1
|
Pedrini CA, Machado FS, Fernandes ARM, Cônsolo NRB, Ocampos FMM, Colnago LA, Perdigão A, de Carvalho VV, Acedo TS, Tamassia LFM, Kindermann M, Gandra JR. Performance, Meat Quality and Meat Metabolomics Outcomes: Efficacy of 3-Nitrooxypropanol in Feedlot Beef Cattle Diets. Animals (Basel) 2024; 14:2576. [PMID: 39272361 PMCID: PMC11394267 DOI: 10.3390/ani14172576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
30 Nellore animals with an average weight of 407.25 ± 2.04 kg, were distributed in a completely randomized design across the following treatments: 1-Control (without inclusion of 3-NOP); 2-BV75 (inclusion of 3-NOP at 75 mg/kg DM); 3-BV100 (inclusion of 3-NOP at 100 mg/kg DM). No significant effects were observed between treatments on ingestive behavior. However, the notable effect on the BWfinal and ADG of animals supplemented with 3-NOP compared to the control group was measurable. Cattle beef receiving 3-NOP exhibited reduced methane emissions (p < 0.0001) for all variables analyzed, resulting in an average decrease of 38.2% in methane emissions compared to the control, along with increased hydrogen emissions (g/day) (p < 0.0001). While supplementation with BV100 demonstrated lower methane emission, the performance was lower than BV75 in DMI, BWfinal, ADG, and ADG carcasses. Partial separation of metabolomics observed between groups indicated changes in meat metabolism when comparing the control group with the 3-NOP group, identifying metabolites with a variable importance projection (VIP) score > 1. In conclusion, supplementation with 3-NOP effectively reduced methane emissions and did not negatively influence animal performance.
Collapse
Affiliation(s)
- Cibeli Almeida Pedrini
- Faculty of Agricultural Sciences, Federal University of Grande Dourados, Dourados 79804-970, Brazil
| | - Fábio Souza Machado
- Faculty of Agricultural Sciences, Federal University of Grande Dourados, Dourados 79804-970, Brazil
| | | | | | | | - Luiz Alberto Colnago
- EMBRAPA-Brazilian Agricultural Research Company, Instrumentation, São Carlos 13560-970, Brazil
| | - Alexandre Perdigão
- Innovation and Applied Science Department, DSM Nutritional Products Brazil S.A., São Paulo 01451-905, Brazil
| | - Victor Valério de Carvalho
- Innovation and Applied Science Department, DSM Nutritional Products Brazil S.A., São Paulo 01451-905, Brazil
| | - Tiago Sabella Acedo
- Innovation and Applied Science Department, DSM Nutritional Products Brazil S.A., São Paulo 01451-905, Brazil
| | | | - Maik Kindermann
- Innovation and Applied Science Department, DSM Nutritional Products Brazil S.A., São Paulo 01451-905, Brazil
| | - Jefferson Rodrigues Gandra
- Faculty of Veterinary Medicine, Institute of Humid Tropic Studies, Federal University of the South and Southeast of Pará, Xinguara 68555-970, Brazil
| |
Collapse
|
2
|
Muñoz C, Muñoz IA, Rodríguez R, Urrutia NL, Ungerfeld EM. Effect of combining the methanogenesis inhibitor 3-nitrooxypropanol and cottonseeds on methane emissions, feed intake, and milk production of grazing dairy cows. Animal 2024; 18:101203. [PMID: 38935983 DOI: 10.1016/j.animal.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
No single enteric CH4 mitigating strategy has been consistently effective or is readily applicable to ruminants in grassland systems. When CH4 mitigating strategies are effective under grazing conditions, mitigation is mild to moderate at best. A study was conducted to evaluate the potential of combining two CH4 mitigation strategies deemed feasible to apply in grazing dairy cows, the methanogenesis inhibitor 3-nitrooxypropanol additive (3-NOP) and cottonseed supplementation (CTS), seeking to enhance their individual CH4 mitigating potential. Forty-eight dairy cows were evaluated in a continuous grazing study and supplemented with either a starch-based concentrate (STA) or one that contained cottonseeds (1.75 kg DM/d; CTS), and with either 19 g/d of 10% 3-NOP (Bovaer®) or the additive's carrier (placebo), in a 2 × 2 factorial arrangement of treatments. Treatments were supplied mixed with a concentrate supplement (5 kg/d as fed) and offered in two equal rations at milking. Methane emissions were measured on weeks 4 and 8 using the sulphur hexafluoride tracer gas technique over a 5-d period. The 3-NOP and CTS treatments tended to interact on absolute CH4 such that 3-NOP decreased CH4 by 13.4% with STA, but there was no mitigation with 3-NOP and CTS. Treatment interactions were also obtained for CH4 yield, where 3-NOP tended to decrease CH4 when supplied with STA, and tended to increase it with CTS. The increase in CH4 yield with the CTS diet was driven by a numerical decrease in DM intake. Methane intensity was not affected by the 3-NOP or CTS treatments. Total volatile fatty acids in ruminal fluid were not affected by 3-NOP supplementation, but a reduction in acetate and an increase in propionate proportion occurred, resulting in decreased acetate: propionate. The 3-NOP additive decreased grass intake; however, energy-corrected milk yield and milk composition were largely unaffected. Milk urea increased with 3-NOP supplementation. Combining twice daily supplementation of 3-NOP and CTS did not enhance their CH4 mitigation potential when fed to grazing dairy cows. The relatively low inhibition of CH4 production by 3-NOP compared to studies with total mixed rations may result from the mode of delivery (pulse dosed twice daily) and time gap caused by experimental handling and moving of animals to pasture after 3-NOP supplementation in the milking parlour, which could have impaired the synchrony between the additive presence in the rumen and grass intake in paddocks.
Collapse
Affiliation(s)
- C Muñoz
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, Ruta 5 km 8 norte, 5290000 Osorno, Región de Los Lagos, Chile.
| | - I A Muñoz
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, Ruta 5 km 8 norte, 5290000 Osorno, Región de Los Lagos, Chile
| | - R Rodríguez
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, Ruta 5 km 8 norte, 5290000 Osorno, Región de Los Lagos, Chile
| | - N L Urrutia
- Centro Regional de Investigación Remehue, Instituto de Investigaciones Agropecuarias, Ruta 5 km 8 norte, 5290000 Osorno, Región de Los Lagos, Chile
| | - E M Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias, Camino Cajón-Vilcún km 10, 4880000 Temuco, Región de La Araucanía, Chile
| |
Collapse
|
3
|
Kirwan SF, Tamassia LFM, Walker ND, Karagiannis A, Kindermann M, Waters SM. Effects of dietary supplementation with 3-nitrooxypropanol on enteric methane production, rumen fermentation, and performance in young growing beef cattle offered a 50:50 forage:concentrate diet. J Anim Sci 2024; 102:skad399. [PMID: 38038711 PMCID: PMC11282959 DOI: 10.1093/jas/skad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
There is an urgent requirement internationally to reduce enteric methane (CH4) emissions from ruminants to meet greenhouse gas emissions reduction targets. Dietary supplementation with feed additives is one possible strategy under investigation as an effective solution. The effects of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at reducing CH4 emissions in beef have been shown mainly in adult cattle consuming backgrounding and high-energy finishing diets. In this study, the effects of dietary supplementation of young growing (≤6 mo) beef cattle with 3-NOP were examined in a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of experiment, body weight: 147 ± 38 kg) underwent a 3-wk acclimatization period and were then assigned to one of two treatments in a completely randomized block design. Dietary treatments were (1) control, placebo (no 3-NOP), and (2) 3-NOP applied at 150 mg kg-1 DM. Calves were fed a partial mixed ration for 12 wk. Body weight was recorded weekly and feed intake daily using the Calan Broadbent feeding system. Methane and hydrogen emissions were measured using the GreenFeed system. Total weight gained, dry matter intake (DMI), and average daily gain were not affected by 3-NOP (P > 0.05) supplementation. On average, the inclusion of 3-NOP decreased (P < 0.001) CH4 emissions: g d-1; g kg-1 DMI; by 30.6% and 27.2%, respectively, during the study with a greater reduction occurring over time. Incorporating 3-NOP into beef cattle diets is an efficient solution to decrease CH4 emissions during indoor feeding and when offered 50:50 forage:concentrate diet.
Collapse
Affiliation(s)
- Stuart F Kirwan
- Animal Bioscience Research Department, Teagasc Grange, Dunsany, County Meath, Ireland C15 PW93
| | - Luis F M Tamassia
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Nicola D Walker
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Alexios Karagiannis
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Maik Kindermann
- DSM Nutritional Products, Animal Nutrition and Health, Wurmisweg 576, 4303 Kaiseraugst, Switzerland
| | - Sinéad M Waters
- Animal Bioscience Research Department, Teagasc Grange, Dunsany, County Meath, Ireland C15 PW93
| |
Collapse
|
4
|
van Lingen HJ, Fadel JG, Kebreab E, Bannink A, Dijkstra J, van Gastelen S. Smoothing spline assessment of the accuracy of enteric hydrogen and methane production measurements from dairy cattle using various sampling schemes. J Dairy Sci 2023; 106:6834-6848. [PMID: 37210350 DOI: 10.3168/jds.2022-23207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/08/2023] [Indexed: 05/22/2023]
Abstract
Estimating daily enteric hydrogen (H2) and methane (CH4) emitted from dairy cattle using spot sampling techniques requires accurate sampling schemes. These sampling schemes determine the number of daily samplings and their intervals. This simulation study assessed the accuracy of daily H2 and CH4 emissions from dairy cattle using various sampling schemes for gas collection. Gas emission data were available from a crossover experiment with 28 cows fed twice daily at 80% to 95% of the ad libitum intake, and an experiment that used a repeated randomized block design with 16 cows twice daily fed ad libitum. Gases were sampled every 12 to 15 min for 3 consecutive days in climate respiration chambers. Feed was fed in 2 equal portions per day in both experiments. Per individual cow-period combination, generalized additive models were fitted to all diurnal H2 and CH4 emission profiles. Per profile, the models were fitted using the generalized cross-validation, REML, REML while assuming correlated residuals, and REML while assuming heteroscedastic residuals. The areas under the curve (AUC) of these 4 fits were numerically integrated over 24 h to compute the daily production and compared with the mean of all data points, which was considered the reference. Next, the best of the 4 fits was used to evaluate 9 different sampling schemes. This evaluation determined the average predicted values sampled at 0.5, 1, and 2 h intervals starting at 0 h from morning feeding, at 1 and 2 h intervals starting at 0.5 h from morning feeding, at 6 and 8 h intervals starting at 2 h from morning feeding, and at 2 unequally spaced intervals with 2 or 3 samples per day. Sampling every 0.5 h was needed to obtain daily H2 productions not different from the selected AUC for the restricted feeding experiment, whereas less frequent sampling had predictions varying from 47% to 233% of the AUC. For the ad libitum feeding experiment, sampling schemes had H2 productions from 85% to 155% of the corresponding AUC. For the restricted feeding experiment, daily CH4 production needed samplings every 2 h or shorter, or 1 h or shorter, depending on sampling time after feeding, whereas sampling scheme did not affect CH4 production for the twice daily ad libitum feeding experiment. In conclusion, sampling scheme had a major impact on predicted daily H2 production, particularly with restricted feeding, whereas daily CH4 production was less severely affected by sampling scheme.
