1
|
Guo S, Zhang Y, Lian J, Su C, Wang H. The role of hydrogen sulfide in the regulation of necroptosis across various pathological processes. Mol Cell Biochem 2025; 480:1999-2013. [PMID: 39138751 DOI: 10.1007/s11010-024-05090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Necroptosis is a programmed cell death form executed by receptor-interacting protein kinase (RIPK) 1, RIPK3 and mixed lineage kinase domain-like protein (MLKL), which assemble into an oligomer called necrosome. Accumulating evidence reveals that necroptosis participates in many types of pathological processes. Hence, clarifying the mechanism of necroptosis in pathological processes is particularly important for the prevention and treatment of various diseases. For over 300 years, hydrogen sulfide (H2S) has been widely known in the scientific community as a toxic and foul-smelling gas. However, after discovering the important physiological and pathological functions of H2S, human understanding of this small molecule changed, believing that H2S is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO). H2S plays an important role in various diseases, but the related mechanisms are not yet fully understood. In recent years, more and more studies have shown that H2S regulation of necroptosis is involved in various pathological processes. Herein, we focus on the recent progress on the role of H2S regulation of necroptosis in different pathological processes and profoundly analyze the related mechanisms.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chunqi Su
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
2
|
Soe YM, Sim SL, Kumari S. Innate Immune Sensors and Cell Death-Frontiers Coordinating Homeostasis, Immunity, and Inflammation in Skin. Viruses 2025; 17:241. [PMID: 40006996 PMCID: PMC11861910 DOI: 10.3390/v17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The skin provides a life-sustaining interface between the body and the external environment. A dynamic communication among immune and non-immune cells in the skin is essential to ensure body homeostasis. Dysregulated cellular communication can lead to the manifestation of inflammatory skin conditions. In this review, we will focus on the following two key frontiers in the skin: innate immune sensors and cell death, as well as their cellular crosstalk in the context of skin homeostasis and inflammation. This review will highlight the recent advancements and mechanisms of how these pathways integrate signals and orchestrate skin immunity, focusing on inflammatory skin diseases and skin infections in mice and humans.
Collapse
Affiliation(s)
| | | | - Snehlata Kumari
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Woolloongabba, Brisbane, QLD 4102, Australia; (Y.M.S.); (S.L.S.)
| |
Collapse
|
3
|
Li S, Liu Y, Li D, Zhang K, Zhang Z, Zhang Z, Cai J. Microalgal astaxanthin ameliorates cypermethrin-induced necroptosis and inflammation via targeting mitochondrial Ca 2+ homeostasis and the ROS-NF-κB-RIPK3/MLKL axis in carp hepatocytes (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109944. [PMID: 39370019 DOI: 10.1016/j.fsi.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Cypermethrin is a toxic pesticide that has infiltrated water bodies due to its widespread use. This contamination has led to detrimental effects on the immune organs of aquatic species, including fish. The natural fat-soluble orange-red carotenoid, astaxanthin (MAT), derived from microalgae, possesses anti-inflammatory, antioxidant, and immunomodulatory properties. To elucidate the mechanism of CY induced damage to carp liver cells and assess the potential protective effects of MAT, we established a carp hepatocyte model exposed to CY and/or MAT. Hepatocytes from carp (Cyprinus carpio) were treated with either 8 μM CY or 60 μM MAT for 24 h. Upon exposure CY, a significant increase in reactive oxygen species (ROS) was observed alongside a diminution in the activities of key antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), suggesting an impairment of cellular antioxidant capacity. Subsequently, acridine orange/ethidium bromide (AO/EB) staining and flow cytometry analysis revealed that hepatocytes exposed to CY exhibited a higher incidence of necroptosis, associated with an elevated mitochondrial Ca2+ concentration, which contributed to cellular dysfunction. Furthermore, exposure to CY also activated the ROS-NF-κB-RIPK3/MLKL signaling pathway, increasing the levels of necroptosis-related regulatory factors (RIP1, RIP3, and MLKL) in hepatocytes and the expression of inflammatory genes (IL-6, IFN-γ, IL-4, IL-1β, and TNF-α), which led to immune dysfunction in hepatocytes. The immunotoxic effects induced by CY were mitigated by MAT treatment, suggesting its potential in alleviating the aforementioned changes caused by CY. Overall, the data suggested that MAT therapy could enhance hepatocyte defenses against CY-induced necroptosis and inflammatory responses by regulating mitochondrial Ca2+ homeostasis and inhibiting the ROS-NF-κB-RIPK3/MLKL signaling cascade. This study elucidated the potential benefits of employing MAT to protect farmed fish from agrobiological hazards during CY exposure, underscoring the practical applications of MAT in aquaculture.
