1
|
Erez I, Serbester U. Effects of prenatal fish oil supplementation on the development and performance of female kids after weaning. PLoS One 2024; 19:e0310220. [PMID: 39259754 PMCID: PMC11389935 DOI: 10.1371/journal.pone.0310220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
This study was performed to determine the influence of fish oil, an omega-3 fatty acids source, supplemented to diets of goats throughout all stages of gestation on the growth and milk production of weaned female kids. Eighty German Fawn (75%) x Hair (25%) crossbred goats were randomly assigned to treatment (fish oil, FiO group) and control (Rumen protected fat, RPF group) groups during the first half of pregnancy. Subsequently, the FiO group was further allocated into FiO-FiO and FiO-RPF subgroups and RPF group was further divided into RPF-FiO and RPF-RPF subgroups containing 20 goats in each during the second half of pregnancy. The growth and feed intake of 41 female kids (aged 75.1 ± 6.73 days, with a mean live weight of 11.6 ± 3.00 kg) were recorded for a 98 day post-weaning, In the continuation of the study, live weight changes, milk yield and composition of young female goats from mating to the second month of lactation and the growth of female kids until weaning were studied for a total of 210 days. Maternal nutrition slightly influenced the live weight gain of female kids over a 98-day investigation period (p = 0.070). When growth performance was considered, a higher feed conversion efficiency of female offspring was determined in RPF-FiO (5.52) treatment group compare to female kids in other treatment groups (p = 0.086). However, the maternal feeding system significantly affected live weight in the RPF-FiO treatment group during the mating period (P = 0.054). Concerning the feed intake, maternal nutrition significantly affected the feed intake of female kids (p < 0.01) with the highest feed consumption in the FiO-RPF group. The findings of this study have shown that fish oil enriched diet given to goats during gestation improved daily live weight changes and total live weight gain of female kids despite the initial disadvantage after weaning. At mating time, the live weight of young female goats in the RPF-FiO treatment group, which exhibited the highest feed conversion ratio during the 98-day study, was higher than the remaining treatment groups. Maternal nutrition had no effect on milk yield or milk components in young goats during lactation. Young female goats born to dams in the FiO-RPF group showed better performance than the other groups regarding live weight performance of their offspring on 56th day postpartum.
Collapse
Affiliation(s)
- Ibrahim Erez
- Faculty of Agriculture, Department of Animal Science, Çukurova University, Adana, Turkey
| | - Ugur Serbester
- Faculty of Agriculture, Department of Animal Science, Çukurova University, Adana, Turkey
| |
Collapse
|
2
|
Wang Z, Zhang N, Li F, Yue X. Effects of pre-partum dietary crude protein level on colostrum fat globule membrane proteins and the performance of Hu ewes and their offspring. Front Vet Sci 2022; 9:1046214. [DOI: 10.3389/fvets.2022.1046214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Dietary proteins play important roles in the growth and reproduction of sheep, and the ewe's demand for proteins increases dramatically during late pregnancy. This research aimed to investigate the effect of dietary crude protein (CP) levels during late pregnancy on colostrum fat globule membrane (MFGM) protein and the growth performance of Hu sheep and their offspring, and provide a reference for the protein intake of ewes during late pregnancy. A total of 108 multiparous Hu sheep (45.6 ± 1.18 kg) were selected for this study, then 60 pregnant ewes confirmed by B-scan ultrasonography were randomly divided into three treatments (20 ewes/treatment) and fed by total mixed ration pellet with CP levels at 9.00% (LP), 12.0% (MP), and 15.0% (HP) during late pregnancy, respectively. The weight and dry matter intake of ewes during late pregnancy were recorded to calculate the average daily gain (ADG) and feed conversion ratio (FCR). Twin lambs were weighed on days 0, 7, 14, 30, 60, and 180 after birth to calculate ADG. Meanwhile, the colostrum of ewes was collected within 12 h after delivery. The colostrum MFGM proteins were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry methods. In addition, biological functions of differentially expressed proteins (DEPs) were annotated by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results revealed that a 15.0% CP level had significant effects on the BW of lambs on days 0, 7, and 30 (P < 0.05). Notably, a total of 1,529 MFGM proteins were identified and 286 DEPs were found among three treatments. Functional analysis showed that DEPs were mainly involved in cell growth, differentiation, and tissue repair, and involved in metabolic pathways, such as the porphyrin and chlorophyll metabolism pathways. In this study, lambs in HP treatment had better growth performance; moreover, dietary 15.0% CP level also affected the colostrum MFGM proteins composition of Hu ewes. These observations can facilitate future studies on the feeding regimen of ewes during late pregnancy.