Collapse
Affiliation(s)
- Henk J van Lingen
- Department of Animal Science, University of California-Davis, Davis, CA 95616.
| | - James G Fadel
- Department of Animal Science, University of California-Davis, Davis, CA 95616
| | - Ermias Kebreab
- Department of Animal Science, University of California-Davis, Davis, CA 95616
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| | - Sanne van Gastelen
- Wageningen Livestock Research, Wageningen University & Research, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
5
|
Singaravadivelan A, Sachin PB, Harikumar S, Vijayakumar P, Vindhya MV, Farhana FMB, Rameesa KK, Mathew J. Life cycle assessment of greenhouse gas emission from the dairy production system - review. Trop Anim Health Prod 2023; 55:320. [PMID: 37747649 DOI: 10.1007/s11250-023-03748-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Climate change is altering ecological systems and poses a serious threat to human life. Climate change also seriously influences on livestock production by interfering with growth, reproduction, and production. Livestock, on the other hand, is blamed for being a significant contributor to climate change, emitting 8.1 gigatonnes of CO2-eq per year and accounting for two-thirds of global ammonia emissions. Methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) are three major greenhouse gases (GHG) that are primarily produced by enteric fermentation, feed production, diet management, and total product output. Ruminants account for three-quarters of total CO2-equivalent (CO2-eq) emissions from the livestock sector. The global dairy sector alone emits 4.0% of global anthropogenic GHG emissions. Hence, dairy farming needs to engage in environmental impact assessment. Public concern for a sustainable and environmentally friendly farming system is growing, resulting in the significant importance of food-based life cycle assessment (LCA). Over the last decade, LCA has been used in agriculture to assess total GHG emissions associated with products such as milk and manure. It includes the production of farm inputs, farm emissions, milk processing, transportation, consumer use, and waste. LCA studies on milk production would assist us in identifying the specific production processes/areas that contribute to excessive greenhouse gas emissions when producing milk and recommending appropriate mitigation strategies to be implemented for a clean, green, and resilient environment.
Collapse
Affiliation(s)
- Arunasalam Singaravadivelan
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India.
| | - Patil B Sachin
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - S Harikumar
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - Periyasamy Vijayakumar
- Livestock Farm Complex, Veterinary College and Research Institute, Orathanadu, 614 625, Tamil Nadu, India
| | - M V Vindhya
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - F M Beegum Farhana
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - K K Rameesa
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| | - Joseph Mathew
- Department of Livestock Production Management, College of Veterinary and Animal Sciences, KVASU, Mannuthy, 680 651, Kerala, India
| |
Collapse
|
6
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
7
|
Lileikis T, Nainienė R, Bliznikas S, Uchockis V. Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability. Animals (Basel) 2023; 13:2586. [PMID: 37627377 PMCID: PMC10451764 DOI: 10.3390/ani13162586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This review examines the current state of knowledge regarding the effectiveness of different dietary ruminant enteric methane mitigation strategies and their modes of action together with the issues discussed regarding the potential harms/risks and applicability of such strategies. By investigating these strategies, we can enhance our understanding of the mechanisms by which they influence methane production and identify promising approaches for sustainable mitigation of methane emissions. Out of all nutritional strategies, the use of 3-nitrooxypropanol, red seaweed, tannins, saponins, essential oils, nitrates, and sulfates demonstrates the potential to reduce emissions and receives a lot of attention from the scientific community. The use of certain additives as pure compounds is challenging under certain conditions, such as pasture-based systems, so the potential use of forages with sufficient amounts of plant secondary metabolites is also explored. Additionally, improved forage quality (maturity and nutrient composition) might help to further reduce emissions. Red seaweed, although proven to be very effective in reducing emissions, raises some questions regarding the volatility of the main active compound, bromoform, and challenges regarding the cultivation of the seaweed. Other relatively new methods of mitigation, such as the use of cyanogenic glycosides, are also discussed in this article. Together with nitrates, cyanogenic glycosides pose serious risks to animal health, but research has proven their efficacy and safety when control measures are taken. Furthermore, the risks of nitrate use can be minimized by using probiotics. Some of the discussed strategies, namely monensin or halogenated hydrocarbons (as pure compounds), demonstrate efficacy but are unlikely to be implemented widely because of legal restrictions.
Collapse
Affiliation(s)
- Tomas Lileikis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Rasa Nainienė
- Department of Animal Breeding and Reproduction, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Saulius Bliznikas
- Analytical Laboratory, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Virginijus Uchockis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| |
Collapse
|
8
|
Alemu AW, Gruninger RJ, Zhang XM, O’Hara E, Kindermann M, Beauchemin KA. 3-Nitrooxypropanol supplementation of a forage diet decreased enteric methane emissions from beef cattle without affecting feed intake and apparent total-tract digestibility. J Anim Sci 2023; 101:skad001. [PMID: 36617172 PMCID: PMC9904186 DOI: 10.1093/jas/skad001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Supplementation of ruminant diets with the methane (CH4) inhibitor 3-nitrooxypropanol (3-NOP; DSM Nutritional Products, Switzerland) is a promising greenhouse gas mitigation strategy. However, most studies have used high grain or mixed forage-concentrate diets. The objective of this study was to evaluate the effects of supplementing a high-forage diet (90% forage DM basis) with 3-NOP on dry matter (DM) intake, rumen fermentation and microbial community, salivary secretion, enteric gas emissions, and apparent total-tract nutrient digestibility. Eight ruminally cannulated beef heifers (average initial body weight (BW) ± SD, 515 ± 40.5 kg) were randomly allocated to two treatments in a crossover design with 49-d periods. Dietary treatments were: 1) control (no 3-NOP supplementation); and 2) 3-NOP (control + 150 mg 3-NOP/kg DM). After a 16-d diet adaption, DM intake was recorded daily. Rumen contents were collected on days 17 and 28 for volatile fatty acid (VFA) analysis, whereas ruminal pH was continuously monitored from days 20 to 28. Eating and resting saliva production were measured on days 20 and 31, respectively. Diet digestibility was measured on days 38-42 by the total collection of feces, while enteric gas emissions were measured in chambers on days 46-49. Data were analyzed using the mixed procedure of SAS. Dry matter intake and apparent total-tract digestibility of nutrients (DM, neutral and acid detergent fiber, starch, and crude protein) were similar between treatments (P ≥ 0.15). No effect was observed on eating and resting saliva production. Relative abundance of the predominant bacterial taxa and rumen methanogen community was not affected by 3-NOP supplementation but rather by rumen digesta phase and sampling hour (P ≤ 0.01). Total VFA concentration was lower (P = 0.004) following 3-NOP supplementation. Furthermore, the reduction in acetate and increase in propionate molar proportions for 3-NOP lowered (P < 0.001) the acetate to propionate ratio by 18.9% as compared with control (4.1). Mean pH was 0.21 units lower (P < 0.001) for control than 3-NOP (6.43). Furthermore, CH4 emission (g/d) and yield (g/kg DMI) were 22.4 and 22.0% smaller (P < 0.001), respectively, for 3-NOP relative to control. Overall, the results indicate that enteric CH4 emissions were decreased by more than 20% with 3-NOP supplementation of a forage diet without affecting DM intake, predominant rumen microbial community, and apparent total-tract nutrients digestibility.
Collapse
Affiliation(s)
- Aklilu W Alemu
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
- Agriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, Saskatchewan S9H 3X2, Canada
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Xiu Min Zhang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Eóin O’Hara
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | | | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
9
|
Almeida AK, Cowley F, McMeniman JP, Karagiannis A, Walker N, Tamassia LFM, McGrath JJ, Hegarty RS. Effect of 3-nitrooxypropanol on enteric methane emissions of feedlot cattle fed with a tempered barley-based diet with canola oil. J Anim Sci 2023; 101:skad237. [PMID: 37429613 PMCID: PMC10370881 DOI: 10.1093/jas/skad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/09/2023] [Indexed: 07/12/2023] Open
Abstract
A dose-response experiment was designed to examine the effect of 3-nitrooxypropanol (3-NOP) on methane (CH4) emissions, rumen function and performance of feedlot cattle fed a tempered barley-based diet with canola oil. Twenty Angus steers of initial body weight (BW) of 356 ± 14.4 kg were allocated in a randomized complete block design. Initial BW was used as the blocking criterion. Cattle were housed in individual indoor pens for 112 d, including the first 21 d of adaptation followed by a 90-d finishing period when five different 3-NOP inclusion rates were compared: 0 mg/kg dry matter (DM; control), 50 mg/kg DM, 75 mg/kg DM, 100 mg/kg DM, and 125 mg/kg DM. Daily CH4 production was measured on day 7 (last day of starter diet), day 14 (last day of the first intermediate diet), and day 21 (last day of the second intermediate diet) of the adaptation period and on days 28, 49, 70, 91, and 112 of the finisher period using open circuit respiration chambers. Rumen digesta samples were collected from each steer on the day prior to chamber measurement postfeeding, and prefeeding on the day after the chamber measurement, for determination of rumen volatile fatty acids (VFA), ammonium-N, protozoa enumeration, pH, and reduction potential. Dry matter intake (DMI) was recorded daily and BW weekly. Data were analyzed in a mixed model including period, 3-NOP dose and their interaction as fixed effects, and block as a random effect. Our results demonstrated both a linear and quadratic (decreasing rate of change) effect on CH4 production (g/d) and CH4 yield (g/kg DMI) as 3-NOP dose increased (P < 0.01). The achieved mitigation for CH4 yield in our study ranged from approximately 65.5% up to 87.6% relative to control steers fed a finishing feedlot diet. Our results revealed that 3-NOP dose did not alter rumen fermentation parameters such as ammonium-N, VFA concentration nor VFA molar proportions. Although this experimental design was not focused on the effect of 3-NOP dose on feedlot performance, no negative effects of any 3-NOP dose were detected on animal production parameters. Ultimately, the knowledge on the CH4 suppression pattern of 3-NOP may facilitate sustainable pathways for the feedlot industry to lower its carbon footprint.
Collapse
Affiliation(s)
- Amelia K Almeida
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Frances Cowley
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Joe P McMeniman
- Feedlot Program, Meat and Livestock Australia Limited (MLA), North Sydney, NSW 2060, Australia
| | - Alex Karagiannis
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Nicola Walker
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Luis F M Tamassia
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Joseph J McGrath
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
- Animal Nutrition and Health, DSM Nutritional Products, Wurmisweg 576 4303, Kaiseraugst, Switzerland
| | - Roger S Hegarty
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
10
|
Araújo TLR, Rabelo CHS, Cardoso AS, Carvalho VV, Acedo TS, Tamassia LFM, Vasconcelos GSFM, Duval SM, Kindermann M, Gouvea VN, Fernandes MHMR, Reis RA. Feeding 3-nitrooxypropanol reduces methane emissions by feedlot cattle on tropical conditions. J Anim Sci 2023; 101:skad225. [PMID: 37402612 PMCID: PMC10358221 DOI: 10.1093/jas/skad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/03/2023] [Indexed: 07/06/2023] Open
Abstract
Our objective was to evaluate the effects of feeding 3-nitrooxypropanol (3-NOP; Bovaer, DSM Nutritional Products) at two levels on methane emissions, nitrogen balance, and performance by feedlot cattle. In experiment 1, a total of 138 Nellore bulls (initial body weight, 360 ± 37.3 kg) were housed in pens (27 pens with either 4 or 5 bulls per pen) and fed a high-concentrate diet for 96 d, containing 1) no addition of 3-NOP (control), 2) inclusion of 3-NOP at 100 mg/kg dry matter (DM), and 3) inclusion of 3-NOP at 150 mg/kg DM. No adverse effects of 3-NOP were observed on DM intake (DMI), animal performance, and gain:feed (P > 0.05). In addition, there was no effect (P > 0.05) of 3-NOP on carcass characteristics (subcutaneous fat thickness and rib eye area). In experiment 2, 24 bulls (initial BW, 366 ± 39.6 kg) housed in 12 pens (2 bulls/pen) from experiment 1 were used for CH4 measurements and nitrogen balance. Irrespective of the level, 3-NOP consistently decreased (P < 0.001) animals' CH4 emissions (g/d; ~49.3%), CH4 yield (CH4/DMI; ~40.7%) and CH4 intensity (CH4/average daily gain; ~38.6%). Moreover, 3-NOP significantly reduced the gross energy intake lost as CH4 by 42.5% (P < 0.001). The N retention: N intake ratio was not affected by 3-NOP (P = 0.19). We conclude that feeding 3-NOP is an effective strategy to reduce methane emissions, with no impairment on feedlot cattle performance.
