1
|
Szydlo K, Santos L, Christian TW, Maharjan S, Dorsey A, Masuda I, Jia J, Wu Y, Tang W, Hou YM, Ignatova Z. m6A modification is incorporated into bacterial mRNA without specific functional benefit. Nucleic Acids Res 2025; 53:gkaf425. [PMID: 40401555 DOI: 10.1093/nar/gkaf425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
N 6-Methyladenosine (m6A), the most abundant modification in eukaryotic messenger RNAs (mRNAs), has also been found at a low level in bacterial mRNAs. However, enzyme(s) that introduce m6A modification on mRNAs in bacteria remain elusive. In this work, we combine deep-sequencing approaches that identify m6A sites with in vitro biochemical studies to identify putative m6A methyltransferases that would modify Escherichia coli mRNAs. We tested four uncharacterized candidates predicted to encode proteins with putative methyltransferase domains, whose deletion decreased the m6A level. However, in vitro analysis with the purified putative methyltransferases revealed that none of them installs m6A on mRNA. Exposure to heat and oxidative stress also changed the m6A level; however, we found no clear correlation between the m6A change and the specific stress. Considering two deep-sequencing approaches with different resolution, we found that m6A methylation on bacterial mRNAs is very low and appears randomly introduced. These results suggest that, in contrast to eukaryotes, the m6A modification in bacterial mRNA lacks a direct enzymatic recognition mechanism and has no clear biological function.
Collapse
Affiliation(s)
- Klara Szydlo
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg 20146, Germany
| | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg 20146, Germany
| | - Thomas W Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Amir Dorsey
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Jingxuan Jia
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, United States
| | - Yuan Wu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, United States
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, United States
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg 20146, Germany
| |
Collapse
|
2
|
Perez SE, Nadeem M, He B, Miguel JC, Moreno DG, Moreno-Rodriguez M, Malek-Ahmadi M, Hales CM, Mufson EJ. Spliceosome protein alterations differentiate hubs of the default mode connectome during the progression of Alzheimer's disease. Brain Pathol 2025:e70004. [PMID: 40122679 DOI: 10.1111/bpa.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Default mode network (DMN) is comprised in part of the frontal (FC), precuneus (PreC), and posterior cingulate (PCC) cortex and displays amyloid and tau pathology in Alzheimer's disease (AD). The PreC hub appears the most resilient to AD pathology, suggesting differential vulnerability within the DMN. However, the mechanisms that underlie this differential pathobiology remain obscure. Here, we investigated changes in RNA polymerase II (RNA pol II) and splicing proteins U1-70K, U1A, SRSF2, and hnRNPA2B1, phosphorylated AT8 tau, 3R and 4Rtau isoforms containing neurons and amyloid plaques in layers III and V-VI in FC, PreC, and PCC obtained from individuals with a preclinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), and mild/moderate mAD. We found a significant increase in pS5-RNA pol II levels in FC NCI, U1-70K in PreC MCI and mAD, and hnRNPA2B1 and SRSF2 levels in PCC mAD. 1N3Rtau levels were significantly increased in FC, decreased in PreC in mAD, and unchanged in PCC, whereas 1N4Rtau increased in mAD across the hubs. SRSF2, U1-70K, U1A, and hnRNPA2B1 nuclear optical density (OD), size, and number were unchanged across groups in FC and PCC, while PreC OD hnRNPA2B1 was significantly greater in mAD. Mislocalized U1A and U1-70K tangle-like structures were found in a few PCC cases and colocalized with AT8-bearing neurofibrillary tangles (NFTs). FC pS5-RNA pol II, PreC U1-70K, Pre pS5,2-RNA pol II, and PCC hnRNPA2B1 and SRSF2 protein levels were associated with cognitive decline but not neuropathology across clinical groups. By contrast, splicing protein nuclear OD measures, size, counts, and mislocalized U1-70K and U1A NFT-like structures were not correlated with NFT or plaque density, cognitive domains, and neuropathological criteria in DMN hubs. Findings suggest that RNA splicing protein alterations and U1 mislocalization contribute differentially to DMN pathogenesis and cognitive deterioration in AD.
Collapse
Affiliation(s)
- Sylvia E Perez
- Department of Translational Neurosciences, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Muhammad Nadeem
- Department of Translational Neurosciences, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Bin He
- Department of Translational Neurosciences, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Jennifer C Miguel
- Department of Translational Neurosciences, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - David G Moreno
- Department of Translational Neurosciences, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Marta Moreno-Rodriguez
- Department of Translational Neurosciences, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Chadwick M Hales
- Center for Neurodegenerative Disease, Emory University, Atlanta, Georgia, USA
| | - Elliott J Mufson
- Department of Translational Neurosciences, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Qiu X, Kemker C, Goebel GL, Lampe P, Wallis N, Schiller D, Bigler K, Jiang M, Sievers S, Yeo GW, Wu P. Phenylpyrazoles as Inhibitors of the m 6A RNA-Binding Protein YTHDF2. JACS AU 2025; 5:618-630. [PMID: 40017738 PMCID: PMC11862924 DOI: 10.1021/jacsau.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
The N6-methyladenosine (m6A) modification, which is the most common RNA modification in eukaryotes, is regulated by the "writer" methyltransferases, the "reader" m6A binding proteins, and the "eraser" demethylases. m6A plays a multifunctional role in physiological and pathological processes, regulating all aspects of RNA metabolism and function, including RNA splicing, translation, transportation, and degradation. Accumulating evidence suggests that the YT521-B homology domain family 2 (YTHDF2), one of the m6A "readers," is associated with various biological processes in cancers and noncancerous disorders, impacting migration, invasion, metastasis, proliferation, apoptosis, and cell cycle. Here, we describe our work in the identification of a series of functionalized pyrazoles, such as CK-75, as new YTHDF2 inhibitors, which potentially bind to a small hydrophobic pocket on the YTH domain. Cellular evaluations revealed that the small-molecule YTHDF2 inhibitors induced cell cycle arrest, induced apoptosis, and significantly inhibited the cell viability of cancer cells. Furthermore, we evaluated the transcriptome-wide change in the global RNA-binding protein and RNA-binding patterns of CK-75 via an enhanced cross-linking and immunoprecipitation assay. Our work demonstrated the feasibility of targeting the YTH domain of YTHDF2 with small molecules. The phenylpyrazoles studied in this work provided a lead structure for the further development of small molecules targeting YTHDF2 for both biological and therapeutic applications.
Collapse
Affiliation(s)
- Xiaqiu Qiu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Claus Kemker
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Georg L. Goebel
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Philipp Lampe
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Nadav Wallis
- Department
of Cellular and Molecular Medicine, University
of California San Diego, La Jolla, California 92037, United States
| | - Damian Schiller
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Katrin Bigler
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Mao Jiang
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| | - Sonja Sievers
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Compound
Management and Screening Center, Dortmund 44227, Germany
| | - Gene W. Yeo
- Department
of Cellular and Molecular Medicine, University
of California San Diego, La Jolla, California 92037, United States
- Sanford
Stem Cell Institute and Sanford Consortium for Regenerative Medicine,
University of California San Diego, La Jolla, California 92037, United States
- Institute
for Genomic Medicine, University of California San Diego, La Jolla, California 92037, United States
- Sanford
Laboratories for Innovative Medicines, La Jolla, California 92037, United States
- Center
for RNA Technologies and Therapeutics, University
of California San Diego, La Jolla, California 92037, United States
| | - Peng Wu
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Faculty
of Chemistry and Chemical Biology, TU Dortmund
University, Dortmund 44227, Germany
| |
Collapse
|
4
|
Chen L, Wang WJ, Liu SY, Su RB, Wu YK, Wu X, Zhang SY, Qiao J, Sha QQ, Fan HY. NAT10-mediated mRNA N4-acetylation is essential for the translational regulation during oocyte meiotic maturation in mice. SCIENCE ADVANCES 2025; 11:eadp5163. [PMID: 39982985 PMCID: PMC11844725 DOI: 10.1126/sciadv.adp5163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
The precise translational regulation of maternal messenger RNAs (mRNAs) drives mammalian oocyte maturation. However, the function and mechanism of posttranscriptional chemical modifications, especially the newly identified N4-acetylcytidine (ac4C) modification catalyzed by N-acetyltransferase 10 (NAT10), are unknown. In this study, we developed a low-input ac4C sequencing technology, ac4C LACE-seq, and mapped 8241 ac4C peaks at the whole-transcriptome level using 50 mouse oocytes at the germinal vesicle stage. Oocyte-specific Nat10 knockout wiped out ac4C signals in oocytes and caused severe defects in meiotic maturation and female infertility. Mechanically, Nat10 deletion led to a failure of ac4C deposition on mRNAs encoding key maternal factors, which regulate transcriptome stability and maternal-to-zygotic transition. Nat10-deleted oocytes showed decreased mRNA translation efficiency due to the direct inhibition of ac4C sites on specific transcripts during meiotic maturation. In summary, we developed a low-input, high-sensitivity mRNA ac4C profiling approach and highlighted the important physiological function of ac4C in the precise regulation of oocyte meiotic maturation by enhancing translation efficiency.
