1
|
Salib M, Molinski TF. Synthesis and Performance of l-Tryptophanamide and ( S)-1-(Naphthalen-2'-yl)ethanamine-Based Marfey-Type Derivatives for Amino Acid Configurational Analysis: Diastereomeric Resolutions Directed by π-Cation Bonding. J Org Chem 2025; 90:3269-3278. [PMID: 39977842 PMCID: PMC11894641 DOI: 10.1021/acs.joc.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
The configurational analysis of amino acids (AAs) in natural product peptides, often containing nonproteinogenic AAs, is mostly carried out by the venerable Marfey's method using a chiral derivatizing agent (CDA) 1-fluoro-2,4-dinitrophenyl-5-l-alaninamide (l-FDAA)─Marfey's reagent─which undergoes SNAr reaction of the 1° amino group. The resulting AA-DAA derivatives are mostly well-separated by reversed-phase HPLC, but some DAA derivatives resist resolution. Here, we report the synthesis and characterization of two CDAs: l-FDTA (4) in which the l-alanine-derived auxiliary is replaced by l-tryptophanamide and (S)-FDNE (3) where the auxiliary is S-(6-methoxynaphth-2-yl)-1-ethylamine. Side-by-side comparisons of the two reagents were carried out by AA derivatization and reversed-phase HPLC analysis with variables such as organic solvent, additives, and the ionic strength of the mobile phase. l-DTA derivatives of l- and d-AAs were found to show superior HPLC performance and an improvement in resolutions. When incorporated into the mobile phase, the ammonium ion (NH4+, 0-100 mM) showed a dramatic influence on differential retention times [ΔtR = ΔtRd - ΔtRl] of several key AAs. We attributed the effect to π-cation interactions between the indole ring of DTA and the NH4+ counterion in the analyte, a hypothesis supported by 1H NMR titrations and DFT calculations.
Collapse
Affiliation(s)
- Mariam
N. Salib
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Dr. MC-0358, La Jolla, California 92093-0358, United States
| | - Tadeusz F. Molinski
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Dr. MC-0358, La Jolla, California 92093-0358, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. MC-0358, La Jolla, California 92093-0358, United States
| |
Collapse
|
2
|
Schreiber A, Ludwig S. Host-targeted antivirals against SARS-CoV-2 in clinical development - Prospect or disappointment? Antiviral Res 2025; 235:106101. [PMID: 39923941 DOI: 10.1016/j.antiviral.2025.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The global response to the COVID-19 pandemic, caused by the novel SARS-CoV-2 virus, has seen an unprecedented increase in the development of antiviral therapies. Traditional antiviral strategies have primarily focused on direct-acting antivirals (DAAs), which specifically target viral components. In recent years, increasing attention was given to an alternative approach aiming to exploit host cellular pathways or immune responses to inhibit viral replication, which has led to development of so-called host-targeted antivirals (HTAs). The emergence of SARS-CoV-2 and COVID-19 has promoted a boost in this field. Numerous HTAs have been tested and demonstrated their potential against SARS-CoV-2 through in vitro and in vivo studies. However, in striking contrast, only a limited number have successfully progressed to advanced clinical trial phases (2-4), and even less have entered clinical practice. This review aims to explore the current landscape of HTAs targeting SARS-CoV-2 that have reached phase 2-4 clinical trials. Additionally, it will explore the challenges faced in the development of HTAs and in gaining regulatory approval and market availability.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany.
| |
Collapse
|
3
|
Orfanoudaki M, Krumpe LRH, Shenoy SR, Wilson J, Guszczynski T, Henrich CJ, Temme JS, Gildersleeve JC, Molina-Molina E, Erkizia I, Blanco J, Izquierdo-Useros N, Montiero F, Tanuri A, Rech E, O'Keefe BR. Isolation and structure elucidation of Dm-CVNH, a new cyanovirin-N homolog with activity against SARS-CoV-2 and HIV-1. J Biol Chem 2025; 301:108319. [PMID: 39956341 PMCID: PMC11952781 DOI: 10.1016/j.jbc.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025] Open
Abstract
An anti-HIV screen of natural product extracts resulted in the discovery of a new antiviral protein through bioassay-guided fractionation of an aqueous extract of the ascidian Didemnum molle. The protein was sequenced through a combination of tandem mass spectroscopy and N-terminal Edman degradation of peptide fragments after a series of endoproteinase digestions. The primary amino acid sequence and disulfide bonding pattern of the 102-amino acid protein were closely related to the antiviral protein cyanovirin-N (CV-N). This new CV-N homolog was named Dm-CVNH. Alphafold2 prediction resulted in a tertiary structure, highly similar to CV-N, comprised of two symmetrically related domains that contained five β-strands and two α-helical turns each. Dm-CVNH showed specificity for high mannose and oligomannose structures, bound to HIV-1 gp-120 and potently inactivated HIV in neutralization assays (EC50 of 0.95 nM). Dm-CVNH inhibited infection in a SARS-CoV-2 live virus assays and was shown to bind to the S1 domain of SARS-CoV-2 Spike glycoprotein. Dm-CVNH behaved in a manner similar to CV-N, binding with a 2:1 stoichiometry to Spike (both to WH-1 and Omicron variants) and preferring the Omicron variant (Kd 42 nM) to original WH-1 (Kd = 89 nM) Spike. This sensitivity to emergent strains was mirrored in viral neutralization assays where Dm-CVNH potently inhibited the infection of Omicron strains XBB.1.16 and JN.1 (IC50 = 11-18 nM).
Collapse
Affiliation(s)
- Maria Orfanoudaki
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Lauren R H Krumpe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Shilpa R Shenoy
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jennifer Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Tad Guszczynski
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Curtis J Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - J Sebastian Temme
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Elisa Molina-Molina
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Itziar Erkizia
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Julià Blanco
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain; Department of Infectious Diseases and Immunity, Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Fabio Montiero
- Embrapa Genetic Resources and Biotechnology National Institute of Science and Technology in Synthetic Biology, Brasília, Brazil
| | - Amilcar Tanuri
- Embrapa Genetic Resources and Biotechnology National Institute of Science and Technology in Synthetic Biology, Brasília, Brazil
| | - Elibio Rech
- Embrapa Genetic Resources and Biotechnology National Institute of Science and Technology in Synthetic Biology, Brasília, Brazil
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA; Natural Products Branch, Developmental Therapeutic Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
4
|
Molina Molina E, Bech-Serra JJ, Franco-Trepat E, Jarne I, Perez-Zsolt D, Badia R, Riveira-Muñoz E, Garcia-Vidal E, Revilla L, Franco S, Tarrés-Freixas F, Roca N, Ceada G, Kochanowski K, Raïch-Regué D, Erkizia I, Boreika R, Bordoy AE, Soler L, Guil S, Carrillo J, Blanco J, Martínez MÁ, Paredes R, Losada A, Aviles P, Cuevas C, Vergara-Alert J, Segalés J, Clotet B, Ballana E, de la Torre C, Izquierdo-Useros N. Targeting eEF1A reprograms translation and uncovers broad-spectrum antivirals against cap or m 6A protein synthesis routes. Nat Commun 2025; 16:1087. [PMID: 39920115 PMCID: PMC11805953 DOI: 10.1038/s41467-025-56151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Plitidepsin is an antitumoral compound safe for treating COVID-19 that targets the translation elongation factor eEF1A. Here we detect that plitidepsin decreases de novo cap-dependent translation of SARS-CoV-2 and non-viral RNAs but affects less than 13% of the host proteome, thus preserving cellular viability. In response to plitidepsin, cells upregulate EIF2AK3 and proteins that reduce translation, but also proteins that support proteostasis via ribosome synthesis and cap-independent translation by eIF4G2 and IGF2BP2. While plitidepsin inhibits cap- or internal ribosome entry sites (IRES)-mediated translation, its impact on N6-methyladenosine (m6A) translation is limited. In agreement, plitidepsin blocks members of Coronaviridae, Flaviviridae, Pneumoviridae and Herpesviridae families. Yet, it fails to inhibit retroviruses that exploit m6A synthesis routes and are blocked by drugs targeting IGF2BP2 m6A reader. By deciphering the molecular fingerprint of cells treated with therapies targeting translation we identify a rational approach to select broad-spectrum antivirals with potential to counteract future pandemic viruses.