Collapse
|
3
|
Castellaro G, Ochoa I, Borie C, Parraguez VH. Effects of Strategic Supplementation with Lupinus angustifolius and Avena sativa Grains on Colostrum Quality and Passive Immunological Transfer to Newborn Lambs. Animals (Basel) 2022; 12:ani12223159. [PMID: 36428387 PMCID: PMC9686743 DOI: 10.3390/ani12223159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to evaluate the effect of two types of nutritional supplementation during late gestation on the chemical composition, energy value, and IgG concentration in the colostrum and the IgG concentration in the blood serum of lambs. Pregnant Merino Precoz ewes (n = 36) carrying single fetuses were used. Animals were kept grazing on the Mediterranean annual grassland. From day ~90 of pregnancy, animals were allocated into three groups: daily supplementation with oat grain or lupine grain and a control group without supplementation. Immediately after parturition, colostrum was collected from each ewe, and a blood sample was taken from the lambs 24 h after birth. For the evaluation of the chemical composition of the colostrum, an EKOMILK® milk analyzer was used. The energy value of the colostrum was calorimetrically evaluated. IgG concentrations were measured by simple radial immunodiffusion. Data were analyzed by analysis of variance. Colostrum content of protein and non-fat solids was higher in the group supplemented with oat grain than in the lupine grain supplemented and control groups (p ≤ 0.05). In contrast, ewes supplemented with lupine grain had the highest concentration of fat in their colostrum (p ≤ 0.05). Oat grain supplementation resulted in higher concentrations of IgG, both in sheep colostrum and in the blood serum of their lambs (p ≤ 0.05), being higher than those observed in the lupine grain and control groups. Ewes that gave birth to male lambs had significantly higher concentrations of IgG in their colostrum compared to ewes that gave birth to females (p ≤ 0.05). The colostral IgG concentration positively correlated with the serum IgG concentration of the lambs (r = 0.32; p ≤ 0.05). The results indicate that the quality of colostrum and the immunological status of the newborn lambs can be improved by supplementation with oat grain.
Collapse
Affiliation(s)
- Giorgio Castellaro
- Department of Animal Production, Faculty of Agricultural Sciences, University of Chile, Santiago 8820808, Chile
| | - Isaí Ochoa
- Faculty of Veterinary Medicine and Zootechnics, National University Micaela Bastidas of Apurimac, Abancay 03000, Peru
| | - Consuelo Borie
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile
| | - Víctor H. Parraguez
- Department of Animal Production, Faculty of Agricultural Sciences, University of Chile, Santiago 8820808, Chile
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile
- Correspondence: ; Tel.: +56-22978-5548
| |
Collapse
|
4
|
Vautier AN, Cadaret CN. Long-Term Consequences of Adaptive Fetal Programming in Ruminant Livestock. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.778440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental perturbations during gestation can alter fetal development and postnatal animal performance. In humans, intrauterine growth restriction (IUGR) resulting from adaptive fetal programming is known as a leading cause of perinatal morbidity and mortality and predisposes offspring to metabolic disease, however, the prevalence and impact in livestock is not characterized as well. Multiple animal models have been developed as a proxy to determine mechanistic changes that underlie the postnatal phenotype resulting from these programming events in humans but have not been utilized as robustly in livestock. While the overall consequences are similar between models, the severity of the conditions appear to be dependent on type, timing, and duration of insult, indicating that some environmental insults are of more relevance to livestock production than others. Thus far, maternofetal stress during gestation has been shown to cause increased death loss, low birth weight, inefficient growth, and aberrant metabolism. A breadth of this data comes from the fetal ruminant collected near term or shortly thereafter, with fewer studies following these animals past weaning. Consequently, even less is known about how adaptive fetal programming impacts subsequent progeny. In this review, we summarize the current knowledge of the postnatal phenotype of livestock resulting from different models of fetal programming, with a focus on growth, metabolism, and reproductive efficiency. We further describe what is currently known about generational impacts of fetal programming in production systems, along with gaps and future directions to consider.
Collapse
|
5
|
Mammary Development in Gilts at One Week Postnatal Is Related to Plasma Lysine Concentration at 24 h after Birth, but Not Colostrum Dose. Animals (Basel) 2021; 11:ani11102867. [PMID: 34679896 PMCID: PMC8532886 DOI: 10.3390/ani11102867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary A relationship exists between a female’s early nutritional environment and her ability to produce milk when she lactates as an adult. Colostrum is the first milk available to neonates after birth. We hypothesized that differing levels of colostrum stimulate differences in very early mammary development. Despite differences in weight at 24 h and 7 days, mammary morphological development and DNA content was not found to be different between gilts fed a high versus low dose of colostrum. The rate of mammary gland protein and DNA synthesis over the first week was not different between the groups. Circulating levels of amino acids were determined after 24 h of colostrum feeding, and levels of circulating lysine were found to be related to average daily gain and mammary DNA synthetic rate. Moreover, the level of lysine was related to a lower ratio of DNA to protein synthesis, suggesting that higher lysine favored cell division versus differentiation (by leaving the cell cycle). Further studies are needed in this area. Abstract Perinatal nutrition affects future milk production. The number of mammary epithelial cells affect milk production capacity. Therefore, it was hypothesized that the level of colostrum intake affects the proliferation rate and the total number of mammary epithelial cells in the gland. The ratio of newly synthesized protein to newly synthesized DNA reflects the relative amount of cellular differentiation to cell division. The study objective was to determine the relationship between the level of colostrum intake and 24 h-level of circulating amino acid, glucose and insulin with mammary parenchyma histological features, cell division and protein synthesis over the first week postnatal. One of two standardized doses of a homogenate colostrum sample, 10% (n = 8) and 20% (n = 8) of birth bodyweight, was fed to gilts over the first 24 h postnatal. Gilts were administered deuterium oxide immediately after birth and daily to label newly synthesized DNA and proteins. Gilts were euthanized on postnatal day seven, and DNA and protein were isolated from mammary parenchyma. DNA and protein fractional synthesis (f) and fractional synthetic rate (FSR) were calculated using mass isotopomer distribution analysis. The ratio of protein f and FSR to DNA f and FSR were calculated and used to indicate the relative amounts of differentiation to cell division. Mammary morphological development was also analyzed by measuring the parenchymal epithelial area and the stromal and epithelial proliferation index on postnatal day seven. Colostrum dose was not related to any of the variables used to evaluate mammary development. However, plasma lysine levels at 24 h postnatal were positively related to average daily gain (ADG; r = 0.54, p = 0.05), DNA f (r = 0.57; p = 0.03) and DNA FSR (r = 0.57; p = 0.03) in mammary parenchyma. Plasma lysine was inversely related to the ratio of protein to DNA f and FSR (r = −0.56; p = 0.04). ADG was related to the parenchymal epithelial area and DNA and protein f and FSR (p < 0.05). These relationships support the idea that the nutritional environment affects early mammary development and that higher lysine levels in the perinatal period favored a greater degree of cell division versus differentiation in mammary of neonatal pigs and thus, warrant further investigations.