Collapse
Affiliation(s)
- Tiago L R Araújo
- UNESP, São Paulo State University, Department of Animal Sciences, 14884-900 Jaboticabal, SP, Brazil
| | - Carlos H S Rabelo
- UFPel, Federal University of Pelotas, Department of Plant Sciences, 96050-500 Capão do Leão, RS, Brazil
| | - Abmael S Cardoso
- UNESP, São Paulo State University, Department of Animal Sciences, 14884-900 Jaboticabal, SP, Brazil
| | - Victor V Carvalho
- DSM Nutritional Products Brazil S.A., Innovation and Applied Science Department, 04543-907 São Paulo, SP, Brazil
| | - Tiago S Acedo
- DSM Nutritional Products Brazil S.A., Innovation and Applied Science Department, 04543-907 São Paulo, SP, Brazil
| | - Luis F M Tamassia
- DSM Nutritional Products, Global Innovation Science Department, Wurmisweg 576, Kaiseraugst, Switzerland
| | - Guilherme S F M Vasconcelos
- DSM Nutritional Products Brazil S.A., Innovation and Applied Science Department, 04543-907 São Paulo, SP, Brazil
| | - Stephane M Duval
- DSM Nutritional Products, Global Innovation Science Department, Wurmisweg 576, Kaiseraugst, Switzerland
| | - Maik Kindermann
- DSM Nutritional Products, Global Innovation Science Department, Wurmisweg 576, Kaiseraugst, Switzerland
| | - Vinicius N Gouvea
- Texas A&M AgriLife Research and Extension, Department of Animal Science, Amarillo, TX 79106, USA
| | - Marcia H M R Fernandes
- UNESP, São Paulo State University, Department of Animal Sciences, 14884-900 Jaboticabal, SP, Brazil
| | - Ricardo A Reis
- UNESP, São Paulo State University, Department of Animal Sciences, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
11
|
Liu Z, Wang K, Nan X, Yang L, Wang Y, Zhang F, Cai M, Zhao Y, Xiong B. Effects of combined addition of 3-nitrooxypropanol and vitamin B12 on methane and propionate production in dairy cows by in vitro-simulated fermentation. J Dairy Sci 2022; 106:219-232. [DOI: 10.3168/jds.2022-22207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/13/2022] [Indexed: 11/09/2022]
|
12
|
Lee C, Beauchemin K, Dijkstra J, Morris D, Nichols K, Kononoff P, Vyas D. Estimates of daily oxygen consumption, carbon dioxide and methane emissions, and heat production for beef and dairy cattle using spot gas sampling. J Dairy Sci 2022; 105:9623-9638. [DOI: 10.3168/jds.2022-22213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
|
13
|
Gruninger RJ, Zhang XM, Smith ML, Kung L, Vyas D, McGinn SM, Kindermann M, Wang M, Tan ZL, Beauchemin KA. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community. Anim Microbiome 2022; 4:35. [PMID: 35642048 PMCID: PMC9158287 DOI: 10.1186/s42523-022-00179-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background The major greenhouse gas from ruminants is enteric methane (CH4) which in 2010, was estimated at 2.1 Gt of CO2 equivalent, accounting for 4.3% of global anthropogenic greenhouse gas emissions. There are extensive efforts being made around the world to develop CH4 mitigating inhibitors that specifically target rumen methanogens with the ultimate goal of reducing the environmental footprint of ruminant livestock production. This study examined the individual and combined effects of supplementing a high-forage diet (90% barley silage) fed to beef cattle with the investigational CH4 inhibitor 3-nitrooxypropanol (3-NOP) and canola oil (OIL) on the rumen microbial community in relation to enteric CH4 emissions and ruminal fermentation. Results 3-NOP and OIL individually reduced enteric CH4 yield (g/kg dry matter intake) by 28.2% and 24.0%, respectively, and the effects were additive when used in combination (51.3% reduction). 3-NOP increased H2 emissions 37-fold, while co-administering 3-NOP and OIL increased H2 in the rumen 20-fold relative to the control diet. The inclusion of 3-NOP or OIL significantly reduced the diversity of the rumen microbiome. 3-NOP resulted in targeted changes in the microbiome decreasing the relative abundance of Methanobrevibacter and increasing the relative abundance of Bacteroidetes. The inclusion of OIL resulted in substantial changes to the microbial community that were associated with changes in ruminal volatile fatty acid concentration and gas production. OIL significantly reduced the abundance of protozoa and fiber-degrading microbes in the rumen but it did not selectively alter the abundance of rumen methanogens. Conclusions Our data provide a mechanistic understanding of CH4 inhibition by 3-NOP and OIL when offered alone and in combination to cattle fed a high forage diet. 3-NOP specifically targeted rumen methanogens and partly inhibited the hydrogenotrophic methanogenesis pathway, which increased H2 emissions and propionate molar proportion in rumen fluid. In contrast, OIL caused substantial changes in the rumen microbial community by indiscriminately altering the abundance of a range of rumen microbes, reducing the abundance of fibrolytic bacteria and protozoa, resulting in altered rumen fermentation. Importantly, our data suggest that co-administering CH4 inhibitors with distinct mechanisms of action can both enhance CH4 inhibition and provide alternative sinks to prevent excessive accumulation of ruminal H2. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00179-8.
Collapse
Affiliation(s)
- Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada.
| | - Xiu Min Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Megan L Smith
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Limin Kung
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Diwakar Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Sean M McGinn
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Maik Kindermann
- DSM Nutritional Products, Animal Nutrition and Health, CH-4002, Basel, Switzerland
| | - Min Wang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Zhi Liang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
14
|
Ungerfeld EM, Beauchemin KA, Muñoz C. Current Perspectives on Achieving Pronounced Enteric Methane Mitigation From Ruminant Production. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.795200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Limiting global warming to 1.5°C above pre-industrial levels by 2050 requires achieving net zero emissions of greenhouse gases by 2050 and a strong decrease in methane (CH4) emissions. Our aim was to connect the global need for mitigation of the emissions of greenhouse gases and enteric CH4 from ruminant production to basic research on the biological consequences of inhibiting rumen methanogenesis in order to better design strategies for pronounced mitigation of enteric CH4 production without negative impacts on animal productivity or economic returns. Ruminant production worldwide has the challenge of decreasing its emissions of greenhouse gases while increasing the production of meat and milk to meet consumers demand. Production intensification decreases the emissions of greenhouse gases per unit of product, and in some instances has decreased total emissions, but in other instances has resulted in increased total emissions of greenhouse gases. We propose that decreasing total emission of greenhouse gases from ruminants in the next decades while simultaneously increasing meat and milk production will require strong inhibition of rumen methanogenesis. An aggressive approach to pronounced inhibition of enteric CH4 emissions is technically possible through the use of chemical compounds and/or bromoform-containing algae, but aspects such as safety, availability, government approval, consumer acceptance, and impacts on productivity and economic returns must be satisfactorily addressed. Feeding these additives will increase the cost of ruminant diets, which can discourage their adoption. On the other hand, inhibiting rumen methanogenesis potentially saves energy for the host animal and causes profound changes in rumen fermentation and post-absorptive metabolism. Understanding the biological consequences of methanogenesis inhibition could allow designing strategies to optimize the intervention. We conducted meta-regressions using published studies with at least one treatment with >50% inhibition of CH4 production to elucidate the responses of key rumen metabolites and animal variables to methanogenesis inhibition, and understand possible consequences on post-absorptive metabolism. We propose possible avenues, attainable through the understanding of biological consequences of the methanogenesis inhibition intervention, to increase animal productivity or decrease feed costs when inhibiting methanogenesis.
Collapse
|
15
|
Yu G, Beauchemin KA, Dong R. A Review of 3-Nitrooxypropanol for Enteric Methane Mitigation from Ruminant Livestock. Animals (Basel) 2021; 11:3540. [PMID: 34944313 PMCID: PMC8697901 DOI: 10.3390/ani11123540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Methane (CH4) from enteric fermentation accounts for 3 to 5% of global anthropogenic greenhouse gas emissions, which contribute to climate change. Cost-effective strategies are needed to reduce feed energy losses as enteric CH4 while improving ruminant production efficiency. Mitigation strategies need to be environmentally friendly, easily adopted by producers and accepted by consumers. However, few sustainable CH4 mitigation approaches are available. Recent studies show that the chemically synthesized CH4 inhibitor 3-nitrooxypropanol is one of the most effective approaches for enteric CH4 abatement. 3-nitrooxypropanol specifically targets the methyl-coenzyme M reductase and inhibits the final catalytic step in methanogenesis in rumen archaea. Providing 3-nitrooxypropanol to dairy and beef cattle in research studies has consistently decreased enteric CH4 production by 30% on average, with reductions as high as 82% in some cases. Efficacy is positively related to 3-NOP dose and negatively affected by neutral detergent fiber concentration of the diet, with greater responses in dairy compared with beef cattle when compared at the same dose. This review collates the current literature on 3-nitrooxypropanol and examines the overall findings of meta-analyses and individual studies to provide a synthesis of science-based information on the use of 3-nitrooxypropanol for CH4 abatement. The intent is to help guide commercial adoption at the farm level in the future. There is a significant body of peer-reviewed scientific literature to indicate that 3-nitrooxypropanol is effective and safe when incorporated into total mixed rations, but further research is required to fully understand the long-term effects and the interactions with other CH4 mitigating compounds.
Collapse
Affiliation(s)
- Guanghui Yu
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China;
| | - Karen A. Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada;
| | - Ruilan Dong
- College of Animal Science and Technology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China;
| |
Collapse
|
16
|
Almeida AK, Hegarty RS, Cowie A. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. ACTA ACUST UNITED AC 2021; 7:1219-1230. [PMID: 34754963 PMCID: PMC8556609 DOI: 10.1016/j.aninu.2021.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022]
Abstract
Increasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries, and livestock production in particular, as part of their climate change management. While many reviews update progress in mitigation research, a quantitative assessment of the efficacy and performance-consequences of nutritional strategies to mitigate enteric methane (CH4) emissions from ruminants has been lacking. A meta-analysis was conducted based on 108 refereed papers from recent animal studies (2000–2020) to report effects on CH4 production, CH4 yield and CH4 emission intensity from 8 dietary interventions. The interventions (oils, microalgae, nitrate, ionophores, protozoal control, phytochemicals, essential oils and 3-nitrooxypropanol). Of these, macroalgae and 3-nitrooxypropanol showed greatest efficacy in reducing CH4 yield (g CH4/kg of dry matter intake) at the doses trialled. The confidence intervals derived for the mitigation efficacies could be applied to estimate the potential to reduce national livestock emissions through the implementation of these dietary interventions.