Collapse
Affiliation(s)
- Elisa Molina Molina
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Joan Josep Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Eloi Franco-Trepat
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ignasi Jarne
- Proteomics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Daniel Perez-Zsolt
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Roger Badia
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Edurne Garcia-Vidal
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Lluís Revilla
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Sandra Franco
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Ferran Tarrés-Freixas
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Núria Roca
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
| | - Gerardo Ceada
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
| | - Karl Kochanowski
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
| | - Dàlia Raïch-Regué
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Itziar Erkizia
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Rytis Boreika
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Antoni E Bordoy
- Microbiology Department, Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona, Spain
| | - Laia Soler
- Microbiology Department, Germans Trias i Pujol Research Institute and Hospital (IGTP), Badalona, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Julià Blanco
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Ángel Martínez
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
| | - Roger Paredes
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | - Júlia Vergara-Alert
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Ballana
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina de la Torre
- Proteomics Unit, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
de Oliveira Souza GG, Gonçalves Castro JW, Nascimento LLL, Pereira da Silva M, Ferreira Viturino JJ, Inácio da Silva M, do Nascimento JB, Janaine Camilo C, Martins da Costa JG. Chemical and Biological Prospection of Marine Sponges Belonging to the Class Demospongiae: A Review. Chem Biodivers 2025; 22:e202401711. [PMID: 39312694 DOI: 10.1002/cbdv.202401711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Marine sponges belonging to the class Demospongiae have shown to be promising sources of bioactive compounds. This review aimed to compile studies on the biological activities and chemical components of sponge species from this class, highlighting the structure/activity relationship. Data collection was conducted using the Science Direct, PubMed, Scielo, Web of Science and Google Scholar databases, employing the following descriptors: antimicrobial marine sponges, antioxidant marine sponges, and biological activity of marine sponges. The inclusion criteria were: (1) publications from the year 2022 onwards; (2) written in English or Portuguese; and (3) that evaluated biological activities. Exclusion criteria included: (1) duplicate studies; (2) studies that were not within the scope; and (3) studies that did not evaluate biological activities. As a result of this survey, it was possible to isolate and identify 262 compounds from different metabolic classes, with terpenes, lipids, and alkaloids being highlighted. The extracts, fractions, and isolates were investigated for their antioxidant, antimicrobial, anti-inflammatory, and cytotoxic properties. The sponges demonstrated broad-spectrum antimicrobial potential and cytotoxic potential against various cancer cell lines. Based on data analysis, it is concluded that the studied compounds show promise for the development of drugs for microorganism control and cancer treatment, acting through different mechanisms of action.
Collapse
Affiliation(s)
- Geane Gabriele de Oliveira Souza
- Postgraduate Products in Chemical Biology, Department of Chemistry Biological, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
- Natural Products Research Laboratory, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
| | - José Walber Gonçalves Castro
- Postgraduate Products in Chemical Biology, Department of Chemistry Biological, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
- Natural Products Research Laboratory, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
| | - Lariza Leisla Leandro Nascimento
- Postgraduate Products in Chemical Biology, Department of Chemistry Biological, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
- Natural Products Research Laboratory, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
| | - Mariana Pereira da Silva
- Natural Products Research Laboratory, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
| | - José Jonas Ferreira Viturino
- Natural Products Research Laboratory, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
| | - Maria Inácio da Silva
- Postgraduate Products in Chemical Biology, Department of Chemistry Biological, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
- Natural Products Research Laboratory, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
| | - Joice Barbosa do Nascimento
- Postgraduate Products in Chemical Biology, Department of Chemistry Biological, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
- Natural Products Research Laboratory, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
| | - Cicera Janaine Camilo
- Natural Products Research Laboratory, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
| | - José Galberto Martins da Costa
- Postgraduate Products in Chemical Biology, Department of Chemistry Biological, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
- Natural Products Research Laboratory, Universidade Regional do Cariri, Coronel Antônio Luíz Street, 1161 - Pimenta, 63105-010, Crato, State of Ceara, Brazil
| |
Collapse
|
6
|
Landete P, Caliman-Sturdza OA, Lopez-Martin JA, Preotescu L, Luca MC, Kotanidou A, Villares P, Iglesias SP, Guisado-Vasco P, Saiz-Lou EM, del Carmen Farinas-Alvarez M, de Lucas EM, Perez-Alba E, Cisneros JM, Estrada V, Hidalgo-Tenorio C, Poulakou G, Torralba M, Fortun J, Garcia-Ocana P, Lemaignen A, Marcos-Martin M, Molina M, Paredes R, Perez-Rodriguez MT, Raev D, Ryan P, Meira F, Gomez J, Torres N, Lopez-Mendoza D, Jimeno J, Varona JF. A Phase III Randomized Controlled Trial of Plitidepsin, a Marine-Derived Compound, in Hospitalized Adults With Moderate COVID-19. Clin Infect Dis 2024; 79:910-919. [PMID: 39182994 PMCID: PMC11478586 DOI: 10.1093/cid/ciae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Plitidepsin has shown potent preclinical activity against severe acute respiratory syndrome coronavirus 2 and was generally well tolerated in a phase I trial of hospitalized patients with coronavirus disease 2019 (COVID-19). NEPTUNO, a phase III, multicenter, randomized, controlled trial, was designed to evaluate the efficacy and safety of plitidepsin in the management of moderate COVID-19 in hospitalized adult patients. METHODS Included patients had documented severe acute respiratory syndrome coronavirus 2 infection, required oxygen therapy, and had adequate organ function. The planned sample size was 609 patients. Patients were randomized 1:1:1 to at least 3 days of dexamethasone plus either plitidepsin (1.5 mg/day or 2.5 mg/day, for 3 days) or standard of care (control). The primary endpoint was the time to sustained withdrawal of supplemental oxygen. Secondary endpoints included time to sustained hospital discharge, clinical status, duration of oxygen support, percentage of patients requiring admission to the intensive care unit, and safety. RESULTS After randomizing 205 patients, NEPTUNO was discontinued due to a notable drop in COVID-19-related hospitalizations. Available data suggest a 2-day improvement in the median time to sustained oxygen therapy discontinuation (5 vs 7 days) favoring both plitidepsin arms (hazard ratio, 1.37; 95% confidence interval, .96-1.96; P = .08 for plitidepsin 1.5 mg vs control; hazard ratio, 1.06; 95% confidence interval, .73-1.53; P = .78 for plitidepsin 2.5 mg vs control). Plitidepsin was generally well tolerated. CONCLUSIONS Despite the trial limitations, these results suggest that plitidepsin may have a positive benefit-risk ratio in the management of patients requiring oxygen therapy. Further studies with plitidepsin, including those in immunosuppressed patients, are warranted.Results from this phase III trial suggest that plitidepsin, a first-in-class antiviral, may have a positive benefit-risk ratio in the management of hospitalized patients requiring oxygen therapy for moderate COVID-19.