Collapse
Affiliation(s)
- Shuoyue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Yinuo Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Kaixuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Zequn Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Peoples R China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Peoples R China.
| |
Collapse
|
4
|
O'Sullivan PA, Aidarova A, Afonina IS, Manils J, Thurston TLM, Instrell R, Howell M, Boeing S, Ranawana S, Herpels MB, Chetian R, Bassa M, Flynn H, Frith D, Snijders AP, Howes A, Beyaert R, Bowcock AM, Ley SC. CARD14 signalosome formation is associated with its endosomal relocation and mTORC1-induced keratinocyte proliferation. Biochem J 2024; 481:1143-1171. [PMID: 39145956 PMCID: PMC11555713 DOI: 10.1042/bcj20240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Rare mutations in CARD14 promote psoriasis by inducing CARD14-BCL10-MALT1 complexes that activate NF-κB and MAP kinases. Here, the downstream signalling mechanism of the highly penetrant CARD14E138A alteration is described. In addition to BCL10 and MALT1, CARD14E138A associated with several proteins important in innate immune signalling. Interactions with M1-specific ubiquitin E3 ligase HOIP, and K63-specific ubiquitin E3 ligase TRAF6 promoted BCL10 ubiquitination and were essential for NF-κB and MAP kinase activation. In contrast, the ubiquitin binding proteins A20 and ABIN1, both genetically associated with psoriasis development, negatively regulated signalling by inducing CARD14E138A turnover. CARD14E138A localized to early endosomes and was associated with the AP2 adaptor complex. AP2 function was required for CARD14E138A activation of mTOR complex 1 (mTORC1), which stimulated keratinocyte metabolism, but not for NF-κB nor MAP kinase activation. Furthermore, rapamycin ameliorated CARD14E138A-induced keratinocyte proliferation and epidermal acanthosis in mice, suggesting that blocking mTORC1 may be therapeutically beneficial in CARD14-dependent psoriasis.
Collapse
Affiliation(s)
- Paul A. O'Sullivan
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Aigerim Aidarova
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Inna S. Afonina
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joan Manils
- The Francis Crick Institute, London NW1 1AT, U.K
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa L. M. Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, U.K
| | | | | | | | - Sashini Ranawana
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Melanie B. Herpels
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Riwia Chetian
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Matilda Bassa
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| | - Helen Flynn
- The Francis Crick Institute, London NW1 1AT, U.K
| | - David Frith
- The Francis Crick Institute, London NW1 1AT, U.K
| | | | - Ashleigh Howes
- National Heart and Lung Institute, Imperial College London, London W12 0NN, U.K
| | - Rudi Beyaert
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anne M. Bowcock
- Department of Oncological Science, Dermatology, and Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, U.S.A
| | - Steven C. Ley
- Institute of Immunity and Transplantation, University College London, London NW3 2PP, U.K
| |
Collapse
|
5
|
Caponio GR, Annunziato A, Vacca M, Difonzo G, Celano G, Minervini F, Ranieri M, Valenti G, Tamma G, De Angelis M. Nutritional, antioxidant and biological activity characterization of orange peel flour to produce nutraceutical gluten-free muffins. Food Funct 2024; 15:8459-8476. [PMID: 39052071 DOI: 10.1039/d4fo01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Celiac disease - a prevalent food intolerance - requires strict adherence to a lifelong gluten-free (GF) diet as the only effective treatment. However, GF products often lack soluble fibre and have a high glycaemic index. Consequently, there is a pressing need in the food industry to develop GF products with improved nutritional profiles. In this context, the impact of incorporating orange peel flour (OPF) into muffins undergoing sourdough fermentation was examined, focusing on their technological, antioxidant, and nutritional characteristics. The functional properties of OPF were investigated using human colon carcinoma HCT8 cells as a model system. Treatment with OPF extract demonstrated a notable reduction in malignant cell viability and intracellular ROS levels, indicating potent antioxidant capabilities. Western blot analysis revealed significant alterations in key signalling pathways, including increased phosphorylation of NF-kB at serine 536 and reduced intracellular levels of caspase-3, alongside increased phosphorylation of RIPK3 and MLKL, suggesting potential involvement in necroptosis. OPF incorporation in muffins with sourdough increased antioxidant activity, reduced glycaemic index, and affected the volatile profile. Furthermore, based on simulated colonic fermentation, muffins with OPF showed a slight prebiotic effect, supported by the significant increase in bacillus-shaped lactic acid bacteria and Clostridia population. Overall, OPF-enriched muffins demonstrated considerable antioxidant effects and impacts on cell viability, underscoring their potential as functional ingredients in GF products. These findings signify the prospect of OPF enhancing the nutritional profiles and conferring health benefits of GF muffins.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Marianna Ranieri