Collapse
Affiliation(s)
- Amelia K Almeida
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Roger S Hegarty
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Annette Cowie
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.,NSW Department of Primary Industries, Trevenna Rd, Armidale, NSW, 2351, Australia
| |
Collapse
|
17
|
Peterson CB, Mitloehner FM. Sustainability of the Dairy Industry: Emissions and Mitigation Opportunities. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.760310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dairy cattle provide a major benefit to the world through upcycling human inedible feedstuffs into milk and associated dairy products. However, as beneficial as this process has become, it is not without potential negatives. Dairy cattle are a source of greenhouse gases through enteric and waste fermentation as well as excreting nitrogen emissions through their feces and urine. However, these negative impacts vary widely due to how and what these animals are fed. In addition, there are many promising opportunities for further reducing emissions through feed and waste additives. The present review aims to further expand on where the industry is today and the potential avenues for improvement. This area of research is still not complete and additional information is required to further improve our dairy systems impact on sustainable animal products.
Collapse
|
18
|
Pulina G, Acciaro M, Atzori AS, Battacone G, Crovetto GM, Mele M, Pirlo G, Rassu SPG. Animal board invited review - Beef for future: technologies for a sustainable and profitable beef industry. Animal 2021; 15:100358. [PMID: 34634751 DOI: 10.1016/j.animal.2021.100358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/07/2023] Open
Abstract
The global consumption, notably in developing countries, and production of beef are increasing continuously, and this requires the industry to improve performance and to reduce the environmental impact of the production chain. Since the improvement in efficiency and the highest impacts occur at farm level, it is appropriate to focus on the profitability and environmental sustainability of these enterprises. In many areas of the world, beef production is economically and socially relevant because it accounts for a significant portion of the agricultural production and represents a vital economic activity in mountain and hill districts of many regions, where few alternatives for other agricultural production exist. Due to the important role in the agricultural and food economy worldwide, the future of the beef industry is linked to the reduction of ecological impacts, mainly adopting the agroecological mitigation practices, and the simultaneous improvement of production performances and of product quality. This review analyses the technical and managerial solutions currently available to increase the efficiency of the beef industry and, at the same time, to reduce its environmental impacts in response to the growing concerns and awareness of citizens and consumers.
Collapse
Affiliation(s)
- G Pulina
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | | | - A S Atzori
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - G Battacone
- Dipartimento di Agraria, University of Sassari, Sassari, Italy.
| | - G M Crovetto
- Dipartimento di Scienze Agrarie e Ambientali, University of Milan, Milano, Italy
| | - M Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agroambientali, University of Pisa, Pisa, Italy
| | - G Pirlo
- Research Centre for Animal Production and Aquaculture, Council for Agriculture Research and Economics, Lodi, Italy
| | - S P G Rassu
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
Astragallus mollissimus plant extract: a strategy to reduce ruminal methanogenesis. Trop Anim Health Prod 2021; 53:436. [PMID: 34401959 DOI: 10.1007/s11250-021-02882-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Ruminal methanogenesis is considered an inefficient process as it can result in the loss of 4 to 12% of the total energy consumed by the ruminant. Recent studies have shown that compounds such as nitroethane, 2-nitroethanol, 2-nitro-1-propanol, and 3-nitro-1-propionic acid are capable of inhibiting methane production during in vitro studies. However, all of these nitrocompounds came from a synthetic origin, which could limit their use. In contrast, some plants of the Astragallus genus produce a natural nitrocompound, although its anti-methanogenic effect has not been evaluated. To determine the anti-methanogenic effect, in vitro cultures of freshly collected mixed populations of ruminal microbes were supplemented with A. mollissimus extracts (MISER). Cultures supplemented with 2-nitroethanol, ethyl 2-nitroacetate, or nitroethane were used as positive controls whereas distilled water was added to the untreated control tubes. After a 24 h incubation period, the methane production was reduced by more than 98% for the samples treated with A. mollissimus extract (P < 0.05) compared to the untreated controls (10.2 ± 0.1 mmol mL-1 incubated liquid). Cultures supplemented with MISER produced a greater (P < 0.05) amount of total VFA, compared to the rest of treated and untreated cultures. Considering that there are significant differences between MISER treatment, positive controls and untreated cultures (P < 0.05) regarding the amounts of total gas, gas composition (CH4 and H2), and the amount of VFA produced, it is concluded that Astragallus mollissimus poses an alternative strategy to reduce ruminal methanogenesis. To further explore such alternative, it is necessary to determine if the metabolization byproducts are safe and/or useful for the animal.
Collapse
|
20
|
Haugen-Kozyra K. Market-based tools for accelerating cattle sustainability in Canada. Anim Front 2021; 11:17-25. [PMID: 34513265 PMCID: PMC8420989 DOI: 10.1093/af/vfab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Schilde M, von Soosten D, Hüther L, Kersten S, Meyer U, Zeyner A, Dänicke S. Dose-Response Effects of 3-Nitrooxypropanol Combined with Low- and High-Concentrate Feed Proportions in the Dairy Cow Ration on Fermentation Parameters in a Rumen Simulation Technique. Animals (Basel) 2021; 11:1784. [PMID: 34203718 PMCID: PMC8232248 DOI: 10.3390/ani11061784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Methane (CH4) from ruminal feed degradation is a major pollutant from ruminant livestock, which calls for mitigation strategies. The purpose of the present 4 × 2 factorial arrangement was to investigate the dose-response relationships between four doses of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) and potential synergistic effects with low (LC) or high (HC) concentrate feed proportions (CFP) on CH4 reduction as both mitigation approaches differ in their mode of action (direct 3-NOP vs. indirect CFP effects). Diet substrates and 3-NOP were incubated in a rumen simulation technique to measure the concentration and production of volatile fatty acids (VFA), fermentation gases as well as substrate disappearance. Negative side effects on fermentation regarding total VFA and gas production as well as nutrient degradability were observed for neither CFP nor 3-NOP. CH4 production decreased from 10% up to 97% in a dose-dependent manner with increasing 3-NOP inclusion rate (dose: p < 0.001) but irrespective of CFP (CFP × dose: p = 0.094). Hydrogen gas accumulated correspondingly with increased 3-NOP dose (dose: p < 0.001). In vitro pH (p = 0.019) and redox potential (p = 0.066) varied by CFP, whereas the latter fluctuated with 3-NOP dose (p = 0.01). Acetate and iso-butyrate (mol %) decreased with 3-NOP dose, whereas iso-valerate increased (dose: p < 0.001). Propionate and valerate varied inconsistently due to 3-NOP supplementation. The feed additive 3-NOP was proven to be a dose-dependent yet effective CH4 inhibitor under conditions in vitro. The observed lack of additivity of increased CFP on the CH4 inhibition potential of 3-NOP needs to be verified in future research testing further diet types both in vitro and in vivo.
Collapse
Affiliation(s)
- Matthias Schilde
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Dirk von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Liane Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Susanne Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Ulrich Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| | - Annette Zeyner
- Institute of Agricultural and Nutritional Sciences, Group Animal Nutrition, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (D.v.S.); (L.H.); (S.K.); (U.M.); (S.D.)
| |
Collapse
|
22
|
Zhang XM, Smith ML, Gruninger RJ, Kung L, Vyas D, McGinn SM, Kindermann M, Wang M, Tan ZL, Beauchemin KA. Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total tract digestibility in beef cattle. J Anim Sci 2021; 99:skab081. [PMID: 33755112 PMCID: PMC8051842 DOI: 10.1093/jas/skab081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The individual and combined effects of 3-nitrooxypropanol (3-NOP) and canola oil (OIL) supplementation on enteric methane (CH4) and hydrogen (H2) emissions, rumen fermentation and biohydrogenation, and total tract nutrient digestibility were investigated in beef cattle. Eight beef heifers (mean body weight ± SD, 732 ± 43 kg) with ruminal fistulas were used in a replicated 4 × 4 Latin square with a 2 (with and without 3-NOP) × 2 (with and without OIL) arrangement of treatments and 28-d periods (13 d adaption and 15 d measurements). The four treatments were: control (no 3-NOP, no OIL), 3-NOP (200 mg/kg dry matter [DM]), OIL (50 g/kg DM), and 3-NOP (200 mg/kg DM) plus OIL (50 g/kg DM). Animals were fed restrictively (7.6 kg DM/d) a basal diet of 900 g/kg DM barley silage and 100 g/kg DM supplement. 3-NOP and OIL decreased (P < 0.01) CH4 yield (g/kg DM intake) by 31.6% and 27.4%, respectively, with no 3-NOP × OIL interaction (P = 0.85). Feeding 3-NOP plus OIL decreased CH4 yield by 51% compared with control. There was a 3-NOP × OIL interaction (P = 0.02) for H2 yield (g/kg DM intake); the increase in H2 yield (P < 0.01) due to 3-NOP was less when it was combined with OIL. There were 3-NOP × OIL interactions for molar percentages of acetate and propionate (P < 0.01); individually, 3-NOP and OIL decreased acetate and increased propionate percentages with no further effect when supplemented together. 3-NOP slightly increased crude protein (P = 0.02) and starch (P = 0.01) digestibilities, while OIL decreased the digestibilities of DM (P < 0.01) and neutral detergent fiber (P < 0.01) with no interactions (P = 0.15 and 0.10, respectively). 3-NOP and OIL increased (P = 0.04 and P < 0.01, respectively) saturated fatty acid concentration in rumen fluid, with no interaction effect. Interactions for ruminal trans-monounsaturated fatty acids (t-MUFA) concentration and percentage were observed (P = 0.02 and P < 0.01); 3-NOP had no effect on t-MUFA concentration and percentage, while OIL increased the concentration (P < 0.01) and percentage (P < 0.01) of t-MUFA but to a lesser extent when combined with 3-NOP. In conclusion, the CH4-mitigating effects of 3-NOP and OIL were independent and incremental. Supplementing ruminant diets with a combination of 3-NOP and OIL may help mitigate CH4 emissions, but the decrease in total tract digestibility due to OIL may decrease animal performance and needs further investigation.
Collapse
Affiliation(s)
- Xiu Min Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Megan L Smith
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Limin Kung
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Diwakar Vyas
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Sean M McGinn
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | | | - Min Wang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Zhi Liang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
23
|
Terry SA, Basarab JA, Guan LL, McAllister TA. Strategies to improve the efficiency of beef cattle production. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Globally, there are approximately one billion beef cattle, and compared with poultry and swine, beef cattle have the poorest conversion efficiency of feed to meat. However, these metrics fail to consider that beef cattle produce high-quality protein from feeds that are unsuitable for other livestock species. Strategies to improve the efficiency of beef cattle are focusing on operational and breeding management, host genetics, functional efficiency of rumen and respiratory microbiomes, and the structure and composition of feed. These strategies must also consider the health and immunity of the herd as well as the need for beef cattle to thrive in a changing environment. Genotyping can identify hybrid vigor with positive consequences for animal health, productivity, and environmental adaptability. The role of microbiome–host interactions is key in efficient nutrient digestion and host health. Microbial markers and gene expression patterns within the rumen microbiome are being used to identify hosts that are efficient at fibre digestion. Plant breeding and processing are optimizing the feed value of both forages and concentrates. Strategies to improve the efficiency of cattle production are a prerequisite for the sustainable intensification needed to satisfy the future demand for beef.