Collapse
Affiliation(s)
- Pedro Landete
- Pneumology Department, Hospital Universitario La Princesa, Madrid, Spain
- Research Laboratory, Instituto de Investigación La Princesa (IIS Princesa), Madrid, Spain
- Department of Pneumology, Hospital Enfermera Isabel Zendal, Madrid SARS CoV2 Unit, Madrid, Spain
- Department of Pneumology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Olga-Adriana Caliman-Sturdza
- Department of Infectious Diseases, Judetean de Urgenta "Sf. Ioan cel Nou", Suceava, Romania
- Deparment of Internal Medicine, University of Suceava, Suceava, Romania
| | | | - Liliana Preotescu
- Department of Internal Mecicine, Institutul National De Boli Infectioase "Prof. Dr. Matei Bals", Bucharest, Romania
- Department of Internal Mecicine, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Mihaela-Catalina Luca
- Department of Internal Medicine, Spitalul Clinic De Boli Infecţioase "Sf. Paraschev", Iasi, Romania
- Department of Internal Medicine, "Grigore T. Popa" University, Iasi, Romania
| | - Anastasia Kotanidou
- Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Pulmonary and Critical Care, Evagelismos General Hospital, Athens, Greece
| | - Paula Villares
- Internal Medicine, Hospital Universitario HM Sanchinarro, HM Hospitales Group, Madrid, Spain
| | | | - Pablo Guisado-Vasco
- Internal Medicine, Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Medical Research Center, Universidad Europea, Madrid, Spain
| | | | - Maria del Carmen Farinas-Alvarez
- Infectious Diseases Department, Hospital Universitario ‘Marqués de Valdecilla’, Santander, Spain
- Department of Internal Medicine, Valdecilla Research Institute (IDIVAL), Santander, Spain
- Department of Medicine and Psychiatry, Universidad de Cantabria, Research Center, Santander, Spain
| | - Esperanza Merino de Lucas
- Unit of Infectious Diseases, Alicante General University Hospital, Alicante, Spain
- Department of Infectious Disease, Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Eduardo Perez-Alba
- Infectology Department, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Mexico
- Department of Infectious Diseases, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Jose-Miguel Cisneros
- Department of Research, Institute of Biomedicine of Seville (IBiS), Seville, Spain
- Department of Infectious Diseases, Virgen del Rocío’ University Hospital, Seville, Spain
| | - Vicente Estrada
- Infectious Diseases Unit, Hospital Universitario "San Carlos", Madrid, Spain
| | | | - Garyfallia Poulakou
- 3rd Department of Internal Medicine and Laboratory, National Sotiria General Hospital, Athens, Greece
| | - Miguel Torralba
- Internal Medicine, Guadalajara University Hospital, Guadalajara, Spain
| | - Jesus Fortun
- Infectious Diseases Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Paula Garcia-Ocana
- Infectious Diseases Unit, Hospital Universitario de Jerez de la Frontera, Cádiz, Spain
| | - Adrien Lemaignen
- Department of Infectious Diseases, Centre Hospitalier Regional et Universitaire de Tours (CHRU Tours)—Hopital Bretonneaut, Tours, France
| | | | - Maria Molina
- ILD Unit-Respiratory Department, University Hospital of Bellvitge, Barcelona, Spain
- Bellvitge Institute for Biomedical Reseach, IDIBELL, Barcelona, Spain
- Department of Research Center, CIBERES, Barcelona, Spain
| | - Roger Paredes
- Infectious Diseases Department, Hospital Universitari Germans Trial I Pujol, Badalona, Spain
- Department of Infectious Diseases, IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Maria Teresa Perez-Rodriguez
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo. Vigo, Spain
| | - Dimitar Raev
- Cardiology and Internal Medicine, Internal Medicine Clinic, University Hospital UMHAT “Sveta Anna”, Sofia, Bulgaria
| | - Pablo Ryan
- Infectious Diseases Hospital Infanta Leonor, Madrid, Spain
| | | | - Javier Gomez
- Department of Biostatistics, PharmaMar, Madrid, Spain
| | - Nadia Torres
- Department of Data Management, PharmaMar, Madrid, Spain
| | | | | | - Jose-Felipe Varona
- Department of Internal Medicine, Hospital Universitario HM Monteprincipe, HM Hospitales, Madrid, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo Jose Cela, Madrid, Spain
| |
Collapse
|
7
|
Williams N, Silva F, Schmolke M. Harnessing host enhancers of SARS-CoV-2 entry as novel targets for antiviral therapy. Antiviral Res 2024; 228:105951. [PMID: 38945485 DOI: 10.1016/j.antiviral.2024.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The WHO declared the official end of the SARS-CoV-2 caused public health emergency on May 5th, 2023, after two years in which the virus infected approximately 750 Mio individuals causing estimated up to 7 Mio deaths. Likely, the virus will continue to evolve in the human population as a seasonal respiratory pathogen. To now prevent severe infection outcomes in vulnerable individuals, effective antivirals are urgently needed to complement the protection provided by vaccines. SARS-CoV-2 enters its host cell via ACE2 mediated membrane fusion, either at the plasma membrane, if the protease TMPRSS2 is present or via the endosome, in a cathepsin dependent fashion. A small number of positive regulators of viral uptake were described in the literature, which are potentially useful targets for host directed antiviral therapy or biomarkers indicating increased or diminished susceptibility to infection. We identified here by cell surface proximity ligation novel proteins, required for efficient virion uptake. Importantly, chemical inhibition of one of these factors, SLC3A2, resulted in robust reduction of viral replication, to that achieved with a TMPRSS2 inhibitor. Our screen identified new host dependency factors for SARS-CoV-2 entry, which could be targeted by novel antiviral therapies.
Collapse
Affiliation(s)
- Nathalia Williams
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filo Silva
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Aguareles J, Villares Fernández P, Forné C, Martí-Ballesteros EM, Pradillo Fernández V, Sotres-Fernandez G, de la Fuente-Burguera A, Navarro-San Francisco C, Buzón-Martín LM, García-Delangue T, Aiello FT, Carnevali-Ruiz D, Lloris R, Luepke-Estefan XE, López-Martín JA, Jimeno JM, García-Casas A, Guisado-Vasco P. Outcomes and clinical characteristics of the compassionate use of plitidepsin in COVID-19 patients with solid tumours, haematological malignancies or anti-CD20 antibody treatment. Infect Dis (Lond) 2024; 56:575-580. [PMID: 38743059 DOI: 10.1080/23744235.2024.2351043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE To study the effect of plitidepsin antiviral treatment in immunocompromised COVID-19 patients with underlying haematological malignancies or solid tumours, particularly those who have undergone anti-CD20 therapies. DESIGN We conducted a retrospective observational study, involving 54 adults treated with plitidepsin on compassionate use as an antiviral drug. Our analysis compared outcomes between patients with solid tumours and those with haematological malignancies, and a cohort of cases treated or not with anti-CD20 monoclonal antibodies. RESULTS Patients with a history of anti-CD20 therapies showed a prolonged time-to-negative RT-PCR for SARS-CoV-2 infection compared to non-treated patients (33 d (28;75) vs 15 (11;25); p = .002). Similar results were observed in patients with solid tumours in comparison to those with haematological malignancies (13 (10;16) vs 26 (17;50); p < .001). No serious adverse events were documented. CONCLUSIONS Patients with haematological malignancies appear to be at a heightened risk for delayed SARS-CoV-2 clearance and subsequent clinical complications. These findings support plitidepsin as a well-tolerated treatment in this high-risk group. A phase II clinical trial (NCT05705167) is ongoing to evaluate plitidepsin as an antiviral drug in this population.KEY POINTSHaematological patients face an increased risk for severe COVID-19.Anti-CD20 therapies could increase fatal outcomes in COVID-19 patients.Persistent viral replication is increased in immunocompromised patients.Plitidepsin does not lead to new serious adverse events in immunocompromised patients.
Collapse
Affiliation(s)
- Jose Aguareles
- Internal Medicine Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Facultad de Ciencias Biomédicas y de la Salud, Medicine Department, Universidad Europea de Madrid, Madrid, Spain
- Research and Clinical Trials Unit, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | | | - Carles Forné
- Heorfy Consulting, Lleida, Spain
- Basic Medical Sciences Department, University of Lleida, Lleida, Spain
| | - Eva María Martí-Ballesteros
- Facultad de Ciencias Biomédicas y de la Salud, Medicine Department, Universidad Europea de Madrid, Madrid, Spain
- Haematology Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Virginia Pradillo Fernández
- Facultad de Ciencias Biomédicas y de la Salud, Medicine Department, Universidad Europea de Madrid, Madrid, Spain
- Haematology Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Gabriel Sotres-Fernandez
- Internal Medicine Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Facultad de Ciencias Biomédicas y de la Salud, Medicine Department, Universidad Europea de Madrid, Madrid, Spain
| | | | | | - Luis Miguel Buzón-Martín
- Infectious Diseases Unit, Internal Medicine Department, Hospital Universitario de Burgos, Burgos, Spain
| | | | | | - Daniel Carnevali-Ruiz
- Internal Medicine Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Facultad de Ciencias Biomédicas y de la Salud, Medicine Department, Universidad Europea de Madrid, Madrid, Spain
| | | | | | | | | | - Ana García-Casas
- Internal Medicine Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Research and Clinical Trials Unit, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Pablo Guisado-Vasco
- Internal Medicine Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
- Facultad de Ciencias Biomédicas y de la Salud, Medicine Department, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Losada A, Izquierdo-Useros N, Aviles P, Vergara-Alert J, Latino I, Segalés J, Gonzalez SF, Cuevas C, Raïch-Regué D, Muñoz-Alonso MJ, Perez-Zsolt D, Muñoz-Basagoiti J, Rodon J, Chang LA, Warang P, Singh G, Brustolin M, Cantero G, Roca N, Pérez M, Bustos-Morán E, White K, Schotsaert M, García-Sastre A. Plitidepsin as an Immunomodulator against Respiratory Viral Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1307-1318. [PMID: 38416036 PMCID: PMC10984758 DOI: 10.4049/jimmunol.2300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.