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Giovanna Valenti
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
6
|
Eren RO, Kaya GG, Schwarzer R, Pasparakis M. IKKε and TBK1 prevent RIPK1 dependent and independent inflammation. Nat Commun 2024; 15:130. [PMID: 38167258 PMCID: PMC10761900 DOI: 10.1038/s41467-023-44372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
TBK1 and IKKε regulate multiple cellular processes including anti-viral type-I interferon responses, metabolism and TNF receptor signaling. However, the relative contributions and potentially redundant functions of IKKε and TBK1 in cell death, inflammation and tissue homeostasis remain poorly understood. Here we show that IKKε compensates for the loss of TBK1 kinase activity to prevent RIPK1-dependent and -independent inflammation in mice. Combined inhibition of IKKε and TBK1 kinase activities caused embryonic lethality that was rescued by heterozygous expression of kinase-inactive RIPK1. Adult mice expressing kinase-inactive versions of IKKε and TBK1 developed systemic inflammation that was induced by both RIPK1-dependent and -independent mechanisms. Combined inhibition of IKKε and TBK1 kinase activities in myeloid cells induced RIPK1-dependent cell death and systemic inflammation mediated by IL-1 family cytokines. Tissue-specific studies showed that IKKε and TBK1 were required to prevent cell death and inflammation in the intestine but were dispensable for liver and skin homeostasis. Together, these findings revealed that IKKε and TBK1 exhibit tissue-specific functions that are important to prevent cell death and inflammation and maintain tissue homeostasis.
Collapse
Affiliation(s)
- Remzi Onur Eren
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Göksu Gökberk Kaya
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Robin Schwarzer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Genentech Inc, South San Francisco, USA
| | - Manolis Pasparakis
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
8
|
Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov 2023; 22:723-742. [PMID: 37550363 DOI: 10.1038/s41573-023-00749-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.
Collapse
Affiliation(s)
- Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Carman LE, Samulevich ML, Aneskievich BJ. Repressive Control of Keratinocyte Cytoplasmic Inflammatory Signaling. Int J Mol Sci 2023; 24:11943. [PMID: 37569318 PMCID: PMC10419196 DOI: 10.3390/ijms241511943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The overactivity of keratinocyte cytoplasmic signaling contributes to several cutaneous inflammatory and immune pathologies. An important emerging complement to proteins responsible for this overactivity is signal repression brought about by several proteins and protein complexes with the native role of limiting inflammation. The signaling repression by these proteins distinguishes them from transmembrane receptors, kinases, and inflammasomes, which drive inflammation. For these proteins, defects or deficiencies, whether naturally arising or in experimentally engineered skin inflammation models, have clearly linked them to maintaining keratinocytes in a non-activated state or returning cells to a post-inflamed state after a signaling event. Thus, together, these proteins help to resolve acute inflammatory responses or limit the development of chronic cutaneous inflammatory disease. We present here an integrated set of demonstrated or potentially inflammation-repressive proteins or protein complexes (linear ubiquitin chain assembly complex [LUBAC], cylindromatosis lysine 63 deubiquitinase [CYLD], tumor necrosis factor alpha-induced protein 3-interacting protein 1 [TNIP1], A20, and OTULIN) for a comprehensive view of cytoplasmic signaling highlighting protein players repressing inflammation as the needed counterpoints to signal activators and amplifiers. Ebb and flow of players on both sides of this inflammation equation would be of physiological advantage to allow acute response to damage or pathogens and yet guard against chronic inflammatory disease. Further investigation of the players responsible for repressing cytoplasmic signaling would be foundational to developing new chemical-entity pharmacologics to stabilize or enhance their function when clinical intervention is needed to restore balance.
Collapse
Affiliation(s)
- Liam E. Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (L.E.C.); (M.L.S.)
| | - Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (L.E.C.); (M.L.S.)