Collapse
|
6
|
Wang X, Wang Y, Wang Q, Dai C, Li J, Huang P, Li Y, Ding X, Huang J, Hussain T, Yang H. Effect of dietary protein on growth performance, and serum biochemical index in late pregnant Hu ewes and their offspring. Anim Biotechnol 2021; 34:97-105. [PMID: 34187316 DOI: 10.1080/10495398.2021.1939042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate the effects of different protein levels in late pregnancy on ewe and lamb growth performance, serum biochemical indexes. Thirty-three ewes (46.4 ± 1.38 kg initial weight) were randomly divided into 3 groups, with 11 ewes in each group. The protein levels of three diets formulated to provide components to meet 10.00 MJ/kg ME requirements diets were: 10.12%, 11.26%, 12.4%. Ewes were raised from the 90th day of pregnancy to the end of delivery, and the lambs were weaned at 60 days. Dietary protein levels had significant effects on blood urea nitrogen, glucose, ammonia nitrogen and triglyceride of ewes (p < 0.05). The height, chest depth, chest circumference, straight crown hip length and curved crown hip length of lambs decreased at first and then increased with the increase of protein. The body length, chest circumference, head width and head length of weaned lambs decreased at first and then increased with the increase of protein. The results showed that when the dietary protein level was increased to 12.4%, the amino acid, glucose and fat metabolism of ewes were affected. The body size development of lambs was better than 10.12% and 11.26% proteins.
Collapse
Affiliation(s)
- Xin Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yancan Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hubei zhiqinghe agriculture and animal husbandry Co., Ltd., Yichang, China
| | - Chunpeng Dai
- Hubei zhiqinghe agriculture and animal husbandry Co., Ltd., Yichang, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Pengfei Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xueqin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jing Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
7
|
Orr TJ, Garland T. Complex Reproductive Traits and Whole-Organism Performance. Integr Comp Biol 2017; 57:407-422. [DOI: 10.1093/icb/icx052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Chavatte-Palmer P, Tarrade A, Kiefer H, Duranthon V, Jammes H. Breeding animals for quality products: not only genetics. Reprod Fertil Dev 2017; 28:94-111. [PMID: 27062878 DOI: 10.1071/rd15353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.
Collapse
Affiliation(s)
| | - Anne Tarrade
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Kiefer
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Véronique Duranthon
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| | - Hélène Jammes
- INRA, UMR 1198 Biologie du Développement et Reproduction, 78350 Jouy en Josas, France
| |
Collapse
|
9
|
Programming effect of dietary fatty acids on performance of Holstein heifers from birth through first lactation. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Effect of dam weight and pregnancy nutrition on average lactation performance of ewe offspring over 5 years. Animal 2016; 11:1027-1035. [PMID: 27869057 DOI: 10.1017/s175173111600241x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The foetal mammary gland is sensitive to maternal weight and nutrition during gestation, which could affect offspring milk production. It has previously been shown that ewes born to dams offered maintenance nutrition during pregnancy (day 21 to 140 of gestation) produced greater milk, lactose and CP yields in their first lactation when compared with ewes born to dams offered ad libitum nutrition. In addition, ewes born to heavier dams produced greater milk and lactose yields when compared with ewes born to lighter dams. The objective of this study was to analyse and compare the 5-year lactation performance of the previously mentioned ewes, born to heavy or light dams that were offered maintenance or ad libitum pregnancy nutrition. Ewes were milked once per week, for the first 6 weeks of their lactation, for 5 years. Using milk yield and composition data, accumulated yields were calculated over a 42-day period for each year for milk, milk fat, CP, true protein, casein and lactose using a Legendre orthogonal polynomial model. Over the 5-year period, ewes born to heavy dams produced greater average milk (P=0.04), lactose (P=0.01) and CP (P=0.04) yields than offspring born to light dams. In contrast, over the 5-year period dam nutrition during pregnancy did not affect average (P>0.05) offspring milk yields or composition, but did increase milk and lactose accumulated yield (P=0.03 and 0.01, respectively) in the first lactation. These results indicate that maternal gestational nutrition appears to only affect the first lactational performance of ewe offspring. Neither dam nutrition nor size affected grand-offspring live weight gain to, or live weight at weaning (P>0.05). Combined these data indicate that under the conditions of the present study, manipulating dam weight or nutrition in pregnancy can have some effects of offspring lactational performance, however, these effects are not large enough to alter grand-offspring growth to weaning. Therefore, such manipulations are not a viable management tool for farmers to influence lamb growth to weaning.