Collapse
Affiliation(s)
- Alejandro Losada
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Aviles
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irene Latino
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Santiago F Gonzalez
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Carmen Cuevas
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | - María J Muñoz-Alonso
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | | | - Jordi Rodon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Marco Brustolin
- Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guillermo Cantero
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Núria Roca
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mònica Pérez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Eugenio Bustos-Morán
- Department of Research and Development, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
10
|
Bauermeister A, Furtado LC, Ferreira EG, Moreira EA, Jimenez PC, Lopes NP, Araújo WL, Olchanheski LR, Monteiro da Cruz Lotufo T, Costa-Lotufo LV. Chemical and microbial diversity of a tropical intertidal ascidian holobiont. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106303. [PMID: 38150785 DOI: 10.1016/j.marenvres.2023.106303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
The tropical ascidian Eudistoma vannamei, endemic to the northeastern coast of Brazil, is considered a prolific source of secondary metabolites and hosts Actinomycetota that produce bioactive compounds. Herein, we used an omics approach to study the ascidian as a holobiont, including the microbial diversity through 16S rRNA gene sequencing and metabolite production using mass spectrometry-based metabolomics. Gene sequencing analysis revealed all samples of E. vannamei shared about 50% of the observed ASVs, and Pseudomonadota (50.7%), Planctomycetota (9.58%), Actinomycetota (10.34%), Bacteroidota (12.05%) were the most abundant bacterial phyla. Analysis of tandem mass spectrometry (MS/MS) data allowed annotation of compounds, including phospholipids, amino acids, and pyrimidine alkaloids, such as staurosporine, a member of a well-known chemical class recognized as a microbial metabolite. Isolated bacteria, mainly belonging to Streptomyces and Micromonospora genera, were cultivated and extracted with ethyl acetate. MS/MS analysis of bacterial extracts allowed annotation of compounds not detected in the ascidian tissue, including marineosin and dihydroergotamine, yielding about 30% overlapped ions between host and isolated bacteria. This study reveals E. vannamei as a rich source of microbial and chemical diversity and, furthermore, highlights the importance of omic tools for a comprehensive investigation of holobiont systems.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil; Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Luciana Costa Furtado
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Elthon G Ferreira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, 60451-970, Brazil
| | - Eduarda Antunes Moreira
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Welington Luiz Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Luiz Ricardo Olchanheski
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Leticia Veras Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
11
|
Bouhaddou M, Reuschl AK, Polacco BJ, Thorne LG, Ummadi MR, Ye C, Rosales R, Pelin A, Batra J, Jang GM, Xu J, Moen JM, Richards AL, Zhou Y, Harjai B, Stevenson E, Rojc A, Ragazzini R, Whelan MVX, Furnon W, De Lorenzo G, Cowton V, Syed AM, Ciling A, Deutsch N, Pirak D, Dowgier G, Mesner D, Turner JL, McGovern BL, Rodriguez ML, Leiva-Rebollo R, Dunham AS, Zhong X, Eckhardt M, Fossati A, Liotta NF, Kehrer T, Cupic A, Rutkowska M, Mena I, Aslam S, Hoffert A, Foussard H, Olwal CO, Huang W, Zwaka T, Pham J, Lyons M, Donohue L, Griffin A, Nugent R, Holden K, Deans R, Aviles P, Lopez-Martin JA, Jimeno JM, Obernier K, Fabius JM, Soucheray M, Hüttenhain R, Jungreis I, Kellis M, Echeverria I, Verba K, Bonfanti P, Beltrao P, Sharan R, Doudna JA, Martinez-Sobrido L, Patel AH, Palmarini M, Miorin L, White K, Swaney DL, Garcia-Sastre A, Jolly C, Zuliani-Alvarez L, Towers GJ, Krogan NJ. SARS-CoV-2 variants evolve convergent strategies to remodel the host response. Cell 2023; 186:4597-4614.e26. [PMID: 37738970 PMCID: PMC10604369 DOI: 10.1016/j.cell.2023.08.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we used unbiased systems approaches to study the host-selective forces driving VOC evolution. We discovered that VOCs evolved convergent strategies to remodel the host by modulating viral RNA and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-protein interactions. Integrative computational analyses revealed that although Alpha, Beta, Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron BA.1 did not. ISG suppression correlated with the expression of viral innate immune antagonist proteins, including Orf6, N, and Orf9b, which we mapped to specific mutations. Later Omicron subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant BA.1, which correlated with Orf6 levels, although muted in BA.4 by a mutation that disrupts the Orf6-nuclear pore interaction. Our findings suggest that SARS-CoV-2 convergent evolution overcame human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA, USA; Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ann-Kathrin Reuschl
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Lucy G Thorne
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK
| | - Manisha R Ummadi
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Chengjin Ye
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Romel Rosales
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian Pelin
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jyoti Batra
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jack M Moen
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Alicia L Richards
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Bhavya Harjai
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Erica Stevenson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ajda Rojc
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, London, UK; Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Matthew V X Whelan
- Division of Infection and Immunity, University College London, London, UK
| | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Abdullah M Syed
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alison Ciling
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noa Deutsch
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Pirak
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Giulia Dowgier
- COVID Surveillance Unit, The Francis Crick Institute, London, UK
| | - Dejan Mesner
- Division of Infection and Immunity, University College London, London, UK
| | - Jane L Turner
- Division of Infection and Immunity, University College London, London, UK
| | - Briana L McGovern
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Luis Rodriguez
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rocio Leiva-Rebollo
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alistair S Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden, UK
| | - Xiaofang Zhong
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nicholas F Liotta
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kehrer
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasija Cupic
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Magdalena Rutkowska
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Mena
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sadaf Aslam
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alyssa Hoffert
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Helene Foussard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Charles Ochieng' Olwal
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Weiqing Huang
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Zwaka
- Huffington Center for Cell-based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Pham
- Synthego Corporation, Redwood City, CA, USA
| | | | | | | | | | | | | | | | | | | | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jacqueline M Fabius
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Margaret Soucheray
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ignacia Echeverria
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kliment Verba
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, London, UK; Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, London, UK
| | - Pedro Beltrao
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Jennifer A Doudna
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Luis Martinez-Sobrido
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Lisa Miorin
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kris White
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Adolfo Garcia-Sastre
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Clare Jolly
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK.
