutr 2024; 63:2035-2054. [PMID: 38662018 PMCID: PMC11377480 DOI: 10.1007/s00394-024-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Impaired gut barrier function is associated with systemic inflammation and many chronic diseases. Undigested dietary proteins are fermented in the colon by the gut microbiota which produces nitrogenous metabolites shown to reduce barrier function in vitro. With growing evidence of sex-based differences in gut microbiotas, we determined whether there were sex by dietary protein interactions which could differentially impact barrier function via microbiota modification. METHODS Fermentation systems were inoculated with faeces from healthy males (n = 5) and females (n = 5) and supplemented with 0.9 g of non-hydrolysed proteins sourced from whey, fish, milk, soya, egg, pea, or mycoprotein. Microbial populations were quantified using fluorescence in situ hybridisation with flow cytometry. Metabolite concentrations were analysed using gas chromatography, solid phase microextraction coupled with gas chromatography-mass spectrometry and ELISA. RESULTS Increased protein availability resulted in increased proteolytic Bacteroides spp (p < 0.01) and Clostridium coccoides (p < 0.01), along with increased phenol (p < 0.01), p-cresol (p < 0.01), indole (p = 0.018) and ammonia (p < 0.01), varying by protein type. Counts of Clostridium cluster IX (p = 0.03) and concentration of p-cresol (p = 0.025) increased in males, while females produced more ammonia (p = 0.02), irrespective of protein type. Further, we observed significant sex-protein interactions affecting bacterial populations and metabolites (p < 0.005). CONCLUSIONS Our findings suggest that protein fermentation by the gut microbiota in vitro is influenced by both protein source and the donor's sex. Should these results be confirmed through human studies, they could have major implications for developing dietary recommendations tailored by sex to prevent chronic illnesses.
Collapse
Affiliation(s)
- Daniel James
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK.
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Brandon Linden
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - John Gibson
- Food and Feed Innovations, Woodstock, Newcastle Rd, Woore, N Shropshire, CW3 95N, UK
| | - Bruce A Griffin
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - M Denise Robertson
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Marie C Lewis
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| |
Collapse
|
4
|
Dasriya VL, Samtiya M, Ranveer S, Dhillon HS, Devi N, Sharma V, Nikam P, Puniya M, Chaudhary P, Chaudhary V, Behare PV, Dhewa T, Vemuri R, Raposo A, Puniya DV, Khedkar GD, Vishweswaraiah RH, Vij S, Alarifi SN, Han H, Puniya AK. Modulation of gut-microbiota through probiotics and dietary interventions to improve host health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6359-6375. [PMID: 38334314 DOI: 10.1002/jsfa.13370] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Dietary patterns play an important role in regards to the modulation and control of the gut microbiome composition and function. The interaction between diet and microbiota plays an important role in order to maintain intestinal homeostasis, which ultimately affect the host's health. Diet directly impacts the microbes that inhabit the gastrointestinal tract (GIT), which then contributes to the production of secondary metabolites, such as short-chain fatty acids, neurotransmitters, and antimicrobial peptides. Dietary consumption with genetically modified probiotics can be the best vaccine delivery vector and protect cells from various illnesses. A holistic approach to disease prevention, treatment, and management takes these intrinsically linked diet-microbes, microbe-microbe interactions, and microbe-host interactions into account. Dietary components, such as fiber can modulate beneficial gut microbiota, and they have resulting ameliorative effects against metabolic disorders. Medical interventions, such as antibiotic drugs can conversely have detrimental effects on gut microbiota by disputing the balance between Bacteroides and firmicute, which contribute to continuing disease states. We summarize the known effects of various dietary components, such as fibers, carbohydrates, fatty acids, vitamins, minerals, proteins, phenolic acids, and antibiotics on the composition of the gut microbiota in this article in addition to the beneficial effect of genetically modified probiotics and consequentially their role in regards to shaping human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Soniya Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Nishu Devi
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikas Sharma
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pranali Nikam
- College of Dairy Science and Food Technology, Dau Shri Vasudev Chandrakar, Kamdhenu University, Raipur, India
| | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, FDA Bhawan, New Delhi, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Srinagar, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, India
| | - Pradip V Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Dharun Vijay Puniya
- Center of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Center for DNA Barcoding and Biodiversity Studies, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sehad N Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqraa, Saudi Arabia
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
5
|
Bagaria M, Ramayo-Caldas Y, González-Rodríguez O, Vila L, Delàs P, Fàbrega E. Impact of Nutritional Strategies to Prevent Post-Weaning Diarrhoea on Performance, Behaviour, and Microbiota in Piglets from Organic Farming. Animals (Basel) 2024; 14:1730. [PMID: 38929349 PMCID: PMC11200382 DOI: 10.3390/ani14121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Organic livestock farming is committed to high environmental and animal welfare standards, although pathologies such as post-weaning diarrhoea (PWD) may appear. The main objective of this study was to assess nutritional strategies to prevent PWD in organic piglets. A total of 134 weaned piglets were fed one of three diets: high crude protein (17.8%, HCP), low crude protein (16.8%, LCP), and low crude protein supplemented with liquid whey (LCP+W). Piglets were assessed weekly for four weeks on the following parameters: diarrhoea incidence, additional health parameters, average daily gain, and behaviour. Faecal samples were taken to analyse the intestinal microbiota composition. Data were analysed using LMM and GLMM models and Shannon and Whittaker indexes. No significant effect of diet on diarrhoea incidence was found, but the LCP+W diet increased average daily gain. Pigs fed the LCP+W diet presented a lower percentage of drinking and negative social behaviour compared with the HCP diet, and LCP pigs presented higher exploration compared with HCP. In addition, LCP+W piglets showed a higher abundance of the beneficial genus Frisingicoccus. Although liquid whey did not reduce diarrhoea incidence, the benefits found in growth, microbiota composition, and reduced negative social behaviour indicate that it could be an optimal supplement to organic diets.
Collapse
Affiliation(s)
- Marc Bagaria
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain;
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain; (Y.R.-C.); (O.G.-R.)
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain; (Y.R.-C.); (O.G.-R.)
| | - Lluís Vila
- Llavora Agropecuària, 17473 Ventalló, Spain; (L.V.); (P.D.)
| | - Pino Delàs
- Llavora Agropecuària, 17473 Ventalló, Spain; (L.V.); (P.D.)
| | - Emma Fàbrega
- Animal Welfare Program, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Spain;
| |
Collapse
|
6
|
Lan C, Li H, Shen Y, Liu Y, Wu A, He J, Cai J, Tian G, Mao X, Huang Z, Yu B, Zheng P, Yu J, Luo J, Yan H, Luo Y. Next-generation probiotic candidates targeting intestinal health in weaned piglets: Both live and heat-killed Akkermansia muciniphila prevent pathological changes induced by enterotoxigenic Escherichia coli in the gut. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:110-122. [PMID: 38766519 PMCID: PMC11101935 DOI: 10.1016/j.aninu.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 05/22/2024]
Abstract
The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.
Collapse
Affiliation(s)
| | | | - Yuqing Shen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Engineering Research Center of Animal Disease-Resistance Nutrition Biotechnology of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Lee J, González-Vega JC, Htoo JK, Nyachoti CM. Effects of dietary crude protein content and resistant starch supplementation on growth performance, intestinal histomorphology and microbial metabolites in weaned pigs. Arch Anim Nutr 2024; 78:192-207. [PMID: 39047153 DOI: 10.1080/1745039x.2024.2376093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
A 4-week study was conducted to evaluate the effects of dietary crude protein (CP) content and resistant starch (RS) supplementation on growth performance, intestinal histomorphology and microbial metabolites of weaned pigs. A total of 96 pigs (7.06 ± 0.45 kg body weight) were assigned to 1 of 4 diets in a randomised complete block design involving a 2 (CP levels) × 2 (without or with RS) factorial arrangement to give 8 replicate pens and 3 pigs per pen. Body weight and feed disappearance were recorded weekly, and the faecal consistency score was determined every morning. Blood was sampled on days 1, 14 and 28 from one pig per pen, and the same pig was euthanised on day 28 to collect ileal tissue and ileal and colon digesta. Data were analysed using the MIXED procedure of SAS. The average daily gain and gain:feed ratio were lower (p < 0.05) in pigs fed low crude protein (LCP) diets compared to those fed high CP (HCP) diets during week 3 and overall period. The analysed Lys, Met+Cys and Thr in feed were lower than calculated values, particularly in LCP diets, which may have affected performance. Pigs fed the LCP diets had longer (p < 0.05) ileal villi and higher villus height to crypt depth ratios than those fed the HCP diets, and RS supplementation increased (p < 0.05) ileal villus height. Interactions (p < 0.05) between dietary CP content and RS inclusion were observed for short-chain fatty acid concentration in the ileum and colon in phase 2. There was no difference in propionic acid (ileum) or butyric acid (colon) concentrations among pigs fed HCP diets, however, the butyric acid concentration increased in pigs fed the LCP diet when supplemented with RS. Reducing dietary CP lowered (p < 0.05) faecal score, plasma urea nitrogen and digesta ammonia content. Overall, feeding LCP diets reduced growth performance but improved gut morphology in weaned pigs. Feeding the LCP diet with RS supplementation modulated concentrations of ileal propionic acid and colonic butyric acid in weaned pigs.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - John Kyaw Htoo
- Nutrition & Care, Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | | |
Collapse
|
8
|
Kerr BJ, Anderson CL, Pearce SC, Schweer WP. Dietary isoacids effects on growth, nitrogen, and energy digestibility, and fecal volatile fatty acids and microbial ecology in finishing pigs. J Anim Sci 2024; 102:skae170. [PMID: 38902915 PMCID: PMC11263927 DOI: 10.1093/jas/skae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Isoacids are branched ketoacids which when fed to ruminants have been shown to enhance the growth of fiber-digesting organisms. Ninety finishing gilts were individually fed dietary treatments consisting of diet type: corn-soybean meal (CSBM), a diet containing 40% distillers dried grains with solubles (DDGS), or a diet containing 40% sugar beet pulp (SBP); in combination with either no feed additive (CNT), the addition of 0.50% isobutyrate (IB), or the addition of a 0.88% mix of isobutyrate, isovalerate, and 2-methylbutyrate (MX). Gilts consumed an average of 2.171 kg/d over the 28-d trial. On d 26, fresh fecal samples were collected for determination of apparent total tract digestibility (ATTD) of gross energy (GE) and nitrogen (N), determination of fecal volatile fatty acids (VFA), and evaluation of microbial ecology. There was no interaction between diet type and isoacid addition, and no main effect of isoacid or diet type on alpha or Shannon microbial diversity measures (P > 0.05). There was no interaction between isoacid addition and diet type, and no main effect of isoacid addition on microbial beta diversity (P > 0.05), but differences were observed in microbial beta diversity due to diet type (P ≤ 0.05). There was no interaction between diet type and isoacid addition observed in fecal VFA concentrations (P > 0.05), with only minor differences in fecal VFA concentrations noted due to isoacid addition (P ≤ 0.05). The interaction between diet type and isoacid addition on ATTD of dietary GE and N (P ≤ 0.01) was large because the addition of IB did not affect the ATTD of GE or N in pigs fed the CSBM diet, but increased ATTD of GE and N in pigs fed diets containing DDGS and decreased the ATTD of GE and N in pigs fed diets containing SBP. In contrast, adding a blend of isoacids (i.e., MX) reduced the ATTD of GE and N, regardless of diet type. There was no interaction between diet type and isoacid addition, and no effect of isoacid addition was observed on pig performance (P > 0.05). Diet type did not affect average daily gain (P > 0.05), but pigs fed diets containing DDGS or SBP consumed less feed (P = 0.01) and exhibited greater GF ratios compared to pigs fed the low-fiber CSBM diet (P ≤ 0.05). In conclusion, there was little to no effect of isoacid addition on microbial ecology, fecal VFA concentrations, ATTD of GE or N, or pig performance, but the improvement in ATTD of GE and N in pigs fed diets containing DDGS when IB was added warrants further investigation.