Collapse
Affiliation(s)
- Stephanie A. Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - John A. Basarab
- Alberta Agriculture and Forestry, Lacombe Research and Development Centre, 6000 C&E Trail, Lacombe, AB T4L 1W1, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
24
|
Alemu AW, Shreck AL, Booker CW, McGinn SM, Pekrul LKD, Kindermann M, Beauchemin KA. Use of 3-nitrooxypropanol in a commercial feedlot to decrease enteric methane emissions from cattle fed a corn-based finishing diet. J Anim Sci 2021; 99:skaa394. [PMID: 33515476 PMCID: PMC8355502 DOI: 10.1093/jas/skaa394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/25/2021] [Indexed: 11/14/2022] Open
Abstract
The present study evaluated enteric CH4 production, dry matter (DM) intake (DMI), and rumen fermentation in feedlot cattle supplemented with increasing concentrations of 3-nitrooxypropanol (3-NOP). A total of 100 crossbred steers (body weight, 421 ± 11 kg) was randomly assigned to one of four treatments (n = 25/treatment): control (no 3-NOP) or low (100 mg/kg DM), medium (125 mg/kg DM), and high (150 mg/kg DM) doses of 3-NOP. The study was comprised of 28 d of adaptation followed by three 28-d periods, with CH4 measured for 7 d per period and cattle remaining on their respective diets throughout the 112-d study. Each treatment group was assigned to a pen, with the cattle and diets rotated among pens weekly to allow the animals to access the GreenFeed emission monitoring (GEM) system stationed in one of the pens for CH4 measurement. Measured concentration (mg/kg DM) of 3-NOP in the total diet consumed (basal diet + GEM pellet) was 85.6 for low, 107.6 for medium, and 124.5 for high doses of 3-NOP. There was a treatment × period interaction (P < 0.001) for DMI; compared with control, the DMI was less for the low and high doses in period 1, with no differences thereafter. Compared with control (10.78 g/kg DMI), CH4 yield (g/kg DMI) was decreased (P < 0.001) by 52%, 76%, and 63% for low, medium, and high doses of 3-NOP, respectively. A treatment × period effect (P = 0.048) for CH4 yield indicated that the low dose decreased in efficacy from 59% decrease in periods 1 and 2 to 37% decrease in period 3, while the efficacy of the medium and high doses remained consistent over time. Irrespective of dose, hydrogen emissions increased by 4.9-fold (P < 0.001), and acetate:propionate ratio in rumen fluid decreased (P = 0.045) with 3-NOP supplementation, confirming that other hydrogen-utilizing pathways become more important in the CH4-inhibited rumen. The study indicates that supplementation of corn-based finishing diets with 3-NOP using a medium dose is an effective CH4 mitigation strategy for commercial beef feedlots with a 76% decrease in CH4 yield. Further research is needed to determine the effects of 3-NOP dose on weight gain, feed conversion efficiency, and carcass characteristics of feedlot cattle at a commercial scale.
Collapse
Affiliation(s)
- Aklilu W Alemu
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Adam L Shreck
- Feedlot Health Management Services, Okotoks, AB, Canada
| | | | - Sean M McGinn
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Maik Kindermann
- DSM Nutritional Products, Animal Nutrition and Health, Kaiseraugst, Switzerland
| | - Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
25
|
Honan M, Feng X, Tricarico J, Kebreab E. Feed additives as a strategic approach to reduce enteric methane production in cattle: modes of action, effectiveness and safety. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20295] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Melgar A, Nedelkov K, Martins CMMR, Welter KC, Chen X, Räisänen SE, Harper MT, Oh J, Duval S, Hristov AN. Short communication: Short-term effect of 3-nitrooxypropanol on feed dry matter intake in lactating dairy cows. J Dairy Sci 2020; 103:11496-11502. [PMID: 33041021 DOI: 10.3168/jds.2020-18331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/29/2020] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP), an enteric methane inhibitor under investigation, on short-term dry matter intake (DMI) in lactating dairy cows. Following a 1-wk adaptation period, 12 multiparous Holstein cows were fed a basal total mixed ration (TMR) containing increasing levels of 3-NOP during 5 consecutive, 6-d periods. The experiment was conducted in a tiestall barn. Feed bins were split in half by a solid divider, and cows simultaneously received the basal TMR supplemented with the following: (1) a placebo without 3-NOP or (2) 3-NOP included in the TMR at 30, 60, 90, or 120 mg/kg of feed dry matter (experimental periods 2, 3, 4, and 5, respectively). Cows received the control diet (basal TMR plus placebo premix) during experimental period 1. A premix containing ground corn grain, soybean oil, and dry molasses was used to incorporate 3-NOP in the ration. Cows were fed twice daily as follows: 60% of the daily feed allowance at 0800 h and 40% at 1800 h. Feed offered and refused was recorded at each feeding. During the morning feedings, each cow was offered either control or 3-NOP-treated TMR at 150% of her average intake during the previous 3 d. After collection of the evening refusals, cows received only the basal TMR without the premix until the next morning feeding. The test period for the short-term DMI data collection was defined from morning feeding to afternoon refusals collection during each day of each experimental period. Location (left or right) of the control and 3-NOP diets within a feed bin was switched every day during each period to avoid feed location bias. Dry matter intake of TMR during the test period was quadratically increased by 3-NOP compared with the control. Inclusion of 3-NOP at 120 mg/kg of feed dry matter resulted in decreased 10-h DMI compared with the lower 3-NOP doses, but was similar to the control. There was no effect of feed location (left or right) within feed bin on DMI. Data from this short-term study suggests that 3-NOP does not have a negative effect on DMI in lactating dairy cows.
Collapse
Affiliation(s)
- A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - K Nedelkov
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Husbandry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria
| | - C M M R Martins
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - K C Welter
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Department of Animal Science, School of Food Engineering and Animal Science, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - X Chen
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Computing, University of Ulster, Co. Antrim, Northern Ireland, BT37 0QB, United Kingdom
| | - S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M T Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802; Cargill Animal Nutrition, Seongnam, South Korea 13630
| | - S Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, Saint Louis Cedex 68305, France
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
27
|
Samsonstuen S, Åby BA, Crosson P, Beauchemin KA, Aass L. Mitigation of greenhouse gas emissions from beef cattle production systems. ACTA AGR SCAND A-AN 2020. [DOI: 10.1080/09064702.2020.1806349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Stine Samsonstuen
- Department of Animal Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Bente A. Åby
- Department of Animal Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Paul Crosson
- Animal Grassland Research and Innovation Centre, Teagasc, Meath, Ireland
| | - Karen A. Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Laila Aass
- Department of Animal Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
28
|
Zhang XM, Gruninger RJ, Alemu AW, Wang M, Tan ZL, Kindermann M, Beauchemin KA. 3-Nitrooxypropanol supplementation had little effect on fiber degradation and microbial colonization of forage particles when evaluated using the in situ ruminal incubation technique. J Dairy Sci 2020; 103:8986-8997. [PMID: 32861497 DOI: 10.3168/jds.2019-18077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/29/2020] [Indexed: 01/31/2023]
Abstract
3-Nitrooxypropanol (3-NOP) is an investigational compound that acts as an enzyme inhibitor to decrease ruminal methanogenesis. We hypothesized that when feeding 3-NOP to cattle fed a high-forage diet, H2 would accumulate in the rumen, which could suppress microbial colonization of feed particles and fiber degradation. Therefore, the study investigated the effects of supplementing a high-forage diet with 3-NOP on ruminal fiber degradability and microbial colonization of feed particles using the in situ technique. Eight ruminally cannulated beef cattle were allocated to 2 groups (4 cattle/group) in a crossover design with 2 periods and 2 dietary treatments. The treatments were control (basal diet) and 3-NOP (basal diet supplemented with 3-NOP, 150 mg/kg of dry matter). The basal diet consisted of 45% barley silage, 45% chopped grass hay, and 10% concentrate (dry matter basis). Samples of dried, ground barley silage and grass hay were incubated in the rumen of each animal for 0, 4, 12, 24, 36, 48, 96, 120, 216, and 288 h to determine neutral detergent fiber (NDF) degradation kinetics. An additional 2 bags were incubated for 4 and 48 h to evaluate the bacterial community attached to the incubated forages. Dietary supplementation of 3-NOP decreased (-53%) the dissolved methane concentration and increased (+780%) the dissolved H2 concentration in ruminal fluid, but did not substantially alter in situ NDF degradation. The addition of 3-NOP resulted in a decrease in the α-diversity of the microbial community with colonizing communities showing reduced numbers of amplicon sequence variants and phylogenetic diversity compared with control diets. Principal coordinate analysis plots indicated that forages incubated in animals fed 3-NOP resulted in highly specific changes to targeted microbes compared with control diets based on unweighted analysis (considering only absence and presence of taxa), but did not alter the overall composition of the colonizing community based on weighted UniFrac distances; unchanged relative abundances of major taxa included phyla Bacteroidetes, Firmicutes, and Fibrobacteres. The effect of 3-NOP on colonizing methanogenic microbes differed depending upon the forage incubated, as abundance of genus Methanobrevibacter was decreased for barley silage but not for grass hay. In conclusion, 3-NOP supplementation of a high-forage diet decreased ruminal methanogenesis and increased dissolved H2 concentration, but had no negative effects on ruminal fiber degradation and only minor effects on relative abundances of the major taxa of bacteria adhered to forage substrates incubated in the rumen.
Collapse
Affiliation(s)
- Xiu Min Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Aklilu W Alemu
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Min Wang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Zhi Liang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Maik Kindermann
- DSM Nutritional Products, PO Box 2676, Bldg. 241/865, CH-4002 Basel, Switzerland
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada.
| |
Collapse
|
29
|
Kim H, Lee HG, Baek YC, Lee S, Seo J. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: a meta-analysis. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:31-42. [PMID: 32082596 PMCID: PMC7008120 DOI: 10.5187/jast.2020.62.1.31] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate the effects of 3-nitrooxypropanol (NOP)
on gas production, rumen fermentation, and animal performances depending on
animal type using a meta-analysis approach. A database consisted of data from 14
studies, 18 experiments and 55 treatments. The supplementation of NOP linearly
decreased methane (CH4) emissions [g/kg dry matter intake (DMI)]
regardless of animal type and length of experimental period (beef,
p < 0.0001, R2 = 0.797;
dairy, p = 0.0003, R2 = 0.916; and
long term, p < 0.0001, R2 =
0.910). The total volatile fatty acids (VFA) concentration and the proportion of
acetate, based on beef cattle database, were significantly decreased with
increasing NOP supplementation (p = 0.0015,
R2 = 0.804 and p = 0.0003,
R2 = 0.918), whereas other individual VFAs was
increased. Based on the dairy database, increasing levels of NOP supplementation
linearly decreased proportion of acetate (p = 0.0284,
R2 = 0.769) and increased that of valerate
(p = 0.0340, R2 = 0.522),
regardless of significant change on other individual VFAs. In animal
performances, the DMI, from beef cattle database, tended to decrease when the
levels of NOP supplementation increased (p = 0.0574,
R2 = 0.170), whereas there was no significant
change on DMI from dairy cattle database. The NOP supplementation tended to
decrease milk yield (p = 0.0606, R2
= 0.381) and increase milk fat and milk protein (p = 0.0861,
R2 = 0.321, p = 0.0838,
R2 = 0.322). NOP is a viable candidate as a feed
additive because of its CH4 mitigation effects, regardless of animal
type and experiment period, without adverse effects on animal performances.
Collapse
Affiliation(s)
- Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Hyo Gun Lee
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| | - Youl-Chang Baek
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seyoung Lee
- Division of Animal Husbandry, Yonam College, Cheonan 31005, Korea
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
30
|
Short-Term Eating Preference of Beef Cattle Fed High Forage or High Grain Diets Supplemented with 3-Nitrooxypropanol. Animals (Basel) 2019; 10:ani10010064. [PMID: 31905870 PMCID: PMC7022918 DOI: 10.3390/ani10010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022] Open
Abstract
Two experiments were conducted to examine eating preference of beef cattle for diets with or without the investigative enteric methane inhibitor 3-nitrooxypropanol (3-NOP). Nine beef steers were housed in individual stalls, each equipped with two feed bunks. The first experiment (Exp. 1) was conducted with a high forage diet and each animal received a diet without 3-NOP (CON) in one bunk and a diet with 3-NOP (dNOP) in the other bunk. The second study (Exp. 2) was conducted with the same animals about 6 months after Exp. 1 where a high grain diet without (CON) or with 3-NOP (dNOP) was offered. In Exp. 1, animals initially preferred CON compared with dNOP. Feed consumption from 0 to 3, 3 to 6, and 6 to 12 h after feeding was lower for dNOP compared with CON. However, dry matter intake (DMI) and feed consumption of dNOP gradually increased during Exp. 1 such that there was no preference between CON and dNOP on day 7. In Exp. 2, there was no preference for or against dNOP. Average DMI was greater for dNOP vs. CON, but interactions between diet and day for DMI and feed consumption rates indicated that daily preference between CON and dNOP was variable. In conclusion, beef steers initially detected a difference between CON and dNOP and selected in favor of CON rather than dNOP when they had not previously been exposed to 3-NOP. However, the animals rapidly acclimatized to a diet with 3-NOP (Exp. 1) and showed no eating preference between CON and dNOP within 7 days. This lack of preference was maintained throughout Exp. 2 when the same animals were fed a high grain diet.