Collapse
|
11
|
Campion FP, McGovern FM, Lott S, Fahey AG, Creighton P, Boland TM. Comparison of energy rationing systems for late gestation ewes: Impacts on ewe and lamb performance1. J Anim Sci 2016; 94:3441-3456. [DOI: 10.2527/jas.2016-0522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Sinclair KD, Rutherford KMD, Wallace JM, Brameld JM, Stöger R, Alberio R, Sweetman D, Gardner DS, Perry VEA, Adam CL, Ashworth CJ, Robinson JE, Dwyer CM. Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev 2016; 28:RD16102. [PMID: 27439952 DOI: 10.1071/rd16102] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
The concept that postnatal health and development can be influenced by events that occur in utero originated from epidemiological studies in humans supported by numerous mechanistic (including epigenetic) studies in a variety of model species. Referred to as the 'developmental origins of health and disease' or 'DOHaD' hypothesis, the primary focus of large-animal studies until quite recently had been biomedical. Attention has since turned towards traits of commercial importance in farm animals. Herein we review the evidence that prenatal risk factors, including suboptimal parental nutrition, gestational stress, exposure to environmental chemicals and advanced breeding technologies, can determine traits such as postnatal growth, feed efficiency, milk yield, carcass composition, animal welfare and reproductive potential. We consider the role of epigenetic and cytoplasmic mechanisms of inheritance, and discuss implications for livestock production and future research endeavours. We conclude that although the concept is proven for several traits, issues relating to effect size, and hence commercial importance, remain. Studies have also invariably been conducted under controlled experimental conditions, frequently assessing single risk factors, thereby limiting their translational value for livestock production. We propose concerted international research efforts that consider multiple, concurrent stressors to better represent effects of contemporary animal production systems.
Collapse
|
13
|
Sciascia Q, Sales F, van der Linden D, Wards N, Oliver M, Blair H, McCoard S. Nutritional plane of twin-bearing ewes alters fetal mammary gland biochemical composition and mTOR/MAPK pathway signaling. J Anim Sci 2016; 93:699-708. [PMID: 26020751 DOI: 10.2527/jas.2014-8394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identifying the biochemical changes and molecular pathways that regulate fetal mammary development in response to maternal nutrition is important for understanding the link between fetal programming of mammary development and future lactation performance. Although there are published studies regarding biochemical changes in the developing mammary gland, there are currently no data on molecular pathway involvement in regulating ruminant fetal mammary development. This study investigated changes in fetal mammary biochemical indices and mechanistic target of rapamycin (mTOR)/mitogen activated protein kinase (MAPK) signaling at d 100 and 140 of gestation in an ovine model of restricted maternal nutrition. Ewes were randomly allocated to ad libitum (A) or maintenance (M) nutritional regimens, under New Zealand pastoral grazing conditions, from d 21 to 140 of pregnancy. At d 100 and 140 of pregnancy, a subgroup of twin-bearing dams was euthanized, and whole fetal mammary glands (fiber, skin, fat, and ducts) were collected. Mammary glands of fetuses carried by M-fed dams were heavier at d 100 than those of fetuses carried by A-fed dams ( = 0.03), with no difference in the abundance of mTOR/MAPK signaling proteins observed. At d 140, mammary glands of fetuses carried by M-fed dams were lighter ( = 0.07) than fetuses carried by A-fed dams because of decreased hyperplasia ( = 0.04) and hypertrophy ( = 0.09) but had increased protein synthetic capacity ( = 0.02). Increased protein synthetic capacity was associated with increased abundance of MAPK pathway signaling proteins eukaryotic intiation factor 4E (eIF4E)/eIF4E and mTOR pathway signaling proteins eukaryotic initiation factor 4E-binding protein 1 (4E-BP1)/4E-BP1 and ribosomal protein S6 (RPS6)/RPS6 ( ≤ 0.05). Increased abundance of MAPK/mTOR pathway proteins is proposed to mediate increased protein synthetic capacity via ribosome biogenesis and the availability of factors required to initiate protein translation. The primary regulator of 4E-BP1 phosphorylation at Ser65 and RPS6 at Ser235/236 is the activated form of mTOR: mTOR. To study potential tissue-specific mTOR, mTOR abundance mammary glands, separated into parenchyma and fat pad, were collected from d 140 fetuses carried by dams fed a lucerne-based pellet diet formulated to meet 100% of the NRC-recommended maintenance requirements. Results showed that the abundance of mTOR was primarily localized to the fat pad, indicating that the fat pad plays a potential role in regulating development of the fetal mammary gland.
Collapse
|
14
|
Bell AW, Greenwood PL. Prenatal origins of postnatal variation in growth, development and productivity of ruminants. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review provides an update on recent research into the effects of maternal nutrition on fetal biology and the growth, development and productivity of progeny in postnatal life of ruminant livestock. Evidence is summarised for effects on postnatal growth and body composition, feed intake and efficiency, carcass characteristics and meat quality, wool production, reproduction and lactation performance. In general, these demonstrated effects are not large in relation to the effects of postnatal nutrition and other environmental influences. The mechanisms underpinning the above production outcomes are briefly discussed in terms of systemic endocrine and metabolic responses, and cellular and molecular effects in skeletal muscle, bone, adipose tissue, wool follicles and brain of fetal, neonatal and adult progeny. Treatments observed to elicit tissue responses include maternal under- and overnutrition at various stages of pregnancy and placental insufficiency caused by increased litter size, chronic maternal heat stress and premating carunclectomy in sheep. The as yet meagre evidence for epigenetic mediation of intergenerational effects in ruminants is considered, as is the likelihood that other, more conventional explanations may suffice in some cases. Finally, evidence is summarised for the proposition that the placenta is not merely a passive conduit for nutrient transfer from dam to fetus, but plays an active role in buffering the effects of variations in maternal nutrition on fetal growth and development, and thence, postnatal outcomes.