Collapse
Affiliation(s)
- Brian J Kerr
- USDA-Agricultural Research Service National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA
| | | | - Sarah C Pearce
- USDA-Agricultural Research Service National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA
| | | |
Collapse
|
9
|
Wang D, Chen G, Li W, Chai M, Zhang H, Su Y. Effects of Low Protein Diet on Production Performance and Intestinal Microbial Composition in Pigs. Vet Sci 2023; 10:655. [PMID: 37999478 PMCID: PMC10675339 DOI: 10.3390/vetsci10110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
In order to study the effects of a low protein diet on the production performance and intestinal microbiota composition of Hexi pigs, twenty-seven Hexi pigs with an initial body weight of 60.50 ± 2.50 kg were randomly divided into three groups (control group (CG), group 1 (G1), and group 2 (G2)) and participated in a 60-day finishing trial. The CG was fed a normal protein level diet with a protein level of 16.0%, and G1 and G2 were fed a low protein level diet with protein levels of 14.0% and 12.0%, respectively. The results showed that the low protein level diet had no significant effect on the production performance of Hexi pigs, compared with the CG, the slaughter rate of G1 and G2 increased by 2.49% (p > 0.05) and 6.18% (p > 0.05), the shear force decreased by 2.43% (p > 0.05) and 15.57% (p > 0.05), the cooking loss decreased by 24.02% (p < 0.05) and 21.09% (p > 0.05), and the cooking percentage increased by 13.20% (p > 0.05) and 11.59% (p > 0.05). From 45 min to 24 h and 48 h after slaughter, each group of pH decreased by 1.02, 0.66, and 0.42. For muscle flesh color, the lightness (L) increased by 13.31% (p > 0.05) and 18.01% (p > 0.05) in G1 and G2 and the yellowness (b) increased by 7.72% (p > 0.05) and 13.06% (p > 0.05). A low protein level diet can improve the intestinal flora richness and diversity of growing and finishing pigs. In the jejunum, the ACE index (899.95), Simpson index (0.90), and Shannon (4.75) index were higher in G1 than in the other groups, but the Chao1 index (949.92) was higher in G2 than in the remaining two groups. Proteobacteria, Actinobacteria, Euryarchaeota, and Verrucomicrobia were significantly higher in G1 than in the CG. The relative abundances of Lactobacillus, Terrisporobacter, and Megasphaera in G1 was significantly higher than in the CG (p < 0.05). In the cecum, the ACE index (900.93), Chao1 index (879.10), Simpson index (0.94), and Shannon (5.70) index were higher in G1 than in the remaining groups. The Spirochaetes in G2 were significantly higher than in the other groups, but the Verrucomicrobia was significantly lower than in the other groups. The relative abundances of Lactobacillus were higher in G1 and G2 than in the CG (p > 0.05). The relative abundances of unidentified_Clostridiales and Terrisporobacter in G2 were significantly lower than in the CG (p < 0.05). The relative abundance of Turicibacter in G1 was significantly lower than in the CG (p < 0.05). The relative abundances of other bacterial genera in G1 and G2 were increased by 30.81% (p > 0.05) and 17.98% (p > 0.05).
Collapse
Affiliation(s)
- Dong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.W.); (W.L.); (H.Z.)
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.W.); (W.L.); (H.Z.)
| | - Wenzhong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.W.); (W.L.); (H.Z.)
| | - Mingjie Chai
- Pingliang Animal Husbandry and Fishery Station, Pingliang 744000, China;
| | - Hua Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (D.W.); (W.L.); (H.Z.)
| | - Yingyu Su
- College of Animal Science and Technology, Xinjiang Agricultural Vocational Technical College, Changji 831100, China;
| |
Collapse
|
10
|
Lee J, Htoo JK, Kluenemann M, González-Vega JC, Nyachoti CM. Effects of dietary protein content and crystalline amino acid supplementation patterns in low protein diets on intestinal bacteria and their metabolites in weaned pigs raised under Different sanitary conditions. J Anim Sci 2023; 101:skad252. [PMID: 37527457 PMCID: PMC10439707 DOI: 10.1093/jas/skad252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
The objective of this experiment was to investigate the effects of dietary crude protein (CP) content and crystalline amino acids (CAA) supplementation patterns in low CP (LCP) diets on intestinal bacteria and their metabolites in weaned pigs raised under clean (CSC) or unclean sanitary conditions (USC). One hundred forty-four piglets (6.35 ± 0.63 kg) were assigned to one of six treatments in a 3 × 2 factorial arrangement based on CP content and sanitary conditions in a randomized complete block design to give eight replicates with three pigs per pen over a 21-d period. Diets consisted of a high CP (HCP; 21%) and two LCP (18%) diets supplemented with 9 CAA (Lys, Met, Thr, Trp, Val, Ile, Leu, His, and Phe) or only six CAA (Lys, Met, Thr, Trp, Val, and Ile) to meet the requirements. The CSC room was washed weekly, whereas the USC room had sow manure spread in the pens from the beginning of the study and was not washed throughout the experiment. Jejunum and colon digesta were sampled on day 21. Both jejunum and colon digesta were analyzed for ammonia nitrogen, short-chain fatty acids, and biogenic amines but only colon digesta was analyzed for microbiome composition (16s rRNA sequencing on MiSeq). Data were analyzed using R software for 16S rRNA and the MIXED procedure of SAS for microbial metabolites. Sanitation, CP content, and CAA supplementation patterns did not affect the diversity of colonic bacterial composition in weaned pigs. Pigs raised under USC had greater (P < 0.05) jejunal ammonia nitrogen concentration than those raised under CSC. Pigs fed LCP diets had reduced (P < 0.05) jejunal ammonia nitrogen concentration compared to those fed the HCP diet. Interactions between sanitation and dietary CP content were observed (P < 0.05) for: (1) jejunal acetate and (2) colonic spermidine and spermine, whereby (1) acetate concentrations decreased from NCP to LCP in pigs raised under the CSC but those concentrations increased under the USC, and (2) spermidine and spermine concentrations increased in LCP diets compared to HCP diet under USC, unlike CSC which did not show any difference between HCP and LCP. In conclusion, reducing dietary CP lowered ammonia nitrogen content regardless of sanitation and increased microbial metabolites in weaned pigs raised under USC. However, LCP diets with different CAA supplementation patterns did not affect bacterial diversity in weaned pigs, regardless of the hygienic conditions where the animals were housed.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Animal Science, University of Manitoba, Winnipeg, MB, CanadaR3T 2N2
| | - John K Htoo
- Nutrition & Care, Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Hessen, Germany 63457
| | - Martina Kluenemann
- Nutrition & Care, Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Hessen, Germany 63457
| | - J Caroline González-Vega
- Nutrition & Care, Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Hessen, Germany 63457
| | | |
Collapse
|
11
|
Effects of a high protein starter diet with fermented soybean cake on growth performance of organic pigs weaned outdoor. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Lee J, González-Vega JC, Htoo JK, Yang C, Nyachoti CM. Effects of dietary protein content and crystalline amino acid supplementation patterns on growth performance, intestinal histomorphology, and immune response in weaned pigs raised under different sanitary conditions. J Anim Sci 2022; 100:skac285. [PMID: 36062846 PMCID: PMC9527300 DOI: 10.1093/jas/skac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of this experiment was to investigate the effects of dietary crude protein (CP) contents and crystalline amino acids (CAA) supplementation patterns on growth performance, intestinal histomorphology, and immune response in weaned pigs under clean (CSC) or unclean sanitary conditions (USC). A total of 144 weaned pigs (6.35 ± 0.63 kg body weight) were assigned to 6 treatments in a 3 × 2 factorial arrangement based on CP content and sanitary conditions using a randomized complete block design, giving 8 replicates per treatment with 3 pigs per pen. Pigs were fed one of three diets for 21 d: one high CP (HCP; 22%) and two low CP (LCP; 19%) diets supplemented with 9 indispensable AA or only 6 AA (Lys, Met, Thr, Trp, Val, and Ile) as CAA. The CSC room was washed weekly, whereas the USC room had sow manure spread in the pens and was not washed throughout the experiment. Body weight and feed disappearance were recorded weekly. Blood was sampled from 1 pig per pen weekly, and the same pig was euthanized for jejunal tissues sampling on day 21. Pigs raised under USC had reduced (P < 0.05) average daily gain (ADG) and gain to feed ratio (G:F) in week 2, but contrary results that greater (P < 0.05) ADG and G:F were found in pigs under USC in week 3. Overall, there was an interaction where G:F did not differ between HCP and LCP under CSC, however, LCP decreased (P < 0.05) G:F compared to HCP under USC. Pigs fed the HCP diet had higher (P < 0.05) fecal scores than those fed the LCP diets throughout the experiment. Pigs fed the LCP had higher (P < 0.05) villus height to crypt depth ratio than those fed the HCP. An interaction was observed where goblet cell density in the jejunum was higher (P < 0.05) in pigs fed LCP than HCP under CSC, but no difference was found between HCP and LCP under USC. Different CAA supplementation patterns did not influence both growth performance and histomorphology. Pigs raised under USC had greater (P < 0.05) plasma interleukin (IL)-10 and IL-6 concentrations and reduced (P < 0.05) plasma tumor necrosis factor-alpha concentration. Also, the LCP diets resulted in a greater (P < 0.05) plasma IL-10 concentration. In conclusion, overall growth performance did not differ between HCP and LCP under CSC, but LCP diets reduced G:F under USC. Feeding LCP diets to weaned pigs improved gut morphology under USC and ameliorated systemic inflammation induced by USC, whereas CAA supplementation patterns did not affect growth performance and gut morphology.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2Canada
| | | | - John Kyaw Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Hessen 63457, Germany
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2Canada
| | | |
Collapse
|
13
|
Ren Z, Xu Y, Li T, Sun W, Tang Z, Wang Y, Zhou K, Li J, Ding Q, Liang K, Wu L, Yin Y, Sun Z. NAD+ and its possible role in gut microbiota: Insights on the mechanisms by which gut microbes influence host metabolism. ANIMAL NUTRITION 2022; 10:360-371. [PMID: 35949199 PMCID: PMC9356074 DOI: 10.1016/j.aninu.2022.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
|
14
|
Ren Z, Fan H, Deng H, Yao S, Jia G, Zuo Z, Hu Y, Shen L, Ma X, Zhong Z, Deng Y, Yao R, Deng J. Effects of dietary protein level on small intestinal morphology, occludin protein, and bacterial diversity in weaned piglets. Food Sci Nutr 2022; 10:2168-2201. [PMID: 35844902 PMCID: PMC9281955 DOI: 10.1002/fsn3.2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Due to the physiological characteristics of piglets, the morphological structure and function of the small intestinal mucosa change after weaning, which easily leads to diarrhea in piglets. The aim of this study was to investigate effects of crude protein (CP) levels on small intestinal morphology, occludin protein expression, and intestinal bacteria diversity in weaned piglets. Ninety-six weaned piglets (25 days of age) were randomly divided into four groups and fed diets containing 18%, 20%, 22%, and 24% protein. At 6, 24, 48, 72, and 96 h, changes in mucosal morphological structure, occludin mRNA, and protein expression and in the localization of occludin in jejunal and ileal tissues were evaluated. At 6, 24, and 72 h, changes in bacterial diversity and number of the ileal and colonic contents were analyzed. Results showed that structures of the jejunum and the ileum of piglets in the 20% CP group were intact. The expression of occludin mRNA and protein in the small intestine of piglets in the 20% CP group were significantly higher than those in the other groups. As the CP level increased, the number of pathogens, such as Clostridium difficile and Escherichia coli, in the intestine increased, while the number of beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Roseburia, decreased. It is concluded that maintaining the CP level at 20% is beneficial to maintaining the small intestinal mucosal barrier and its absorption function, reducing the occurrence of diarrhea, and facilitating the growth and development of piglets.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Haoyue Fan
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Huidan Deng
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Shuhua Yao
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Guilin Jia
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Zhicai Zuo
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Yanchun Hu
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Liuhong Shen
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Xiaoping Ma
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Zhijun Zhong
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Youtian Deng
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Renjie Yao
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Junliang Deng
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| |
Collapse
|
15
|
Effects of Dietary Chlorogenic Acid Supplementation Derived from Lonicera macranthoides Hand-Mazz on Growth Performance, Free Amino Acid Profile, and Muscle Protein Synthesis in a Finishing Pig Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6316611. [PMID: 35313639 PMCID: PMC8934221 DOI: 10.1155/2022/6316611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of
kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the dietary CGA levels and animal growth (
). Furthermore, the carcass traits of pigs were improved by 0.04% dietary CGA (
). In addition, dietary CGA significantly improved the serum free amino acid profiles of pigs (
), while 0.04% dietary CGA promoted more amino acids to translocate to skeletal muscles (
). The relative mRNA expression levels of SNAT2 in both longissimus dorsi (LD) and biceps femoris (BF) muscles were augmented in the 0.02% and 0.04% groups (
), and the LAT1 mRNA expression in the BF muscle was elevated in the 0.02% group (
). We also found that dietary CGA supplementation at the levels of 0.04% or 0.08% promoted the expression of p-Akt and activated the mTOR-S6K1-4EBP1 axis in the LD muscle (
). Besides, the MAFbx mRNA abundance in the 0.02% and 0.04% groups was significantly lower (
). Our results revealed that dietary supplementation with CGA of 0.04% improved the free amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.