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
10
|
Tagoe H, Hassan S, Bliss E, Youssef G, Heywood W, Mills K, Harper JI, O'Shaughnessy RFL. Chronic activation of Toll-like receptor 2 induces an ichthyotic skin phenotype. Br J Dermatol 2023; 189:91-102. [PMID: 36972303 DOI: 10.1093/bjd/ljad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/06/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Ichthyosis defines a group of chronic conditions that manifest phenotypically as a thick layer of scales, often affecting the entire skin. While the gene mutations that lead to ichthyosis are well documented, the actual signalling mechanisms that lead to scaling are poorly characterized; however, recent publications suggest that common mechanisms are active in ichthyotic tissue and in analogous models of ichthyosis. OBJECTIVES To determine common mechanisms of hyperkeratosis that may be easily targeted with small-molecule inhibitors. METHODS We combined gene expression analysis of gene-specific short hairpin RNA (shRNA) knockdowns in rat epidermal keratinocytes (REKs) of two genes mutated in autosomal recessive congenital ichthyosis (ARCI), Tgm1 and Alox12b, and proteomic analysis of skin scale from patients with ARCI, as well as RNA sequencing data from rat epidermal keratinocytes treated with the Toll-like receptor 2 (TLR2) agonist Pam3CSK4. RESULTS We identified common activation of the TLR2 pathway. Exogenous TLR2 activation led to increased expression of important cornified envelope genes and, in organotypic culture, caused hyperkeratosis. Conversely, blockade of TLR2 signalling in keratinocytes from patients with ichthyosis and our shRNA models reduced the expression of keratin 1, a structural protein overexpressed in ichthyosis scale. A time course of TLR2 activation in REKs revealed that although there was rapid initial activation of innate immune pathways, this was rapidly superseded by widespread upregulation of epidermal differentiation-related proteins. Both nuclear factor kappa B phosphorylation and GATA3 upregulation was associated with this switch, and GATA3 overexpression was sufficient to increase keratin 1 expression. CONCLUSIONS Taken together, these data define a dual role for TLR2 activation during epidermal barrier repair that may be a useful therapeutic modality in treating diseases of epidermal barrier dysfunction.
Collapse
Affiliation(s)
- Hephzi Tagoe
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, UK
- Livingstone Skin Research Centre
| | - Sakinah Hassan
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, UK
- Livingstone Skin Research Centre
| | | | - Gehad Youssef
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, UK
- Livingstone Skin Research Centre
| | | | | | - John I Harper
- Livingstone Skin Research Centre
- Department of Immunobiology and Dermatology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Tamiya H, Urushihara N, Shizuma K, Ogawa H, Nakai S, Wakamatsu T, Takenaka S, Kakunaga S. SHARPIN Enhances Ferroptosis in Synovial Sarcoma Cells via NF-κB- and PRMT5-Mediated PGC1α Reduction. Cancers (Basel) 2023; 15:3484. [PMID: 37444594 DOI: 10.3390/cancers15133484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Sarcoma is a rare type of cancer for which new therapeutic agents are required. Ferroptosis is a nonapoptotic cell death triggered by iron-mediated lipid peroxidation. We found that TFRC, an iron uptake protein, was expressed at higher levels in sarcoma cell lines than in noncancer and carcinoma cell lines. Glutathione peroxidase 4 (GPX4) protects cells against ferroptosis, and its inhibition using RAS-selective lethal 3 (RSL3) had an antitumor effect that was more pronounced in sarcoma cell lines, particularly synovial sarcoma cells, compared to non-sarcoma cells. Because NF-κB can provoke ferroptosis, we examined the role of SHARPIN, an activator of NF-κB, in sarcoma. We found that SHARPIN expression was significantly associated with reduced survival in cohorts of patients with cancer, including sarcoma. In addition, SHARPIN promoted the sensitivity of sarcoma cells to ferroptosis. Further analyses revealed that the PGC1α/NRF2/SLC7A11 axis and BNIP3L/NIX-mediated mitophagy are regulated through NF-κB and PRMT5 downstream of SHARPIN. Our findings suggest that ferroptosis could have a therapeutic effect in sarcoma, particularly in subpopulations with high TFRC and SHARPIN expression.
Collapse
Affiliation(s)
- Hironari Tamiya
- Department of Rehabilitation, Osaka International Cancer Institute, Osaka 541-8567, Japan
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Naoko Urushihara
- Nitto Joint Research Department for Nucleic Acid Medicine, Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Kazuko Shizuma
- Nitto Joint Research Department for Nucleic Acid Medicine, Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Hisataka Ogawa
- Nitto Joint Research Department for Nucleic Acid Medicine, Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Sho Nakai
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Toru Wakamatsu
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Shigeki Kakunaga
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| |
Collapse
|
12
|
Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway. Trends Immunol 2023:S1471-4906(23)00105-9. [PMID: 37357102 DOI: 10.1016/j.it.2023.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.