Collapse
|
15
|
Starvation of Ruminant Livestock. Anim Welf 2016. [DOI: 10.1007/978-3-319-27356-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
McGovern FM, Campion FP, Lott S, Boland TM. Altering ewe nutrition in late gestation: I. The impact on pre- and postpartum ewe performance1. J Anim Sci 2015; 93:4860-72. [DOI: 10.2527/jas.2015-9019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Vonnahme KA, Lemley CO, Caton JS, Meyer AM. Impacts of Maternal Nutrition on Vascularity of Nutrient Transferring Tissues during Gestation and Lactation. Nutrients 2015; 7:3497-523. [PMID: 25984740 PMCID: PMC4446764 DOI: 10.3390/nu7053497] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/28/2015] [Accepted: 04/03/2015] [Indexed: 12/21/2022] Open
Abstract
As the demand for food increases with exponential growth in the world population, it is imperative that we understand how to make livestock production as efficient as possible in the face of decreasing available natural resources. Moreover, it is important that livestock are able to meet their metabolic demands and supply adequate nutrition to developing offspring both during pregnancy and lactation. Specific nutrient supplementation programs that are designed to offset deficiencies, enhance efficiency, and improve nutrient supply during pregnancy can alter tissue vascular responses, fetal growth, and postnatal offspring outcomes. This review outlines how vascularity in nutrient transferring tissues, namely the maternal gastrointestinal tract, the utero-placental tissue, and the mammary gland, respond to differing nutritional planes and other specific nutrient supplementation regimes.
Collapse
Affiliation(s)
- Kimberly A Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Joel S Caton
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA.
| | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbus, MO 65210, USA.
| |
Collapse
|
18
|
Impact of diet deprivation and subsequent over-allowance of gestating sows on mammary gland and skeletal muscle development of their offspring at puberty. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Gunn PJ, Schoonmaker JP, Lemenager RP, Bridges GA. Feeding distiller’s grains as an energy source to gestating and lactating beef heifers: Impact on female progeny growth, puberty attainment, and reproductive processes. J Anim Sci 2015; 93:746-57. [PMID: 25548202 DOI: 10.2527/jas.2014-8130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study compared postweaning growth, puberty attainment, and reproductive processes of female progeny (n = 33) born to Angus-Simmental beef heifers treated with either a control diet or a diet in which dried distiller’s grains with solubles (DDGS) were fed as an energy source during late gestation and early lactation. From 192 d of gestation through 118 ± 4 d in lactation, dams were fed either a corn silage–based control diet (CON) orcorn residue with DDGS, where DDGS were supplemented as an energy source (DG). Diets were formulated to provide similar daily NEg between diets, but CP requirements were drastically exceeded in the DG treatment. Heifer progeny (n = 33) were weaned, commingled at 191 ± 4 d of age, and similarly managed for the remainder of the project. Heifer BW and blood samples for progesterone assessment to determine onset of puberty were collected weekly beginning at weaning. At 255 ± 4 d of age, a single follicular wave was mapped via ultrasonography in 10 prepubertal heifers per treatment. Prepubertal antral follicle count and ovarian size were determined at 253 ± 4 d of age. Hip height was recorded at 213,297, and 437 ± 4 d of age. Estrous synchronization and AI was initiated at 447 ± 4 d of age. Binary data were analyzed with the GLIMMIX procedures of SAS and all other data were analyzed with the MIXED procedures of SAS. Progeny from DG-treated dams tended to be heavier (P = 0.08) than progeny from CON-treated dams from weaning until breeding. In addition, DG progeny had a greater (P < 0.01) frame score than CON throughout the developmental period. Ovarian size, antral follicle count, and follicular growth parameters did not differ between treatments. Age at puberty did not differ between CON (303 ± 10 d) and DG (320 ± 10 d) progeny; however, BW at puberty was greater (P = 0.01) for DG (326 ± 7 kg) than CON (298 ± 8 kg) progeny. Pregnancy rates to AI were greater (P = 0.05) in DG progeny (70.6%) than CON (33.3%), but overall breeding season pregnancy rate did not differ (P = 0.97). Moreover, rate of dystocia in female progeny at first parturition and grand-offspring birth BW did not differ due to treatment (P ≥ 0.74). In summary, feeding DDGS as an energy source during late gestation and early lactation to first-parity heifers resulted in female progeny with greater skeletal growth that were heavier at onset of puberty and had increased AI pregnancy rates.
Collapse
|
20
|
Oliver MH, Jaquiery AL, Kenyon PR, Pain SJ, Jenkinson CM, Blair HT, Derraik JGB, Bloomfield FH. Maternal insulin sensitivity in midpregnancy does not determine birth weight after embryo transfer between large and small breed sheep. Domest Anim Endocrinol 2015; 50:50-4. [PMID: 25254312 DOI: 10.1016/j.domaniend.2014.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022]
Abstract
Embryo transfer of large sheep breed embryos (Suffolk) into small breed ewes (Cheviot) constrains birth size, but the maternal factors influencing fetal growth restriction are unknown. We hypothesized that reciprocal embryo transfer crosses between breeds of divergent size would affect pregnancy-related development of maternal insulin resistance in midgestation, thereby influencing fetal growth. Following superovulation, embryos were surgically collected 6 d postmating and transferred to recipients on the same day. Between- and within-breed transfers were performed. Between 60 and 70 d of pregnancy overnight-fasted ewes underwent hyperinsulinemic-euglycemic clamps for assessment of insulin sensitivity. Maternal insulin sensitivity did not vary with transferred lamb breed. Overall, Cheviot ewes tended to have higher fasting glucose (P = 0.068), fasting insulin (P = 0.052), and steady-state glucose (P = 0.065) concentrations than Suffolk ewes at the stage of pregnancy studied. As expected, transferred between-breed Suffolk lambs were born lighter (P = 0.014), and transferred between-breed Cheviot lambs tended to be heavier at birth (P = 0.056) than respective lambs transferred within breed. Midgestation insulin sensitivity does not appear to be a major factor constraining growth of large breed sheep fetus transferred into smaller breed or a factor in releasing constraint in growth of a small breed fetus within a larger breed ewe. However, as embryo size is already different between transferred groups by 19 d, factors other than maternal gestational insulin resistance may determine fetal growth in this embryo transfer paradigm.