Collapse
|
16
|
Batson KL, Neujahr AC, Burkey T, Fernando SC, Tokach MD, Woodworth JC, Goodband RD, DeRouchey JM, Gebhardt JT, Calderón HI. Effect of fiber source and crude protein level on nursery pig performance and fecal microbial communities. J Anim Sci 2021; 99:6427793. [PMID: 34791281 DOI: 10.1093/jas/skab343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 01/04/2023] Open
Abstract
Reduction in dietary crude protein and addition of fiber could mitigate the incidence and severity of post-weaning diarrhea, a common gastrointestinal condition in newly weaned pigs. Therefore, 360 weanling pigs, initially 5.0 ± 0.10 kg, were used to evaluate the effects of crude protein (CP) level and fiber source on growth performance and fecal microbial communities. At weaning, pigs were randomly assigned to pens and allotted to 1 of 8 dietary treatments in a 2 × 4 factorial with main effects of CP (21 or 18%) and fiber source (none, coarse wheat bran, oat hulls, or cellulose). There were 5 pigs per pen and 9 pens per treatment. Experimental diets were formulated in two dietary phases from d 0 to 10 and 10 to 24, with a common post-treatment diet fed from 24 to 45. The 21% CP diets contained 1.40% standardized ileal digestible (SID) Lys in phase 1 and 1.35% SID Lys in phase 2. By using a maximum SID Lys:digestible CP ratio of 6.35%, the 18% CP diets contained 1.25% SID Lys in both phases. Diets containing a fiber source were formulated to the level of insoluble fiber provided by 4% coarse wheat bran, resulting in the addition of 1.85% oat hulls and 1.55% cellulose. No fiber source × CP level interactions (P > 0.05) were observed. Decreasing CP (and subsequently SID lysine) decreased (P = 0.05) ADG and G:F during the experimental period. From d 0 to 45, ADG decreased (P = 0.05) for pigs fed 18% CP diets compared to pigs fed 21% CP. No effect of fiber source was observed for growth performance. Fecal DM on d 17 increased (P < 0.001) for pigs fed 18% CP diets compared to pigs fed 21% CP diets. Pigs fed diets with added cellulose had increased (P < 0.05) fecal dry matter during the experimental period compared to pigs fed no fiber source or wheat bran. Bacterial community structure was investigated by sequencing the V4 region of the 16S rRNA gene. Analysis indicated a significant difference between CP content at d 24 (P = 0.023) using a Weighted UniFrac distance matrix. Further investigation identified five differential Amplicon Sequence Variants associated with CP content at d 24. In conclusion, reducing crude protein (and subsequently SID Lys) decreased growth performance but increased fecal dry matter content. The source of dietary fiber in nursery diets had no impact on growth performance; but pigs fed added cellulose had increased fecal DM compared with other treatments. Microbial analysis identified differential taxa associated with CP content.
Collapse
Affiliation(s)
- Kelsey L Batson
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201
| | - Alison C Neujahr
- Department of Animal Science, College of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Thomas Burkey
- Department of Animal Science, College of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Samodha C Fernando
- Department of Animal Science, College of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506-0201
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201
| | - Hilda I Calderón
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS 66506-0201
| |
Collapse
|
17
|
Yin L, Li J, Wang M, Wang Q, Li J, Ding N, Yang H, Yin Y. Dietary high protein-induced diarrhea and intestinal inflammation by activation of NF-κB signaling in piglets. ACTA ACUST UNITED AC 2021; 7:1070-1077. [PMID: 34738037 PMCID: PMC8546374 DOI: 10.1016/j.aninu.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/09/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023]
Abstract
The present study aimed to investigate whether inflammation-associated responses in piglets are induced by high protein (HP) through activating nuclear factor kappa B (NF-κB) signaling. Sixteen piglets (35 d of age, Duroc × [Landrace × Yorkshire], weaned at d 21, initial BW = 9.70 ± 0.11 kg) were allocated to 18% and 26% CP (HP group) at random, comprising 8 replicate pens per treatment. The piglets were slaughtered to collect intestinal tissues when apparent, persistent, and stable diarrhea syndromes happened (on d 12). No significant differences were observed in their growth performance (P > 0.05), but reduction by 19.11%, 25.31%, 23.64% of ADFI, ADG, and G:F, respectively was detected in the HP group. The HP group had greater (P = 0.002) diarrhea rates. Furthermore, dietary HP had lower ileal villus height (VH; P = 0.048), ratio of villus height to crypt depth (VH/CD ratio; P = 0.016), and colonic CD (P = 0.034), as well as had the trend (P = 0.075) to reduce the ileal villus absorptive area. Moreover, HP diets significantly elevated the goblet cell numbers in the ileal villi (P = 0.016) and colonic crypts (P < 0.001) and up-regulated (P = 0.012) the mRNA expression of mucin2 (Muc2) in the ileum. In addition, HP diets increased the myeloperoxidase concentration in the ileum (P = 0.002) and colon (P = 0.007) of piglets. Dietary HP significantly down-regulated the mRNA expression of tumor necrosis factor-α (TNF-α; P < 0.001) in the ileum, induced nitric oxide synthase (iNOS; P = 0.040) and interleukin-22 (IL-22; P = 0.008) in the colon, and inclined to down-regulate interleukin-1β (IL-1β; P = 0.076) expression in the colon. The relative protein abundance of Galectin-3 (P = 0.046) in the colon and the ratio of phosphorylation NF-κB to NF-κB (p-NF-κB/NF-κB ratio) in the ileum of HP piglets were also greater (P = 0.038). These results suggest that dietary HP may cause diarrhea in piglets by activating NF-κB signaling induced intestinal inflammation.
Collapse
Affiliation(s)
- Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Meiwei Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong Biological Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Zhangzhou 363000, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
18
|
Xia J, Fan H, Yang J, Song T, Pang L, Deng H, Ren Z, Deng J. Research progress on diarrhoea and its mechanism in weaned piglets fed a high-protein diet. J Anim Physiol Anim Nutr (Berl) 2021; 106:1277-1287. [PMID: 34719816 DOI: 10.1111/jpn.13654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022]
Abstract
In order to pursue faster growth and development of weaned piglets, increased dietary protein (CP) levels were favoured by the pig industry and the feed industry. The digestive organs of piglets were not fully developed at weaning, and the digestive absorption capacity of protein was limited. High-protein diets can cause allergic reactions in piglets, destroy intestinal structural integrity, reduce immunity, and cause intestinal flora imbalance. Undigested proteins were prone to produce toxic substances, such as ammonia and biogenic amines, after fermentation in the hindgut, which negatively affects the health of the intestine and eventually causes reduced growth performance and diarrhoea in piglets. This review revealed the mechanism of diarrhoea caused by high-protein diets in weaned piglets and provided ideas for preventing diarrhoea in weaned piglets.
Collapse
Affiliation(s)
- Jiangying Xia
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoyue Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ju Yang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianhao Song
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianfeng Pang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huidan Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihua Ren
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junliang Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Oh HJ, Kim MH, Lee JH, Kim YJ, An JW, Chang SY, Go YB, Song DC, Cho HA, Jo MS, Kim DY, Kim MJ, Cho SB, Kim HB, Cho JH. Effects of different inorganic:organic zinc ratios or combination of
low crude protein diet and feed additives in weaned piglet diets. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 64:23-37. [PMID: 35174340 PMCID: PMC8819320 DOI: 10.5187/jast.2021.e120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 11/20/2022]
Abstract
Thirty-six weaned piglets with an initial body weight (BW) of 8.43 ± 0.40
kg (28 days of age, ([Landrace × Yorkshire] × Duroc) were randomly
assigned to 6 treatments for a 2-week feeding trial to determine the effects of
different inorganic zinc (IZ), organic zinc (OZ) or combination of low crude
protein diet (LP) and Mixed feed additive (MFA) on diarrhea score, nutrient
digestibility, zinc utilization, blood profiles, organ weight, and fecal
microflora in weaned piglet diet. The pigs were individually placed in 45
× 55 × 45 cm stainless steel metabolism cages in an
environmentally controlled room (30 ± 1°C). The dietary treatments
included a negative control (NC), positive control (PC; zinc oxide, 1,000
mg/kg), T1 (IZ : OZ, 850 : 150), T2 (IZ : OZ 700 : 300), T3 (IZ : OZ, 500 :
500), and T4 (LP + MFA [0.1% Essential oils + 0.08% Protease + 0.02% Xylanase]).
The daily feed allowance was adjusted to 2.7 times the maintenance requirement
for digestible energy (2.7 × 110 kcal of DE/kg BW0.75). This
allowance was divided into two equal parts, and the piglets were fed at 08 : 30
and 17 : 30 each day. Water was provided ad libitum through a
drinking nipple. The diarrhea score was significantly increased
(p < 0.05) in NC treatment compared with other
treatments. The apparent total tract digestibility (ATTD) of dry matter (DM),
nitrogen (N), and gross energy (GE) was significantly increased
(p < 0.05) in the T2 treatment compared with the PC
and NC treatments in week 1. In week 2, the ATTD of DM, N, and GE was
significantly decreased (p < 0.05) in the NC treatment
compared with other treatments. The T3 treatment had significantly higher
(p < 0.05) ATTD and apparent ileal digestibility of
zinc than the PC and T1 treatments. The Escherichia coli count
in feces was significantly decreased in the T4 treatment compared with the NC
and T2 treatments. The Lactobacillus count in feces was
significantly increased in the T4 and T1 treatment compared with the T2 and T3
treatments. In conclusion, IZ : OZ 500 : 500 levels could improve nutrient
digestibility and zinc utilization in weaned piglets, Moreover, MFA in LP diets
could be used as a zinc alternative.