Collapse
Affiliation(s)
- Lu Chen
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Wen-Jing Wang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shao-Yuan Liu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Rui-Bao Su
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yu-Ke Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Song-Ying Zhang
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qian-Qian Sha
- College of Life Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
5
|
Cordes J, Zhao S, Engel CM, Stingele J. Cellular responses to RNA damage. Cell 2025; 188:885-900. [PMID: 39983673 DOI: 10.1016/j.cell.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/23/2025]
Abstract
RNA plays a central role in protein biosynthesis and performs diverse regulatory and catalytic functions, making it essential for all processes of life. Like DNA, RNA is constantly subjected to damage from endogenous and environmental sources. However, while the DNA damage response has been extensively studied, it was long assumed that RNA lesions are relatively inconsequential due to the transient nature of most RNA molecules. Here, we review recent studies that challenge this view by revealing complex RNA damage responses that determine survival when cells are exposed to nucleic acid-damaging agents and promote the resolution of RNA lesions.
Collapse
Affiliation(s)
- Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; College of Basic Medical Sciences, Medical Basic Research Innovation Center of Airway Disease in North China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Carla M Engel
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
6
|
Li Q, Liu J, Guo L, Zhang Y, Chen Y, Liu H, Cheng H, Deng L, Qiu J, Zhang K, Goh WSS, Wang Y, Peng Q. Decoding the interplay between m 6A modification and stress granule stability by live-cell imaging. SCIENCE ADVANCES 2024; 10:eadp5689. [PMID: 39546601 PMCID: PMC11566999 DOI: 10.1126/sciadv.adp5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
N6-methyladenosine (m6A)-modified mRNAs and their cytoplasmic reader YTHDFs are colocalized with stress granules (SGs) under stress conditions, but the interplay between m6A modification and SG stability remains unclear. Here, we presented a spatiotemporal m6A imaging system (SMIS) that can monitor the m6A modification and the translation of mRNAs with high specificity and sensitivity in a single live cell. SMIS showed that m6A-modified reporter mRNAs dynamically enriched into SGs under arsenite stress and gradually partitioned into the cytosol as SG disassembled. SMIS revealed that knockdown of YTHDF2 contributed to SG disassembly, resulting in the fast redistribution of mRNAs from SGs and rapid recovery of stalled translation. The mechanism is that YTHDF2 can regulate SG stability through the interaction with G3BP1 in m6A-modified RNA-dependent manner. Our results suggest a mechanism for the interplay between m6A modification and SG through YTHDF2 regulation.
Collapse
Affiliation(s)
- Qianqian Li
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jian Liu
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liping Guo
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yanwei Chen
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huijuan Liu
- Shenzhen Bay Laboratory, Shenzhen 518132, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongyu Cheng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ke Zhang
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | | | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Qin Peng
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
7
|
Chen Y, Shen YQ. Role of reactive oxygen species in regulating epigenetic modifications. Cell Signal 2024; 125:111502. [PMID: 39521028 DOI: 10.1016/j.cellsig.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) originate from diverse sources and regulate multiple signaling pathways within the cellular environment. Their generation is intricately controlled, and disruptions in their signaling or atypical levels can precipitate pathological conditions. Epigenetics, the examination of heritable alterations in gene expression independent of changes in the genetic code, has been implicated in the pathogenesis of various diseases through aberrant epigenetic modifications. The significant contribution of epigenetic modifications to disease progression underscores their potential as crucial therapeutic targets for a wide array of medical conditions. This study begins by providing an overview of ROS and epigenetics, followed by a discussion on the mechanisms of epigenetic modifications such as DNA methylation, histone modification, and RNA modification-mediated regulation. Subsequently, a detailed examination of the interaction between ROS and epigenetic modifications is presented, offering new perspectives and avenues for exploring the mechanisms underlying specific epigenetic diseases and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yutong Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
8
|
Zhao G, Zhang HM, Chen YT, Shi K, Aghakeshmiri S, Yip F, Luo H, McManus B, Yang D. Coxsackievirus B3-Induced m 6A Modification of RNA Enhances Viral Replication via Suppression of YTHDF-Mediated Stress Granule Formation. Microorganisms 2024; 12:2152. [PMID: 39597541 PMCID: PMC11596310 DOI: 10.3390/microorganisms12112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification. Here, we demonstrate that coxsackievirus B3 (CVB3), a common causative agent of viral myocarditis, induces m6A modification primarily at the stop codon and 3' untranslated regions of its genome. As a positive-sense single-stranded RNA virus, CVB3 replicates exclusively in the cytoplasm through a cap-independent translation initiation mechanism. Our study shows that CVB3 modulates the expression and nucleo-cytoplasmic transport of the m6A machinery components-METTL3, ALKBH5 and YTHDFs-resulting in increased m6A modifications that enhance viral replication. Mechanistically, this enhancement is mediated through YTHDF-driven stress granule (SG) formation. We observed that YTHDF proteins co-localize with human antigen R (HuR), a protein facilitating cap-independent translation, in SGs during early infection. Later in infection, YTHDFs are cleaved, suppressing SG formation. Notably, for the first time, we identified that during early infection CVB3's RNA-dependent RNA polymerase (3D) and double-stranded RNA (dsRNA) are stored in SGs, co-localizing with HuR. This early-stage sequestration likely protects viral components for use in late-phase replication, when SGs are disrupted due to YTHDF cleavage. In summary, our findings reveal that CVB3-induced m6A modifications enhance viral replication by regulating YTHDF-mediated SG dynamics. This study provides a potential therapeutic strategy for CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Huifang M. Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Yankuan T. Chen
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Kerry Shi
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Sana Aghakeshmiri
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Fione Yip
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Bruce McManus
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (G.Z.); (H.M.Z.)
- Centre for Heart Lung Innovation, University of British Columbia, St. Paul’s Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
9
|
Yu Z, Xia Y, Li J, Jiang J, Li Y, Li Y, Wang L. METTL3 mediates m6A modification of lncRNA CRNDE to promote ATG10 expression and improve brain ischemia/reperfusion injury through YTHDC1. Biol Direct 2024; 19:92. [PMID: 39407279 PMCID: PMC11481594 DOI: 10.1186/s13062-024-00536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury is a severe brain disorder with currently limited effective treatments. This study aims to explore the role of N6-methyladenosine (m6A) modification and associated regulatory factors in I/R to identify potential therapeutic targets. METHODS We utilized a middle cerebral artery occlusion (MCAO) rat model and SH-SY5Y cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to assess m6A levels and investigate the impact of METTL3 overexpression on long non-coding RNA (lncRNA) CRNDE expression. The effects of silencing lncRNA CRNDE on the interaction between YTHDC1 and ATG10 mRNA, as well as the stability of ATG10 mRNA, were evaluated. Additionally, apoptosis rates, pro-inflammatory and anti-inflammatory factor levels, ATG10 expression, and autophagic activity were analyzed to determine the effects of METTL3. The reverse effects of YTHDC1 overexpression were also examined. RESULTS MCAO rats and OGD/R-treated SH-SY5Y cells exhibited reduced m6A levels. METTL3 overexpression significantly inhibited lncRNA CRNDE expression. Silencing lncRNA CRNDE mitigated OGD/R-induced apoptosis and inflammation in SH-SY5Y cells, while enhancing autophagy and stabilizing ATG10 mRNA. METTL3 overexpression decreased cell apoptosis, reduced the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and increased IL-10 secretion. Furthermore, METTL3 overexpression upregulated ATG10 expression and promoted autophagy. Conversely, lncRNA CRNDE overexpression negated these effects. CONCLUSION The inhibition of lncRNA CRNDE affects the interaction between YTHDC1 and ATG10 mRNA and stabilizes ATG10 mRNA, mediated by METTL3 overexpression. These findings suggest that targeting lncRNA CRNDE to reduce apoptosis, inhibit inflammation, increase ATG10 expression, and enhance autophagy could offer new therapeutic strategies for I/R injury.
Collapse
Affiliation(s)
- Zhengtao Yu
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Ying Xia
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Jiameng Li
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Junwen Jiang
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - You Li
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Youjun Li
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China.
| | - Liu Wang
- Phase I Clinical Trial Center, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China.
| |
Collapse
|
10
|
Street LA, Rothamel KL, Brannan KW, Jin W, Bokor BJ, Dong K, Rhine K, Madrigal A, Al-Azzam N, Kim JK, Ma Y, Gorhe D, Abdou A, Wolin E, Mizrahi O, Ahdout J, Mujumdar M, Doron-Mandel E, Jovanovic M, Yeo GW. Large-scale map of RNA-binding protein interactomes across the mRNA life cycle. Mol Cell 2024; 84:3790-3809.e8. [PMID: 39303721 PMCID: PMC11530141 DOI: 10.1016/j.molcel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.
