1
|
Simon NM, Kim Y, Gribnau J, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis-regulatory evolution at translation genes. Heredity (Edinb) 2024; 133:308-316. [PMID: 39164520 PMCID: PMC11527988 DOI: 10.1038/s41437-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
Affiliation(s)
- Noah M Simon
- Biology of Aging Doctoral Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Yujin Kim
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Rotterdam, PO Box 2040, CA, 3000, Netherlands
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Oulhen N, Morita S, Pieplow C, Onorato TM, Foster S, Wessel G. Conservation and contrast in cell states of echinoderm ovaries. Mol Reprod Dev 2024; 91:e23721. [PMID: 38054259 PMCID: PMC11153327 DOI: 10.1002/mrd.23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Echinoderms produce functional gametes throughout their lifespan, in some cases exceeding 200 years. The histology and ultrastructure of echinoderm ovaries has been described but how these ovaries function and maintain the production of high-quality gametes remains a mystery. Here, we present the first single cell RNA sequencing data sets of mature ovaries from two sea urchin species (Strongylocentrotus purpuratus [Sp] and Lytechinus variegatus [Lv]), and one sea star species (Patiria miniata [Pm]). We find 14 cell states in the Sp ovary, 16 cell states in the Lv ovary and 13 cell states in the ovary of the sea star. This resource is essential to understand the structure and functional biology of the ovary in echinoderms, and better informs decisions in the utilization of in situ RNA hybridization probes selective for various cell types. We link key genes with cell clusters in validation of this approach. This resource also aids in the identification of the stem cells for prolonged and continuous gamete production, is a foundation for testing changes in the annual reproductive cycle, and is essential for understanding the evolution of reproduction of this important phylum.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Shumpei Morita
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
- Asamushi Research Center for Marine Biology, Tohoku University, Aomori, 039-3501, Japan
| | - Cosmo Pieplow
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Thomas M. Onorato
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Natural Sciences, LaGuardia Community College, Long Island City, NY 11101, USA
| | - Stephany Foster
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gary Wessel
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Milne TA. Chromatin and aberrant enhancer activity in KMT2A rearranged acute lymphoblastic leukemia. Curr Opin Genet Dev 2024; 86:102191. [PMID: 38579381 DOI: 10.1016/j.gde.2024.102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
To make a multicellular organism, genes need to be transcribed at the right developmental stages and in the right tissues. DNA sequences termed 'enhancers' are crucial to achieve this. Despite concerted efforts, the exact mechanisms of enhancer activity remain elusive. Mixed lineage leukemia (MLL or KMT2A) rearrangements (MLLr), commonly observed in cases of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia, produce novel in-frame fusion proteins. Recent work has shown that the MLL-AF4 fusion protein drives aberrant enhancer activity at key oncogenes in ALL, dependent on the continued presence of MLL-AF4 complex components. As well as providing some general insights into enhancer function, these observations may also provide an explanation for transcriptional heterogeneity observed in MLLr patients.
Collapse
Affiliation(s)
- Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
4
|
Melnick AF, Mullin C, Lin K, McCarter AC, Liang S, Liu YE, Wang Q, Jerome NA, Choe E, Kunnath N, Bodanapu G, Akter F, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. Blood 2023; 142:2159-2174. [PMID: 37616559 PMCID: PMC10733839 DOI: 10.1182/blood.2023020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL), but pan-Notch inhibitors showed excessive toxicity in clinical trials. To find alternative ways to target Notch signals, we investigated cell division cycle 73 (Cdc73), which is a Notch cofactor and key component of the RNA polymerase-associated transcriptional machinery, an emerging target in T-ALL. Although we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, chromatin and nascent gene expression profiling showed that Cdc73 intersects with Ets1 and Notch at chromatin within enhancers to activate expression of known T-ALL oncogenes through its enhancer functions. Cdc73 also intersects with these factors within promoters to activate transcription of genes that are important for DNA repair and oxidative phosphorylation through its gene body functions. Consistently, Cdc73 deletion induced DNA damage and apoptosis and impaired mitochondrial function. The CDC73-induced DNA repair expression program co-opted by NOTCH1 is more highly expressed in T-ALL than in any other cancer. These data suggest that Cdc73 might induce a gene expression program that was eventually intersected and hijacked by oncogenic Notch to augment proliferation and mitigate the genotoxic and metabolic stresses of elevated Notch signaling. Our report supports studying factors such as CDC73 that intersect with Notch to derive a basic scientific understanding on how to combat Notch-dependent cancers without directly targeting the Notch complex.