Collapse
|
31
|
Kim SH, Lee C, Pechtl HA, Hettick JM, Campler MR, Pairis-Garcia MD, Beauchemin KA, Celi P, Duval SM. Effects of 3-nitrooxypropanol on enteric methane production, rumen fermentation, and feeding behavior in beef cattle fed a high-forage or high-grain diet1. J Anim Sci 2019; 97:2687-2699. [PMID: 31115441 DOI: 10.1093/jas/skz140] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The objective of the study was to determine whether feeding a diet supplemented with 3-nitrooxypropanol (3-NOP) affects feeding behavior altering intake and rumen fermentation. Two experiments were conducted with 9 rumen-cannulated beef steers in a replicated 3 × 3 Latin square design where animals received a high-forage or high-grain diet. Treatments were 1) a basal diet (CON), the CON diet supplemented with 3-NOP (dNOP; 100 mg/kg in dietary DM or 1 g/d), or the CON diet with 3-NOP (1 g/d) infused into the rumen (infNOP). Each experimental period consisted of 14-d diet adaptation and 7-d sample collection. A 7-d washout period was provided between experiment periods. All data were analyzed as a Latin square design using Mixed Procedure of SAS. In Exp. 1 (high-forage diet), methane yield (measured by the Greenfeed system) was lowered by 18% (18.6 vs. 22.7 g/kg DMI; P < 0.01) by dNOP compared with CON. Rumen fermentation was altered similarly by both NOP treatments compared with CON where dNOP and infNOP increased (P < 0.01) rumen pH at 3 h and decreased (P < 0.01) proportion of acetate in total VFA. However, DMI, feed consumption rate (0 to 3, 3 to 6, 6 to 12, and 12 to 24 h after feeding), particle size distribution of orts, and feeding behavior (videotaped for individual animals over 48 h) were not affected by dNOP and infNOP compared with CON. In Exp. 2 (high-grain diet), methane production was not affected by dNOP or infNOP compared with CON. Dry matter intake, feed consumption rate, particle size distribution of orts, and feeding behavior were not altered by dNOP and infNOP compared with CON. However, both dNOP and infNOP affected rumen fermentation where total VFA decreased (P = 0.04) and acetate proportion in total VFA tended to decrease (P = 0.07) compared with CON. In conclusion, dietary supplementation of 3-NOP did not affect feeding behavior of beef steers fed a high-forage or high-grain diet. However, rumen fermentation was similarly changed when 3-NOP was provided in the diet or directly infused in the rumen. Thus, observed changes in rumen fermentation with 3-NOP were not due to changes in feeding behavior indicating no effects on the organoleptic property of the diets. In addition, according to small or no changes in DMI in both experiments and relatively small changes in rumen fermentation in Exp. 2, a greater dosage level of 3-NOP than 100 mg/kg (dietary DM) may need further examination of its effects on feeding behavior of beef cattle.
Collapse
Affiliation(s)
- Seon-Ho Kim
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH
| | - Chanhee Lee
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH
| | - Heather A Pechtl
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH
| | - Jade M Hettick
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH
| | - Magnus R Campler
- Department of Animal Sciences, the Ohio State University, Columbus, OH
| | | | - Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Pietro Celi
- DSM Nutritional Products France, Research Center for Animal Nutrition, 68305 Saint Louis Cedex, France
| | - Stephane M Duval
- DSM Nutritional Products France, Research Center for Animal Nutrition, 68305 Saint Louis Cedex, France
| |
Collapse
|
32
|
Alvarez-Hess P, Moate P, Williams S, Jacobs J, Beauchemin K, Hannah M, Durmic Z, Eckard R. Effect of combining wheat grain with nitrate, fat or 3-nitrooxypropanol on in vitro methane production. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
McGinn SM, Flesch TK, Beauchemin KA, Shreck A, Kindermann M. Micrometeorological Methods for Measuring Methane Emission Reduction at Beef Cattle Feedlots: Evaluation of 3-Nitrooxypropanol Feed Additive. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1454-1461. [PMID: 31589722 DOI: 10.2134/jeq2018.11.0412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
It is highly desirable to test agricultural emission mitigation strategies in a whole-farm environment to ensure that all aspects of management and production operations are included. However, the large spatial scale of commercial operations makes the dual measurements of control and treatment(s) difficult. We evaluated the application of two micrometeorological methods, a novel concentration ratio method and an inverse dispersion method, where both were used to measure methane (CH) emission reductions in cattle fed the compound 3-nitrooxypropanol compared with cattle fed just the basal diet. In total, there were 1344 cattle used that were located in six pens (∼222 animals per pen). Three adjacent pens to the east and three to the west were designated as the treatment and control blocks, respectively. Underlying the emission reduction method was the assumption of site symmetry between the treatment and control pen blocks in the feedlot. There was, on average, a large CH emission reduction of ∼70% (±18%) due to the additive as found by both micrometeorological methods. Both methods also show a change in the diel distribution (peak emissions after initial morning feeding) and seasonal pattern (a decrease in emission reduction of 7.5 and 26.1% over 90 d). The simplicity of the developed concentration ratio method is expected to have applications for evaluating other mitigation strategies at large commercial scales (e.g., the application of manure additives to pens to reduce odors and ammonia emissions).
Collapse
|
34
|
Could the breed composition improve performance and change the enteric methane emissions from beef cattle in a tropical intensive production system? PLoS One 2019; 14:e0220247. [PMID: 31348816 PMCID: PMC6660127 DOI: 10.1371/journal.pone.0220247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
Crossbreeding has been used to improve performance in beef cattle, however the effects of breed composition on methane (CH4) production, yield and intensity from cattle raised in tropical intensive and integrated systems remain unknown. To assess the impact of breed composition on performance and methane emissions, Nellore (NEL; yr 1: BW = 171.5 ± 19.4 kg; n = 10; yr 2: BW = 215.8 ± 32.3 kg, n = 25) and Angus x Nellore crossbred (AN; yr 1: BW = 214.2 ± 26.4 kg, n = 10; yr 2: BW = 242.5 ± 32.2 kg, n = 25) were compared. The animals grazed on integrated crop-livestock system in the growing phase (stocking rate 2452 kg BW/ha, herbage mass 4,884 kg dry matter (DM)/ha, forage allowance 5.9 kg DM/100kg BW) and then were finished in a feedlot. Steers (n = 8) from each breed composition were randomly selected in each phase to measure CH4 production using a sulfur hexafluoride (SF6) tracer technique and DM intake (DMI) using titanium dioxide. Compared with NEL, AN had both superior total gain and average daily gain (ADG) in the grazing period. The AN presented greater ADG in the feedlot with a shorter finishing period and resulted in greater carcass yield and carcass ADG. Methane production (kg/period) was lower in NEL (19% less) than AN in grazing (P<0.01), and no difference was observed in feedlot. The NEL had less CH4 intensity (CH4/BW) in grazing but greater CH4 per unit of ADG in the feedlot compared to AN. Breed composition did not influence the CH4 yield (CH4/DMI) in either phase, despite the difference in feedlot DMI (kg/day). In conclusion, crossbreeding may be an option to improve performance and reduce the CH4 per ADG in tropical climate conditions, resulting in lower methane emission per kg of meat produced.
Collapse
|
35
|
van Gastelen S, Dijkstra J, Bannink A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J Dairy Sci 2019; 102:6109-6130. [PMID: 31079901 DOI: 10.3168/jds.2018-15785] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/12/2019] [Indexed: 01/17/2023]
Abstract
The digestive physiology of ruminants is sufficiently different (e.g., with respect to mean retention time of digesta, digestibility of the feed offered, digestion, and fermentation characteristics) that caution is needed before extrapolating results from one type of ruminant to another. The objectives of the present study were (1) to provide an overview of some essential differences in rumen physiology between dairy cattle, beef cattle, and sheep that are related to methane (CH4) emission; and (2) to evaluate whether dietary strategies to mitigate CH4 emission with various modes of action are equally effective in dairy cattle, beef cattle, and sheep. A literature search was performed using Web of Science and Scopus, and 94 studies were selected from the literature. Per study, the effect size of the dietary strategies was expressed as a proportion (%) of the control level of CH4 emission, as this enabled a comparison across ruminant types. Evaluation of the literature indicated that the effectiveness of forage-related CH4 mitigation strategies, including feeding more highly digestible grass (herbage or silage) or replacing different forage types with corn silage, differs across ruminant types. These strategies are most effective for dairy cattle, are effective for beef cattle to a certain extent, but seem to have minor or no effects in sheep. In general, the effectiveness of other dietary mitigation strategies, including increased concentrate feeding and feed additives (e.g., nitrate), appeared to be similar for dairy cattle, beef cattle, and sheep. We concluded that if the mode of action of a dietary CH4 mitigation strategy is related to ruminant-specific factors, such as feed intake or rumen physiology, the effectiveness of the strategy differs across ruminant types, whereas if the mode of action is associated with methanogenesis-related fermentation pathways, the strategy is effective across ruminant types. Hence, caution is needed when translating effectiveness of dietary CH4 mitigation strategies across different ruminant types or production systems.
Collapse
Affiliation(s)
- Sanne van Gastelen
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands; Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| | - Jan Dijkstra
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
36
|
Van Wesemael D, Vandaele L, Ampe B, Cattrysse H, Duval S, Kindermann M, Fievez V, De Campeneere S, Peiren N. Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. J Dairy Sci 2018; 102:1780-1787. [PMID: 30594370 DOI: 10.3168/jds.2018-14534] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/03/2018] [Indexed: 11/19/2022]
Abstract
The aim of this work was to determine the effect of 3-nitrooxypropanol (3-NOP) on the enteric methane (CH4) emissions and performance of lactating dairy cows when mixed in with roughage or incorporated into a concentrate pellet. After 2 pretreatment weeks without 3-NOP supplementation, 30 Holstein Friesian cows were divided into 3 homogeneous treatment groups: no additive, 3-NOP mixed in with the basal diet (roughage; NOPbas), and 3-NOP incorporated into a concentrate pellet (NOPconc). The pretreatment period was followed by a 10-wk treatment period in which the NOPbas and NOPconc cows were fed 1.6 g of 3-NOP/cow per day. After the treatment period, a 2-wk washout period followed without 3-NOP supplementation. The CH4 emissions were measured using a GreenFeed unit (C-Lock Inc., Rapid City, SD) installed in a freestall with cubicles during the entire experimental period. On average for the total treatment period and compared with the no-additive group, CH4 production (g/d) was 28 and 23% lower for NOPbas and NOPconc, respectively. Methane yield (g/kg of dry matter intake) and methane intensity (g/kg of milk) were 23 and 24% lower for NOPbas, respectively, and 21 and 22% lower for NOPconc, respectively. No differences were found between NOPbas and NOPconc. Moreover, supplying 3-NOP did not affect total dry matter intake, milk production, or milk composition. The results of this experiment show that 3-NOP can reduce enteric CH4 emissions of dairy cattle when incorporated into a concentrate pellet and that this reduction is not different from the effect of mixing in 3-NOP with the basal diet (roughage). This broadens the possibilities for using 3-NOP in the dairy sector worldwide, as it is not always feasible to provide an additive mixed in with the basal diet.