Collapse
Affiliation(s)
- Han Jin Oh
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Myung Hoo Kim
- Department of Animal Science, Pusan
National University, Miryang 50463, Korea
| | - Ji Hwan Lee
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Yong Ju Kim
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Jae Woo An
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Se Yeon Chang
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Young Bin Go
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Dong Cheol Song
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyun Ah Cho
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Min Seok Jo
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Dae Young Kim
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
| | - Min Ji Kim
- Animal Nutrition and Physiology Division,
National Institute of Animal Science, Rural Development
Administration, Wanjugun 55365, Korea
| | - Sung Bo Cho
- Traditional Mongolian Medicine Research
Institute, Inner Mongolia University for Nationalities,
Tongliao, 028000, China
| | - Hyeun Bum Kim
- Department of Animal Resource, and
Science, Dankook University, Cheonan 31116, Korea
- Corresponding author: Hyeun Bum Kim, Department of
Animal Resource, and Science, Dankook University, Cheonan 31116, Korea. Tel:
+82-41-550-3652, E-mail:
| | - Jin Ho Cho
- Department of Animal Sciences, Chungbuk
National University, Cheongju 28644, Korea
- Corresponding author: Jin Ho Cho, Department of
Animal Sciences, Chungbuk National University, Cheongju 28644, Korea. Tel:
+82-43-261-2544, E-mail:
| |
Collapse
|
20
|
Hutchens WM, Tokach MD, Dritz SS, Gebhardt J, Woodworth JC, DeRouchey JM, Goodband RD, Calderon HI. The effects of pharmacological levels of zinc, diet acidification, and dietary crude protein on growth performance in nursery pigs. J Anim Sci 2021; 99:6360990. [PMID: 34468748 DOI: 10.1093/jas/skab259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/01/2021] [Indexed: 11/14/2022] Open
Abstract
This experiment was conducted to evaluate potential replacements for pharmacological levels of Zn (provided by Zn oxide), such as diet acidification (sodium diformate) and low dietary crude protein (CP: 21 vs 18%) on nursery pig performance and fecal dry matter (DM). A total of 360 weaned pigs (Line 200 × 400, DNA, Columbus, NE; initially 5.90 ± 0.014 kg) were used in a 42-d growth study. Pigs were weaned at approximately 21 d of age and randomly assigned to pens (five pigs per pen). Pens were then allotted to one of eight dietary treatments with nine pens per treatment. Experimental diets were fed in two phases: phase 1 from weaning to day 7 and phase 2 from days 7 to 21, with all pigs fed the same common diet from days 21 to 42. The eight treatment diets were arranged as a 2 × 2 × 2 factorial with main effects of Zn (110 mg/kg from days 0 to 21 or 3,000 mg/kg from days 0 to 7, and 2,000 mg/kg from days 7 to 21), diet acidification, (without or with 1.2% sodium diformate), and dietary CP (21% or 18%, 1.40% and 1.35% in phases 1 and 2 vs. 1.20% standardized ileal digestible Lys, respectively). Fecal samples were collected weekly from the same three pigs per pen to determine DM content. No 2- or 3-way interactions (P > 0.05) were observed throughout the 42-d study for growth performance; however, there was a Zn × acidifier × CP interaction (P < 0.05) for fecal DM on day 7 and for the overall average of the six collection periods. Reducing CP without acidification or pharmacological levels of Zn increased fecal DM, but CP had little effect when ZnO was present in the diet. From days 0 to 21, significant (P < 0.05) main effects were observed where average daily gain (ADG) and gain:feed (G:F) increased for pigs fed pharmacological levels of Zn, sodium diformate, or 21% CP (P < 0.065). In the subsequent period (days 21 to 42) after the experimental diets were fed, there was no evidence of difference in growth performance among treatments. Overall (days 0 to 42), main effect tendencies were observed (P < 0.066) for pigs fed added Zn or sodium diformate from days 0 to 21, whereas pigs fed 21% CP had greater G:F than those fed 18% CP. Pig weight on day 42 was increased by adding Zn (P < 0.05) or acidifier (P < 0.06) but not CP. In summary, none of the feed additives had a major influence on fecal DM, but dietary addition of pharmacological levels of Zn or sodium diformate independently improved nursery pig performance.
Collapse
Affiliation(s)
- Wade M Hutchens
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jordan Gebhardt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Hilda I Calderon
- Department of Statistics, Kansas State University, Manhattan, KS 66506-0201, USA
| |
Collapse
|
21
|
Habibi M, Shili C, Sutton J, Goodarzi P, Maylem ER, Spicer L, Pezeshki A. Branched-chain amino acids partially recover the reduced growth of pigs fed with protein-restricted diets through both central and peripheral factors. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:868-882. [PMID: 34632118 PMCID: PMC8484988 DOI: 10.1016/j.aninu.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/24/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The objective of this study was to assess the growth efficiency of pigs fed with protein-restricted diets supplemented with branched-chain amino acids (BCAA) and limiting amino acids (LAA) above the recommended levels. Following 2 weeks of adaptation, 48 young barrows were weight matched and randomly assigned to 6 treatments (8 pigs/treatment) for 4 weeks: positive control (PC) with standard protein, negative control (NC) with very low protein containing LAA (i.e., Lys, Met, Thr and Trp) at recommended levels, and NC containing LAA 25% (L25), LAA 50% (L50), LAA+BCAA (i.e., Leu, Ile and Val) 25% (LB25) and LAA+BCAA 50% (LB50) more than recommendations. Feed intake (FI) and body weight (BW) were measured daily and weekly, respectively. At week 6, blood samples were collected, all pigs euthanized and tissue samples collected. The data were analyzed by univariate GLM or mixed procedure (SPSS) and the means were separated using paired Student's t-test followed by Benjamini-Hochberg correction. Relative to PC, NC had decreased FI, BW, unsupplemented plasma essential amino acids, serum insulin-like growth factor-I (IGF-I) and hypothalamic neuropeptide Y (NPY) (P < 0.01). Compared to NC, L25 or L50, LB50 had increased BW and serum IGF-I and decreased plasma serotonin and both LB25 and LB50 had higher FI, plasma BCAA, hypothalamic 5-hydroxytryptamine-receptor 2A and NPY and jejunal 5-hydroxytryptamine-receptor 7 (P < 0.01). Overall, supplementation of protein-restricted diets with increased levels of dietary BCAA partially recovered the negative effects of these diets on growth through improved IGF-I concentration and FI, which was associated with changed expression of serotonin receptors, blood AA and hypothalamic NPY.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Cedrick Shili
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Julia Sutton
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Parniyan Goodarzi
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Excel Rio Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Leon Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
22
|
Hong HT, Wu CY, Hsu TH, Wu CP. Effects of different methionine to lysine ratios in starter feed on growth, blood, digestive traits, and carcass traits in goat kids. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1943409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hsin-Tai Hong
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan (R.O.C.)
| | - Chun-Yun Wu
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan (R.O.C.)
- Division of Animal Industry, Agricultural Technology Research Institute, Hsinchu City, Taiwan (R.O.C.)
| | - Tsung-Hsien Hsu
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan (R.O.C.)
- Division of Animal Industry, Agricultural Technology Research Institute, Hsinchu City, Taiwan (R.O.C.)
| | - Chean-Ping Wu
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan (R.O.C.)
| |
Collapse
|
23
|
Kroeske K, Everaert N, Heyndrickx M, Arévalo Sureda E, Schroyen M, Millet S. Interaction of CP levels in maternal and nursery diets, and its effect on performance, protein digestibility, and serum urea levels in piglets. Animal 2021; 15:100266. [PMID: 34116462 DOI: 10.1016/j.animal.2021.100266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Reduced protein levels in nursery diets have been associated with a lower risk of postweaning diarrhea, but the interaction with CP levels in maternal diet on the performance of the offspring remains unclear. The objective of this study was to determine the effect of protein content in sow gestation and piglet nursery diets on the performance of the piglets until slaughter. This was studied in a 2 × 2 factorial trial (35 sows, 209 piglets), with higher or lower (H or L) dietary CP in sow diets (168 vs 122 g CP/kg) during late gestation. A standard lactation feed was provided for all sows (160 g CP/kg). For both sow treatments, half of the litters received a higher or lower CP in the piglet nursery diet (210 vs 166 g CP/kg). This resulted in four possible treatment combinations: HH, HL, LH and LL, with sow treatment as first and piglet treatment as second letter. For each phase, all diets were iso-energetic and had a similar level of essential amino acids. Ps*p is the p-value for the interaction effect between sow and piglet treatment. In the nursery phase (3.5-9 weeks of age), a tendency toward interaction between piglet and sow treatments with feed efficiency (Ps*p = 0.08) was observed with HH having the highest gain:feed ratio (G:F) (0.74 ± 0.01), LH the lowest (0.70 ± 0.01) and the other two groups intermediate. In the growing-finishing phase, an interaction was observed between the piglet and sow diets with decreased G:F for LH (Ps*p = 0.04) and a tendency toward interaction with increased daily feed intake for LH (Ps*p = 0.07). The sow diet showed a tendency toward a long-lasting effect on the dressing percentage and meat thickness of the offspring, which was higher for the progeny of H sows (Ps < 0.01 and Ps = 0.02, respectively). At 23 weeks, serum urea concentrations tended to be lower for the HH and LL groups (Ps*p = 0.07). Fecal consistency scores were higher at day 10-day 14 after weaning for piglets from L sows (Ps = 0.03 and Ps < 0.01, respectively). At day 7 after weaning, fecal consistency score was higher for piglets fed the higher protein diet (Pp < 0.01). At 8 weeks of age, the apparent total tract digestibility of CP (ATTDCP) interacted between piglet and sow diet (Ps*p = 0.02), with HH showing the highest digestibility values. In conclusion, the protein levels in sow late-gestation and piglet nursery diets interacted with feed efficiency, ATTDCP and serum urea concentrations in the nursery phase.
Collapse
Affiliation(s)
- K Kroeske
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - N Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - M Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - E Arévalo Sureda
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - M Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
| | - S Millet
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
24
|
Hossain M, Regassa A, Amarakoon S, Jayaraman B, Akhtar N, Li J, Karmin O, Nyachoti C. The effect of epidermal growth factor on performance and oxidative stress in piglets challenged with enterotoxigenic Escherichia coli K88. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated the efficacy of epidermal growth factor (EGF) in piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). A total of 28 piglets were assigned to the following dietary treatments for 14 d: negative control (NC) (basal diet containing supernatant without EGF), PC (NC + 2.5 g antibiotic·kg−1 feed), EGF120 [basal diet + supernatant with 120 μg EGF·kg−1 body weight (BW)·d−1], and EGF180 (basal diet + supernatant with 180 μg EGF·kg−1 BW·d−1). After a 6 d acclimation period, each pig was gavaged with 6 mL (2.4 × 1013 cfu·mL−1) of ETEC on the morning of day 7. Overall, piglets fed the EGF and PC diets tended to have higher gain to feed ratio than those fed the NC diet (P = 0.063). Pigs fed EGF diets had lower rectal temperature than those fed the NC diet at 6 h after challenge (P < 0.05). Serum and ileal malondialdehyde concentrations were higher in piglets fed the NC diet compared with those fed EGF and PC diets on days 6 and 7 after challenge, respectively (P < 0.05). In conclusion, EGF has the potential to reduce oxidative stress and body temperature elevation in piglets exposed to ETEC while supporting better feed efficiency.
Collapse
Affiliation(s)
- M.M. Hossain
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - A. Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - S. Amarakoon
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - B. Jayaraman
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - N. Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J. Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - O. Karmin
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - C.M. Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
25
|
Wellington MO, Agyekum AK, Van Kessel AG. Microbial sensing in the neonatal pig gut: effect of diet-independent and diet-dependent factors 1. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is considerable agreement that the gastrointestinal microbiota contributes to the performance and health of the neonate, and this relationship includes an ability of the host animal to “sense” changes in the microbial community. Identifying the mechanisms used by the host to sense microbiota is one approach to developing methods to manipulate the microbiota to improve pig health and performance. Diet-independent microbial products are molecules unique to the microbial community and sensed by host pattern recognition receptors stimulating inflammation. Common among all members of the microbial community, their presence is unaffected by diet, but the nature of the response does depends on factors affecting the microenvironment in which the molecule is detected. Diet-dependent microbial products arise as products of fermentation of dietary components and include short-chain fatty acids, ammonia, phenols, hydrogen sulfide, amines, and many other compounds. A plethora of sensing mechanisms exists that include enzymatic metabolism as well as membrane receptors that have evolved to respond to microbial products (e.g., short-chain fatty acid receptors), or simply cross-react with microbial products. This review focuses on host mechanisms used to sense the intestinal microbiota and attempts to establish practical considerations for neonatal gut health based on current understanding.