Collapse
Affiliation(s)
- Jon Huyghe
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
13
|
Huang X, He X, Qiu R, Xie X, Zheng F, Chen F, Hu Z. Unfolded protein response inhibits KAT2B/MLKL-mediated necroptosis of hepatocytes by promoting BMI1 level to ubiquitinate KAT2B. Open Med (Wars) 2023; 18:20230718. [PMID: 37333449 PMCID: PMC10276622 DOI: 10.1515/med-2023-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Unfolded protein response (UPR) plays an important role in the pathogenesis of many liver diseases. BMI1 has a liver protection effect, but whether it participates in the regulation of hepatocyte death through UPR is not well defined. Herein, the endoplasmic reticulum stress model was established by inducing hepatocyte line (MIHA) with tunicamycin (TM, 5 µg/ml). Cell counting kit-8 assay and flow cytometry were used to evaluate the viability and apoptosis of hepatocytes. The expression levels of BMI1, KAT2B, and proteins related to UPR (p-eIF2α, eIF2α, ATF4, and ATF6), NF-κB (p65 and p-p65), apoptosis (cleaved caspase-3, bcl-2, and bax) and necroptosis (p-MLKL and MLKL) were determined by Western blot. The relationship between KAT2B and BMI1 was determined by co-immunoprecipitation and ubiquitination assay. The results showed that TM not only promoted UPR, apoptosis, and necroptosis in hepatocytes but also upregulated the expression levels of BMI1 and KAT2B and activated NF-κB pathway. BAY-117082 reversed the effects of TM on viability, apoptosis, NF-κB pathway, and BMI1 but strengthened the effects of TM on KAT2B/MLKL-mediated necroptosis. BMI1 promoted the ubiquitination of KAT2B, and BMI1 overexpression reversed the effects of TM on viability, apoptosis, and KAT2B/MLKL-mediated necroptosis. In summary, overexpression of BMI1 promotes the ubiquitination of KAT2B to block the MLKL-mediated necroptosis of hepatocytes.
Collapse
Affiliation(s)
- Xiaogang Huang
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Xiongzhi He
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Rongxian Qiu
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Xuemei Xie
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Fengfeng Zheng
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Feihua Chen
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, Putian City, Fujian Province, 351100, China
| | - Zhenting Hu
- Department of Infectious Diseases, The Affiliated Hospital of Putian University, No. 999 Dongzhen East Road, Licheng District, Putian City, Fujian Province, 351100, China
| |
Collapse
|
14
|
Lee CS, Hwang G, Nam YW, Hwang CH, Song J. IKK-mediated TRAF6 and RIPK1 interaction stifles cell death complex assembly leading to the suppression of TNF-α-induced cell death. Cell Death Differ 2023; 30:1575-1584. [PMID: 37085671 PMCID: PMC10244383 DOI: 10.1038/s41418-023-01161-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Tumor necrosis factor α (TNF-α) is a pro-inflammatory cytokine capable of inducing extrinsic apoptosis and necroptosis. Tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ligase, is a member of the TRAF family of proteins, which mediates inflammatory signals by activating nuclear factor kappa B (NFкB) and mitogen-activated protein kinase (MAPK). Although the functions of TRAF6 have been identified, its role in TNF-α-induced cell death remains poorly understood. Here, we report that TRAF6 is a negative modulator of TNF-α-induced cell death but does not affect TNF-α-induced NFκB activation. TRAF6 deficiency accelerates both TNF-α-induced apoptosis and necroptosis; however, the acceleration can be reversed by reconstituting TRAF6 or TRAF6C70A, suggesting that E3 ligase activity is not required for this activity. Mechanistically, TRAF6 directly interacts with RIPK1 during TNF-α-induced cell death signaling, which prevents RIPK1 from interacting with components of the cell death complex such as itself, FADD or RIPK3. These processes suppress the assembly of the death complex. Notably, IKK was required for TRAF6 to interact with RIPK1. In vivo, Traf6-/- embryos exhibited higher levels of cell death in the liver but could be rescued by the simultaneous knockout of Tnf. Finally, TRAF6 knockdown xenografts were highly sensitive to necroptotic stimuli. We concluded that TRAF6 suppresses TNF-α-induced cell death in coordination with IKK complexes in vivo and in vitro by suppressing the assembly of cell death complex.