Collapse
Affiliation(s)
- M H Oliver
- Liggins Institute, University of Auckland, Auckland, New Zealand; Gravida: National Centre for Growth and Development, New Zealand.
| | - A L Jaquiery
- Liggins Institute, University of Auckland, Auckland, New Zealand; Gravida: National Centre for Growth and Development, New Zealand; Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - P R Kenyon
- Gravida: National Centre for Growth and Development, New Zealand; Sheep Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - S J Pain
- Gravida: National Centre for Growth and Development, New Zealand; Sheep Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - C M Jenkinson
- Gravida: National Centre for Growth and Development, New Zealand; Sheep Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - H T Blair
- Gravida: National Centre for Growth and Development, New Zealand; Sheep Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - J G B Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - F H Bloomfield
- Liggins Institute, University of Auckland, Auckland, New Zealand; Gravida: National Centre for Growth and Development, New Zealand; Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Asmad K, Kenyon P, Pain S, Parkinson T, Peterson S, Lopez-Villalobos N, Blair H. Effects of dam size and nutrition during pregnancy on lifetime performance of female offspring. Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2014.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Paten AM, Pain SJ, Peterson SW, Blair HT, Kenyon PR, Dearden PK, Duncan EJ. Identification of reference genes for RT-qPCR in ovine mammary tissue during late pregnancy and lactation and in response to maternal nutritional programming. Physiol Genomics 2014; 46:560-70. [PMID: 24893875 DOI: 10.1152/physiolgenomics.00030.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammary gland is a complex tissue consisting of multiple cell types which, over the lifetime of an animal, go through repeated cycles of development associated with pregnancy, lactation and involution. The mammary gland is also known to be sensitive to maternal programming by environmental stimuli such as nutrition. The molecular basis of these adaptations is of significant interest, but requires robust methods to measure gene expression. Reverse-transcription quantitative PCR (RT-qPCR) is commonly used to measure gene expression, and is currently the method of choice for validating genome-wide expression studies. RT-qPCR requires the selection of reference genes that are stably expressed over physiological states and treatments. In this study we identify suitable reference genes to normalize RT-qPCR data for the ovine mammary gland in two physiological states; late pregnancy and lactation. Biopsies were collected from offspring of ewes that had been subjected to different nutritional paradigms during pregnancy to examine effects of maternal programming on the mammary gland of the offspring. We evaluated eight candidate reference genes and found that two reference genes (PRPF3 and CUL1) are required for normalising RT-qPCR data from pooled RNA samples, but five reference genes are required for analyzing gene expression in individual animals (SENP2, EIF6, MRPL39, ATP1A1, CUL1). Using these stable reference genes, we showed that TET1, a key regulator of DNA methylation, is responsive to maternal programming and physiological state. The identification of these novel reference genes will be of utility to future studies of gene expression in the ovine mammary gland.
Collapse
Affiliation(s)
- A M Paten
- Laboratory for Evolution and Development, Genetics Otago, Department of Biochemistry, University of Otago, Dunedin, Aotearoa-New Zealand; International Sheep Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, Aotearoa-New Zealand; and Gravida: National Centre for Growth and Development, Aukland, New Zealand
| | - S J Pain
- International Sheep Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, Aotearoa-New Zealand; and Gravida: National Centre for Growth and Development, Aukland, New Zealand
| | - S W Peterson
- International Sheep Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, Aotearoa-New Zealand; and Gravida: National Centre for Growth and Development, Aukland, New Zealand
| | - H T Blair
- International Sheep Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, Aotearoa-New Zealand; and Gravida: National Centre for Growth and Development, Aukland, New Zealand
| | - P R Kenyon
- International Sheep Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, Aotearoa-New Zealand; and Gravida: National Centre for Growth and Development, Aukland, New Zealand
| | - P K Dearden
- Laboratory for Evolution and Development, Genetics Otago, Department of Biochemistry, University of Otago, Dunedin, Aotearoa-New Zealand; Gravida: National Centre for Growth and Development, Aukland, New Zealand
| | - E J Duncan
- Laboratory for Evolution and Development, Genetics Otago, Department of Biochemistry, University of Otago, Dunedin, Aotearoa-New Zealand; Gravida: National Centre for Growth and Development, Aukland, New Zealand
| |
Collapse
|
23
|
|
24
|
Daniels KM, Farmer C, Jimenez-Flores R, Rijnkels M. Lactation Biology Symposium: the long-term impact of epigenetics and maternal influence on the neonate through milk-borne factors and nutrient status. J Anim Sci 2013; 91:673-5. [PMID: 23482304 DOI: 10.2527/jas.2013-6237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- K M Daniels
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster 44691, USA.