Collapse
Affiliation(s)
- Michael O. Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Atta K. Agyekum
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
26
|
Batson KL, Calderón HI, Tokach MD, Woodworth JC, Goodband RD, Dritz SS, DeRouchey JM. Effects of feeding diets containing low crude protein and coarse wheat bran as alternatives to zinc oxide in nursery pig diets. J Anim Sci 2021; 99:6182273. [PMID: 33755175 DOI: 10.1093/jas/skab090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 11/12/2022] Open
Abstract
Two experiments were conducted to determine the effects of crude protein (CP) level in diets containing coarse wheat bran (CWB) with or without pharmacological levels of Zn (provided by zinc oxide: ZnO) on growth performance and fecal DM of nursery pigs. In experiment 1, 360 barrows (Line 200 × 400, DNA, Columbus, NE, initially 5.6 kg) were allotted to 1 of 6 dietary treatments from d 0 to 21 after weaning with 5 pigs per pen and 12 pens per treatment. Treatments included a positive control diet (21% CP) with 3,000 mg/kg Zn in phase 1 and 2,000 mg/kg in phase 2; negative control (21% CP) with 110 mg/kg added Zn, and 4 diets containing 4% CWB and 110 mg/kg added Zn formulated to contain 21%, 19.5%, 18%, or 16.5% CP. The 2 control diets and 21% CP CWB diet contained 1.40% standardized ileal digestible (SID) Lys in phase 1 and 1.35% SID Lys in phase 2, while the 19.5%, 18%, and 16.5% CP diets contained 1.33, 1.25 and 1.20% Lys, respectively, in both phases. Pigs fed the positive control diet containing pharmacological ZnO had increased (P < 0.05) ADG and G:F compared with the negative control and the 21% CP CWB diet. Reducing CP (concurrently with SID Lys) in diets containing CWB decreased ADG and G:F (linear, P = 0.002); however, fecal DM increased (linear, P = 0.005). In experiment 2, two groups of 300 and 350 pigs, initially 7.0 and 6.2 kg, respectively, were used with 5 pigs per pen and 26 pens per treatment. The objective was to determine if adding back essential AA would improve growth performance of pigs fed the low CP diets. All dietary treatments were fed for 13 days, contained 4% CWB, and consisted of: (1) positive control with 2,000 mg/kg of Zn and 21% CP (1.35% SID Lys); (2) no ZnO and 21% CP; and 3 diets with no ZnO formulated to 18% CP and (3) 1.2% SID Lys; (4) 1.35% SID Lys by the addition of feed grade amino acids (AA), and (5) diet 4 with non-essential amino acids (NEAA; Gly and Glu). Pigs fed 21% CP with ZnO had increased (P = 0.001) ADG compared to those fed 18% CP (1.35% SID Lys) with high levels of feed grade amino acids or those fed the reduced SID Lys (1.2%) diet. Overall, G:F was improved (P < 0.001) for pigs fed 21% CP diets and those fed the 18% CP diet with NEAA compared to pigs fed 1.2% SID Lys and pigs fed high levels of feed grade amino acids. Fecal DM was increased for pigs fed the reduced SID Lys diet. In summary, pharmacological levels of Zn improve pig growth performance, but reducing CP (and subsequently SID Lys) decreased nursery pig growth performance.
Collapse
Affiliation(s)
- Kelsey L Batson
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS, USA
| | - Hilda I Calderón
- Department of Statistics, College of Arts and Sciences, Manhattan, KS, USA
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS, USA
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS, USA
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-0201, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Manhattan, KS, USA
| |
Collapse
|
27
|
A Very Low CP Level Reduced Diarrhoea and Productivity in Weaner Pigs, but No Differences between Post-Weaning Diets Including Soybean Meal or Soy Protein Concentrate Were Found. Animals (Basel) 2021; 11:ani11030678. [PMID: 33806270 PMCID: PMC7998764 DOI: 10.3390/ani11030678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
Soy protein concentrate improves nutrient utilization and growth performance compared to soybean meal, and diets with a low crude protein (CP) level decreases diarrhoea. The objectives were to (1) test a low CP diet based on different soy products, and (2) to test a very-low CP diet (15.1%) with amino acids (AA) on diarrhoea and productivity. A total of 5,635 weaned pigs (~28 days), were assigned to five dietary treatments; PC (positive control): Standard CP levels (192, 189, 191 g/kg CP) with 2500 ppm ZnO; NC (negative control): Same as PC without ZnO; SP (Soy protein concentrate): Low CP levels (176, 174, 191 g/kg CP); SB (Soybean meal): Low CP levels (177, 176, 191 g/kg CP); and XLA (X-low CP + AA): Very low CP levels (154, 151, 191 g/kg CP) with AA. The PC and XLA diets reduced diarrhoea by 41 and 61%, respectively, compared to the NC group, while no difference between SB and SP were observed. The XLA diet reduced feed intake and daily gain compared with PC and NC, where SP, SB, and XLA had a poorer feed conversion compared with PC. Conclusively, the SP and SB low-protein diets did not reduce diarrhoea or growth performance, whereas the XLA diet decreased both diarrhoea and performance.
Collapse
|
28
|
Differences in the fecal microbiota due to the sexual niche segregation of captive Gentoo penguins Pygoscelis papua. Polar Biol 2021. [DOI: 10.1007/s00300-021-02812-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. Functional amino acid supplementation, regardless of dietary protein content, improves growth performance and immune status of weaned pigs challenged with Salmonella Typhimurium. J Anim Sci 2021; 99:6126666. [PMID: 33529342 DOI: 10.1093/jas/skaa365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA-) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA- in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA- (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA- pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA- fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA- (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Michael O Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | | | - John K Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
30
|
Cao Y, Liu J, Zhu W, Qin N, Ren X, Zhu B, Xia X. Impact of dietary components on enteric infectious disease. Crit Rev Food Sci Nutr 2021; 62:4010-4035. [PMID: 33455435 DOI: 10.1080/10408398.2021.1871587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diets impact host health in multiple ways and an unbalanced diet could contribute to the initiation or progression of a variety of diseases. Although a wealth of information exists on the connections between diet and chronic metabolic diseases such as cardiovascular disease, diabetes mellitus, etc., how diet influences enteric infectious disease still remain underexplored. The review summarizes the current findings on the link between various dietary components and diverse enteric infectious diseases. Dietary ingredients discussed include macronutrients (carbohydrates, lipids, proteins), micronutrients (vitamins, minerals), and other dietary ingredients (phytonutrients and probiotic supplements). We first describe the importance of enteric infectious diseases and the direct and indirect relationship between diet and enteric infectious diseases. Then we discuss the effects of different dietary components on the susceptibility to or progression of enteric infectious disease. Finally, we delineate current knowledge gap and highlighted future research directions. The literature review revealed that different dietary components affect host resistance to enteric infections through a variety of mechanisms. Dietary components may directly inhibit or bind to enteric pathogens, or indirectly influence enteric infections through modulating immune function and gut microbiota. Elucidating the unique repercussions of different diets on enteric infections in this review may help provide dietary guidelines or design dietary interventions to prevent or alleviate enteric infectious diseases.
Collapse
Affiliation(s)
- Yu Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Jiaxiu Liu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wenxiu Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Ningbo Qin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Xiaomeng Ren
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Xiaodong Xia
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
31
|
Lynegaard JC, Kjeldsen NJ, Bache JK, Weber NR, Hansen CF, Nielsen JP, Amdi C. Low protein diets without medicinal zinc oxide for weaned pigs reduced diarrhea treatments and average daily gain. Animal 2020; 15:100075. [PMID: 33516025 DOI: 10.1016/j.animal.2020.100075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 01/31/2023] Open
Abstract
The use of medicinal zinc oxide (ZnO) in post-weaning diets must be phased out in the European Union by 2022, resulting in urgent needs for alternative strategies to prevent diarrhea in pigs. The objective of this study was to test the effect of four different dietary protein strategies with different amino acid profiles on diarrhea frequency and pig performance as alternative diet plans when medicinal ZnO was will be excluded from the diet. A total of 6 800 Duroc x (Danish Landrace x Yorkshire) pigs, weaned around 28 days of age, were randomly assigned by sex and size to six dietary treatments. The treatments were; standard CP levels (191, 184, 184 g/kg CP) and allocated 2 500 ppm ZnO in phase 1 (PC = positive control), standard CP levels (191, 184, 184 g/kg CP) and no added ZnO in phase 1 (NC = negative control), CP levels of 166, 184, 184 g/kg (LSS = low-standard-standard), CP levels of 166, 162, 192 g/kg (LLH = low-low-high), CP levels of 140, 193, 192 g/kg (VHH = very low-high-high), and lastly 140, 174, 192 g/kg CP levels (VMH = very low-medium-high). The pigs entered the trial at ~7 kg BW and exited at ~30 kg BW. As expected, the PC treatment resulted in 42% fewer diarrhea pen treatments in the total trial period compared to the NC group (P < 0.05), whereas both PC and LLH had fewer diarrhea treatment days per pig compared to NC pigs (P < 0.05). Additionally, at the point of treatment, the NC pens had 33% fecal floor samples positive for pathogens, compared to 80% samples positive for pathogens in the PC pens. This suggests that ZnO has a particular positive effect on non-infectious diarrhea without bacterial involvement. A reduction in dietary CP levels in phase 1 led to a reduced average daily gain (ADG) in LLH and VMH pigs and a poorer feed conversion ratio (FCR) in VHH pigs during the overall study period compared to the NC pigs (P < 0.05). Conclusively, a diet with low CP levels from weaning to about 15 kg BW had a reducing effect on diarrhea, but decreased ADG without affecting the FCR.
Collapse
Affiliation(s)
- J C Lynegaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, Frederiksberg C, DK-1870, Denmark.
| | - N J Kjeldsen
- Pig Research Centre, Danish Agriculture and Food Council, SEGES, Axeltorv 3, DK-1609 Copenhagen V, Denmark
| | - J K Bache
- Pig Research Centre, Danish Agriculture and Food Council, SEGES, Axeltorv 3, DK-1609 Copenhagen V, Denmark
| | - N R Weber
- Pig Research Centre, Danish Agriculture and Food Council, SEGES, Axeltorv 3, DK-1609 Copenhagen V, Denmark
| | - C F Hansen
- Pig Research Centre, Danish Agriculture and Food Council, SEGES, Axeltorv 3, DK-1609 Copenhagen V, Denmark
| | - J P Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, Frederiksberg C, DK-1870, Denmark
| | - C Amdi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, Frederiksberg C, DK-1870, Denmark
| |
Collapse
|
32
|
Zhang H, van der Wielen N, van der Hee B, Wang J, Hendriks W, Gilbert M. Impact of Fermentable Protein, by Feeding High Protein Diets, on Microbial Composition, Microbial Catabolic Activity, Gut Health and beyond in Pigs. Microorganisms 2020; 8:microorganisms8111735. [PMID: 33167470 PMCID: PMC7694525 DOI: 10.3390/microorganisms8111735] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023] Open
Abstract
In pigs, high protein diets have been related to post-weaning diarrhoea, which may be due to the production of protein fermentation metabolites that were shown to have harmful effects on the intestinal epithelium in vitro. In this review, we discussed in vivo effects of protein fermentation on the microbial composition and their protein catabolic activity as well as gut and overall health. The reviewed studies applied different dietary protein levels, which was assumed to result in contrasting fermentable protein levels. A general shift to N-utilisation microbial community including potential pathogens was observed, although microbial richness and diversity were not altered in the majority of the studies. Increasing dietary protein levels resulted in higher protein catabolic activity as evidenced by increased concentration of several protein fermentation metabolites like biogenic amines in the digesta of pigs. Moreover, changes in intestinal morphology, permeability and pro-inflammatory cytokine concentrations were observed and diarrhoea incidence was increased. Nevertheless, higher body weight and average daily gain were observed upon increasing dietary protein level. In conclusion, increasing dietary protein resulted in higher proteolytic fermentation, altered microbial community and intestinal physiology. Supplementing diets with fermentable carbohydrates could be a promising strategy to counteract these effects and should be further investigated.
Collapse
Affiliation(s)
- Hanlu Zhang
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Nikkie van der Wielen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bart van der Hee
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands;
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Wouter Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
| | - Myrthe Gilbert
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, 338, 6700 AH Wageningen, The Netherlands; (H.Z.); (N.v.d.W.); (W.H.)