Collapse
Affiliation(s)
- Choong-Sil Lee
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea
| | - Gyuho Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Chi Hyun Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jaewhan Song
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
15
|
Solé C, Domingo S, Penzo E, Moliné T, Porres L, Aparicio G, Ferrer B, Cortés-Hernández J. Downregulation of miR-885-5p Promotes NF-κB Pathway Activation and Immune Recruitment in Cutaneous Lupus Erythematosus. J Invest Dermatol 2023; 143:209-219.e13. [PMID: 36049539 DOI: 10.1016/j.jid.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023]
Abstract
Cutaneous lupus erythematosus (CLE) has a specific microRNA expression profile. MiR-885-5p has been found to be downregulated in the epidermis of CLE lesions; however, its biological role in the disease has not been studied. In this study, we show that miR-885-5p is markedly reduced in CLE keratinocytes (KCs) with IFN-α and UVB being strong miR-885-5p regulators in vitro. Microarray expression profiling of anti‒miR-885-5p‒transfected KCs identified PSMB5 as a direct target. Specific inhibition of miR-885-5p increased epidermal proliferation by modulating keratin 16 gene K16, BIRC5, TP63, and CDK4 proliferative genes and promoted NF-κB signaling pathway in human primary KCs by increasing IκBα degradation. Silencing PSMB5 rescued the effect of miR-885-5p inhibition, indicating that miR-885-5p regulates proliferation and NF-κB activation by targeting PSMB5 in KCs. In addition, inhibition of miR-885-5p increased the ability of KCs to attract leukocytes in a PSMB5-independent manner. We identified TRAF1 as another direct target, and its silencing reduced leukocyte migration. Collectively, our findings suggest that UVB and IFN-ɑ downregulate miR-885-5p in CLE KCs, leading to epidermal inflammation by NF-κB activity enhancement and proliferation through PSMB5 and immune recruitment through TRAF1. Our data indicate that miR-885-5p is a potential therapeutic target in CLE.
Collapse
Affiliation(s)
- Cristina Solé
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | - Sandra Domingo
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Eleonora Penzo
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Teresa Moliné
- Department of Pathology, Vall d'Hebrón University Hospital, Barcelona, Spain
| | - Laura Porres
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Gloria Aparicio
- Department of Dermatology, Vall d'Hebrón University Hospital, Barcelona, Spain
| | - Berta Ferrer
- Department of Pathology, Vall d'Hebrón University Hospital, Barcelona, Spain
| | - Josefina Cortés-Hernández
- Rheumatology Research Group - Lupus Unit, Vall d'Hebrón University Hospital, Vall d'Hebrón Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
16
|
Primary cilia suppress Ripk3-mediated necroptosis. Cell Death Dis 2022; 8:477. [PMID: 36460631 PMCID: PMC9718801 DOI: 10.1038/s41420-022-01272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
Cilia are sensory organelles that project from the surface of almost all cells. Nephronophthisis (NPH) and NPH-related ciliopathies are degenerative genetic diseases caused by mutation of cilia-associated genes. These kidney disorders are characterized by progressive loss of functional tubular epithelial cells which is associated with inflammation, progressive fibrosis, and cyst formation, ultimately leading to end-stage renal disease. However, disease mechanisms remain poorly understood. Here, we show that targeted deletion of cilia in renal epithelial cells enhanced susceptibility to necroptotic cell death under inflammatory conditions. Treatment of non-ciliated cells with tumor necrosis factor (TNF) α and the SMAC mimetic birinapant resulted in Ripk1-dependent cell death, while viability of ciliated cells was almost not affected. Cell death could be enhanced and shifted toward necroptosis by the caspase inhibitor emricasan, which could be blocked by inhibitors of Ripk1 and Ripk3. Moreover, combined treatment of ciliated and non-ciliated cells with TNFα and cycloheximide induced a cell death response that could be partially rescued with emricasan in ciliated cells. In contrast, non-ciliated cells responded with pronounced cell death that was blocked by necroptosis inhibitors. Consistently, combined treatment with interferon-γ and emricasan induced cell death only in non-ciliated cells. Mechanistically, enhanced necroptosis induced by loss of cilia could be explained by induction of Ripk3 and increased abundance of autophagy components, including p62 and LC3 associated with the Ripk1/Ripk3 necrosome. Genetic ablation of cilia in renal tubular epithelial cells in mice resulted in TUNEL positivity and increased expression of Ripk3 in kidney tissue. Moreover, loss of Nphp1, the most frequent cause of NPH, further increased susceptibility to necroptosis in non-ciliated epithelial cells, suggesting that necroptosis might contribute to the pathogenesis of the disease. Together, these data provide a link between cilia-related signaling and cell death responses and shed new light on the disease pathogenesis of NPH-related ciliopathies.