Collapse
Affiliation(s)
- Ashley F. Melnick
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Carea Mullin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Karena Lin
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Anna C. McCarter
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Shannon Liang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Yiran E. Liu
- Cancer Biology Program, Stanford University, Stanford, CA
| | - Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
| | - Nicole A. Jerome
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| | - Elizabeth Choe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Nicholas Kunnath
- Center for Healthcare Outcomes and Policy, University of Michigan School of Medicine, Ann Arbor, MI
| | - Geethika Bodanapu
- School of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Fatema Akter
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA
| | - Brian Magnuson
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Surinder Kumar
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - David B. Lombard
- Department of Pathology and Laboratory Medicine and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL
| | - Andrew G. Muntean
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mats Ljungman
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Radiology Oncology, University of Michigan School of Medicine, Ann Arbor, MI
| | - JoAnn Sekiguchi
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI
| | - Russell J. H. Ryan
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Mark Y. Chiang
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
5
|
Crump NT, Smith AL, Godfrey L, Dopico-Fernandez AM, Denny N, Harman JR, Hamley JC, Jackson NE, Chahrour C, Riva S, Rice S, Kim J, Basrur V, Fermin D, Elenitoba-Johnson K, Roeder RG, Allis CD, Roberts I, Roy A, Geng H, Davies JOJ, Milne TA. MLL-AF4 cooperates with PAF1 and FACT to drive high-density enhancer interactions in leukemia. Nat Commun 2023; 14:5208. [PMID: 37626123 PMCID: PMC10457349 DOI: 10.1038/s41467-023-40981-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Aberrant enhancer activation is a key mechanism driving oncogene expression in many cancers. While much is known about the regulation of larger chromosome domains in eukaryotes, the details of enhancer-promoter interactions remain poorly understood. Recent work suggests co-activators like BRD4 and Mediator have little impact on enhancer-promoter interactions. In leukemias controlled by the MLL-AF4 fusion protein, we use the ultra-high resolution technique Micro-Capture-C (MCC) to show that MLL-AF4 binding promotes broad, high-density regions of enhancer-promoter interactions at a subset of key targets. These enhancers are enriched for transcription elongation factors like PAF1C and FACT, and the loss of these factors abolishes enhancer-promoter contact. This work not only provides an additional model for how MLL-AF4 is able to drive high levels of transcription at key genes in leukemia but also suggests a more general model linking enhancer-promoter crosstalk and transcription elongation.
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK.
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana M Dopico-Fernandez
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicholas Denny
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joseph C Hamley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicole E Jackson
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Catherine Chahrour
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simone Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Siobhan Rice
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Damian Fermin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kojo Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, 10065, USA
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Anindita Roy
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
6
|
Bressin A, Jasnovidova O, Arnold M, Altendorfer E, Trajkovski F, Kratz TA, Handzlik JE, Hnisz D, Mayer A. High-sensitive nascent transcript sequencing reveals BRD4-specific control of widespread enhancer and target gene transcription. Nat Commun 2023; 14:4971. [PMID: 37591883 PMCID: PMC10435483 DOI: 10.1038/s41467-023-40633-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Gene transcription by RNA polymerase II (Pol II) is under control of promoters and distal regulatory elements known as enhancers. Enhancers are themselves transcribed by Pol II correlating with their activity. How enhancer transcription is regulated and coordinated with transcription at target genes has remained unclear. Here, we developed a high-sensitive native elongating transcript sequencing approach, called HiS-NET-seq, to provide an extended high-resolution view on transcription, especially at lowly transcribed regions such as enhancers. HiS-NET-seq uncovers new transcribed enhancers in human cells. A multi-omics analysis shows that genome-wide enhancer transcription depends on the BET family protein BRD4. Specifically, BRD4 co-localizes to enhancer and promoter-proximal gene regions, and is required for elongation activation at enhancers and their genes. BRD4 keeps a set of enhancers and genes in proximity through long-range contacts. From these studies BRD4 emerges as a general regulator of enhancer transcription that may link transcription at enhancers and genes.