- Correspondence:
| |
Collapse
|
33
|
Zhou J, Wang Y, Zeng X, Zhang T, Li P, Yao B, Wang L, Qiao S, Zeng X. Effect of antibiotic-free, low-protein diets with specific amino acid compositions on growth and intestinal flora in weaned pigs. Food Funct 2020; 11:493-507. [PMID: 31833513 DOI: 10.1039/c9fo02724f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated the effects of modulation of the amino acid profile on growth performance and gut health in weaned pigs fed an antibiotic-free, low-protein diet. In experiment 1, 5 treatments were included: a control diet with antibiotics; a low-protein diet with antibiotics; a low-protein diet without antibiotics (LP); a LP diet with 10% more dietary essential amino acids (LP110); and an LP110 diet with 12% more dietary Met + Cys, Thr and Trp. The intestinal digestive enzyme activity and morphology were improved with the increase in dietary essential amino acid levels, while the growth performance was decreased, indicating that the dietary amino acid level was too high. In experiment 2, all 5 treatments of experiment 1 were included, plus a LP diet with 5% more dietary essential amino acids (LP105) and an LP105 diet with 6% more dietary Met + Cys, Thr and Trp. The LP105 treatment showed optimal feed efficiency, a reduced plasma endotoxin concentration, and an increased fecal lactate concentration and increased abundances of Prevotellaceae and Roseburia bacteria. Our results demonstrate that the optimal amino acid profile in an antibiotic-free, low-protein diet can efficiently improve growth performance and gut health and modulate the fecal microbial structure in weaned pigs.
Collapse
Affiliation(s)
- Junyan Zhou
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, PR. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Spring S, Premathilake H, Bradway C, Shili C, DeSilva U, Carter S, Pezeshki A. Effect of very low-protein diets supplemented with branched-chain amino acids on energy balance, plasma metabolomics and fecal microbiome of pigs. Sci Rep 2020; 10:15859. [PMID: 32985541 PMCID: PMC7523006 DOI: 10.1038/s41598-020-72816-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Feeding pigs with very-low protein (VLP) diets while supplemented with limiting amino acids (AA) results in decreased growth. The objective of this study was to determine if supplementing VLP diets with branched-chain AA (BCAA) would reverse the negative effects of these diets on growth and whether this is associated with alterations in energy balance, blood metabolomics and fecal microbiota composition. Twenty-four nursery pigs were weight-matched, individually housed and allotted into following treatments (n = 8/group): control (CON), low protein (LP) and LP supplemented with BCAA (LP + BCAA) for 4 weeks. Relative to CON, pigs fed with LP had lower feed intake (FI) and body weight (BW) throughout the study, but those fed with LP + BCAA improved overall FI computed for 4 weeks, tended to increase the overall average daily gain, delayed the FI and BW depression for ~ 2 weeks and had transiently higher energy expenditure. Feeding pigs with LP + BCAA impacted the phenylalanine and protein metabolism and fatty acids synthesis pathways. Compared to CON, the LP + BCAA group had higher abundance of Paludibacteraceae and Synergistaceae and reduced populations of Streptococcaceae, Oxyphotobacteria_unclassified, Pseudomonadaceae and Shewanellaceae in their feces. Thus, supplementing VLP diets with BCAA temporarily annuls the adverse effects of these diets on growth, which is linked with alterations in energy balance and metabolic and gut microbiome profile.
Collapse
Affiliation(s)
- Shelby Spring
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Hasitha Premathilake
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Chloe Bradway
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Cedrick Shili
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Udaya DeSilva
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Scott Carter
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, 206C Animal Science Building, Stillwater, OK, 74078, USA.
| |
Collapse
|
35
|
Rattigan R, Sweeney T, Vigors S, Rajauria G, O'Doherty JV. Effects of reducing dietary crude protein concentration and supplementation with laminarin or zinc oxide on the faecal scores and colonic microbiota in newly weaned pigs. J Anim Physiol Anim Nutr (Berl) 2020; 104:1471-1483. [PMID: 32767416 DOI: 10.1111/jpn.13428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Abstract
A 2 × 3 factorial design experiment was conducted to examine the effects of reducing dietary crude protein (CP) concentration and/or supplementation with zinc oxide (ZnO) or laminarin on faecal scores (FS) and the large intestinal microbiota post-weaning (PW). One hundred and forty-four pigs were assigned to (T1) 21% standard CP diet (SCP); (T2) SCP + ZnO (SCP ZnO); (T3) SCP + laminarin (SCP LAM); (T4) 18% low CP diet (LCP); (T5) LCP + ZnO (LCP ZnO); and (T6) LCP + laminarin (LCP LAM; n = 8 replicates/treatment). The LCP diet had no effect on FS (p > .05), it increased two measures of alpha diversity, reduced Bacteroidetes and increased Enterobacteriaceae and Helicobacteraceae in the colon relative to the SCP diet (p < .05). ZnO supplementation reduced FS and increased Ruminococcaceae compared with unsupplemented pigs (p < .05). ZnO supplementation increased the genera Frisingicoccus (p < .001), Lachnoclostridium (p < .05) and Peptoclostridium (p < .05) in the colon and reduced total caecal volatile fatty acids (VFA) concentrations compared with the unsupplemented and laminarin-supplemented pigs. Laminarin supplementation reduced FS compared with unsupplemented pigs but had no major effect on the microbiota compared with the unsupplemented pigs. There were CP concentration × additive interactions on both Firmicutes and Proteobacteria. Firmicutes were increased in the LCP ZnO group compared with the LCP group, but there was no difference between the SCP groups. Proteobacteria were reduced in the LCP ZnO group compared with the LCP and LCP LAM groups (p < .05), but there was no difference between the SCP groups. In conclusion, reducing CP did not improve FS; it increased the relative abundance of Enterobacteriaceae; however, it also increased bacterial diversity. Supplementation with ZnO and laminarin improved FS, although all groups had scores within the healthy range. ZnO altered the large intestinal microbiota and VFA concentrations; however, laminarin did not enhance these parameters, suggesting these compounds have differing modes of action.
Collapse
Affiliation(s)
- Ruth Rattigan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
36
|
Cemin HS, Tokach MD, Dritz SS, Woodworth JC, DeRouchey JM, Goodband RD. Effects of soybean meal level on growth performance of 11- to 25-kg nursery pigs. Transl Anim Sci 2020; 4:txaa053. [PMID: 32705049 PMCID: PMC7264645 DOI: 10.1093/tas/txaa053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/28/2020] [Indexed: 11/14/2022] Open
Abstract
Four experiments were conducted to determine the effects of increasing soybean meal (SBM) level in diets with or without 25% distillers dried grains with solubles (DDGS) on growth performance of nursery pigs raised in university or commercial facilities. Treatments were arranged in a 2 × 3 factorial with main effects of SBM (27.5%, 32.5%, or 37.5% of the diet) and DDGS (0% or 25% of the diet). A total of 296, 2,502, 4,118, and 711 pigs with initial body weight (BW) of 10.6, 11.7, 12.5, and 12.3 kg were used in Exp. 1, 2, 3, and 4, respectively. There were 10, 16, 13, and 12 replicates per treatment in Exp. 1, 2, 3, and 4, respectively. After weaning, pigs were fed common diets for approximately 21 d. Then, pens of pigs were assigned to treatments in a randomized complete block design with BW as the blocking factor and experimental diets were fed for 21 d. Pigs were weighed and feed disappearance measured to calculate average daily gain (ADG), average daily feed intake (ADFI), gain-to-feed ratio (G:F), and caloric efficiency (CE). Data were analyzed using the GLIMMIX procedure of SAS with block as a random effect and treatment as a fixed effect. Single degree-of-freedom contrasts were constructed to test the linear and quadratic effects of increasing SBM and their interactions with DDGS. Pigs used in all experiments did not undergo major health challenges during the experimental period and due to the low number of mortality and cull events, statistical analysis was not performed on these variables. The average cull rate was 0.7%, 0.5%, 0.2%, and 0%, and the mortality rate was 0.7%, 0.3%, 0.4%, and 0% in Exp. 1–4, respectively. There were interactions (P ≤ 0.039) between SBM and DDGS for G:F and CE in Exp. 2 and for ADG and ADFI in Exp. 3. These were mostly driven by increasing SBM negatively affecting performance in a greater magnitude when diets contained DDGS compared to diets without DDGS. The main effects of DDGS and SBM were more consistently observed across experiments. Pigs fed diets with 25% DDGS had decreased (P ≤ 0.001) ADG and ADFI in all experiments, as well as poorer (P ≤ 0.028) G:F and CE except for Exp. 3. Feeding increasing amounts of SBM generally did not result in any major impact in ADG but consistently improved (linear, P ≤ 0.078) G:F and CE across experiments.
Collapse
Affiliation(s)
- Henrique S Cemin
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| |
Collapse
|
37
|
Zhao Y, Tian G, Chen D, Zheng P, Yu J, He J, Mao X, Huang Z, Luo Y, Luo J, Yu B. Dietary protein levels and amino acid supplementation patterns alter the composition and functions of colonic microbiota in pigs. ACTA ACUST UNITED AC 2020; 6:143-151. [PMID: 32542194 PMCID: PMC7283365 DOI: 10.1016/j.aninu.2020.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/04/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Different dietary nitrogen (N) patterns may have different effects on gut microbiota. To investigate the effects of different crude protein (CP) levels or essential amino acids (EAA) supplementation patterns on the structure and functions of colonic microbiota, 42 barrows (25 ± 0.39 kg) were randomly assigned to 7 dietary treatments including: diet 1, a high CP diet with balanced 10 EAA; diet 2, a medium CP diet with approximately 2% decreased CP level from diet 1 and balanced 10 EAA; diets 3, 4, 5, 6 and 7, low CP diets with 4% decreased CP level from diet 1. Specifically, diet 3 was only balanced for Lys, Met, Thr and Trp; diets 4, 5 and 6 were further supplemented with Ile, Val and Ile + Val on the basis of diet 3, respectively; and diet 7 was balanced for 10 EAA. Results over a 110-d trial showed that reducing the CP level by 2% or 4% dramatically decreased N intake and excretion (P < 0.05) in the presence of balanced 10 EAA, which was not observed when altering the EAA supplementation patterns in low CP diet (−4%). With balanced 10 EAA, 2% reduction in dietary CP significantly reduced Firmicutes-to-Bacteroidetes (F:B) ratio and significantly elevated the abundance of Prevotellaceae NK3B31 (P < 0.05); whereas 4% reduction evidently increased the abundances of Proteobacteria, Succinivibrio and Lachnospiraceae XPB1014 (P < 0.05). Among the 5 low CP diets (−4%), supplementation with Ile, or Val + Ile, or balanced 10 EAA increased F:B ratio and the abundance of Proteobacteria. In addition, the predicted functions revealed that different CP levels and EAA balanced patterns dramatically altered the mRNA expression profiles of N-metabolizing genes, the “N and energy metabolism” pathways or the metabolism of some small substances, such as amino acids (AA) and vitamins. Our findings suggested that reducing the dietary CP levels by 2% to 4% with balancing 10 EAA, or only further supplementation with Ile or Val + Ile to a low protein diet (−4%) reduced the N contents entering the hindgut to various degrees, altered the abundances of N-metabolizing bacteria, and improved the abilities of N utilization.
Collapse
Affiliation(s)
- Yumei Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
38
|
What Is the Impact of Diet on Nutritional Diarrhea Associated with Gut Microbiota in Weaning Piglets: A System Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6916189. [PMID: 31976326 PMCID: PMC6949732 DOI: 10.1155/2019/6916189] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Piglets experience severe growth challenges and diarrhea after weaning due to nutritional, social, psychological, environmental, and physiological changes. Among these changes, the nutritional factor plays a key role in postweaning health. Dietary protein, fibre, starch, and electrolyte levels are highly associated with postweaning nutrition diarrhea (PWND). In this review, we mainly discuss the high protein, fibre, resistant starch, and electrolyte imbalance in diets that induce PWND, with a focus on potential mechanisms in weaned piglets.