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Greg J Towers
- QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Division of Infection and Immunity, University College London, London, UK.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; QBI Coronavirus Research Group (QCRG), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
12
|
Aguareles J, Fernández PV, Carralón-González MM, Izquierdo CF, Martí-Ballesteros EM, Fernández VP, Sotres-Fernandez G, García-Delangue T, LaPetra RGDV, Sánchez-Manzano MD, Gutiérrez C, García-Coca M, Carnevali-Ruiz D, Barrena-Puertas R, Luque-Pinilla JM, Lloris R, Luepke-Estefan XE, López-Martín JA, Jimeno JM, Guisado-Vasco P. Outcomes and clinical characteristics of the compassionate use of plitidepsin for immunocompromised adult patients with COVID-19. Int J Infect Dis 2023; 135:12-17. [PMID: 37481109 DOI: 10.1016/j.ijid.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
OBJECTIVES To evaluate the compassionate use of plitidepsin as an antiviral treatment in hospitalized immunocompromised adult patients with moderate-to-severe COVID-19. DESIGN Retrospective observational study of data -collected from January 01, 2021 to April 30, 2022- from 35 immunocompromised adult patients with COVID-19 non-eligible for other available antiviral treatments. Main outcome measures were time to respiratory recovery (SpFi ≥ 315); COVID-19-related 30-day-cumulative mortality after first plitidepsin infusion; and time to undetectable levels of viral RNA. RESULTS Thirty-three patients receiving a full course of plitidepsin (2.5 mg [n = 29] or 1.5 mg [n = 4]) were included. Most (69.7%) had a malignant hematologic disease and 27.3% had solid tumors. A total of 111 infusions were administered with lack of relevant safety events. Median time from plitidepsin initiation to SpFi ≥315 was 8 days (95% confidence interval [CI], 7-19). Median time to first negative reverse transcription-polymerase chain reaction for SARS-CoV-2 (cycle threshold >36) was 17 days (95% CI 13-25). Mortality rate was 16.3% (95% CI 3-37.3). CONCLUSION These data support plitidepsin as a well-tolerated treatment that might have potential clinical and antiviral efficacy in COVID-19 immunocompromised patients.
Collapse
Affiliation(s)
- José Aguareles
- Internal Medicine Department. Hospital Universitario Quirónsalud Madrid, Madrid, Spain; Universidad Europea de Madrid, Madrid, Spain; Research and clinical trials unit, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | | | | | - Carles Forné Izquierdo
- Heorfy Consulting, Lleida, Spain; Basic Medical Sciences Department, University of Lleida, Lleida, Spain
| | - Eva María Martí-Ballesteros
- Universidad Europea de Madrid, Madrid, Spain; Hematology Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Virginia Pradillo Fernández
- Universidad Europea de Madrid, Madrid, Spain; Hematology Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Gabriel Sotres-Fernandez
- Internal Medicine Department. Hospital Universitario Quirónsalud Madrid, Madrid, Spain; Universidad Europea de Madrid, Madrid, Spain
| | | | - Rocío García de Viedma LaPetra
- Internal Medicine Department. Hospital Universitario Quirónsalud Madrid, Madrid, Spain; Universidad Europea de Madrid, Madrid, Spain
| | - María Dolores Sánchez-Manzano
- Internal Medicine Department. Hospital Universitario Quirónsalud Madrid, Madrid, Spain; Universidad Europea de Madrid, Madrid, Spain
| | - Carolina Gutiérrez
- Universidad Europea de Madrid, Madrid, Spain; Research and clinical trials unit, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Marta García-Coca
- Microbiology Department. Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Daniel Carnevali-Ruiz
- Internal Medicine Department. Hospital Universitario Quirónsalud Madrid, Madrid, Spain; Universidad Europea de Madrid, Madrid, Spain
| | - Ruth Barrena-Puertas
- Internal Medicine Department. Hospital Universitario Quirónsalud Madrid, Madrid, Spain; Universidad Europea de Madrid, Madrid, Spain
| | - José Manuel Luque-Pinilla
- Internal Medicine Department. Hospital Universitario Quirónsalud Madrid, Madrid, Spain; Universidad Europea de Madrid, Madrid, Spain
| | | | | | | | | | - Pablo Guisado-Vasco
- Internal Medicine Department. Hospital Universitario Quirónsalud Madrid, Madrid, Spain; Universidad Europea de Madrid, Madrid, Spain.
| |
Collapse
|
13
|
Bostanghadiri N, Ziaeefar P, Mofrad MG, Yousefzadeh P, Hashemi A, Darban-Sarokhalil D. COVID-19: An Overview of SARS-CoV-2 Variants-The Current Vaccines and Drug Development. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1879554. [PMID: 37674935 PMCID: PMC10480030 DOI: 10.1155/2023/1879554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
The world is presently in crisis facing an outbreak of a health-threatening microorganism known as COVID-19, responsible for causing uncommon viral pneumonia in humans. The virus was first reported in Wuhan, China, in early December 2019, and it quickly became a global concern due to the pandemic. Challenges in this regard have been compounded by the emergence of several variants such as B.1.1.7, B.1.351, P1, and B.1.617, which show an increase in transmission power and resistance to therapies and vaccines. Ongoing researches are focused on developing and manufacturing standard treatment strategies and effective vaccines to control the pandemic. Despite developing several vaccines such as Pfizer/BioNTech and Moderna approved by the U.S. Food and Drug Administration (FDA) and other vaccines in phase 4 clinical trials, preventive measures are mandatory to control the COVID-19 pandemic. In this review, based on the latest findings, we will discuss different types of drugs as therapeutic options and confirmed or developing vaccine candidates against SARS-CoV-2. We also discuss in detail the challenges posed by the variants and their effect on therapeutic and preventive interventions.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pardis Ziaeefar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morvarid Golrokh Mofrad
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Parsa Yousefzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
15
|
Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Ruiz-Galiana J, Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Bouza E. Insights for COVID-19 in 2023. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023; 36:114-124. [PMID: 36510683 PMCID: PMC10066911 DOI: 10.37201/req/122.2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Predictions for a near end of the pandemic by the World Health Organization should be interpreted with caution. Current evidence indicates that the efficacy of a fourth dose of classical mRNA vaccines (BT162b2 or mRNA-1273) is low and short-lived in preventing SARS-CoV-2 infection in its predominant variant (Omicron). However, its efficacy is high against severe symptomatic infection, hospitalization and death. The new vaccines being introduced are bivalent and active against the Omicron variants. Potential new vaccines to be introduced in the coming year include a vaccine based on a recombinant protein that emulates the receptor binding domain of the Spike protein under development by the Spanish company Hipra, as well as vaccines for nasal or oral administration. Available information suggests that vaccines against COVID-19 can be administered in association with influenza vaccination without particular complications. New drugs against COVID-19, both antiviral and anti-inflammatory, are under investigation, but this does not seem to be the case with monoclonal antibodies. The indication to use masks in some circumstances will be maintained next year in view of the accumulation of scientific data on their efficacy. Finally, the long COVID or Post-COVID syndrome may continue to affect a very high proportion of patients who have had the disease, requiring combined diagnostic and therapeutic resources.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - E Bouza
- Servicio de Microbiología Clínica y Enfermedades Infecciosas del Hospital General Universitario Gregorio Marañón, Universidad Complutense. CIBERES. Ciber de Enfermedades Respiratorias. Madrid, Spain.
| |
Collapse
|
16
|
Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Ruiz-Galiana J, Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Bouza E. Insights for COVID-19 in 2023. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023. [PMID: 36510683 DOI: 10.3701/req/059.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Predictions for a near end of the pandemic by the World Health Organization should be interpreted with caution. Current evidence indicates that the efficacy of a fourth dose of classical mRNA vaccines (BT162b2 or mRNA-1273) is low and short-lived in preventing SARS-CoV-2 infection in its predominant variant (Omicron). However, its efficacy is high against severe symptomatic infection, hospitalization and death. The new vaccines being introduced are bivalent and active against the Omicron variants. Potential new vaccines to be introduced in the coming year include a vaccine based on a recombinant protein that emulates the receptor binding domain of the Spike protein under development by the Spanish company Hipra, as well as vaccines for nasal or oral administration. Available information suggests that vaccines against COVID-19 can be administered in association with influenza vaccination without particular complications. New drugs against COVID-19, both antiviral and anti-inflammatory, are under investigation, but this does not seem to be the case with monoclonal antibodies. The indication to use masks in some circumstances will be maintained next year in view of the accumulation of scientific data on their efficacy. Finally, the long COVID or Post-COVID syndrome may continue to affect a very high proportion of patients who have had the disease, requiring combined diagnostic and therapeutic resources.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - E Bouza
- Servicio de Microbiología Clínica y Enfermedades Infecciosas del Hospital General Universitario Gregorio Marañón, Universidad Complutense. CIBERES. Ciber de Enfermedades Respiratorias. Madrid, Spain.
| |
Collapse
|
17
|
Zhang H, Cai J, Yu S, Sun B, Zhang W. Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. Int J Mol Sci 2023; 24:ijms24065184. [PMID: 36982256 PMCID: PMC10049629 DOI: 10.3390/ijms24065184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure–activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.