Collapse
|
17
|
Louvrier C, Awad F, Cosnes A, El Khouri E, Assrawi E, Daskalopoulou A, Copin B, Bocquet H, Chantot Bastaraud S, Arenas Garcia A, Dastot Le Moal F, De La Grange P, Duquesnoy P, Guerrera CI, Piterboth W, Ortonne N, Chosidow O, Karabina SA, Amselem S, Giurgea I. RNF213-associated urticarial lesions with hypercytokinemia. J Allergy Clin Immunol 2022; 150:1545-1555. [PMID: 35780935 DOI: 10.1016/j.jaci.2022.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Urticarial lesions are observed in both cutaneous and systemic disorders. Familial forms of urticarial syndromes are rare and can be encountered in systemic autoinflammatory diseases. OBJECTIVE We sought to investigate a large family with dominantly inherited chronic urticarial lesions associated with hypercytokinemia. METHODS We performed a genetic linkage analysis in 14 patients from a 5-generation family, as well as whole-exome sequencing, cytokine profiling, and transcriptomic analyses on samples from 2 patients. The identified candidate protein was studied after in vitro expression of the corresponding normal and mutated recombinant proteins. An unsupervised proteomic approach was used to unveil the associated protein network. RESULTS The disease phenotype of the most affected family members is characterized by chronic urticarial flares associated with extremely high plasma levels of proinflammatory (IL-1β, IL-6, and TNF-α) and anti-inflammatory (IL-10 and IL-1 receptor antagonist [IL-1RA]) cytokines, with no secondary organ dysfunction, no susceptibility to infections, no fever, and normal C-reactive protein levels. Monocyte transcriptomic analyses identified an immunotolerant profile in the most affected patient. The affected family members carried a loss-of-function mutation in RNF213 that encodes mysterin, a protein with a poorly known physiologic role. We identified the deubiquitinase CYLD, a major regulator of inflammation, as an RNF213 partner and showed that CYLD expression is inhibited by wild-type but not mutant RNF213. CONCLUSION We identified a new entity characterized by chronic urticarial lesions associated with a clinically blunted hypercytokinemia. This disease, which is due to loss of function of RNF213, reveals mysterin's key role in the complex molecular network of innate immunity.
Collapse
Affiliation(s)
- Camille Louvrier
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France; Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | - Fawaz Awad
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Anne Cosnes
- Faculté de Santé de Créteil and Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France
| | - Elma El Khouri
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Eman Assrawi
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Aphrodite Daskalopoulou
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Bruno Copin
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France; Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | - Hélène Bocquet
- Faculté de Santé de Créteil and Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France
| | - Sandra Chantot Bastaraud
- Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | - Angela Arenas Garcia
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Florence Dastot Le Moal
- Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | | | - Philippe Duquesnoy
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Chiara I Guerrera
- Plateforme protéomique Necker, Université de Paris, Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS3633, Paris, France
| | - William Piterboth
- Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | - Nicolas Ortonne
- Département d'Anatomo-Pathologie, APHP, Hôpital Henri-Mondor, Créteil, France
| | - Olivier Chosidow
- Faculté de Santé de Créteil and Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France; Research Group Dynamic, EA7380, Faculté de Santé de Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, Université Paris-Est Créteil, Créteil, France
| | - Sonia A Karabina
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Serge Amselem
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France; Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France.
| | - Irina Giurgea
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France; Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France.
| |
Collapse
|
18
|
Abstract
Tumour necrosis factor (TNF) is a central cytokine in inflammatory reactions, and biologics that neutralize TNF are among the most successful drugs for the treatment of chronic inflammatory and autoimmune pathologies. In recent years, it became clear that TNF drives inflammatory responses not only directly by inducing inflammatory gene expression but also indirectly by inducing cell death, instigating inflammatory immune reactions and disease development. Hence, inhibitors of cell death are being considered as a new therapy for TNF-dependent inflammatory diseases.
Collapse
|
19
|
Sim SL, Kumari S, Kaur S, Khosrotehrani K. Macrophages in Skin Wounds: Functions and Therapeutic Potential. Biomolecules 2022; 12:1659. [PMID: 36359009 PMCID: PMC9687369 DOI: 10.3390/biom12111659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 08/29/2023] Open
Abstract
Macrophages regulate cutaneous wound healing by immune surveillance, tissue repair and remodelling. The depletion of dermal macrophages during the early and middle stages of wound healing has a detrimental impact on wound closure, characterised by reduced vessel density, fibroblast and myofibroblast proliferation, delayed re-epithelization and abated post-healing fibrosis and scar formation. However, in some animal species, oral mucosa and foetal life, cutaneous wounds can heal normally and remain scarless without any involvement of macrophages. These paradoxical observations have created much controversy on macrophages' indispensable role in skin wound healing. Advanced knowledge gained by characterising macrophage subsets, their plasticity in switching phenotypes and molecular drivers provides new insights into their functional importance during cutaneous wound healing. In this review, we highlight the recent findings on skin macrophage subsets, their functional role in adult cutaneous wound healing and the potential benefits of targeting them for therapeutic use.