Collapse
Affiliation(s)
- Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Kristopher W Brannan
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kevin Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Assael Madrigal
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Ahdout
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mayuresh Mujumdar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA; Sanford Stem Cell Institute, Innovation Center, San Diego, CA, USA.
| |
Collapse
|
11
|
Zhang T, Zheng B, Xia C, Wu P, Zheng B, Jiang L, Li J, Lv G, Zhou H, Huang W, Zou M. Hypoxic Upregulation of IER2 Increases Paracrine GMFG Signaling of Endoplasmic Reticulum Stress-CAF to Promote Chordoma Progression via Targeting ITGB1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405421. [PMID: 39207055 PMCID: PMC11515918 DOI: 10.1002/advs.202405421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Currently, the oncogenic mechanism of endoplasmic reticulum stress-CAF (ERS-CAF) subpopulation in chordoma remains unknown. Here, single-cell RNA sequencing, spatial transcriptomics, GeoMx Digital Spatial Profiler, data-independent acquisition proteomics, bulk RNA-seq, and multiplexed quantitative immunofluorescence are used to unveil the precise molecular mechanism of how ERS-CAF affected chordoma progression. Results show that hypoxic microenvironment reprograms CAFs into ERS-CAF subtype. Mechanistically, this occurrs via hypoxia-mediated transcriptional upregulation of IER2. Overexpression of IER2 in CAFs promotes chordoma progression, which can be impeded by IER2 knockdown or use of ERS inhibitors. IER2 also induces expression of ERS-CAF marker genes and results in production of a pro-tumorigenic paracrine GMFG signaling, which exert its biological function via directly binding to ITGB1 on tumor cells. ITGB1 inhibition attenuates tumor malignant progression, which can be partially reversed by exogenous GMFG intervention. Further analyses reveal a positive correlation between ITGB1high tumor cell counts and SPP1+ macrophage density, as well as the spatial proximity of these two cell types. Clinically, a significant correlation of high IER2/ITGB1 expression with tumor aggressive phenotype and poor patient survival is observed. Collectively, the findings suggest that ERS-CAF regulates SPP1+ macrophage to aggravate chordoma progression via the IER2/GMFG/ITGB1 axis, which may be targeted therapeutically in future.
Collapse
Affiliation(s)
- Tao‐Lan Zhang
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Bo‐Wen Zheng
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
- Musculoskeletal Tumor CenterPeking University People's HospitalPeking UniversityBeijing100044China
| | - Chao Xia
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Peng‐Fei Wu
- Department of Genetics and EndocrinologyNational Children's Medical Center for South Central RegionGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510623China
| | - Bo‐Yv Zheng
- Department of Orthopedics SurgeryGeneral Hospital of the Central Theater CommandWuhan430061China
| | - Ling‐Xiang Jiang
- Department of Radiation OncologyMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Jing Li
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Guo‐Hua Lv
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Hong Zhou
- Department of RadiologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Wei Huang
- The First Affiliated HospitalHealth Management CenterHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Ming‐Xiang Zou
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
12
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Li C, Liu L, Li S, Liu YS. N 6-Methyladenosine in Vascular Aging and Related Diseases: Clinical Perspectives. Aging Dis 2024; 15:1447-1473. [PMID: 37815911 PMCID: PMC11272212 DOI: 10.14336/ad.2023.0924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023] Open
Abstract
Aging leads to progressive deterioration of the structure and function of arteries, which eventually contributes to the development of vascular aging-related diseases. N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic RNAs. This reversible m6A RNA modification is dynamically regulated by writers, erasers, and readers, playing a critical role in various physiological and pathological conditions by affecting almost all stages of the RNA life cycle. Recent studies have highlighted the involvement of m6A in vascular aging and related diseases, shedding light on its potential clinical significance. In this paper, we comprehensively discuss the current understanding of m6A in vascular aging and its clinical implications. We discuss the molecular insights into m6A and its association with clinical realities, emphasizing its significance in unraveling the mechanisms underlying vascular aging. Furthermore, we explore the possibility of m6A and its regulators as clinical indicators for early diagnosis and prognosis prediction and investigate the therapeutic potential of m6A-associated anti-aging approaches. We also examine the challenges and future directions in this field and highlight the necessity of integrating m6A knowledge into patient-centered care. Finally, we emphasize the need for multidisciplinary collaboration to advance the field of m6A research and its clinical application.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Le Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
15
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Tegowski M, Meyer KD. Studying m 6A in the brain: a perspective on current methods, challenges, and future directions. Front Mol Neurosci 2024; 17:1393973. [PMID: 38711483 PMCID: PMC11070500 DOI: 10.3389/fnmol.2024.1393973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
A major mechanism of post-transcriptional RNA regulation in cells is the addition of chemical modifications to RNA nucleosides, which contributes to nearly every aspect of the RNA life cycle. N6-methyladenosine (m6A) is a highly prevalent modification in cellular mRNAs and non-coding RNAs, and it plays important roles in the control of gene expression and cellular function. Within the brain, proper regulation of m6A is critical for neurodevelopment, learning and memory, and the response to injury, and m6A dysregulation has been implicated in a variety of neurological disorders. Thus, understanding m6A and how it is regulated in the brain is important for uncovering its roles in brain function and potentially identifying novel therapeutic pathways for human disease. Much of our knowledge of m6A has been driven by technical advances in the ability to map and quantify m6A sites. Here, we review current technologies for characterizing m6A and highlight emerging methods. We discuss the advantages and limitations of current tools as well as major challenges going forward, and we provide our perspective on how continued developments in this area can propel our understanding of m6A in the brain and its role in brain disease.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
17
|
Dellar ER, Hill C, Carter DRF, Baena‐Lopez LA. Oxidative stress-induced changes in the transcriptomic profile of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e150. [PMID: 38938847 PMCID: PMC11080704 DOI: 10.1002/jex2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) have been proposed to play dual roles in cellular homeostasis, functioning both to remove unwanted intracellular molecules, and to enable communication between cells as a means of modulating cellular responses in different physiological and pathological scenarios. EVs contain a broad range of cargoes, including multiple biotypes of RNA, which can vary depending on the cell status, and may function as signalling molecules. In this study, we carried out comparative transcriptomic analysis of Drosophila EVs and cells, demonstrating that the RNA profile of EVs is distinct from cells and shows dose-dependent changes in response to oxidative stress. We identified a high abundance of snoRNAs in EVs, alongside an enrichment of intronic and untranslated regions (UTRs) of mRNAs under stress. We also observed an increase in the relative abundance of either aberrant or modified mRNAs under stress. These findings suggest that EVs may function both for the elimination of specific cellular RNAs, and for the incorporation of RNAs that may hold signalling potential.
Collapse
Affiliation(s)
- Elizabeth R. Dellar
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Centre for Public HealthQueen's University BelfastBelfastUK
| | - David R. F. Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Evox Therapeutics LimitedOxford Science ParkOxfordUK
| | | |
Collapse
|
18
|
Kudrin P, Singh A, Meierhofer D, Kuśnierczyk A, Ørom UAV. N4-acetylcytidine (ac4C) promotes mRNA localization to stress granules. EMBO Rep 2024; 25:1814-1834. [PMID: 38413733 PMCID: PMC11014937 DOI: 10.1038/s44319-024-00098-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/29/2024] Open
Abstract
Stress granules are an integral part of the stress response that are formed from non-translating mRNAs aggregated with proteins. While much is known about stress granules, the factors that drive their mRNA localization are incompletely described. Modification of mRNA can alter the properties of the nucleobases and affect processes such as translation, splicing and localization of individual transcripts. Here, we show that the RNA modification N4-acetylcytidine (ac4C) on mRNA associates with transcripts enriched in stress granules and that stress granule localized transcripts with ac4C are specifically translationally regulated. We also show that ac4C on mRNA can mediate localization of the protein NOP58 to stress granules. Our results suggest that acetylation of mRNA regulates localization of both stress-sensitive transcripts and RNA-binding proteins to stress granules and adds to our understanding of the molecular mechanisms responsible for stress granule formation.
Collapse
Affiliation(s)
- Pavel Kudrin
- Institute of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Ankita Singh
- Institute of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core (PROMEC), Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology and the Central Norway Regional Health Authority, 7030, Trondheim, Norway
| | | |
Collapse
|
19
|
Kearly A, Nelson ADL, Skirycz A, Chodasiewicz M. Composition and function of stress granules and P-bodies in plants. Semin Cell Dev Biol 2024; 156:167-175. [PMID: 36464613 DOI: 10.1016/j.semcdb.2022.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Stress Granules (SGs) and Processing-bodies (P-bodies) are biomolecular condensates formed in the cell with the highly conserved purpose of maintaining balance between storage, translation, and degradation of mRNA. This balance is particularly important when cells are exposed to different environmental conditions and adjustments have to be made in order for plants to respond to and tolerate stressful conditions. While P-bodies are constitutively present in the cell, SG formation is a stress-induced event. Typically thought of as protein-RNA aggregates, SGs and P-bodies are formed by a process called liquid-liquid phase separation (LLPS), and both their function and composition are very dynamic. Both foci are known to contain proteins involved in translation, protein folding, and ATPase activity, alluding to their roles in regulating mRNA and protein expression levels. From an RNA perspective, SGs and P-bodies primarily consist of mRNAs, though long non-coding RNAs (lncRNAs) have also been observed, and more focus is now being placed on the specific RNAs associated with these aggregates. Recently, metabolites such as nucleotides and amino acids have been reported in purified plant SGs with implications for the energetic dynamics of these condensates. Thus, even though the field of plant SGs and P-bodies is relatively nascent, significant progress has been made in understanding their composition and biological role in stress responses. In this review, we discuss the most recent discoveries centered around SG and P-body function and composition in plants.