Collapse
|
18
|
Almeida B, Domingues C, Mascarenhas-Melo F, Silva I, Jarak I, Veiga F, Figueiras A. The Role of Cyclodextrins in COVID-19 Therapy-A Literature Review. Int J Mol Sci 2023; 24:2974. [PMID: 36769299 PMCID: PMC9918006 DOI: 10.3390/ijms24032974] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) emerged in December 2019 and quickly spread, giving rise to a pandemic crisis. Therefore, it triggered tireless efforts to identify the mechanisms of the disease, how to prevent and treat it, and to limit and hamper its global dissemination. Considering the above, the search for prophylactic approaches has led to a revolution in the reglementary pharmaceutical pipeline, with the approval of vaccines against COVID-19 in an unprecedented way. Moreover, a drug repurposing scheme using regulatory-approved antiretroviral agents is also being pursued. However, their physicochemical characteristics or reported adverse events have sometimes limited their use. Hence, nanotechnology has been employed to potentially overcome some of these challenges, particularly cyclodextrins. Cyclodextrins are cyclic oligosaccharides that present hydrophobic cavities suitable for complexing several drugs. This review, besides presenting studies on the inclusion of antiviral drugs in cyclodextrins, aims to summarize some currently available prophylactic and therapeutic schemes against COVID-19, highlighting those that already make use of cyclodextrins for their complexation. In addition, some new therapeutic approaches are underscored, and the potential application of cyclodextrins to increase their promising application against COVID-19 will be addressed. This review describes the instances in which the use of cyclodextrins promotes increased bioavailability, antiviral action, and the solubility of the drugs under analysis. The potential use of cyclodextrins as an active ingredient is also covered. Finally, toxicity and regulatory issues as well as future perspectives regarding the use of cyclodextrins in COVID-19 therapy will be provided.
Collapse
Affiliation(s)
- Beatriz Almeida
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Silva
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
19
|
Stankey RJ, Johnson D, Duggan BM, Mead DA, La Clair JJ. A Survey of Didemnin Depsipeptide Production in Tistrella. Mar Drugs 2023; 21:md21020056. [PMID: 36827097 PMCID: PMC9964501 DOI: 10.3390/md21020056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
As one of the first families of marine natural products to undergo clinical trials, the didemnin depsipeptides have played a significant role in inspiring the discovery of marine drugs. Originally developed as anticancer therapeutics, the recent re-evaluation of these compounds including synthetically derived dehydrodidemnin B or Aplidine, has led to their advancement towards antiviral applications. While conventionally associated with production in colonial tunicates of the family Didemnidae, recent studies have identified their biosynthetic gene clusters from the marine-derived bacteria Tistrella mobilis. While these studies confirm the production of didemnin X/Y, the low titer and general lack of understanding of their biosynthesis in Tistrella currently prevents the development of effective microbial or synthetic biological approaches for their production. To this end, we conducted a survey of known species of Tistrella and report on their ability to produce the didemnin depsipeptides. These data were used to develop conditions to produce didemnin B at titers over 15 mg/L.
Collapse
Affiliation(s)
| | - Don Johnson
- Terra Bioworks Inc., Middleton, WI 53562, USA
| | - Brendan M. Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 9500 Gilman Drive, San Diego, CA 92093-0657, USA
| | - David A. Mead
- Terra Bioworks Inc., Middleton, WI 53562, USA
- Correspondence: (D.A.M.); (J.J.L.C.)
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0358, USA
- Xenobe Research Institute, P.O. Box 3052, San Diego, CA 92163-1052, USA
- Correspondence: (D.A.M.); (J.J.L.C.)
| |
Collapse
|
20
|
Varona JF, Landete P, Paredes R, Vates R, Torralba M, Guisado-Vasco P, Porras L, Muñoz P, Gijon P, Ancochea J, Saiz E, Meira F, Jimeno J, Lopez-Martin J, Estrada V. Plitidepsin in adult patients with COVID-19 requiring hospital admission: A long-term follow-up analysis. Front Cell Infect Microbiol 2023; 13:1097809. [PMID: 36909731 PMCID: PMC9992643 DOI: 10.3389/fcimb.2023.1097809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction The APLICOV-PC study assessed the safety and preliminary efficacy of plitidepsin in hospitalized adult patients with COVID-19. In this follow-up study (E-APLICOV), the incidence of post-COVID-19 morbidity was evaluated and any long-term complications were characterized. Methods Between January 18 and March 16, 2022, 34 of the 45 adult patients who received therapy with plitidepsin in the APLICOV-PC study were enrolled in E-APLICOV (median time from plitidepsin first dose to E-APLICOV enrollment, 16.8 months [range, 15.2-19.5 months]). All patients were functionally autonomous with regard to daily living (Barthel index: 100) and had normal physical examinations. Results From the APLICOV-PC date of discharge to the date of the extension visit, neither Common Terminology Criteria for Adverse Events version 5.0 (CTCAE v5) grade 3-4 complications nor QT prolongation or significant electrocardiogram (EKG) abnormalities were reported. Five (14.7%) patients had another COVID-19 episode after initial discharge from APLICOV-PC, and in 2 patients (5.9%), previously unreported chest X-ray findings were documented. Spirometry and lung-diffusion tests were normal in 29 (85.3%) and 27 (79.4%) patients, respectively, and 3 patients needed additional oxygen supplementation after initial hospital discharge. None of these patients required subsequent hospital readmission for disease-related complications. Discussion In conclusion, plitidepsin has demonstrated a favorable long-term safety profile in adult patients hospitalized for COVID-19. With the constraints of a low sample size and a lack of control, the rate of post-COVID-19 complications after treatment with plitidepsin is in the low range of published reports. (ClinicalTrials.gov Identifier: NCT05121740; https://clinicaltrials.gov/ct2/show/NCT05121740).
Collapse
Affiliation(s)
- Jose F. Varona
- Departamento de Medicina Interna, Hospital Universitario HM Monteprincipe, HM Hospitales, Madrid, Spain
- Facultad de Medicina, Universidad San Pablo-Centro de Estudios Universitarios (CEU), Madrid, Spain
- *Correspondence: Jose F. Varona,
| | - Pedro Landete
- Departamento de Neumología, Hospital Universitario La Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roger Paredes
- Infectious Diseases Department, IrsiCaixa Acquired Immunodeficiency Syndrome (AIDS) Research Institute, Barcelona, Spain
- Servicio de Enfermedades Infecciosas Hospital Germans Trias I Pujol, Barcelona, Spain
| | - Roberto Vates
- Internal Medicine Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Miguel Torralba
- Medicine Department, Health Sciences Faculty, University of Alcalá, Madrid, Spain
- Internal Medicine Department, Guadalajara University Hospital, Guadalajara, Spain
| | - Pablo Guisado-Vasco
- Internal Medicine Department, Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea, Madrid, Spain
| | - Lourdes Porras
- Internal Medicine, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases Department, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Paloma Gijon
- Clinical Microbiology and Infectious Diseases Department, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Julio Ancochea
- Departamento de Neumología, Hospital Universitario La Princesa, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Saiz
- Virology Unit, PharmaMar, SA, Madrid, Spain
| | | | | | | | - Vicente Estrada
- Departamento de Medicina Interna Hospital Clínico San Carlos, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Santaniello G, Nebbioso A, Altucci L, Conte M. Recent Advancement in Anticancer Compounds from Marine Organisms: Approval, Use and Bioinformatic Approaches to Predict New Targets. Mar Drugs 2022; 21:md21010024. [PMID: 36662197 PMCID: PMC9862894 DOI: 10.3390/md21010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In recent years, the study of anticancer bioactive compounds from marine sources has received wide interest. Contextually, world regulatory authorities have approved several marine molecules, and new synthetic derivatives have also been synthesized and structurally improved for the treatment of numerous forms of cancer. However, the administration of drugs in cancer patients requires careful evaluation since their interaction with individual biological macromolecules, such as proteins or nucleic acids, determines variable downstream effects. This is reflected in a constant search for personalized therapies that lay the foundations of modern medicine. The new knowledge acquired on cancer mechanisms has certainly allowed advancements in tumor prevention, but unfortunately, due to the huge complexity and heterogeneity of cancer, we are still looking for a definitive therapy and clinical approaches. In this review, we discuss the significance of recently approved molecules originating from the marine environment, starting from their organism of origin to their structure and mechanism of action. Subsequently, these bio-compounds are used as models to illustrate possible bioinformatics approaches for the search of new targets that are useful for improving the knowledge on anticancer therapies.