Collapse
Affiliation(s)
- Annkatrin Bressin
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195, Berlin, Germany
| | - Olga Jasnovidova
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Mirjam Arnold
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Elisabeth Altendorfer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Filip Trajkovski
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Thomas A Kratz
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Joanna E Handzlik
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany.
| |
Collapse
|
7
|
Sun Z, Lin Y, Islam MT, Koche R, Hedehus L, Liu D, Huang C, Vierbuchen T, Sawyers CL, Helin K. Chromatin regulation of transcriptional enhancers and cell fate by the Sotos syndrome gene NSD1. Mol Cell 2023; 83:2398-2416.e12. [PMID: 37402365 PMCID: PMC10529604 DOI: 10.1016/j.molcel.2023.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Nuclear receptor-binding SET-domain protein 1 (NSD1), a methyltransferase that catalyzes H3K36me2, is essential for mammalian development and is frequently dysregulated in diseases, including Sotos syndrome. Despite the impacts of H3K36me2 on H3K27me3 and DNA methylation, the direct role of NSD1 in transcriptional regulation remains largely unknown. Here, we show that NSD1 and H3K36me2 are enriched at cis-regulatory elements, particularly enhancers. NSD1 enhancer association is conferred by a tandem quadruple PHD (qPHD)-PWWP module, which recognizes p300-catalyzed H3K18ac. By combining acute NSD1 depletion with time-resolved epigenomic and nascent transcriptomic analyses, we demonstrate that NSD1 promotes enhancer-dependent gene transcription by facilitating RNA polymerase II (RNA Pol II) pause release. Notably, NSD1 can act as a transcriptional coactivator independent of its catalytic activity. Moreover, NSD1 enables the activation of developmental transcriptional programs associated with Sotos syndrome pathophysiology and controls embryonic stem cell (ESC) multilineage differentiation. Collectively, we have identified NSD1 as an enhancer-acting transcriptional coactivator that contributes to cell fate transition and Sotos syndrome development.
Collapse
Affiliation(s)
- Zhen Sun
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Yuan Lin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohammed T Islam
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Hedehus
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biotech Research and Innovation Centre, University of Copenhagen 2200 Copenhagen N, Denmark
| | - Dingyu Liu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chang Huang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, UK
| | - Thomas Vierbuchen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Kristian Helin
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biotech Research and Innovation Centre, University of Copenhagen 2200 Copenhagen N, Denmark; Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, UK.
| |
Collapse
|
8
|
Rojo-Romanos T, Karpinski J, Millen S, Beschorner N, Simon F, Paszkowski-Rogacz M, Lansing F, Schneider PM, Sonntag J, Hauber J, Thoma-Kress AK, Buchholz F. Precise excision of HTLV-1 provirus with a designer-recombinase. Mol Ther 2023; 31:2266-2285. [PMID: 36934299 PMCID: PMC10362392 DOI: 10.1016/j.ymthe.2023.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/06/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
The human T cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus that persists as a provirus in the genome of infected cells and can lead to adult T cell leukemia (ATL). Worldwide, more than 10 million people are infected and approximately 5% of these individuals will develop ATL, a highly aggressive cancer that is currently incurable. In the last years, genome editing tools have emerged as promising antiviral agents. In this proof-of-concept study, we use substrate-linked directed evolution (SLiDE) to engineer Cre-derived site-specific recombinases to excise the HTLV-1 proviral genome from infected cells. We identified a conserved loxP-like sequence (loxHTLV) present in the long terminal repeats of the majority of virus isolates. After 181 cycles of SLiDE, we isolated a designer-recombinase (designated RecHTLV), which efficiently recombines the loxHTLV sequence in bacteria and human cells with high specificity. Expression of RecHTLV in human Jurkat T cells resulted in antiviral activity when challenged with an HTLV-1 infection. Moreover, expression of RecHTLV in chronically infected SP cells led to the excision of HTLV-1 proviral DNA. Our data suggest that recombinase-mediated excision of the HTLV-1 provirus represents a promising approach to reduce proviral load in HTLV-1-infected individuals, potentially preventing the development of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Teresa Rojo-Romanos
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Janet Karpinski
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Sebastian Millen
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Niklas Beschorner
- PROVIREX Genome Editing Therapies GmbH, Luruper Hauptstrasse 1, 22547 Hamburg, Germany
| | - Florian Simon
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Felix Lansing
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Paul Martin Schneider
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Jan Sonntag
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Joachim Hauber
- PROVIREX Genome Editing Therapies GmbH, Luruper Hauptstrasse 1, 22547 Hamburg, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Frank Buchholz
- Medical Systems Biology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany.