Collapse
Affiliation(s)
- Alyssa Kearly
- The Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | | | | | - Monika Chodasiewicz
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
20
|
Perlegos AE, Byrns CN, Bonini NM. Cell type-specific regulation of m 6 A modified RNAs in the aging Drosophila brain. Aging Cell 2024; 23:e14076. [PMID: 38205931 PMCID: PMC10928574 DOI: 10.1111/acel.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The aging brain is highly vulnerable to cellular stress, and neurons employ numerous mechanisms to combat neurotoxic proteins and promote healthy brain aging. The RNA modification m6 A is highly enriched in the Drosophila brain and is critical for the acute heat stress response of the brain. Here we examine m6 A in the fly brain with the chronic stresses of aging and degenerative disease. m6 A levels dynamically increased with both age and disease in the brain, marking integral neuronal identity and signaling pathway transcripts that decline in level with age and disease. Unexpectedly, there is opposing impact of m6 A transcripts in neurons versus glia, which conferred different outcomes on animal health span upon Mettl3 knockdown to reduce m6 A: whereas Mettl3 function is normally beneficial to neurons, it is deleterious to glia. Moreover, knockdown of Mettl3 in glial tauopathy reduced tau pathology and increased animal survival. These findings provide mechanistic insight into regulation of m6 A modified transcripts with age and disease, highlighting an overall beneficial function of Mettl3 in neurons in response to chronic stresses, versus a deleterious impact in glia.
Collapse
Affiliation(s)
- Alexandra E. Perlegos
- Neuroscience Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - China N. Byrns
- Neuroscience Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Medical Scientist Training Program, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nancy M. Bonini
- Neuroscience Graduate Group, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
21
|
Bhatter N, Dmitriev SE, Ivanov P. Cell death or survival: Insights into the role of mRNA translational control. Semin Cell Dev Biol 2024; 154:138-154. [PMID: 37357122 PMCID: PMC10695129 DOI: 10.1016/j.semcdb.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Cellular stress is an intrinsic part of cell physiology that underlines cell survival or death. The ability of mammalian cells to regulate global protein synthesis (aka translational control) represents a critical, yet underappreciated, layer of regulation during the stress response. Various cellular stress response pathways monitor conditions of cell growth and subsequently reshape the cellular translatome to optimize translational outputs. On the molecular level, such translational reprogramming involves an intricate network of interactions between translation machinery, RNA-binding proteins, mRNAs, and non-protein coding RNAs. In this review, we will discuss molecular mechanisms, signaling pathways, and targets of translational control that contribute to cellular adaptation to stress and to cell survival or death.
Collapse
Affiliation(s)
- Nupur Bhatter
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Harvard Initiative for RNA Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
22
|
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet 2024; 25:104-122. [PMID: 37714958 DOI: 10.1038/s41576-023-00645-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Frye
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany.
| |
Collapse
|
23
|
Huang J, Yang F, Liu Y, Wang Y. N6-methyladenosine RNA methylation in diabetic kidney disease. Biomed Pharmacother 2024; 171:116185. [PMID: 38237350 DOI: 10.1016/j.biopha.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes, and hyperglycemic memory associated with diabetes carries the risk of disease occurrence, even after the termination of blood glucose injury. The existence of hyperglycemic memory supports the concept of an epigenetic mechanism involving n6-methyladenosine (m6A) modification. Several studies have shown that m6A plays a key role in the pathogenesis of DKD. This review addresses the role and mechanism of m6A RNA modification in the progression of DKD, including the regulatory role of m6A modification in pathological processes, such as inflammation, oxidative stress, fibrosis, and non-coding (nc) RNA. This reveals the importance of m6A in the occurrence and development of DKD, suggesting that m6A may play a role in hyperglycemic memory phenomenon. This review also discusses how some gray areas, such as m6A modified multiple enzymes, interact to affect the development of DKD and provides countermeasures. In conclusion, this review enhances our understanding of DKD from the perspective of m6A modifications and provides new targets for future therapeutic strategies. In addition, the insights discussed here support the existence of hyperglycemic memory effects in DKD, which may have far-reaching implications for the development of novel treatments. We hypothesize that m6A RNA modification, as a key factor regulating the development of DKD, provides a new perspective for the in-depth exploration of DKD and provides a novel option for the clinical management of patients with DKD.
Collapse
Affiliation(s)
- Jiaan Huang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Fan Yang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yan Liu
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yuehua Wang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China.
| |
Collapse
|
24
|
Guca E, Alarcon R, Palo MZ, Santos L, Alonso-Gil S, Davyt M, de Lima LHF, Boissier F, Das S, Zagrovic B, Puglisi JD, Hashem Y, Ignatova Z. N 6-methyladenosine in 5' UTR does not promote translation initiation. Mol Cell 2024; 84:584-595.e6. [PMID: 38244546 PMCID: PMC10909339 DOI: 10.1016/j.molcel.2023.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/19/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.
Collapse
Affiliation(s)
- Ewelina Guca
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Rodrigo Alarcon
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Michael Z Palo
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leonardo Santos
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Santiago Alonso-Gil
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Marcos Davyt
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Leonardo H F de Lima
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France; Department of Exact and Biological Sciences, Federal University of São João Del Rei, Sete Lagoas Campus, Sete Lagoas 35701-970, Minas Gerais, Brazil
| | - Fanny Boissier
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Sarada Das
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Yaser Hashem
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| |
Collapse
|
25
|
Höfler S, Duss O. Interconnections between m 6A RNA modification, RNA structure, and protein-RNA complex assembly. Life Sci Alliance 2024; 7:e202302240. [PMID: 37935465 PMCID: PMC10629537 DOI: 10.26508/lsa.202302240] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Protein-RNA complexes exist in many forms within the cell, from stable machines such as the ribosome to transient assemblies like the spliceosome. All protein-RNA assemblies rely on spatially and temporally coordinated interactions between specific proteins and RNAs to achieve a functional form. RNA folding and structure are often critical for successful protein binding and protein-RNA complex formation. RNA modifications change the chemical nature of a given RNA and often alter its folding kinetics. Both these alterations can affect how and if proteins or other RNAs can interact with the modified RNA and assemble into complexes. N6-methyladenosine (m6A) is the most common base modification on mRNAs and regulatory noncoding RNAs and has been shown to impact RNA structure and directly modulate protein-RNA interactions. In this review, focusing on the mechanisms and available quantitative information, we discuss first how the METTL3/14 m6A writer complex is specifically targeted to RNA assisted by protein-RNA and other interactions to enable site-specific and co-transcriptional RNA modification and, once introduced, how the m6A modification affects RNA folding and protein-RNA interactions.
Collapse
Affiliation(s)
- Simone Höfler
- Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Zhigalova NA, Oleynikova KY, Ruzov AS, Ermakov AS. The Functions of N 6-Methyladenosine in Nuclear RNAs. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:159-172. [PMID: 38467552 DOI: 10.1134/s0006297924010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 03/13/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common modifications in both eukaryotic and prokaryotic mRNAs. It has been experimentally confirmed that m6A methylation is involved in the regulation of stability and translation of various mRNAs. Until recently, the majority of m6A-related studies have been focused on the cytoplasmic functions of this modification. Here, we review new data on the role of m6A in several key biological processes taking place in the cell nucleus, such as transcription, chromatin organization, splicing, nuclear-cytoplasmic transport, and R-loop metabolism. Based on analysis of these data, we suggest that m6A methylation of nuclear RNAs is another level of gene expression regulation which, together with DNA methylation and histone modifications, controls chromatin structure and functioning in various biological contexts.
Collapse
Affiliation(s)
- Nadezhda A Zhigalova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Katerina Yu Oleynikova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexey S Ruzov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexander S Ermakov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
27
|
Perlegos AE, Quan X, Donnelly KM, Shen H, Shields EJ, Elashal H, Fange Liu K, Bonini NM. dTrmt10A impacts Hsp70 chaperone m 6A levels and the stress response in the Drosophila brain. Sci Rep 2023; 13:22999. [PMID: 38155219 PMCID: PMC10754819 DOI: 10.1038/s41598-023-50272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Chronic cellular stress has a profound impact on the brain, leading to degeneration and accelerated aging. Recent work has revealed the vital role of RNA modifications, and the proteins responsible for regulating them, in the stress response. In our study, we defined the role of CG14618/dTrmt10A, the Drosophila counterpart of human TRMT10A a N1-methylguanosine methyltransferase, on m6A regulation and heat stress resilience in the Drosophila brain. By m6A-IP RNA sequencing on Drosophila head tissue, we demonstrated that manipulating dTrmt10A levels indirectly regulates m6A levels on polyA + RNA. dTrmt10A exerted its influence on m6A levels on transcripts enriched for neuronal signaling and heat stress pathways, similar to the m6A methyltransferase Mettl3. Intriguingly, its impact primarily targeted 3' UTR m6A, setting it apart from the majority of Drosophila m6A-modified transcripts which display 5' UTR enrichment. Upregulation of dTrmt10A led to increased resilience to acute heat stress, decreased m6A modification on heat shock chaperones, and coincided with decreased decay of chaperone transcripts and increased translation of chaperone proteins. Overall, these findings establish a potential mechanism by which dTrmt10A regulates the acute brain stress response through m6A modification.