Collapse
Affiliation(s)
- Giovanna Santaniello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- BIOGEM, Institute of Molecular Biology and Genetics, Via Camporeale, 83031 Ariano Irpino, Italy
- IEOS, Institute for Endocrinology and Experimental Oncology, CNR, Via Pansini 5, 80131 Napoli, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy
- Correspondence: (L.A.); (M.C.); Tel.: +39-081-5667564 (M.C.)
| |
Collapse
|
22
|
Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 6:100079. [PMID: 36060987 PMCID: PMC9420082 DOI: 10.1016/j.ejmcr.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
|
23
|
Duan X, Lacko LA, Chen S. Druggable targets and therapeutic development for COVID-19. Front Chem 2022; 10:963701. [PMID: 36277347 PMCID: PMC9581228 DOI: 10.3389/fchem.2022.963701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease (COVID-19), which is caused by SARS-CoV-2, is the biggest challenge to the global public health and economy in recent years. Until now, only limited therapeutic regimens have been available for COVID-19 patients, sparking unprecedented efforts to study coronavirus biology. The genome of SARS-CoV-2 encodes 16 non-structural, four structural, and nine accessory proteins, which mediate the viral life cycle, including viral entry, RNA replication and transcription, virion assembly and release. These processes depend on the interactions between viral polypeptides and host proteins, both of which could be potential therapeutic targets for COVID-19. Here, we will discuss the potential medicinal value of essential proteins of SARS-CoV-2 and key host factors. We summarize the most updated therapeutic interventions for COVID-19 patients, including those approved clinically or in clinical trials.
Collapse
|
24
|
Zheng W, Zeng Z, Lin S, Hou P. Revisiting potential value of antitumor drugs in the treatment of COVID-19. Cell Biosci 2022; 12:165. [PMID: 36182930 PMCID: PMC9526459 DOI: 10.1186/s13578-022-00899-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023] Open
Abstract
Since an outbreak started in China in 2019, coronavirus disease 2019 (COVID-19) has rapidly become a worldwide epidemic with high contagiousness and caused mass mortalities of infected cases around the world. Currently, available treatments for COVID-19, including supportive care, respiratory support and antiviral therapy, have shown limited efficacy. Thus, more effective therapeutic modalities are highly warranted. Drug repurposing, as an efficient strategy to explore a potential broader scope of the application of approved drugs beyond their original indications, accelerates the process of discovering safe and effective agents for a given disease. Since the outbreak of COVID-19 pandemic, drug repurposing strategy has been widely used to discover potential antiviral agents, and some of these drugs have advanced into clinical trials. Antitumor drugs compromise a vast variety of compounds and exhibit extensive mechanism of action, showing promising properties in drug repurposing. In this review, we revisit the potential value of antitumor drugs in the treatment of COVID-19 and systematically discuss their possible underlying mechanisms of the antiviral actions.
Collapse
Affiliation(s)
- Wenfang Zheng
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Zekun Zeng
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Shumei Lin
- grid.452438.c0000 0004 1760 8119Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Peng Hou
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China ,grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| |
Collapse
|
25
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
26
|
Mohamed Y, El-Maradny YA, Saleh AK, Nayl AA, El-Gendi H, El-Fakharany EM. A comprehensive insight into current control of COVID-19: Immunogenicity, vaccination, and treatment. Biomed Pharmacother 2022; 153:113499. [PMID: 36076589 PMCID: PMC9343749 DOI: 10.1016/j.biopha.2022.113499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023] Open
Abstract
The healthy immune system eliminates pathogens and maintains tissue homeostasis through extraordinarily complex networks with feedback systems while avoiding potentially massive tissue destruction. Many parameters influence humoral and cellular vaccine responses, including intrinsic and extrinsic, environmental, and behavioral, nutritional, perinatal and administrative parameters. The relative contributions of persisting antibodies and immune memory as well as the determinants of immune memory induction, to protect against specific diseases are the main parameters of long-term vaccine efficacy. Natural and vaccine-induced immunity and monoclonal antibody immunotherapeutic, may be evaded by SARS-CoV-2 variants. Besides the complications of the production of COVID-19 vaccinations, there is no effective single treatment against COVID-19. However, administration of a combined treatment at different stages of COVID-19 infection may offer some cure assistance. Combination treatment of antiviral drugs and immunomodulatory drugs may reduce inflammation in critical COVID-19 patients with cytokine release syndrome. Molnupiravir, remdesivir and paxlovid are the approved antiviral agents that may reduce the recovery time. In addition, immunomodulatory drugs such as lactoferrin and monoclonal antibodies are used to control inflammatory responses in their respective auto-immune conditions. Therefore, the widespread occurrence of highly transmissible variants like Delta and Omicron indicates that there is still a lot of work to be done in designing efficient vaccines and medicines for COVID-19. In this review, we briefly discussed the immunological response against SARS-CoV-2 and the vaccines approved by the World Health Organization (WHO) for COVID-19, their mechanisms, and side effects. Moreover, we mentioned various treatment trials and strategies for COVID-19.
Collapse
Affiliation(s)
- Yasser Mohamed
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Laboratory of Kafr El-Sheikh Fever Hospital, Kafr El-Sheikh Fever Hospital, 33511 Kafr El-Sheikh, Egypt.
| | - Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria 21526, Egypt.
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki, P.O. 12622, Giza, Egypt
| | - AbdElAziz A Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia.
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes zone, New Borg El-Arab, Alexandria 21934, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
27
|
Investigating the structure-activity relationship of marine polycyclic batzelladine alkaloids as promising inhibitors for SARS-CoV-2 main protease (Mpro). Comput Biol Med 2022; 147:105738. [PMID: 35777088 PMCID: PMC9212445 DOI: 10.1016/j.compbiomed.2022.105738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022]
Abstract
Over a span of two years ago, since the emergence of the first case of the novel coronavirus (SARS-CoV-2) in China, the pandemic has crossed borders causing serious health emergencies, immense economic crisis and impacting the daily life worldwide. Despite the discovery of numerous forms of precautionary vaccines along with other recently approved orally available drugs, yet effective antiviral therapeutics are necessarily needed to hunt this virus and its variants. Historically, naturally occurring chemicals have always been considered the primary source of beneficial medications. Considering the SARS-CoV-2 main protease (Mpro) as the duplicate key element of the viral cycle and its main target, in this paper, an extensive virtual screening for a focused chemical library of 15 batzelladine marine alkaloids, was virtually examined against SARS-CoV-2 main protease (Mpro) using an integrated set of modern computational tools including molecular docking (MDock), molecule dynamic (MD) simulations and structure-activity relationships (SARs) as well. The molecular docking predictions had disclosed four promising compounds including batzelladines H–I (8–9) and batzelladines F-G (6–7), respectively according to their prominent ligand-protein energy scores and relevant binding affinities with the (Mpro) pocket residues. The best two chemical hits, batzelladines H–I (8–9) were further investigated thermodynamically though studying their MD simulations at 100 ns, where they showed excellent stability within the accommodated (Mpro) pocket. Moreover, SARs studies imply the crucial roles of the fused tricyclic guanidinic moieties, its degree of unsaturation, position of the N–OH functionality and the length of the side chain as a spacer linking between two active sites, which disclosed fundamental structural and pharmacophoric features for efficient protein-ligand interaction. Such interesting findings are greatly highlighting further in vitro/vivo examinations regarding those marine natural products (MNPs) and their synthetic equivalents as promising antivirals.