| |
Collapse
|
9
|
Ruan Y, Wang J, Yu M, Wang F, Wang J, Xu Y, Liu L, Cheng Y, Yang R, Zhang C, Yang Y, Wang J, Wu W, Huang Y, Tian Y, Chen G, Zhang J, Jian R. A multi-omics integrative analysis based on CRISPR screens re-defines the pluripotency regulatory network in ESCs. Commun Biol 2023; 6:410. [PMID: 37059858 PMCID: PMC10104827 DOI: 10.1038/s42003-023-04700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/13/2023] [Indexed: 04/16/2023] Open
Abstract
A comprehensive and precise definition of the pluripotency gene regulatory network (PGRN) is crucial for clarifying the regulatory mechanisms in embryonic stem cells (ESCs). Here, after a CRISPR/Cas9-based functional genomics screen and integrative analysis with other functional genomes, transcriptomes, proteomes and epigenome data, an expanded pluripotency-associated gene set is obtained, and a new PGRN with nine sub-classes is constructed. By integrating the DNA binding, epigenetic modification, chromatin conformation, and RNA expression profiles, the PGRN is resolved to six functionally independent transcriptional modules (CORE, MYC, PAF, PRC, PCGF and TBX). Spatiotemporal transcriptomics reveal activated CORE/MYC/PAF module activity and repressed PRC/PCGF/TBX module activity in both mouse ESCs (mESCs) and pluripotent cells of early embryos. Moreover, this module activity pattern is found to be shared by human ESCs (hESCs) and cancers. Thus, our results provide novel insights into elucidating the molecular basis of ESC pluripotency.
Collapse
Affiliation(s)
- Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China
| | - Fengsheng Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yixiao Xu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Ran Yang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
| | - Chen Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - JiaLi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Guangxing Chen
- Department of Joint Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Melnick A, Liang S, Liu Y, Wang Q, Dean N, Choe E, Kunnath N, Bodanapu G, Mullin C, Akter F, Lin K, Magnuson B, Kumar S, Lombard DB, Muntean AG, Ljungman M, Sekiguchi J, Ryan RJH, Chiang MY. Cdc73 protects Notch-induced T-cell leukemia cells from DNA damage and mitochondrial stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525059. [PMID: 36711472 PMCID: PMC9882378 DOI: 10.1101/2023.01.22.525059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activated Notch signaling is highly prevalent in T-cell acute lymphoblastic leukemia (T-ALL) but pan-Notch inhibitors were toxic in clinical trials. To find alternative ways to target Notch signals, we investigated Cell division cycle 73 (Cdc73), which is a Notch cofactor and component of transcriptional machinery, a potential target in T-ALL. While we confirmed previous work that CDC73 interacts with NOTCH1, we also found that the interaction in T-ALL was context-dependent and facilitated by the lymphoid transcription factor ETS1. Using mouse models, we showed that Cdc73 is important for Notch-induced T-cell development and T-ALL maintenance. Mechanistically, Cdc73, Ets1, and Notch intersect chromatin at promoters and enhancers to activate oncogenes and genes that are important for DNA repair and oxidative phosphorylation. Consistently, Cdc73 deletion in T-ALL cells induced DNA damage and impaired mitochondrial function. Our data suggests that Cdc73 might promote a gene expression program that was eventually intersected by Notch to mitigate the genotoxic and metabolic stresses of elevated Notch signaling. We also provide mechanistic support for testing inhibitors of DNA repair, oxidative phosphorylation, and transcriptional machinery. Inhibiting pathways like Cdc73 that intersect with Notch at chromatin might constitute a strategy to weaken Notch signals without directly targeting the Notch complex.