Collapse
Affiliation(s)
- Alexandra E Perlegos
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiuming Quan
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kirby M Donnelly
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Shen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Emily J Shields
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi Elashal
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy M Bonini
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Sheehan CJ, Marayati BF, Bhatia J, Meyer K. In situ visualization of m6A sites in cellular mRNAs. Nucleic Acids Res 2023; 51:e101. [PMID: 37811887 PMCID: PMC10639046 DOI: 10.1093/nar/gkad787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
N 6-methyladenosine (m6A) is an abundant RNA modification which plays critical roles in RNA function and cellular physiology. However, our understanding of how m6A is spatially regulated remains limited due to a lack of methods for visualizing methylated transcripts of interest in cells. Here, we develop DART-FISH, a method for in situ visualization of specific m6A sites in target RNAs which enables simultaneous detection of both m6A-modified and unmodified transcript copies. We demonstrate the ability of DART-FISH to visualize m6A in a variety of mRNAs across diverse cell types and to provide information on the location and stoichiometry of m6A sites at single-cell resolution. Finally, we use DART-FISH to reveal that m6A is not sufficient for mRNA localization to stress granules during oxidative stress. This technique provides a powerful tool for examining m6A-modified transcript dynamics and investigating methylated RNA localization in individual cells.
Collapse
Affiliation(s)
- Charles J Sheehan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Janvi Bhatia
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
29
|
Prall W, Sheikh AH, Bazin J, Bigeard J, Almeida-Trapp M, Crespi M, Hirt H, Gregory BD. Pathogen-induced m6A dynamics affect plant immunity. THE PLANT CELL 2023; 35:4155-4172. [PMID: 37610247 PMCID: PMC10615206 DOI: 10.1093/plcell/koad224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Posttranscriptional regulation of mRNA mediated by methylation at the N6 position of adenine (N6-methyladenosine [m6A]) has profound effects on transcriptome regulation in plants. Focused studies across eukaryotes offer glimpses into the processes governed by m6A throughout developmental and disease states. However, we lack an understanding of the dynamics and the regulatory potential of m6A during biotic stress in plants. Here, we provide a comprehensive look into the effects of m6A on both the short-term and long-term responses to pathogen signaling in Arabidopsis (Arabidopsis thaliana). We demonstrate that m6A-deficient plants are more resistant to bacterial and fungal pathogen infections and have altered immune responses. Furthermore, m6A deposition is specifically coordinated on transcripts involved in defense and immunity prior to and proceeding the pathogen signal flagellin. Consequently, the dynamic modulation of m6A on specific stress-responsive transcripts is correlated with changes in abundance and cleavage of these transcripts. Overall, we show that the m6A methylome is regulated prior to and during simulated and active pathogen stress and functions in the coordination and balancing of normal growth and pathogen responses.
Collapse
Affiliation(s)
- Wil Prall
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104,USA
| | - Arsheed H Sheikh
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900,Saudi Arabia
| | - Jeremie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Universite Paris Sud, Universite Evry, Universite Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, 91190 Gif-sur-Yvette,France
| | - Jean Bigeard
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Universite Paris Sud, Universite Evry, Universite Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, 91190 Gif-sur-Yvette,France
| | - Marilia Almeida-Trapp
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900,Saudi Arabia
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Universite Paris Sud, Universite Evry, Universite Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, 91190 Gif-sur-Yvette,France
| | - Heribert Hirt
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955-6900,Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna,Austria
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104,USA
| |
Collapse
|
30
|
Li H, Zhao J, Deng H, Zhong Y, Chen M, Chi L, Luo G, Cao C, Yu C, Liu H, Zhang X. N6-methyladenosine modification of PLOD2 causes spermatocyte damage in rats with varicocele. Cell Mol Biol Lett 2023; 28:72. [PMID: 37670228 PMCID: PMC10481479 DOI: 10.1186/s11658-023-00475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND In recent years, N6-methyladenosine (m6A) methylation modification of mRNA has been studied extensively. It has been reported that m6A determines mRNA fate and participates in many cellular functions and reactions, including oxidative stress. The PLOD2 gene encodes a protein that plays a key role in tissue remodeling and fibrotic processes. METHODS The m6A methylation and expression levels of PLOD2 were determined by m6A methylated RNA immunoprecipitation sequencing (MeRIP-seq) and MeRIP-quantitative polymerase chain reaction (qPCR) in the testes of varicocele rats compared with control. To determine whether IGF2BP2 had a targeted effect on the PLOD2 mRNA, RNA immunoprecipitation-qPCR (RIP-qPCR) and luciferase assays were performed. CRISPR/dCas13b-ALKBH5 could downregulate m6A methylation level of PLOD2, which plays an important role in PLOD2-mediated cell proliferation and apoptosis in GC-2 cells. RESULTS PLOD2 was frequently exhibited with high m6A methylation and expression level in the testes of varicocele rats compared with control. In addition, we found that IGF2BP2 binds to the m6A-modified 3' untranslated region (3'-UTR) of PLOD2 mRNA, thereby positively regulating its mRNA stability. Targeted specific demethylation of PLOD2 m6A by CRISPR/dCas13b-ALKBH5 system can significantly decrease the m6A and expression level of PLOD2. Furthermore, demethylation of PLOD2 mRNA dramatically promote GC-2 cell proliferation and inhibit cell apoptosis under oxidative stress. CONCLUSION As a result, we found that varicocele-induced oxidative stress promoted PLOD2 expression level via m6A methylation modification. In addition, targeting m6A demethylation of PLOD2 by CRISPR/dCas13b-ALKBH5 system can regulate GC-2 cell proliferation and apoptosis under oxidative stress. Taken together, our study has acquired a better understanding of the mechanisms underlying male infertility associated with oxidative stress, as well as a novel therapeutic target for male infertility.
Collapse
Affiliation(s)
- Huan Li
- Assisted Reproductive Technology Center, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - Jun Zhao
- Assisted Reproductive Technology Center, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - Hao Deng
- Assisted Reproductive Technology Center, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - YuCheng Zhong
- Assisted Reproductive Technology Center, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - Mian Chen
- Pharmacy Department, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - LinSheng Chi
- Assisted Reproductive Technology Center, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - GuoQun Luo
- Assisted Reproductive Technology Center, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - Cong Cao
- Assisted Reproductive Technology Center, Foshan Maternal and Child Health Care Hospital, Foshan, China
| | - Cong Yu
- Assisted Reproductive Technology Centre, Maternity and Child Healthcare Hospital of Meizhou, Meizhou, China
| | - Honghai Liu
- Assisted Reproductive Technology Centre, Maternity and Child Healthcare Hospital of Meizhou, Meizhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China.
| |
Collapse
|
31
|
Park J, Wu Y, Shao W, Gendron TF, van der Spek SJF, Sultanakhmetov G, Basu A, Castellanos Otero P, Jones CJ, Jansen-West K, Daughrity LM, Phanse S, Del Rosso G, Tong J, Castanedes-Casey M, Jiang L, Libera J, Oskarsson B, Dickson DW, Sanders DW, Brangwynne CP, Emili A, Wolozin B, Petrucelli L, Zhang YJ. Poly(GR) interacts with key stress granule factors promoting its assembly into cytoplasmic inclusions. Cell Rep 2023; 42:112822. [PMID: 37471224 PMCID: PMC10528326 DOI: 10.1016/j.celrep.2023.112822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/14/2022] [Accepted: 07/01/2023] [Indexed: 07/22/2023] Open
Abstract
C9orf72 repeat expansions are the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly(GR) proteins are toxic to neurons by forming cytoplasmic inclusions that sequester RNA-binding proteins including stress granule (SG) proteins. However, little is known of the factors governing poly(GR) inclusion formation. Here, we show that poly(GR) infiltrates a finely tuned network of protein-RNA interactions underpinning SG formation. It interacts with G3BP1, the key driver of SG assembly and a protein we found is critical for poly(GR) inclusion formation. Moreover, we discovered that N6-methyladenosine (m6A)-modified mRNAs and m6A-binding YTHDF proteins not only co-localize with poly(GR) inclusions in brains of c9FTD/ALS mouse models and patients with c9FTD, they promote poly(GR) inclusion formation via the incorporation of RNA into the inclusions. Our findings thus suggest that interrupting interactions between poly(GR) and G3BP1 or YTHDF1 proteins or decreasing poly(GR) altogether represent promising therapeutic strategies to combat c9FTD/ALS pathogenesis.