Collapse
|
39
|
Aluthge ND, Van Sambeek DM, Carney-Hinkle EE, Li YS, Fernando SC, Burkey TE. BOARD INVITED REVIEW: The pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health1. J Anim Sci 2019; 97:3741-3757. [PMID: 31250899 DOI: 10.1093/jas/skz208] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
A variety of microorganisms inhabit the gastrointestinal tract of animals including bacteria, archaea, fungi, protozoa, and viruses. Pioneers in gut microbiology have stressed the critical importance of diet:microbe interactions and how these interactions may contribute to health status. As scientists have overcome the limitations of culture-based microbiology, the importance of these interactions has become more clear even to the extent that the gut microbiota has emerged as an important immunologic and metabolic organ. Recent advances in metagenomics and metabolomics have helped scientists to demonstrate that interactions among the diet, the gut microbiota, and the host to have profound effects on animal health and disease. However, although scientists have now accumulated a great deal of data with respect to what organisms comprise the gastrointestinal landscape, there is a need to look more closely at causative effects of the microbiome. The objective of this review is intended to provide: 1) a review of what is currently known with respect to the dynamics of microbial colonization of the porcine gastrointestinal tract; 2) a review of the impact of nutrient:microbe effects on growth and health; 3) examples of the therapeutic potential of prebiotics, probiotics, and synbiotics; and 4) a discussion about what the future holds with respect to microbiome research opportunities and challenges. Taken together, by considering what is currently known in the four aforementioned areas, our overarching goal is to set the stage for narrowing the path towards discovering how the porcine gut microbiota (individually and collectively) may affect specific host phenotypes.
Collapse
Affiliation(s)
- Nirosh D Aluthge
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | | | | | - Yanshuo S Li
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | | | - Thomas E Burkey
- Department of Animal Science, University of Nebraska, Lincoln, NE
| |
Collapse
|
40
|
Humphrey B, Zhao J, Faris R. Review: Link between intestinal immunity and practical approaches to swine nutrition. Animal 2019; 13:2736-2744. [PMID: 31475667 DOI: 10.1017/s1751731119001861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gaining a deeper understanding into the underlying mechanisms associated with intestinal function and immunity during the weaning transition is critical to help shed new light into applied nutrition approaches to improve piglet performance and health during this critical life-stage transition. The transient anorexia triggered at weaning leads to compromised intestinal barrier function and a localized inflammatory response. Considering barrier function, specific nutrient fractions appear to have a significant impact on the development and function of the immune and microbial systems around weaning. Understanding the specific impact of nutrients in the small intestine and hindgut is important for helping to bring more focus and consistency to nutritional approaches to support health and immunity during the weaning transition period. The challenge continues to be how to translate these modes of action into practical and scalable approaches for swine nutrition. We will focus specifically on practical nutritional approaches to influence intestinal immunity through lipid, protein and antioxidant nutrition.
Collapse
Affiliation(s)
- B Humphrey
- Provimi, 10 Nutrition Way, Brookville, OH 45309, USA
| | - J Zhao
- Cargill Animal Nutrition, 10383 165th Ave NW, Elk River, MN 55330, USA
| | - R Faris
- Cargill Animal Nutrition, 10383 165th Ave NW, Elk River, MN 55330, USA
| |
Collapse
|
41
|
Jin J, Zhang L, Jia J, Chen Q, Yuan Z, Zhang X, Sun W, Ma C, Xu F, Zhan S, Ma L, Zhou G. Effects of Maternal Low-Protein Diet on Microbiota Structure and Function in the Jejunum of Huzhu Bamei Suckling Piglets. Animals (Basel) 2019; 9:ani9100713. [PMID: 31547553 PMCID: PMC6826398 DOI: 10.3390/ani9100713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
The jejunum is the primary organ for digestion and nutrient absorption in mammals. The development of the jejunum in suckling piglets directly affects their growth performance post-weaning. The jejunum microbiome plays an important role in proliferation, metabolism, apoptosis, immune, and homeostasis of the epithelial cells within the organ. The composition and diversity of the gut microbiome is susceptible to the protein composition of the diet. Therefore, the effects of maternal low-protein diets on piglets' intestinal microbial structure and function have become a hot topic of study. Herein, a maternal low-protein diet was formulated to explore the effects on jejunum microbiome composition and metabolic profiles in Bamei suckling piglets. Using 16S ribosomal RNA (16S rRNA) sequencing in conjunction with bioinformatics analysis, 21 phyla and 297 genera were identified within the gut microflora. The top 10 phyla and 10 genera are within the gut bacteria. Next, KEGG analysis showed that the low-protein diet significantly increased the gut microbial composition, transport and catabolism, immune system, global and overview maps, amino acid metabolism, metabolism of cofactors and vitamins, endocrine system, biosynthesis of other secondary metabolites, signal transduction, environmental adaptation, and cell motility. Taken together, low-protein diets do not appear to affect the reproductive performance of Bamei sows but improved the gut microbiome of the suckling piglets as well as reduced the probability of diarrhea. The data presented here provide new insights on the dietary protein requirements to support the Huzhu Bamei pig industry.
Collapse
Affiliation(s)
- Jipeng Jin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China (X.Z.); (W.S.)
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China (X.Z.); (W.S.)
- Correspondence: (L.Z.); (J.J.); Tel.: +86-15002638216 (L.Z.); +86-18797328237 (J.J.)
| | - Jianlei Jia
- Key of Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Q.C.); (Z.Y.)
- Correspondence: (L.Z.); (J.J.); Tel.: +86-15002638216 (L.Z.); +86-18797328237 (J.J.)
| | - Qian Chen
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Q.C.); (Z.Y.)
| | - Zan Yuan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Q.C.); (Z.Y.)
| | - Xiaoyan Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China (X.Z.); (W.S.)
| | - Weibo Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China (X.Z.); (W.S.)
| | - Cunming Ma
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| | - Fafang Xu
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| | - Shoujun Zhan
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| | - Limin Ma
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| | - Guihua Zhou
- Qinghai Province Huzhu County Bamei Pig Seed Breeding Farm, Huzhu, Qinghai 810500, China (S.Z.); (L.M.); (G.Z.)
| |
Collapse
|
42
|
|
43
|
Changes in the Ileal, but Not Fecal, Microbiome in Response to Increased Dietary Protein Level and Enterotoxigenic Escherichia coli Exposure in Pigs. Appl Environ Microbiol 2019; 85:AEM.01252-19. [PMID: 31324635 PMCID: PMC6752020 DOI: 10.1128/aem.01252-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Gut bacterial communities have been shown to play a key role in pig health and development and are strongly influenced by host diet, but studies highlighting the complex interactions between nutrition, gut infections and the microbiome tend to focus on bacterial populations in the feces and not other important gut locations. We found that alteration of dietary protein level and exposure to a pathogenic microorganism, enterotoxigenic Escherichia coli (ETEC), changed bacterial populations in the distal small intestine (i.e., the ileum). We found that the most profound changes occurred in pigs fed a high-protein diet in combination with exposure to ETEC, showing a clear interaction between dietary composition and exposure to a key pathogen. These changes were not observed in the fecal samples, revealing the importance of studying biologically pertinent sites in the gut, and so the data will help to inform the development of alternative management strategies for enteric disorders. The relationship between porcine gut microbiota composition and health is an important area of research, especially due to the need to find alternatives to antimicrobial use to manage disease in livestock production systems. Previous work has indicated that lower crude dietary protein levels can reduce the impacts of postweaning colibacillosis, which is a porcine diarrheal disease caused by enterotoxigenic Escherichia coli (ETEC). Here, to explore the complex interactions between the gut microbiota, protein nutrition, and ETEC exposure, the microbial compositions of both ileal digesta and feces were analyzed with or without ETEC exposure from pigs fed a low- or high-protein diet. Since ETEC colonization is mostly localized to the ileum, changes in the small intestinal microbiota were expected in response to ETEC exposure. This was supported by the study findings, which identified significant microbiota changes in ileal samples but not in fecal samples. Both increased dietary protein and ETEC exposure impacted on ileal microbiota alpha diversity (richness and diversity indices) and beta diversity (structure, stability, and relative taxon abundances) at certain sampling points, although the combination of a high-protein diet and ETEC exposure had the most profound impact on ileal microbiota composition. An understanding of how infection and nutrition lead to microbiota changes is likely to be required if dietary strategies are to be developed for the management of enteric diseases. IMPORTANCE Gut bacterial communities have been shown to play a key role in pig health and development and are strongly influenced by host diet, but studies highlighting the complex interactions between nutrition, gut infections and the microbiome tend to focus on bacterial populations in the feces and not other important gut locations. We found that alteration of dietary protein level and exposure to a pathogenic microorganism, enterotoxigenic Escherichia coli (ETEC), changed bacterial populations in the distal small intestine (i.e., the ileum). We found that the most profound changes occurred in pigs fed a high-protein diet in combination with exposure to ETEC, showing a clear interaction between dietary composition and exposure to a key pathogen. These changes were not observed in the fecal samples, revealing the importance of studying biologically pertinent sites in the gut, and so the data will help to inform the development of alternative management strategies for enteric disorders.
Collapse
|
44
|
Tang W, Qian Y, Yu B, Zhang T, Gao J, He J, Huang Z, Zheng P, Mao X, Luo J, Yu J, Chen D. Effects of Bacillus subtilis DSM32315 supplementation and dietary crude protein level on performance, gut barrier function and microbiota profile in weaned piglets1. J Anim Sci 2019; 97:2125-2138. [PMID: 30883644 DOI: 10.1093/jas/skz090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/15/2019] [Indexed: 01/21/2023] Open
Abstract
Seventy-two piglets aged at 25 d were chosen to investigate the effects of Bacillus subtilis DSM32315 supplementation in diets with different protein levels on growth performance, intestinal barrier function, and gut microbiota profile in a 42-d trial. The animals were allotted to four treatment groups in a randomized complete block design involving a 2 (protein levels) × 2 (probiotic levels) factorial arrangement of treatments. Two protein levels included the high CP (HP) diets (0 to 14 d, 20.5%; 15 to 42 d, 19.5%) and the low CP (LP) diets (0 to 14 d, 18%; 15 to 42 d, 17%), and added probiotic (PRO) levels included at 0 and 500 mg/kg diet. Two interactions between CP and PRO for ADG (P < 0.01) and F/G (P < 0.05) were observed in phase 1. Within the piglets given the LP diet, probiotic supplementation increased ADG and decreased F/G ratio. Likewise, there were interactions between CP and PRO on the digestibility of CP (P < 0.01) and EE (P < 0.05), and probiotic supplementation increased the digestibility of CP and ether extract (EE) of piglets fed with LP diet, but that was not the case for piglets fed with HP diet. Furthermore, there were interactions between CP and PRO on villus height (P < 0.01) and villus height:crypt depth ratio (P < 0.05) in ileum. Piglets fed with LP diet containing probiotic had the greatest villus height and villus height:crypt depth ratio in ileum among treatments. There were also main effects of PRO on the propionic acid (P < 0.05) and butyric acid (P < 0.05), and the concentrations of propionic acid and butyric acid in colonic digesta were increased with the inclusion of probiotic in diet. Piglets fed with LP diet containing probiotic had the greatest population of Bacillus and Bifidobacterium (P < 0.05) in colon. In addition, there were interactions between CP and PRO on the mRNA expressions of occludin-1 (P < 0.05), epidermal growth factor (EGF) (P < 0.05), and insulin-like growth factor 1 receptor (IGF-1R) (P < 0.05). The LP fed piglets plus probiotic exhibited the greatest mRNA expressions of occludin-1, EGF, and IGF-1R in ileum compared with other treatments. In conclusion, moderate dietary protein restriction combining with the addition of B. subtilis DSM32315 synergistically increased growth performance, altered hindgut bacterial composition and metabolites, maintained intestinal barrier function in ileum of piglets.