| | | | | | | |
Collapse
|
25
|
Paten AM, Kenyon PR, Lopez-Villalobos N, Peterson SW, Jenkinson CMC, Pain SJ, Blair HT. Lactation Biology Symposium: maternal nutrition during early and mid-to-late pregnancy: Comparative effects on milk production of twin-born ewe progeny during their first lactation. J Anim Sci 2012; 91:676-84. [PMID: 23230109 DOI: 10.2527/jas.2012-5752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies using sheep models indicate that the fetal mammary gland is sensitive to maternal nutrition during gestation; however, results have been inconsistent and do not identify critical feeding periods. This study aimed to clarify previous findings by partitioning the period of maternal nutritional manipulation into 2 stages: early and mid-to-late pregnancy. Sixty-six twin-born, twin-bearing ewes, born to dams that were fed either submaintenance, maintenance, or ad libitum during early pregnancy (d 21 to 50 of pregnancy; SmP21-50, MP21-50, or AdP21-50, respectively) and then either maintenance or ad libitum during mid-to-late pregnancy (d 50 to 140 of pregnancy; MP50-140 or AdP50-140, respectively) were milked once a week, starting from d 7 ± 1 postpartum, for 7 subsequent weeks to enable estimation of daily milk yield and composition. Their lambs were weighed weekly. Ewes born to dams fed MP21-50 tended to have greater accumulated milk (P = 0.10), fat (P = 0.07), and NE (P = 0.06) yields over 50 d compared with ewes born to dams fed SmP21-50 and AdP21-50. In contrast, ewes born to dams fed AdP50-140 tended to have greater accumulated milk (P = 0.10) and lactose (P = 0.09) yields compared with ewes born to dams fed MP50-140. Grandoffspring birth weights were unaffected by granddam nutrition during pregnancy. Ewes born to dams fed AdP21-50 weaned lighter lambs (P = 0.05) than ewes born to dams fed AmP21-50 and tended to wean lighter lambs (P = 0.07) than ewes born to dams fed MP21-50 whereas there were no differences between the weaning weights of lambs (P = 0.43) from ewes born to dams fed AdP50-140 and MP50-140. Maintenance nutrition of dams during early pregnancy appears to be associated with an improved lactation performance of ewe offspring. Higher levels of nutrition during mid-to-late pregnancy also appears to improve the first-lactation performance of ewe offspring. Interestingly, although grandoffspring birth weights were unaffected, weaning weight appears to be influenced by granddam early pregnancy nutrition in a manner discordant with the lactational performance of their dam. Results from this study indicate that dam nutrition during early pregnancy can influence the lactational performance of ewe offspring and the BW at weaning of their grandoffspring, which may ultimately affect farmer profits. This highlights the importance of nutritional management of breeding ewes during this period.
Collapse
Affiliation(s)
- A M Paten
- International Sheep Research and National Research Centre for Growth and Development, Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
26
|
Growth and development of the mammary glands of livestock: A veritable barnyard of opportunities. Semin Cell Dev Biol 2012; 23:557-66. [DOI: 10.1016/j.semcdb.2012.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/27/2023]
|
27
|
Neville MC, Anderson SM, McManaman JL, Badger TM, Bunik M, Contractor N, Crume T, Dabelea D, Donovan SM, Forman N, Frank DN, Friedman JE, German JB, Goldman A, Hadsell D, Hambidge M, Hinde K, Horseman ND, Hovey RC, Janoff E, Krebs NF, Lebrilla CB, Lemay DG, MacLean PS, Meier P, Morrow AL, Neu J, Nommsen-Rivers LA, Raiten DJ, Rijnkels M, Seewaldt V, Shur BD, VanHouten J, Williamson P. Lactation and neonatal nutrition: defining and refining the critical questions. J Mammary Gland Biol Neoplasia 2012; 17:167-88. [PMID: 22752723 PMCID: PMC3428522 DOI: 10.1007/s10911-012-9261-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/06/2012] [Indexed: 01/15/2023] Open
Abstract
This paper resulted from a conference entitled "Lactation and Milk: Defining and refining the critical questions" held at the University of Colorado School of Medicine from January 18-20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into human milk composition, mammary development and lactation. We first outline the unanswered questions regarding the composition of human milk (Section I) and the mechanisms by which milk components affect neonatal development, growth and health and recommend models for future research. Emerging questions about how milk components affect cognitive development and behavioral phenotype of the offspring are presented in Section II. In Section III we outline the important unanswered questions about regulation of mammary gland development, the heritability of defects, the effects of maternal nutrition, disease, metabolic status, and therapeutic drugs upon the subsequent lactation. Questions surrounding breastfeeding practice are also highlighted. In Section IV we describe the specific nutritional challenges faced by three different populations, namely preterm infants, infants born to obese mothers who may or may not have gestational diabetes, and infants born to undernourished mothers. The recognition that multidisciplinary training is critical to advancing the field led us to formulate specific training recommendations in Section V. Our recommendations for research emphasis are summarized in Section VI. In sum, we present a roadmap for multidisciplinary research into all aspects of human lactation, milk and its role in infant nutrition for the next decade and beyond.