Collapse
Affiliation(s)
- Jinyoung Park
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yanwei Wu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Sophie J F van der Spek
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Grigorii Sultanakhmetov
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 1920397, Japan
| | - Avik Basu
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Caroline J Jones
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Sadhna Phanse
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Giulia Del Rosso
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jenna Libera
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - David W Sanders
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton, NJ 08544, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| |
Collapse
|
32
|
Chen Z, Song J, Xie L, Xu G, Zheng C, Xia X, Lu F, Ma X, Zou F, Jiang J, Wang H. N6-methyladenosine hypomethylation of circGPATCH2L regulates DNA damage and apoptosis through TRIM28 in intervertebral disc degeneration. Cell Death Differ 2023; 30:1957-1972. [PMID: 37438603 PMCID: PMC10406905 DOI: 10.1038/s41418-023-01190-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs that have been found to be involved in intervertebral disc degeneration (IVDD) progression, and N6-methyladenosine (m6A) broadly exists in circRNAs. Here, we identified circGPATCH2L with a low m6A methylation level to be upregulated in degenerative nucleus pulposus tissues. Mechanistically, as a protein decoy for tripartite motif containing 28 (TRIM28) within aa 402-452 region, circGPATCH2L abrogates the phosphorylation of TRIM28 and inhibits P53 degradation, which contributes to DNA damage accumulation and cellular apoptosis and leads to IVDD progression. Moreover, m6A-methylated circGPATCH2L is recognised and endoribonucleolytically cleaved by a YTHDF2-RPL10-RNase P/MRP complex to maintain the physiological state of nucleus pulposus cells. Thus, our data show the physiological significance of m6A modification in regulating circRNA abundance and provide a potentially effective therapeutic target for the treatment of IVDD.
Collapse
Affiliation(s)
- Zhenhao Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Lin Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Chaojun Zheng
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200000, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China.
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
33
|
Zhao Z, Qing Y, Dong L, Han L, Wu D, Li Y, Li W, Xue J, Zhou K, Sun M, Tan B, Chen Z, Shen C, Gao L, Small A, Wang K, Leung K, Zhang Z, Qin X, Deng X, Xia Q, Su R, Chen J. QKI shuttles internal m 7G-modified transcripts into stress granules and modulates mRNA metabolism. Cell 2023; 186:3208-3226.e27. [PMID: 37379838 PMCID: PMC10527483 DOI: 10.1016/j.cell.2023.05.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/28/2022] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, China
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Miao Sun
- Keck School of Medicine, University of Southern California, and Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Andrew Small
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zheng Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
34
|
Miller LG, Demny M, Tamamis P, Contreras LM. Characterization of epitranscriptome reader proteins experimentally and in silico: Current knowledge and future perspectives beyond the YTH domain. Comput Struct Biotechnol J 2023; 21:3541-3556. [PMID: 37501707 PMCID: PMC10371769 DOI: 10.1016/j.csbj.2023.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
To date, over 150 chemical modifications to the four canonical RNA bases have been discovered, known collectively as the epitranscriptome. Many of these modifications have been implicated in a variety of cellular processes and disease states. Additional work has been done to identify proteins known as "readers" that selectively interact with RNAs that contain specific chemical modifications. Protein interactomes with N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytosine (m5C), and 8-oxo-7,8-dihydroguanosine (8-oxoG) have been determined, mainly through experimental advances in proteomics techniques. However, relatively few proteins have been confirmed to bind directly to RNA containing these modifications. Furthermore, for many of these protein readers, the exact binding mechanisms as well as the exclusivity for recognition of modified RNA species remain elusive, leading to questions regarding their roles within different cellular processes. In the case of the YT-521B homology (YTH) family of proteins, both experimental and in silico techniques have been leveraged to provide valuable biophysical insights into the mechanisms of m6A recognition at atomic resolution. To date, the YTH family is one of the best characterized classes of readers. Here, we review current knowledge about epitranscriptome recognition of the YTH domain proteins from previously published experimental and computational studies. We additionally outline knowledge gaps for proteins beyond the well-studied human YTH domains and the current in silico techniques and resources that can enable investigation of protein interactions with modified RNA outside of the YTH-m6A context.
Collapse
Affiliation(s)
- Lucas G. Miller
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Madeline Demny
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
35
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
36
|
Zhu X, Zhou C, Zhao S, Zheng Z. Role of m6A methylation in retinal diseases. Exp Eye Res 2023; 231:109489. [PMID: 37084873 DOI: 10.1016/j.exer.2023.109489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023]
Abstract
Retinal diseases remain among the leading causes of visual impairment in developed countries, despite great efforts in prevention and early intervention. Due to the limited efficacy of current retinal therapies, novel therapeutic methods are urgently required. Over the past two decades, advances in next-generation sequencing technology have facilitated research on RNA modifications, which can elucidate the relevance of epigenetic mechanisms to disease. N6-methyladenosine (m6A), formed by methylation of adenosine at the N6-position, is the most widely studied RNA modification and plays an important role in RNA metabolism. It is dynamically regulated by writers (methyltransferases) and erasers (demethylases), and recognized by readers (m6A binding proteins). Although the discovery of m6A methylation can be traced back to the 1970s, its regulatory roles in retinal diseases are rarely appreciated. Here, we provide an overview of m6A methylation, and discuss its effects and possible mechanisms on retinal diseases, including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa, and proliferative vitreoretinopathy. Furthermore, we highlight potential agents targeting m6A methylation for retinal disease treatment and discuss the limitations and challenges of research in the field of m6A methylation.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
37
|
Sikorski V, Selberg S, Lalowski M, Karelson M, Kankuri E. The structure and function of YTHDF epitranscriptomic m 6A readers. Trends Pharmacol Sci 2023; 44:335-353. [PMID: 37069041 DOI: 10.1016/j.tips.2023.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Specific RNA sequences modified by a methylated adenosine, N6-methyladenosine (m6A), contribute to the post-transcriptional regulation of gene expression. The quantity of m6A in RNA is orchestrated by enzymes that write and erase it, while its effects are mediated by proteins that bind to read this modification. Dysfunction of this post-transcriptional regulatory process has been linked to human disease. Although the initial focus has been on pharmacological targeting of the writer and eraser enzymes, interest in the reader proteins has been challenged by a lack of clear understanding of their functional roles and molecular mechanisms of action. Readers of m6A-modified RNA (m6A-RNA) - the YTH (YT521-B homology) domain-containing protein family paralogs 1-3 (YTHDF1-3, referred to here as DF1-DF3) - are emerging as therapeutic targets as their links to pathological processes such as cancer and inflammation and their roles in regulating m6A-RNA fate become clear. We provide an updated understanding of the modes of action of DF1-DF3 and review their structures to unlock insights into drug design approaches for DF paralog-selective inhibition.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Finland
| | - Simona Selberg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Maciej Lalowski
- Helsinki Institute of Life Science (HiLIFE), Meilahti Clinical Proteomics Core Facility, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Finland.
| |
Collapse
|
38
|
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22:870-905. [PMID: 36648057 PMCID: PMC10054233 DOI: 10.1080/15384101.2023.2165632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Disruption of the complex network that regulates redox homeostasis often underlies resistant phenotypes, which hinder effective and long-lasting cancer eradication. In addition, the RNA methylome-dependent control of gene expression also critically affects traits of cellular resistance to anti-cancer agents. However, few investigations aimed at establishing whether the epitranscriptome-directed adaptations underlying acquired and/or innate resistance traits in cancer could be implemented through the involvement of redox-dependent or -responsive signaling pathways. This is unexpected mainly because: i) the effectiveness of many anti-cancer approaches relies on their capacity to promote oxidative stress (OS); ii) altered redox milieu and reprogramming of mitochondrial function have been acknowledged as critical mediators of the RNA methylome-mediated response to OS. Here we summarize the current state of understanding on this topic, as well as we offer new perspectives that might lead to original approaches and strategies to delay or prevent the problem of refractory cancer and tumor recurrence.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
39
|
Tan X, Zheng C, Zhuang Y, Jin P, Wang F. The m6A reader PRRC2A is essential for meiosis I completion during spermatogenesis. Nat Commun 2023; 14:1636. [PMID: 36964127 PMCID: PMC10039029 DOI: 10.1038/s41467-023-37252-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
N6-methyladenosine (m6A) and its reader proteins YTHDC1, YTHDC2, and YTHDF2 have been shown to exert essential functions during spermatogenesis. However, much remains unknown about m6A regulation mechanisms and the functions of specific readers during the meiotic cell cycle. Here, we show that the m6A reader Proline rich coiled-coil 2A (PRRC2A) is essential for male fertility. Germ cell-specific knockout of Prrc2a causes XY asynapsis and impaired meiotic sex chromosome inactivation in late-prophase spermatocytes. Moreover, PRRC2A-null spermatocytes exhibit delayed metaphase entry, chromosome misalignment, and spindle disorganization at metaphase I and are finally arrested at this stage. Sequencing data reveal that PRRC2A decreases the RNA abundance or improves the translation efficiency of targeting transcripts. Specifically, PRRC2A recognizes spermatogonia-specific transcripts and downregulates their RNA abundance to maintain the spermatocyte expression pattern during the meiosis prophase. For genes involved in meiotic cell division, PRRC2A improves the translation efficiency of their transcripts. Further, co-immunoprecipitation data show that PRRC2A interacts with several proteins regulating mRNA metabolism or translation (YBX1, YBX2, PABPC1, FXR1, and EIF4G3). Our study reveals post-transcriptional functions of PRRC2A and demonstrates its critical role in the completion of meiosis I in spermatogenesis.