Collapse
Affiliation(s)
- Wenjie Tang
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| | - Ye Qian
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| | - Tao Zhang
- Evonik Degussa (China) Co., Ltd., Beijing, P.R. China
| | - Jun Gao
- Evonik Degussa (China) Co., Ltd., Beijing, P.R. China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| | - Zhiqing Huang
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| | - Junqiu Luo
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, and Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education of China, Chengdu, Sichuan, P.R. China
| |
Collapse
|
45
|
Zhou J, Yang M, Han J, Lu C, Li Y, Su X. Effects of dietary tuna dark muscle enzymatic hydrolysis and cooking drip supplementations on growth performance, antioxidant activity and gut microbiota modulation of Bama mini-piglets. RSC Adv 2019; 9:25084-25093. [PMID: 35528679 PMCID: PMC9070055 DOI: 10.1039/c9ra02594d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022] Open
Abstract
Experiments were conducted to evaluate the enzymatic hydrolysis of tuna dark muscle (EH-TDM) and cooking drip (EH-TCD) as nutrition supplements in Bama mini-piglets. Our results showed that EH-TDM treatment produce considerable benefits for the Bama mini-piglets in terms of the feed efficiency, the prevention of oxidative damage and the control of blood lipid levels. The EH-TCD treatment also improved the growth performance, whereas all other aspects deteriorated. The analyses of the gut microbiota revealed an increased proportion of bacteria involved in energy metabolism and protein utilization in these two groups. Furthermore, short chain fatty acid producing bacteria were increased, as well as the genera Lactobacillus and Bifidobacterium, which are involved in intestinal dysfunction regulation. This study will provide valuable information for the development of marine protein hydrolysates as feed ingredients for the swine industry.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University 818 Fenghua Road Ningbo China +86-0574-87608368 +86-0574-87608368
- School of Marine Science, Ningbo University Ningbo China
| | - Mingyuan Yang
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University 818 Fenghua Road Ningbo China +86-0574-87608368 +86-0574-87608368
- School of Marine Science, Ningbo University Ningbo China
| | - Jiaojiao Han
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University 818 Fenghua Road Ningbo China +86-0574-87608368 +86-0574-87608368
- School of Marine Science, Ningbo University Ningbo China
| | - Chenyang Lu
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University 818 Fenghua Road Ningbo China +86-0574-87608368 +86-0574-87608368
- School of Marine Science, Ningbo University Ningbo China
| | - Ye Li
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University 818 Fenghua Road Ningbo China +86-0574-87608368 +86-0574-87608368
- School of Marine Science, Ningbo University Ningbo China
| | - Xiurong Su
- State Key Laboratory for Quality and Safety of Argo-products, Ningbo University 818 Fenghua Road Ningbo China +86-0574-87608368 +86-0574-87608368
- School of Marine Science, Ningbo University Ningbo China
| |
Collapse
|
46
|
Forgie AJ, Fouhse JM, Willing BP. Diet-Microbe-Host Interactions That Affect Gut Mucosal Integrity and Infection Resistance. Front Immunol 2019; 10:1802. [PMID: 31447837 PMCID: PMC6691341 DOI: 10.3389/fimmu.2019.01802] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract microbiome plays a critical role in regulating host innate and adaptive immune responses against pathogenic bacteria. Disease associated dysbiosis and environmental induced insults, such as antibiotic treatments can lead to increased susceptibility to infection, particularly in a hospital setting. Dietary intervention is the greatest tool available to modify the microbiome and support pathogen resistance. Some dietary components can maintain a healthy disease resistant microbiome, whereas others can contribute to an imbalanced microbial population, impairing intestinal barrier function and immunity. Characterizing the effects of dietary components through the host-microbe axis as it relates to gastrointestinal health is vital to provide evidence-based dietary interventions to mitigate infections. This review will cover the effect of dietary components (carbohydrates, fiber, proteins, fats, polyphenolic compounds, vitamins, and minerals) on intestinal integrity and highlight their ability to modulate host-microbe interactions as to improve pathogen resistance.
Collapse
Affiliation(s)
| | | | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Yu D, Zhu W, Hang S. Effects of low-protein diet on the intestinal morphology, digestive enzyme activity, blood urea nitrogen, and gut microbiota and metabolites in weaned pigs. Arch Anim Nutr 2019; 73:287-305. [PMID: 31163993 DOI: 10.1080/1745039x.2019.1614849] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study investigated the effects of low-protein diet supplemented with Lysine (Lys), Methionine (Met), Threonine (Thr), and Tryptophan (Trp) on small intestine morphology, enzyme activity, blood urea nitrogen, and gut microbiota and metabolites in weaned piglets. Eighteen weaned pigs weighing an average of 9.57 kg received one of three treatments: a normal protein diet with 20% crude protein (CP, diet [NP]), a moderately reduced protein diet with 17% CP (MP), or a low-protein diet with 14% CP (LP). All three diets were supplemented with Lys, Met, Thr and Trp to meet essential amino acid requirements for post-weaned piglets according to the NRC (2012). Following a 45 d study period, piglets on the LP and MP diets demonstrated atrophic small intestinal morphology, with decreased villus heights and lower ratios of villus height to crypt depth (p < 0.05); pepsin activity in the stomach was also reduced in these two groups (p < 0.05). Increased plasma cholesterol and decreased blood urea nitrogen presented in the MP and LP groups compared with the NP group (p < 0.05). Overall, gastrointestinal hormones were not affected by dietary protein levels with the exception of reduced somatostatin levels in the MP and LP groups. Jejunum and colon microbiota were not affected at either the phyla or genera level in any of the diets. Colonic ammonia nitrogen concentration was reduced in MP and LP groups. Dietary protein level had no effect on short chain fatty acids or biogenic amines. Our data suggest that reducing dietary protein levels by 3% (MP) or 6% (LP) in weaned pigs has the potential to decrease nitrogen emissions and impaired digestive capacity. Therefore, dietary protein level cannot be reduced by more than 3% in consideration of maladaptive changes to small intestinal morphology and pepsin activity in weaned piglets.
Collapse
Affiliation(s)
- Defu Yu
- a Laboratory of Gastrointestinal Microbiology , Nanjing Agricultural University , Nanjing , China
| | - Weiyun Zhu
- a Laboratory of Gastrointestinal Microbiology , Nanjing Agricultural University , Nanjing , China
| | - Suqin Hang
- a Laboratory of Gastrointestinal Microbiology , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
48
|
Effects of Long-Term Dietary Protein Restriction on Intestinal Morphology, Digestive Enzymes, Gut Hormones, and Colonic Microbiota in Pigs. Animals (Basel) 2019; 9:ani9040180. [PMID: 31010000 PMCID: PMC6523122 DOI: 10.3390/ani9040180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In China, a shortage of protein resources is an important limiting factor to the economic benefit of pig production, and the use of protein-restriction diets balanced with amino acids is an effective strategy to save protein resources. However, long-term protein-restriction diets can impair the growth performance, and the reason is still unknown. This study is to investigate the response of gastrointestinal physiology and gut microbiota to the condition of long-term low-protein diet and to try to provide a theoretical foundation for better use of protein resources in swine production. Results showed that presented with moderate protein-restriction diets, pigs are able to adjust their absorption and consumption of nutrients to maintain growth performance; whereas extremely low-protein diets suppress pigs’ appetite, impair intestinal morphology, decrease Lactobacillus and Streptococcus, and reduce energy expenditure. Thus, moderate reduction of dietary protein is more suitable for pig production than extremely low-protein diets supplemented with essential amino acids, and moderate protein-restriction diets can potentially increase protein utilization in pig production. Abstract Using protein-restriction diets becomes a potential strategy to save the dietary protein resources. However, the mechanism of low-protein diets influencing pigs’ growth performance is still controversial. This study aimed to investigate the effect of protein-restriction diets on gastrointestinal physiology and gut microbiota in pigs. Eighteen weaned piglets were randomly allocated to three groups with different dietary protein levels. After a 16-week trial, the results showed that feeding a low-protein diet to pigs impaired the epithelial morphology of duodenum and jejunum (p < 0.05) and reduced the concentration of many plasma hormones (p < 0.05), such as ghrelin, somatostatin, glucose-dependent insulin-tropic polypeptide, leptin, and gastrin. The relative abundance of Streptococcus and Lactobacillus in colon and microbiota metabolites was also decreased by extreme protein-restriction diets (p < 0.05). These findings suggested that long-term ingestion of a protein-restricted diet could impair intestinal morphology, suppress gut hormone secretion, and change the microbial community and fermentation metabolites in pigs, while the moderately low-protein diet had a minimal effect on gut function and did not impair growth performance.
Collapse
|
49
|
Li R, Hou G, Jiang X, Song Z, Fan Z, Hou DX, He X. Different dietary protein sources in low protein diets regulate colonic microbiota and barrier function in a piglet model. Food Funct 2019; 10:6417-6428. [DOI: 10.1039/c9fo01154d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein fermentation has an adverse effect on colonic health; high-quality proteins and reducing the protein level (protein restriction) can effectively decrease the amount of proteins flowing into the colon for microbial protein fermentation.
Collapse
Affiliation(s)
- Rui Li
- College of Animal Science and Technology
- Hunan Agricultural University
- Changsha
- China
- Hunan Co-Innovation Center of Animal Production Safety
| | - Gaifeng Hou
- College of Animal Science and Technology
- Hunan Agricultural University
- Changsha
- China
- Hunan Co-Innovation Center of Animal Production Safety
| | - Xiaodie Jiang
- College of Animal Science and Technology
- Hunan Agricultural University
- Changsha
- China
- Hunan Co-Innovation Center of Animal Production Safety
| | - Zehe Song
- College of Animal Science and Technology
- Hunan Agricultural University
- Changsha
- China
- Hunan Co-Innovation Center of Animal Production Safety
| | - Zhiyong Fan
- College of Animal Science and Technology
- Hunan Agricultural University
- Changsha
- China
- Hunan Co-Innovation Center of Animal Production Safety
| | - De-Xing Hou
- College of Animal Science and Technology
- Hunan Agricultural University
- Changsha
- China
- Department of Food Science and Biotechnology
| | - Xi He
- College of Animal Science and Technology
- Hunan Agricultural University
- Changsha
- China
- Hunan Co-Innovation Center of Animal Production Safety
| |
Collapse
|
50
|
Zhou H, Chen D, Mao X, He J, Yu J, Zheng P, Luo J, Gao J, Htoo JK, Yu B. Evaluation of standardized ileal digestible lysine requirement for 8-20 kg pigs fed low crude protein diets. Anim Sci J 2018; 90:237-246. [PMID: 30556220 DOI: 10.1111/asj.13142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 07/13/2018] [Accepted: 10/24/2018] [Indexed: 11/27/2022]
Abstract
Two experiments were conducted to determine the standardized ileal digestible lysine (SID Lys) requirement for weaned pigs fed with low crude protein (CP) diet. In Experiment 1, 144 pigs were fed a normal CP (20%) diet with 12.3 g/kg SID Lys and five low CP (18.5%) diets providing SID Lys levels of 9.8, 11.1, 12.3, 13.5, and 14.8 g/kg, respectively, for 28 days. Reducing dietary CP from 20% to 18.5% enhanced (p < 0.05) the growth performance. The average daily gain (ADG) and gain to feed ratio (G:F) increased (linear and quadratic; p < 0.05), serum urea nitrogen (SUN) decreased (linear and quadratic; p < 0.05) as SID Lys increased. The SID Lys levels required to maximize ADG and optimize G:F were 12.8 and 13.1 g/kg using a curvilinear plateau model, and to minimize SUN was 13.4 g/kg using a two-slope broken-line model, which averaged 13.1 g/kg SID Lys. In Experiment 2, 18 pigs were used in a 12-day N balance trial and received the same diets of Experiment 1. Total N excretion was decreased when dietary CP reduced and further decreased when SID Lys increased. Collectively, 1.5% dietary CP reduction improved the growth performance and decreased the N excretion; the optimal SID Lys requirement was at 13.1 g/kg of 8-20 kg pigs fed with 18.5% CP diet.
Collapse
Affiliation(s)
- Hua Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, China
| | - Jun Gao
- Evonik Degussa (China) Co., Ltd, Beijing, China
| | | | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, China
| |
Collapse
|