Collapse
Affiliation(s)
- D Van Wesemael
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Scheldeweg 68, 9090 Melle, Belgium; Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Coupure Links 653 Block F, 9000 Ghent, Belgium
| | - L Vandaele
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Scheldeweg 68, 9090 Melle, Belgium
| | - B Ampe
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Scheldeweg 68, 9090 Melle, Belgium
| | - H Cattrysse
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Scheldeweg 68, 9090 Melle, Belgium
| | - S Duval
- DNP Innovation Animal Nutrition & Health, DSM Nutritional Products, PO Box 2676, 4002 Basel, Switzerland
| | - M Kindermann
- DNP Innovation Animal Nutrition & Health, DSM Nutritional Products, PO Box 2676, 4002 Basel, Switzerland
| | - V Fievez
- Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Coupure Links 653 Block F, 9000 Ghent, Belgium
| | - S De Campeneere
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Scheldeweg 68, 9090 Melle, Belgium
| | - N Peiren
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Scheldeweg 68, 9090 Melle, Belgium.
| |
Collapse
|
37
|
Vyas D, Alemu AW, McGinn SM, Duval SM, Kindermann M, Beauchemin KA. The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. J Anim Sci 2018; 96:2923-2938. [PMID: 29741701 DOI: 10.1093/jas/sky174] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/04/2018] [Indexed: 11/13/2022] Open
Abstract
The study objective was to evaluate the combined effects of supplementing monensin (MON) and the methane (CH4) inhibitor 3-nitrooxypropanol (NOP) on enteric CH4 emissions, growth rate, and feed conversion efficiency of backgrounding and finishing beef cattle. Two hundred and forty crossbred steers were used in a 238-d feeding study and fed a backgrounding diet for the first 105 d (backgrounding phase), transition diets for 28 d, followed by a finishing diet for 105 d (finishing phase). Treatments were as follows: 1) control (no additive); 2) MON (monensin supplemented at 33 mg/kg DM; 3) NOP (3-nitrooxypropanol supplemented at 200 mg/kg DM for backgrounding or 125 mg/kg DM for finishing phase); and 4) MONOP (33 mg/kg DM MON supplemented with either 200 mg/kg DM or 125 mg/kg DM NOP). The experiment was a randomized complete block (weight: heavy and light) design with 2 (NOP) × 2 (MON) factorial arrangement of treatments using 24 pens (8 cattle/pen; 6 pens/treatment) at the main feedlot and 8 pens (6 cattle/pen; 2 pens/treatment) at the controlled environment building (CEB) feedlot. Five animals per treatment were moved to chambers for CH4 measurements during both phases. Data were analyzed using a Mixed procedure of SAS with pen as experimental unit (except CH4). Location (Main vs. CEB) had no significant effect and was thus omitted from the final model. Overall, there were few interactions between MON and NOP indicating that the effects of the 2 compounds were independent. When cattle were fed the backgrounding diet, pen DMI was decreased by 7%, whereas gain-to-feed ratio (G:F) was improved by 5% with NOP supplementation (P < 0.01). Similarly, MON improved G:F ratio by 4% (P < 0.01), but without affecting DMI. During the finishing phase, DMI tended (P = 0.06) to decrease by 5% with both MON (5%) and NOP (5%), whereas ADG tended (P = 0.08) to decrease by 3% with MON. Gain-to-feed ratio for finishing cattle was improved with NOP by 3% (P < 0.01); however, no effects were observed with MON. 3-Nitrooxypropanol decreased CH4 yield (g/kg DMI) by 42% and 37% with backgrounding and finishing diets (P ≤ 0.01), respectively, whereas MON did not lower CH4 yield. Overall, these results demonstrate efficacy of NOP in reducing enteric CH4 emissions and subsequently improving feed conversion efficiency in cattle fed high-forage and high-grain diets. Furthermore, effects of NOP did not depend on whether MON was included in the diet.
Collapse
Affiliation(s)
- Diwakar Vyas
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Aklilu W Alemu
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Sean M McGinn
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Stephane M Duval
- DSM Nutritional Products France, Research Center for Animal Nutrition, Saint Louis Cedex, France
| | | | - Karen A Beauchemin
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
38
|
Dietary starch and rhubarb supplement increase ruminal dissolved hydrogen without altering rumen fermentation and methane emissions in goats. Animal 2018; 13:975-982. [PMID: 30293542 DOI: 10.1017/s1751731118002410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Hydrogen is an important intermediate that is produced during carbohydrate fermentation to volatile fatty acid and utilized by methanogens to produce methane in the rumen. Ruminal volatile fatty acid and dissolved methane concentrations are more than 500 times greater than dissolved hydrogen concentration. Therefore, we hypothesized that dissolved hydrogen might have a higher sensitivity in response to dietary changes compared with volatile fatty acid and dissolved methane. Using goats, we investigated the effects of increasing dietary starch content (maize replaced with wheat bran) and supplementing with rhubarb rhizomes and roots on the relationships among dissolved hydrogen, dissolved methane and other fermentation end products. The study was conducted in a replicated 4×4 Latin square with a 2×2 factorial arrangement of four treatments: two starch levels (220 v. 320 g/kg dry matter (DM)), without and with rhubarb supplement (0% v. 2.8% of total mixed ration). Increased dietary starch and rhubarb supplementation did not alter volatile fatty acid concentrations or methane emissions in terms of g/day, g/g DM intake and g/g organic matter digested. However, goats fed the high-starch diet had greater dissolved hydrogen (P=0.005) and relative abundance of Selenomonas ruminantium (P<0.01), and lower (P=0.02) copy number of protozoa than those fed the low-starch diet. Rhubarb increased ruminal dissolved H2 (P=0.03) and total volatile fatty acid concentration (P<0.001), but decreased copies of bacteria (P=0.002). In conclusion, dissolved hydrogen appears to be more sensitive to dietary changes with starch content and rhubarb supplementation, when compared with volatile fatty acid concentrations and methane production.
Collapse
|
39
|
Dijkstra J, Bannink A, France J, Kebreab E, van Gastelen S. Short communication: Antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. J Dairy Sci 2018; 101:9041-9047. [DOI: 10.3168/jds.2018-14456] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022]
|
40
|
Martinez-Fernandez G, Duval S, Kindermann M, Schirra HJ, Denman SE, McSweeney CS. 3-NOP vs. Halogenated Compound: Methane Production, Ruminal Fermentation and Microbial Community Response in Forage Fed Cattle. Front Microbiol 2018; 9:1582. [PMID: 30131771 PMCID: PMC6090035 DOI: 10.3389/fmicb.2018.01582] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to investigate the effects of 3-nitrooxypropanol (3-NOP) and chloroform on methane (CH4) and H2 production, ruminal metabolites and microbial community structure in cattle fed a tropical forage diet. Eight rumen-fistulated steers were fed a roughage hay diet (Rhodes grass; Chloris gayana) for 31 days (control period). Four animals received the antimethanogenic compound chloroform (1.6 g chloroform-cyclodextrin/100 kg live weight (LW)) while the other four received 3-NOP (2.5 g 3-NOP/animal/day) for 21 days. Methane decrease compared with control period was similar for both treatments (30-38%) with no differences for expelled H2 between controls and treatments. Daily weight gain (DWG) was significantly increased when animals were treated with 3-NOP compared with chloroform and control. Regarding the ruminal fermentation parameters increases in ammonia, acetate and branched chain fatty acids were observed with both compounds compared with the controls. Also, methylamines, alcohols and dimethyl sulfone (DMSO2) concentrations were significantly increased with the treatments compared with control, being greater with 3-NOP. The rumen microbial analyses revealed a similar profile for both treatments, with a shift in operational taxonomic units (OTUs) assigned to the Prevotellaceae and Campylobacteraceae family. Moreover, major archaeal OTUs associated with Methanobrevibacter and Methanosphaera were significantly affected to varying extents based on the inhibitory treatments compared to the control. The abundance of the Methanobrevibacter spp. was decreased by 3-NOP and chloroform, while the Methanomassiliicoccaceae family was inhibited only by 3-NOP. The results suggest that despite the specific mode of action of 3-NOP on methanogens, inhibition of methanogenesis by both compounds resulted in similar responses in metabolism and microbial community structure in the rumen. We hypothesized that these changes were driven by the redirection of metabolic hydrogen ([H]) by both treatments. Therefore results from previous publications using chloroform as an inhibitor of methanogenesis may be useful in predicting ruminal microbiota and fermentation responses to 3-NOP.
Collapse
Affiliation(s)
| | - Stephane Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products, Saint-Louis, France
| | - Maik Kindermann
- Animal Nutrition and Health, DSM Nutritional Products, Basel, Switzerland
| | - Horst J Schirra
- The University of Queensland, Centre for Advanced Imaging, Brisbane, QLD, Australia
| | - Stuart E Denman
- CSIRO, Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | | |
Collapse
|
41
|
Ungerfeld EM. Inhibition of Rumen Methanogenesis and Ruminant Productivity: A Meta-Analysis. Front Vet Sci 2018; 5:113. [PMID: 29971241 PMCID: PMC6018482 DOI: 10.3389/fvets.2018.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Methane (CH4) formed in the rumen and released to the atmosphere constitutes an energy inefficiency to ruminant production. Redirecting energy in CH4 to fermentation products with a nutritional value to the host animal could increase ruminant productivity and stimulate the adoption of CH4-suppressing strategies. The hypothesis of this research was that inhibiting CH4 formation in the rumen is associated with greater ruminant productivity. The primary objective of this meta-analysis was to evaluate how inhibiting rumen methanogenesis relates with the efficiencies of milk production and growth and fattening. A systematic review of peer-reviewed studies in which rumen methanogenesis was inhibited with chemical compounds was conducted. Experiments were clustered based on research center, year of publication, experimental design, feeding regime, type of animal, production response, inhibitor of CH4 production, and method of CH4 measurement. Response variables were regressed against the random experiment effect nested in its cluster, the random effect of the cluster, the linear and quadratic effects of CH4 production, and the random interaction between CH4 production and the experiment nested in the cluster. When applicable, responses were adjusted by intake of different nutrients included as regressors. Inhibiting rumen methanogenesis tended to associate positively with milk production efficiency, although the relationship was influenced by individual experiments. Likewise, a positive relationship between methanogenesis inhibition and growth and fattening efficiency depended on the inclusion and weighting of individual experiments. Inhibiting rumen methanogenesis negatively associated with dry matter intake. Interpretation of the effects of inhibiting methanogenesis on productivity is limited by the availability of experiments simultaneously reporting energy losses in feces, H2, urine and heat production, as well as net energy partition. It is concluded that inhibiting rumen methanogenesis has not consistently translated into greater animal productivity, and more animal performance experiments are necessary to better characterize the relationships between animal productivity and methanogenesis inhibition in the rumen. A more complete understanding of changes in the flows of nutrients caused by inhibiting rumen methanogenesis and their effect on intake also seems necessary to effectively re-channel energy gained from CH4 suppression toward consistent gains in productivity.