Collapse
Affiliation(s)
- Xinshui Tan
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Caihong Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 100101, China
| | - Yinghua Zhuang
- National Institute of Biological Sciences, Beijing, China
| | - Pengpeng Jin
- National Institute of Biological Sciences, Beijing, China
| | - Fengchao Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
40
|
Shestakova ED, Smirnova VV, Shatsky IN, Terenin IM. Specific mechanisms of translation initiation in higher eukaryotes: the eIF4G2 story. RNA (NEW YORK, N.Y.) 2023; 29:282-299. [PMID: 36517212 PMCID: PMC9945437 DOI: 10.1261/rna.079462.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The eukaryotic initiation factor 4G2 (eIF4G2, DAP5, Nat1, p97) was discovered in 1997. Over the past two decades, dozens of papers have presented contradictory data on eIF4G2 function. Since its identification, eIF4G2 has been assumed to participate in noncanonical translation initiation mechanisms, but recent results indicate that it can be involved in scanning as well. In particular, eIF4G2 provides leaky scanning through some upstream open reading frames (uORFs), which are typical for long 5' UTRs of mRNAs from higher eukaryotes. It is likely the protein can also help the ribosome overcome other impediments during scanning of the 5' UTRs of animal mRNAs. This may explain the need for eIF4G2 in higher eukaryotes, as many mRNAs that encode regulatory proteins have rather long and highly structured 5' UTRs. Additionally, they often bind to various proteins, which also hamper the movement of scanning ribosomes. This review discusses the suggested mechanisms of eIF4G2 action, denotes obscure or inconsistent results, and proposes ways to uncover other fundamental mechanisms in which this important protein factor may be involved in higher eukaryotes.
Collapse
Affiliation(s)
- Ekaterina D Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Sirius University of Science and Technology, Sochi 354349, Russia
| |
Collapse
|
41
|
Selcen I, Prentice E, Casaccia P. The epigenetic landscape of oligodendrocyte lineage cells. Ann N Y Acad Sci 2023; 1522:24-41. [PMID: 36740586 PMCID: PMC10085863 DOI: 10.1111/nyas.14959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epigenetic landscape of oligodendrocyte lineage cells refers to the cell-specific modifications of DNA, chromatin, and RNA that define a unique gene expression pattern of functionally specialized cells. Here, we focus on the epigenetic changes occurring as progenitors differentiate into myelin-forming cells and respond to the local environment. First, modifications of DNA, RNA, nucleosomal histones, key principles of chromatin organization, topologically associating domains, and local remodeling will be reviewed. Then, the relationship between epigenetic modulators and RNA processing will be explored. Finally, the reciprocal relationship between the epigenome as a determinant of the mechanical properties of cell nuclei and the target of mechanotransduction will be discussed. The overall goal is to provide an interpretative key on how epigenetic changes may account for the heterogeneity of the transcriptional profiles identified in this lineage.
Collapse
Affiliation(s)
- Ipek Selcen
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA
| | - Emily Prentice
- Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| | - Patrizia Casaccia
- Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, New York, USA.,Neuroscience Initiative, Advanced Science Research Center, The Graduate Center of The City University of New York, New York, New York, USA.,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, New York, USA
| |
Collapse
|
42
|
Millar SR, Huang JQ, Schreiber KJ, Tsai YC, Won J, Zhang J, Moses AM, Youn JY. A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chem Rev 2023. [PMID: 36662637 PMCID: PMC10375481 DOI: 10.1021/acs.chemrev.2c00608] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.
Collapse
Affiliation(s)
- Sean R Millar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karl J Schreiber
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yi-Cheng Tsai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jiyun Won
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jianping Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,The Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
43
|
Qi F, Liu W, Tan B, Zhang J, Ma Y, Cao C, Ma F, Zhu B, Yang J, Liu X. BTG2 suppresses renal cell carcinoma progression through N6-methyladenosine. Front Oncol 2022; 12:1049928. [PMID: 36591524 PMCID: PMC9795213 DOI: 10.3389/fonc.2022.1049928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
The biological functions of N6-methyladenosine (m6A) modification of mRNA have recently received a great deal of attention. In previous studies, m6A methylation modification has been shown to regulate mRNA fate and to be crucial for the progression and development of tumors. BTG2 (B-cell translocation gene 2) is a member of BTG/TOB anti-proliferative protein family. BTG2 could inhibit cell proliferation and migration and regulate the cell cycle progression. In this study, we confirm that BTG2 is frequently down-regulated in renal cell carcinoma (RCC) tissues and its low expression is associated with unfavorable prognosis and decreased m6A level. Moreover, we found that m6A methylation modifies the 5'UTR of BTG2 to promote its mRNA stability by binding to IGF2BP2. It has been shown that CRISPR/dCas13b-METLL3 can specifically increase BTG2 m6A modification to significantly increase its m6A and expression levels. Then m6A hypermethylation in BTG2 mRNA could dramatically inhibit RCC cells proliferation and migration, and induce cells apoptosis. Taken together, our data show that BTG2 functions as a tumor suppressor and is frequently silenced via m6A modification in RCC.
Collapse
|
44
|
Zhang M, Liu J, Yu C, Tang S, Jiang G, Zhang J, Zhang H, Xu J, Xu W. Berberine Regulation of Cellular Oxidative Stress, Apoptosis and Autophagy by Modulation of m 6A mRNA Methylation through Targeting the Camk1db/ERK Pathway in Zebrafish-Hepatocytes. Antioxidants (Basel) 2022; 11:antiox11122370. [PMID: 36552577 PMCID: PMC9774189 DOI: 10.3390/antiox11122370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Berberine (BBR) ameliorates cellular oxidative stress, apoptosis and autophagy induced by lipid metabolism disorder, however, the molecular mechanism associated with it is not well known. To study the mechanism, we started with m6A methylation modification to investigate its role in lipid deposition zebrafish hepatocytes (ZFL). The results showed that BBR could change the cellular m6A RNA methylation level, increase m6A levels of Camk1db gene transcript and alter Camk1db gene mRNA expression. Via knockdown of the Camk1db gene, Camk1db could promote cellular ERK phosphorylation levels. Berberine regulated the expression level of Camk1db mRNA by altering the M6A RNA methylation of the Camk1db gene, which further affected the synthesis of calmodulin-dependent protein kinase and activated ERK signaling pathway resulting in changes in downstream physiological indicators including ROS production, cell proliferation, apoptosis and autophagy. In conclusion, berberine could regulate cellular oxidative stress, apoptosis and autophagy by mediating Camk1db m6A methylation through the targeting of the Camk1db/ERK pathway in zebrafish-hepatocyte.
Collapse
Affiliation(s)
- Meijuan Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Jin Liu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Chengbing Yu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Shangshang Tang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
| | - Jing Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Hongcai Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Jianxiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
| | - Weina Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Jiangchuan Road, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
45
|
Ramesh-Kumar D, Guil S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol 2022; 86:18-31. [PMID: 35643219 DOI: 10.1016/j.semcancer.2022.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
Abstract
RNA binding proteins that act at the post-transcriptional level display a richness of mechanisms to modulate the transcriptional output and respond to changing cellular conditions. The family of IGF2BP proteins recognize mRNAs modified by methylation and lengthen their lifecycle in the context of stable ribonucleoprotein particles to promote cancer progression. They are emerging as key 'reader' proteins in the epitranscriptomic field, driving the fate of bound substrates under physiological and disease conditions. Recent developments in the field include the recognition that noncoding substrates play crucial roles in mediating the pro-growth features of IGF2BP family, not only as regulated targets, but also as modulators of IGF2BP function themselves. In this review, we summarize the regulatory roles of IGF2BP proteins and link their molecular role as m6A modification readers to the cellular phenotype, thus providing a comprehensive insight into IGF2BP function.