Collapse
Affiliation(s)
- Seen Ling Sim
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Snehlata Kumari
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Simranpreet Kaur
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
20
|
Cell death in skin function, inflammation, and disease. Biochem J 2022; 479:1621-1651. [PMID: 35929827 PMCID: PMC9444075 DOI: 10.1042/bcj20210606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Cell death is an essential process that plays a vital role in restoring and maintaining skin homeostasis. It supports recovery from acute injury and infection and regulates barrier function and immunity. Cell death can also provoke inflammatory responses. Loss of cell membrane integrity with lytic forms of cell death can incite inflammation due to the uncontrolled release of cell contents. Excessive or poorly regulated cell death is increasingly recognised as contributing to cutaneous inflammation. Therefore, drugs that inhibit cell death could be used therapeutically to treat certain inflammatory skin diseases. Programmes to develop such inhibitors are already underway. In this review, we outline the mechanisms of skin-associated cell death programmes; apoptosis, necroptosis, pyroptosis, NETosis, and the epidermal terminal differentiation programme, cornification. We discuss the evidence for their role in skin inflammation and disease and discuss therapeutic opportunities for targeting the cell death machinery.
Collapse
|
21
|
Yan ZY, Jiao HY, Chen JB, Zhang KW, Wang XH, Jiang YM, Liu YY, Xue Z, Ma QY, Li XJ, Chen JX. Antidepressant Mechanism of Traditional Chinese Medicine Formula Xiaoyaosan in CUMS-Induced Depressed Mouse Model via RIPK1-RIPK3-MLKL Mediated Necroptosis Based on Network Pharmacology Analysis. Front Pharmacol 2021; 12:773562. [PMID: 34867405 PMCID: PMC8641697 DOI: 10.3389/fphar.2021.773562] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Depression is a stress-related disorder that seriously threatens people's physical and mental health. Xiaoyaosan is a classical traditional Chinese medicine formula, which has been used to treat mental depression since ancient times. More and more notice has been given to the relationship between the occurrence of necroptosis and the pathogenesis of mental disorders. Objective: The purpose of present study is to explore the potential mechanism of Xiaoyaosan for the treatment of depression using network pharmacology and experimental research, and identify the potential targets of necroptosis underlying the antidepressant mechanism of Xiaoyaosan. Methods: The mice model of depression was induced by chronic unpredictable mild stress (CUMS) for 6 weeks. Adult C57BL/6 mice were randomly divided into five groups, including control group, chronic unpredictable mild stress group, Xiaoyaosan treatment group, necrostatin-1 (Nec-1) group and solvent group. Drug intervention performed from 4th to 6th week of modeling. The mice in Xiaoyaosan treatment group received Xiaoyaosan by intragastric administration (0.254 g/kg/d), and mice in CUMS group received 0.5 ml physiological saline. Meanwhile, the mice in Nec-1 group were injected intraperitoneally (i.p.) with Nec-1 (10 mg/kg/d), and the equivalent volume of DMSO/PBS (8.3%) was injected into solvent group mice. The behavior tests such as sucrose preference test, forced swimming test and novelty-suppressed feeding test were measured to evaluate depressive-like behaviors of model mice. Then, the active ingredients in Xiaoyaosan and the related targets of depression and necroptosis were compiled through appropriate databases, while the "botanical drugs-active ingredients-target genes" network was constructed by network pharmacology analysis. The expressions of RIPK1, RIPK3, MLKL, p-MLKL were detected as critical target genes of necroptosis and the potential therapeutic target compounds of Xiaoyaosan. Furthermore, the levels of neuroinflammation and microglial activation of hippocampus were measured by detecting the expressions of IL-1β, Lipocalin-2 and IBA1, and the hematoxylin and eosin (H&E) stained was used to observe the morphology in hippocampus sections. Results: After 6-weeks of modeling, the behavioral data showed that mice in CUMS group and solvent group had obvious depressive-like behaviors, and the medication of Xiaoyaosan or Nec-1 could improve these behavioral changes. A total of 96 active ingredients in Xiaoyaosan which could regulate the 23 key target genes were selected from databases. Xiaoyaosan could alleviate the core target genes in necroptosis and improve the hippocampal function and neuroinflammation in depressed mice. Conclusion: The activation of necroptosis existed in the hippocampus of CUMS-induced mice, which was closely related to the pathogenesis of depression. The antidepressant mechanism of Xiaoyaosan included the regulation of multiple targets in necroptosis. It also suggested that necroptosis could be a new potential target for the treatment of depression.
Collapse
Affiliation(s)
- Zhi-Yi Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Yan Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Bei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kai-Wen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xi-Hong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhe Xue
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiao-Juan Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|