Collapse
|
28
|
He W, Gao Y, Zhou J, Shi Y, Xia D, Shen HM. Friend or Foe? Implication of the autophagy-lysosome pathway in SARS-CoV-2 infection and COVID-19. Int J Biol Sci 2022; 18:4690-4703. [PMID: 35874956 PMCID: PMC9305279 DOI: 10.7150/ijbs.72544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
There is increasing amount of evidence indicating the close interplays between the replication cycle of SARS-CoV-2 and the autophagy-lysosome pathway in the host cells. While autophagy machinery is known to either assist or inhibit the viral replication process, the reciprocal effects of the SARS-CoV-2 on the autophagy-lysosome pathway have also been increasingly appreciated. More importantly, despite the disappointing results from the clinical trials of chloroquine and hydroxychloroquine in treatment of COVID-19, there is still ongoing effort in discovering new therapeutics targeting the autophagy-lysosome pathway. In this review, we provide an update-to-date summary of the interplays between the autophagy-lysosome pathway in the host cells and the pathogen SARS-CoV-2 at the molecular level, to highlight the prognostic value of autophagy markers in COVID-19 patients and to discuss the potential of developing novel therapeutic strategies for COVID-19 by targeting the autophagy-lysosome pathway. Thus, understanding the nature of such interactions between SARS-CoV-2 and the autophagy-lysosome pathway in the host cells is expected to provide novel strategies in battling against this global pandemic.
Collapse
Affiliation(s)
- Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuan Gao
- Faculty of Health Sciences, University of Macau, Macau, China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yi Shi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
29
|
Sukmarini L. Antiviral Peptides (AVPs) of Marine Origin as Propitious Therapeutic Drug Candidates for the Treatment of Human Viruses. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092619. [PMID: 35565968 PMCID: PMC9101517 DOI: 10.3390/molecules27092619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products—particularly marine peptides—have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses—such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses—are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, West Java, Indonesia
| |
Collapse
|
30
|
Chourasia R, Padhi S, Phukon LC, Abedin MM, Sirohi R, Singh SP, Rai AK. Peptide candidates for the development of therapeutics and vaccines against β-coronavirus infection. Bioengineered 2022; 13:9435-9454. [PMID: 35387556 PMCID: PMC9161909 DOI: 10.1080/21655979.2022.2060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Betacoronaviruses (β-CoVs) have caused major viral outbreaks in the last two decades in the world. The mutation and recombination abilities in β-CoVs resulted in zoonotic diseases in humans. Proteins responsible for viral attachment and replication are highly conserved in β-CoVs. These conserved proteins have been extensively studied as targets for preventing infection and the spread of β-CoVs. Peptides are among the most promising candidates for developing vaccines and therapeutics against viral pathogens. The immunostimulatory and viral inhibitory potential of natural and synthetic peptides has been extensively studied since the SARS-CoV outbreak. Food-derived peptides demonstrating high antiviral activity can be used to develop effective therapeutics against β-CoVs. Specificity, tolerability, and customizability of peptides can be explored to develop potent drugs against β-CoVs. However, the proteolytic susceptibility and low bioavailability of peptides pose challenges for the development of therapeutics. This review illustrates the potential role of peptides in eliciting an adaptive immune response and inhibiting different stages of the β-CoV life cycle. Further, the challenges and future directions associated with developing peptide-based therapeutics and vaccines against existing and future β-CoV pathogens have been discussed.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Ranjana Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Republic of Korea
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81, S.A.S. Nagar, Mohali- 140306, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Mizoram Node, Aizawl, India
| |
Collapse
|
31
|
Howell R, Clarke MA, Reuschl AK, Chen T, Abbott-Imboden S, Singer M, Lowe DM, Bennett CL, Chain B, Jolly C, Fisher J. Executable network of SARS-CoV-2-host interaction predicts drug combination treatments. NPJ Digit Med 2022; 5:18. [PMID: 35165389 PMCID: PMC8844383 DOI: 10.1038/s41746-022-00561-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has pushed healthcare systems globally to a breaking point. The urgent need for effective and affordable COVID-19 treatments calls for repurposing combinations of approved drugs. The challenge is to identify which combinations are likely to be most effective and at what stages of the disease. Here, we present the first disease-stage executable signalling network model of SARS-CoV-2-host interactions used to predict effective repurposed drug combinations for treating early- and late stage severe disease. Using our executable model, we performed in silico screening of 9870 pairs of 140 potential targets and have identified nine new drug combinations. Camostat and Apilimod were predicted to be the most promising combination in effectively supressing viral replication in the early stages of severe disease and were validated experimentally in human Caco-2 cells. Our study further demonstrates the power of executable mechanistic modelling to enable rapid pre-clinical evaluation of combination therapies tailored to disease progression. It also presents a novel resource and expandable model system that can respond to further needs in the pandemic.
Collapse
Affiliation(s)
- Rowan Howell
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Matthew A Clarke
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Tianyi Chen
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Sean Abbott-Imboden
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - David M Lowe
- Institute of Immunity and Transplantation, University College London, London, NW3 2PF, UK
| | - Clare L Bennett
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
- Institute of Immunity and Transplantation, University College London, London, NW3 2PF, UK
| | - Benjamin Chain
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Computer Science, Gower Street, University College London, London, WC1E 6BT, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK.
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
32
|
Sachse M, Tenorio R, Fernández de Castro I, Muñoz-Basagoiti J, Perez-Zsolt D, Raïch-Regué D, Rodon J, Losada A, Avilés P, Cuevas C, Paredes R, Segalés J, Clotet B, Vergara-Alert J, Izquierdo-Useros N, Risco C. Unraveling the antiviral activity of plitidepsin by subcellular and morphological analysis. Antiviral Res 2022; 200:105270. [PMID: 35231500 PMCID: PMC8881422 DOI: 10.1016/j.antiviral.2022.105270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022]
Abstract
The pandemic caused by the new coronavirus SARS-CoV-2 has made evident the need for broad-spectrum, efficient antiviral treatments to combat emerging and re-emerging viruses. Plitidepsin is an antitumor agent of marine origin that has also shown a potent pre-clinical efficacy against SARS-CoV-2. Plitidepsin targets the host protein eEF1A (eukaryotic translation elongation factor 1 alpha) and affects viral infection at an early, post-entry step. Because electron microscopy is a valuable tool to study virus-cell interactions and the mechanism of action of antiviral drugs, in this work we have used transmission electron microscopy (TEM) to evaluate the effects of plitidepsin in SARS-CoV-2 infection in cultured Vero E6 cells 24 and 48h post-infection. In the absence of plitidepsin, TEM morphological analysis showed double-membrane vesicles (DMVs), organelles that support coronavirus genome replication, single-membrane vesicles with viral particles, large vacuoles with groups of viruses and numerous extracellular virions attached to the plasma membrane. When treated with plitidepsin, no viral structures were found in SARS-CoV-2-infected Vero E6 cells. Immunogold detection of SARS-CoV-2 nucleocapsid (N) protein and double-stranded RNA (dsRNA) provided clear signals in cells infected in the absence of plitidepsin, but complete absence in cells infected and treated with plitidepsin. The present study shows that plitidepsin blocks the biogenesis of viral replication organelles and the morphogenesis of virus progeny. Electron microscopy morphological analysis coupled to immunogold labeling of SARS-CoV-2 products offers a unique approach to understand how antivirals such as plitidepsin work.
Collapse
Affiliation(s)
- Martin Sachse
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | - Raquel Tenorio
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | | | | | | | | | - Jordi Rodon
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
| | | | - Pablo Avilés
- PharmaMar S.A, 28770, (Colmenar Viejo), Madrid, Spain
| | - Carmen Cuevas
- PharmaMar S.A, 28770, (Colmenar Viejo), Madrid, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain
| | - Joaquim Segalés
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra, 08193, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
| | - Júlia Vergara-Alert
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain.
| | - Cristina Risco
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain.
| |
Collapse
|