Collapse
Affiliation(s)
- Deepthi Ramesh-Kumar
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia 08916, Spain.
| |
Collapse
|
46
|
Micaelli M, Dalle Vedove A, Cerofolini L, Vigna J, Sighel D, Zaccara S, Bonomo I, Poulentzas G, Rosatti EF, Cazzanelli G, Alunno L, Belli R, Peroni D, Dassi E, Murakami S, Jaffrey SR, Fragai M, Mancini I, Lolli G, Quattrone A, Provenzani A. Small-Molecule Ebselen Binds to YTHDF Proteins Interfering with the Recognition of N 6-Methyladenosine-Modified RNAs. ACS Pharmacol Transl Sci 2022; 5:872-891. [PMID: 36268123 PMCID: PMC9578143 DOI: 10.1021/acsptsci.2c00008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/28/2022]
Abstract
YTHDF proteins bind the N 6-methyladenosine (m6A)-modified mRNAs, influencing their processing, stability, and translation. Therefore, the members of this protein family play crucial roles in gene regulation and several physiological and pathophysiological conditions. YTHDF proteins contain a hydrophobic pocket that accommodates the m6A embedded in the RRACH consensus sequence on mRNAs. We exploited the presence of this cage to set up an m6A-competitive assay and performed a high-throughput screen aimed at identifying ligands binding in the m6A pocket. We report the organoselenium compound ebselen as the first-in-class inhibitor of the YTHDF m6A-binding domain. Ebselen, whose interaction with YTHDF proteins was validated via orthogonal assays, cannot discriminate between the binding domains of the three YTHDF paralogs but can disrupt the interaction of the YTHDF m6A domain with the m6A-decorated mRNA targets. X-ray, mass spectrometry, and NMR studies indicate that in YTHDF1 ebselen binds close to the m6A cage, covalently to the Cys412 cysteine, or interacts reversibly depending on the reducing environment. We also showed that ebselen engages YTHDF proteins within cells, interfering with their mRNA binding. Finally, we produced a series of ebselen structural analogs that can interact with the YTHDF m6A domain, proving that ebselen expansion is amenable for developing new inhibitors. Our work demonstrates the feasibility of drugging the YTH domain in YTHDF proteins and opens new avenues for the development of disruptors of m6A recognition.
Collapse
Affiliation(s)
- Mariachiara Micaelli
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Andrea Dalle Vedove
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Linda Cerofolini
- Magnetic
Resonance Center (CERM)—Department of Chemistry “Ugo
Schiff”, University of Florence, 50019Florence, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019Florence, Italy
| | - Jacopo Vigna
- Department
of Physics, University of Trento, 38123Trento, Italy
| | - Denise Sighel
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Sara Zaccara
- Department
of Pharmacology, Weill Cornell Medicine, Cornell University, New York, New York10065, United States
| | - Isabelle Bonomo
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Georgios Poulentzas
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Emanuele Filiberto Rosatti
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Giulia Cazzanelli
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Laura Alunno
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Romina Belli
- Department
of Cellular, Computational and Integrative Biology, CIBIO, Mass Spectrometry
Facility, University of Trento, 38123Trento, Italy
| | - Daniele Peroni
- Department
of Cellular, Computational and Integrative Biology, CIBIO, Mass Spectrometry
Facility, University of Trento, 38123Trento, Italy
| | - Erik Dassi
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Shino Murakami
- Department
of Pharmacology, Weill Cornell Medicine, Cornell University, New York, New York10065, United States
| | - Samie R. Jaffrey
- Department
of Pharmacology, Weill Cornell Medicine, Cornell University, New York, New York10065, United States
| | - Marco Fragai
- Magnetic
Resonance Center (CERM)—Department of Chemistry “Ugo
Schiff”, University of Florence, 50019Florence, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019Florence, Italy
| | - Ines Mancini
- Department
of Physics, University of Trento, 38123Trento, Italy
| | - Graziano Lolli
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Alessandro Quattrone
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| | - Alessandro Provenzani
- Department
of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123Trento, Italy
| |
Collapse
|
47
|
Perlegos AE, Shields EJ, Shen H, Liu KF, Bonini NM. Mettl3-dependent m 6A modification attenuates the brain stress response in Drosophila. Nat Commun 2022; 13:5387. [PMID: 36104353 PMCID: PMC9474545 DOI: 10.1038/s41467-022-33085-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
N6-methyladenosine (m6A), the most prevalent internal modification on eukaryotic mRNA, plays an essential role in various stress responses. The brain is uniquely vulnerable to cellular stress, thus defining how m6A sculpts the brain's susceptibility may provide insight to brain aging and disease-related stress. Here we investigate the impact of m6A mRNA methylation in the adult Drosophila brain with stress. We show that m6A is enriched in the adult brain and increases with heat stress. Through m6A-immunoprecipitation sequencing, we show 5'UTR Mettl3-dependent m6A is enriched in transcripts of neuronal processes and signaling pathways that increase upon stress. Mettl3 knockdown results in increased levels of m6A targets and confers resilience to stress. We find loss of Mettl3 results in decreased levels of nuclear m6A reader Ythdc1, and knockdown of Ythdc1 also leads to stress resilience. Overall, our data suggest that m6A modification in Drosophila dampens the brain's biological response to stress.
Collapse
Affiliation(s)
- Alexandra E Perlegos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily J Shields
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Urology and Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hui Shen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nancy M Bonini
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Delli Ponti R, Broglia L, Vandelli A, Armaos A, Torrent Burgas M, Sanchez de Groot N, Tartaglia GG. A high-throughput approach to predict A-to-I effects on RNA structure indicates a change of double-stranded content in non-coding RNAs. IUBMB Life 2022; 75:411-426. [PMID: 36057100 DOI: 10.1002/iub.2673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022]
Abstract
RNA molecules undergo a number of chemical modifications whose effects can alter their structure and molecular interactions. Previous studies have shown that RNA editing can impact the formation of ribonucleoprotein complexes and influence the assembly of membrane-less organelles such as stress-granules. For instance, N6-methyladenosine (m6A) enhances SG formation and N1-methyladenosine (m1A) prevents their transition to solid-like aggregates. Yet, very little is known about adenosine to inosine (A-to-I) modification that is very abundant in human cells and not only impacts mRNAs but also non-coding RNAs. Here, we built the CROSSalive predictor of A-to-I effects on RNA structure based on high-throughput in-cell experiments. Our method shows an accuracy of 90% in predicting the single and double-stranded content of transcripts and identifies a general enrichment of double-stranded regions caused by A-to-I in long intergenic non-coding RNAs (lincRNAs). For the individual cases of NEAT1, NORAD and XIST, we investigated the relationship between A-to-I editing and interactions with RNA-binding proteins using available CLIP data and catRAPID predictions. We found that A-to-I editing is linked to alteration of interaction sites with proteins involved in phase-separation, which suggests that RNP assembly can be influenced by A-to-I. CROSSalive is available at http://service.tartaglialab.com/new_submission/crossalive. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Riccardo Delli Ponti
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore
| | - Laura Broglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Andrea Vandelli
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Natalia Sanchez de Groot
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| |
Collapse
|
49
|
Multilevel regulation of N6-methyladenosine RNA modifications: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2022. [PMID: 37492716 PMCID: PMC10363589 DOI: 10.1016/j.gendis.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification is widely perceived as the most abundant and common modification in transcripts. This modification is dynamically regulated by specific m6A "writers", "erasers" and "readers" and is reportedly involved in the occurrence and development of many diseases. Since m6A RNA modification was discovered in the 1970s, with the progress of relevant research technologies, an increasing number of functions of m6A have been reported, and a preliminary understanding of m6A has been obtained. In this review, we summarize the mechanisms through which m6A RNA modification is regulated from the perspectives of expression, posttranslational modification and protein interaction. In addition, we also summarize how external and internal environmental factors affect m6A RNA modification and its functions in tumors. The mechanisms through which m6A methylases, m6A demethylases and m6A-binding proteins are regulated are complicated and have not been fully elucidated. Therefore, we hope to promote further research in this field by summarizing these mechanisms and look forward to the future application of m6A in tumors.
Collapse
|
50
|
Huang T, He WJ, Li C, Zhang JB, Liao YC, Song B, Yang P. Transcriptome-wide analyses of RNA m6A methylation in hexaploid wheat reveal its roles in mRNA translation regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:917335. [PMID: 36092414 PMCID: PMC9453602 DOI: 10.3389/fpls.2022.917335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotic messenger RNAs. m6A was discovered in wheat about 40 years ago; however, its potential roles in wheat remain unknown. In this study, we profiled m6As in spikelets transcriptome at the flowering stage of hexaploid wheat and found that m6As are evenly distributed across the A, B, and D subgenomes but their extents and locations vary across homeologous genes. m6As are enriched in homeologous genes with close expression levels and the m6A methylated genes are more conserved. The extent of m6A methylation is negatively correlated with mRNA expression levels and its presence on mRNAs has profound impacts on mRNA translation in a location-dependent manner. Specifically, m6As within coding sequences and 3'UTRs repress the translation of mRNAs while the m6As within 5'UTRs and start codons could promote it. The m6A-containing mRNAs are significantly enriched in processes and pathways of "translation" and "RNA transport," suggesting the potential role of m6As in regulating the translation of genes involved in translation regulation. Our data also show a stronger translation inhibition by small RNAs (miRNA and phasiRNA) than by m6A methylation, and no synergistical effect between the two was observed. We propose a secondary amplification machinery of translation regulation triggered by the changes in m6A methylation status. Taken together, our results suggest translation regulation as a key role played by m6As in hexaploid wheat.
Collapse
Affiliation(s)
- Tao Huang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Jie He
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cheng Li
- College of Agriculture, Shihezi University, Shihezi, China
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peng Yang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Jiangsu Ruihua Agricultural Science and Technology Co., Ltd., Suqian, China
| |
Collapse
|