Collapse
|
11
|
Park J, Park S, Lee JS. Role of the Paf1 complex in the maintenance of stem cell pluripotency and development. FEBS J 2023; 290:951-961. [PMID: 35869661 DOI: 10.1111/febs.16582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/26/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Cell identity is determined by the transcriptional regulation of a cell-type-specific gene group. The Paf1 complex (Paf1C), an RNA polymerase II-associating factor, is an important transcriptional regulator that not only participates in transcription elongation and termination but also affects transcription-coupled histone modifications and chromatin organisation. Recent studies have shown that Paf1C is involved in the expression of genes required for self-renewal and pluripotency in stem cells and tumorigenesis. In this review, we focused on the role of Paf1C as a critical transcriptional regulator in cell fate decisions. Paf1C affects the pluripotency of stem cells by regulating the expression of core transcription factors such as Oct4 and Nanog. In addition, Paf1C directly binds to the promoters or distant elements of target genes, thereby maintaining the pluripotency in embryonic stem cells derived from an early stage of the mammalian embryo. Paf1C is upregulated in cancer stem cells, as compared with that in cancer cells, suggesting that Paf1C may be a target for cancer therapy. Interestingly, Paf1C is involved in multiple developmental stages in Drosophila, zebrafish, mice and even humans, thereby displaying a trend for the correlation between Paf1C and cell fate. Thus, we propose that Paf1C is a critical contributor to cell differentiation, cell specification and its characteristics and could be employed as a therapeutic target in developmental diseases.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon-si, Korea
| |
Collapse
|
12
|
Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 2023; 186:327-345.e28. [PMID: 36603581 PMCID: PMC9910284 DOI: 10.1016/j.cell.2022.12.013] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.
Collapse
Affiliation(s)
- Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christy Fornero
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Petit MJ, Kenaston MW, Pham OH, Nagainis AA, Fishburn AT, Shah PS. Nuclear dengue virus NS5 antagonizes expression of PAF1-dependent immune response genes. PLoS Pathog 2021; 17:e1010100. [PMID: 34797876 PMCID: PMC8641875 DOI: 10.1371/journal.ppat.1010100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Dengue virus (DENV) disruption of the innate immune response is critical to establish infection. DENV non-structural protein 5 (NS5) plays a central role in this disruption, such as antagonism of STAT2. We recently found that DENV serotype 2 (DENV2) NS5 interacts with Polymerase associated factor 1 complex (PAF1C). The primary members of PAF1C are PAF1, LEO1, CTR9, and CDC73. This nuclear complex is an emerging player in the immune response. It promotes the expression of many genes, including genes related to the antiviral, antimicrobial and inflammatory responses, through close association with the chromatin of these genes. Our previous work demonstrated that NS5 antagonizes PAF1C recruitment to immune response genes. However, it remains unknown if NS5 antagonism of PAF1C is complementary to its antagonism of STAT2. Here, we show that knockout of PAF1 enhances DENV2 infectious virion production. By comparing gene expression profiles in PAF1 and STAT2 knockout cells, we find that PAF1 is necessary to express immune response genes that are STAT2-independent. Finally, we mapped the viral determinants for the NS5-PAF1C protein interaction. We found that NS5 nuclear localization and the C-terminal region of the methyltransferase domain are required for its interaction with PAF1C. Mutation of these regions rescued the expression of PAF1-dependent immune response genes that are antagonized by NS5. In sum, our results support a role for PAF1C in restricting DENV2 replication that NS5 antagonizes through its protein interaction with PAF1C. Dengue virus (DENV) is a pathogen that infects nearly 400 million people a year and thus represents a major challenge for public health. Productive infection by DENV relies on the effective evasion of intrinsic antiviral defenses and is often accomplished through virus-host protein interactions. Here, we investigate the recently discovered interaction between DENV non-structural protein 5 (NS5) and the transcriptional regulator Polymerase associated factor 1 complex (PAF1C). Our work demonstrates PAF1C member PAF1 acts as an antiviral factor and inhibits DENV replication. In parallel, we identified immune response genes involved in intrinsic antiviral defense that depend on PAF1 for expression. We further identified the regions of NS5 required for the protein interaction with PAF1C. Breaking the NS5-PAF1C protein interaction restores the expression of PAF1-dependent immune response genes. Together, our work establishes the antiviral role of PAF1C in DENV infection and NS5 antagonism of PAF1-dependent gene expression through a virus-host protein interaction.
Collapse
Affiliation(s)
- Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Oanh H. Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Ariana A. Nagainis
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
| | - Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
- Department of Chemical Engineering, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
15
|
Karmakar S, Ponnusamy MP, Batra SK. Reply. Gastroenterology 2021; 160:2225-2226. [PMID: 33548231 DOI: 10.1053/j.gastro.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/02/2022]
Affiliation(s)
- Saswati Karmakar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|