Collapse
|
28
|
Sharma RK, Blair HT, Jenkinson CMC, Kenyon PR, Cockrem JF, Parkinson TJ. Uterine environment as a regulator of birth weight and body dimensions of newborn lambs1. J Anim Sci 2012; 90:1338-48. [DOI: 10.2527/jas.2010-3800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Eaglen SAE, Coffey MP, Woolliams JA, Mrode R, Wall E. Phenotypic effects of calving ease on the subsequent fertility and milk production of dam and calf in UK Holstein-Friesian heifers. J Dairy Sci 2012; 94:5413-23. [PMID: 22032364 DOI: 10.3168/jds.2010-4040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 07/24/2011] [Indexed: 11/19/2022]
Abstract
The effect of calving ease on the fertility and production performance of both dam and calf was studied in approximately 50,000 and 10,000 UK Holstein-Friesian heifers and heifer calves, respectively. The first objective of this study was to estimate the effect of a difficult calving on the subsequent first-lactation milk production by estimating lactation curves using cubic splines. This methodology allows the estimation of daily milk, protein, and fat yields following calvings of differing degrees of difficulty. Losses in milk yield after a difficult calving have been quantified previously; however, estimates are generally restricted to the accumulated yields at specific days in lactation. By fitting cubic splines, gaps (in which the shape of the lactation curve can be merely guessed) between estimations were avoided. The second objective of this study was to estimate the effect of a difficult birth on the subsequent performance of the calf as an adult animal. Even though the calving process is known to involve cooperation between dam and calf, the effect of a difficult calving has, until now, only been estimated for the subsequent performance of the dam. Addressing the effects of a difficult birth on the adult calf strengthens the importance of calving ease as a selection trait because it suggests that the benefit of genetic improvement may currently be underestimated. The effect of calving ease on the subsequent reproductive performance of dam and calf was analyzed using linear regression and with calving ease score fitted as a fixed effect. Dams with veterinary-assisted calvings required 0.7 more services to conception and 8 more days to first service and experienced a 28-d longer calving interval in first lactation compared with dams that were not assisted at calving. Effects of calving ease on the reproductive performance of the adult calf in first lactation were not detected. Losses in milk yield of the dam were significant between d 9 to 90 in milk subsequent to a veterinary-assisted calving, creating a loss of approximately 2 kg of milk per day, compared with a nonassisted calving. Calves being born with difficulties showed a significant reduction in milk yield in first lactation, demonstrating the lifelong effect of a difficult birth. Compared with nonassisted calves, veterinary-assisted calves showed a loss of 710 kg in accumulated 305-d milk yield, which was significant from 129 to 261 d in milk. This suggests that from birth to production, physiological effects of a bad calving are not negated. Results furthermore suggest a beneficial effect of farmer assistance at calving on the milk yield of both dam and calf, when moderate difficulties occurred.
Collapse
Affiliation(s)
- S A E Eaglen
- Sustainable Livestock Systems Group, Scottish Agricultural College, Bush Estate, Penicuik, Midlothian, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
The effect of ewe size and nutritional regimen beginning in early pregnancy on development of singleton foetuses in late pregnancy. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
|
32
|
Kenyon PR, Pain SJ, Hutton PG, Jenkinson CMC, Morris ST, Peterson SW, Blair HT. Effects of twin-bearing ewe nutritional treatments on ewe and lamb performance to weaning. ANIMAL PRODUCTION SCIENCE 2011. [DOI: 10.1071/an10184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nutrition of the ewe at various stages of pregnancy is known to affect ewe and offspring performance. However, little is known regarding the potential interactions among differing maternal nutrition regimens in early and mid–late pregnancy. The objective of the present study was to examine the effects and potential interactions of three pastoral nutritional treatments from Day 21 of pregnancy (P21) to P50 (Sub-maintenanceP21–50 (total liveweight change achieved, SMP21-50, –0.15 ± 0.02 kg/day) v. MaintenanceP21–50 (MP21-50,–0.02 ± 0.02 kg/day) v. Ad libitumP21–50 (AdP21-50,0.15 ± 0.02 kg/day) and two pastoral nutritional treatments from P50 to P139 [MaintenanceP50–139 (designed to match change in conceptus mass, total liveweight change achieved, 0.19 ± 0.01 kg/day) v. Ad libitumP50–139 (0.26 ± 0.01 kg/day)] on 382 twin-bearing ewes and their offspring until 91 days after the mid-point of lambing (L91). Ewe liveweight and condition scores in pregnancy and lactation, and lamb liveweights, indices of colostrum uptake and survival were recorded. There were no interactions between nutritional periods for lamb liveweight, apparent colostrum intake and survival, and ewe liveweight, condition score and total weight of lamb per ewe at the end of the study. At L91, ewe nutritional treatment during P21–50 or P50–139 had no effect on either ewe liveweight or body condition score. Ewe nutritional treatment during P21–50 had no effect on lamb birthweight. Lambs born to AdP50–139 ewes were lighter (P < 0.05) than those born to MP50–139 ewes (5.32 ± 0.04 v. 5.48 ± 0.04 kg, respectively). Ewe nutritional treatment during P21–50 or P50–139 had no (P > 0.05) effect on indices of colostrum uptake in lambs at 24–36 h of age. At L91, ewe nutritional treatment during P21–50 or P50–139 had no effect on lamb liveweight, survival or total weight of lamb per ewe. In conclusion, although considerable differences in ewe liveweight were observed during pregnancy, the nutritional treatments had no effect on the production parameters measured at the end of the study. These results indicate, first, that farmers can use early pregnancy as a period to control ewe nutrition when ewes are offered at least pregnancy maintenance levels of nutrition in the mid–late pregnancy period and, second, that there is no advantage from offering twin-bearing ewes a level of nutrition above their pregnancy maintenance requirements in mid–late pregnancy.
Collapse
|
33
|
Hill RA, Connor EE, Poulos SP, Welsh TH, Gabler NK. Growth and development symposium: fetal programming in animal agriculture. J Anim Sci 2010; 88:E38-9. [PMID: 20348379 DOI: 10.2527/jas.2010-2908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- R A Hill
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID 83844-2330, USA.
| | | | | | | | | |
Collapse
|