Collapse
Affiliation(s)
- Emilio M Ungerfeld
- Coordinación de Sistemas Ganaderos, Instituto de Investigaciones Agropecuarias INIA Carillanca, Temuco, Chile
| |
Collapse
|
42
|
Lee C, Araujo RC, Koenig KM, Beauchemin KA. Effects of encapsulated nitrate on growth performance, carcass characteristics, nitrate residues in tissues, and enteric methane emissions in beef steers: Finishing phase. J Anim Sci 2018; 95:3712-3726. [PMID: 28805918 DOI: 10.2527/jas.2017.1461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A finishing feedlot study was conducted with beef steers to determine effects of encapsulated nitrate (EN) on growth performance, carcass characteristics, methane production, and nitrate (NO) residues in tissues. The 132 crossbred steers were backgrounded in a feedlot for 91 d and transitioned for 28 days to the high-concentrate diets evaluated in the present study, maintaining the treatment and pen assignments designated at the start of the backgrounding period. The steers were initially assigned to 22 pens (6 animals per pen) in a randomized complete block design with BW (18 pens) and animals designated for methane measurement (4 pens) as blocking factors. Five animals in each pen designated for methane measurement (total of 20 animals) were monitored for methane emissions in respiratory chambers twice during the experiment. Pens received 3 dietary treatments (7 pens each): Control, a finishing diet supplemented with urea; 1.25% EN, control diet supplemented with 1.25% encapsulated NO in dietary DM that partially replaced urea; and 2.5% EN, control diet supplemented with 2.5% EN (DM basis) fully replacing urea. The final pen designated only for methane measurement received a fourth dietary treatment, 2.3% UEN, the control diet supplemented with unencapsulated NO (UEN) fully replacing urea. The cattle weighed 449 ± SD 32 kg at the start of the 150-d finishing period. The 2.5% EN diet decreased ( < 0.01) DMI compared with Control and 1.25% EN diets. Feeding EN tended to increase ( = 0.092) ADG compared with Control, and G:F was improved ( < 0.01) for EN compared with Control. No differences in methane production (g/d) and yield (g/kg DMI) were observed among treatments. Inclusion of EN in the diets increased ( ≤ 0.03) sorting in favor of large and medium particles and against small and fine particles. Plasma NO and NO concentrations were elevated ( < 0.01) with EN in a dose-response manner, but total blood methemoglobin levels for all treatments were low, below the detection limit. Feeding EN increased ( < 0.01) NO concentrations of samples from muscle, fat, liver, and kidney; NO concentrations of these tissues were similar between 1.25% EN and 2.3% UEN. In conclusion, inclusion of 2.5% EN in a finishing diet (DM basis; about 2% NO) did not cause NO toxicity or any health problems in the long term. In comparison with supplemental urea, feeding EN improved feed efficiency despite increases in sorting against dietary EN.
Collapse
|
43
|
Lee C, Araujo RC, Koenig KM, Beauchemin KA. Effects of encapsulated nitrate on growth performance, nitrate toxicity, and enteric methane emissions in beef steers: Backgrounding phase. J Anim Sci 2018; 95:3700-3711. [PMID: 28805908 DOI: 10.2527/jas.2017.1460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A long-term experiment was conducted to examine the effects of feeding encapsulated nitrate (EN) on growth, enteric methane production, and nitrate (NO) toxicity in beef cattle fed a backgrounding diet. A total of 108 crossbred steers (292 ± 18 kg) were blocked by BW and randomly assigned to 18 pens. The pens (experimental unit; 6 animals per pen) received 3 dietary treatments: Control, a backgrounding diet supplemented with urea; 1.25% EN, control diet supplemented with 1.25% encapsulated calcium ammonium NO (i.e., EN) in dietary DM, which partially replaced urea; or 2.5% EN, control diet supplemented with 2.5% EN (DM basis) fully replacing urea. Additionally, 24 steers were located in 4 pens and randomly assigned to 1 of the above 3 dietary treatments plus a fourth treatment: 2.3% UEN, control diet supplemented with 2.3% unencapsulated calcium ammonium NO (UEN) fully replacing urea. Animals in the additional 4 pens were used for methane measurement in respiratory chambers, and the pens (except UEN) were also part of the performance study (i.e., = 7 pens/treatment). The experiment was conducted for 91 d in a randomized complete block design. During the experiment, DMI was not affected by inclusion of EN in the diet. Feeding EN had no effect on BW, ADG, and G:F ( ≥ 0.57). Methane production (g/d) tended to decrease ( = 0.099) with EN and UEN, but yield (g/kg DMI) did not differ ( = 0.56) among treatments. Inclusion of EN in the diet increased ( ≤ 0.02) sorting of the diets in favor of large and medium particles and against small and fine particles, resulting in considerable increases in NO concentrations of orts without affecting DMI. Plasma NO-N and NO-N concentrations increased ( ≤ 0.05) for EN compared with Control in a dose response manner, but blood methemoglobin levels were below the detection limit. Nitrate concentration in fecal samples slightly increased (from 0.01% to 0.14% DM; < 0.01) with increasing levels of EN in the diet. In conclusion, EN can be used as a feed additive replacing urea in beef cattle during a backgrounding phase in the long term without NO intoxication or any negative effects on growth performance. In addition, the study confirmed that feeding EN tended to decrease enteric methane production in the long term.
Collapse
|
44
|
Hales KE, Cole NA. Hourly methane production in finishing steers fed at different levels of dry matter intake. J Anim Sci 2017; 95:2089-2096. [PMID: 28727002 DOI: 10.2527/jas.2016.1023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methane (CH) loss from finishing cattle is important as it represents an energy loss that could be used for maintenance and growth, and CH is a greenhouse gas with a global warming potential 21 to 25 times that of CO. Our objectives were to determine hourly CH production from growing cattle fed diets differing in corn processing method (dry rolling or steam flaking) and wet distillers grains with solubles (WDGS) inclusion rate. Eight steers (195 kg ± 2.3 in Exp. 1 and 322 kg ± 3.7 in Exp. 2) were fed the following diets: 1) steam-flaked corn (SFC)-based diet with 0% WDGS (SFC-0); 2) SFC-based diet with 15% WDGS (SFC-15); 3) SFC-based diet with 30% WDGS (SFC-30); 4) SFC-based diet with 45% WDGS (SFC-45); 5) Dry-rolled corn DRC)-based diet with 0% WDGS (DRC-0); and 6) DRC-based diet with 30% WDGS (DRC-30). All hourly CH data were analyzed using the MIXED procedure of SAS. Individual animal was the experimental unit. The model included the fixed effect of h, diet, and the h × diet interaction. Hourly differences in CH were analyzed using repeated measures. There were numerous h × diet interactions and thus simple-effect means are presented. In steers fed DRC-0 or DRC-30 at 2-times maintenance, the greatest hourly CH emissions occur 6 h after feeding ( < 0.01) with a secondary peak between 10 and 11 h after feeding ( < 0.01). For cattle fed SFC-0, SFC-15, SFC-30, and SFC-45 at 2-times maintenance, all diets had peak CH emissions 5 and 6 h after feeding ( < 0.01), with a secondary CH peak for SFC-45 nine to 11 h after feeding ( < 0.01). Cattle fed all diets at a maintenance level of intake exhibited 1 peak in hourly CH production between 3 and 6 h after feeding ( < 0.01). All steers fed SFC-30 and SFC-45 had sustained CH production over several hours, irrespective of intake level. Steers fed SFC-45 produced more CH beginning 4 h after feeding ( < 0.01) and produced a greater amount of CH than any other treatment ( < 0.01). Methane production generally peaked 6 h after feeding irrespective of intake level or diet type. Additionally, when fed above a maintenance level of intake, a secondary peak in CH production was observed 9 to 11 h after feeding, and steers fed at a maintenance level of intake had only 1 peak in CH production in a 23-h period.
Collapse
|
45
|
Jayanegara A, Sarwono KA, Kondo M, Matsui H, Ridla M, Laconi EB, Nahrowi. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1404945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, West Java, Indonesia
| | - Ki Ageng Sarwono
- Graduate School of Bioresources, Mie University, Tsu city, Mie, Japan
| | - Makoto Kondo
- Graduate School of Bioresources, Mie University, Tsu city, Mie, Japan
| | - Hiroki Matsui
- Graduate School of Bioresources, Mie University, Tsu city, Mie, Japan
| | - Muhammad Ridla
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, West Java, Indonesia
| | - Erika B. Laconi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, West Java, Indonesia
| | - Nahrowi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, West Java, Indonesia
| |
Collapse
|
46
|
Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats. Br J Nutr 2017; 118:401-410. [PMID: 28927478 DOI: 10.1017/s0007114517002161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We tested the hypotheses that supplementation of a diet with elemental Mg increases ruminal dissolved H2 (dH2) in rumen fluid, which in turn alters rumen fermentation and microbial community in goats. In a randomised block design, twenty growing goats were allocated to two treatments fed the same basal diet with 1·45 % Mg(OH)2 or 0·6 % elemental Mg. After 28 d of adaptation, we collected total faeces to measure total tract digestibility, rumen contents to analyse fermentation end products and microbial groups, and measured methane (CH4) emission using respiration chambers. Ruminal Mg2+ concentration was similar in both treatments. Elemental Mg supplementation increased dH2 at 2·5 h post morning feeding (+180 %, P<0·001). Elemental Mg supplementation decreased total volatile fatty acid concentration (-8·6 %, P<0·001), the acetate:propionate ratio (-11·8 %, P<0·03) and fungal copy numbers (-63·6 %, P=0·006), and increased propionate molar percentage (+11·6 %, P<0·001), methanogen copy numbers (+47·9 %, P<0·001), dissolved CH4 (+35·6 %, P<0·001) and CH4 emissions (+11·7 %, P=0·03), compared with Mg(OH)2 supplementation. The bacterial community composition in both treatments was overall similar. Ruminal dH2 was negatively correlated with acetate molar percentage and fungal copy numbers (P<0·05), and positively correlated with propionate molar percentage and methanogen copy numbers (P<0·05). In summary, elemental Mg supplementation increased ruminal dH2 concentration, which inhibited rumen fermentation, enhanced methanogenesis and seemed to shift fermentation pathways from acetate to propionate, and altered microbiota by decreasing fungi and increasing methanogens.
Collapse
|
47
|
Nutritional strategies in ruminants: A lifetime approach. Res Vet Sci 2017; 116:28-39. [PMID: 28943061 DOI: 10.1016/j.rvsc.2017.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 09/09/2017] [Indexed: 01/08/2023]
Abstract
This review examines the role of nutritional strategies to improve lifetime performance in ruminants. Strategies to increase ruminants' productive longevity by means of nutritional interventions provide the opportunity not only to increase their lifetime performances and their welfare, but also to decrease their environmental impact. This paper will also address how such nutritional interventions can increase herd efficiency and farm profitability. The key competencies reviewed in this article are redox balance, skeletal development and health, nutrient utilization and sustainability, which includes rearing ruminants without antibiotics and methane mitigation. While the relationships between these areas are extremely complex, a multidisciplinary approach is needed to develop nutritional strategies that would allow ruminants to become more resilient to the environmental and physiological challenges that they will have to endure during their productive career. As the demand of ruminant products from the rapidly growing human world population is ever-increasing, the aim of this review is to present animal and veterinary scientists as well as nutritionists a multidisciplinary approach towards a sustainable ruminant production, while improving their nutrient utilization, health and welfare, and mitigation of their carbon footprint at the same time.
Collapse
|
48
|
Romero-Pérez A, Okine EK, Guan LL, Duval SM, Kindermann M, Beauchemin KA. Rapid Communication: Evaluation of methane inhibitor 3-nitrooxypropanol and monensin in a high-grain diet using the rumen simulation technique (Rusitec)1,2. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Lee C, Araujo RC, Koenig KM, Beauchemin KA. In situ and in vitro evaluations of a slow release form of nitrate for ruminants: Nitrate release rate, rumen nitrate metabolism and the production of methane, hydrogen, and nitrous oxide. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|