1
|
Ruan D, Chen ACH, Tam TTKK, Huang W, Guo J, Xu S, Ruan H, Fong SW, Liu X, Gao X, Yeung WSB, Lee YL, Liu P. Establishment of human expanded potential stem cell lines via preimplantation embryo cultivation and somatic cell reprogramming. Nat Protoc 2025:10.1038/s41596-025-01168-2. [PMID: 40301626 DOI: 10.1038/s41596-025-01168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/04/2025] [Indexed: 05/01/2025]
Abstract
We previously reported the derivation of expanded potential stem cells (EPSCs) by modulating signaling pathways involved in preimplantation embryogenesis. These cells exhibit expanded developmental potential into embryonic and extraembryonic lineages, and we have shown that human EPSCs (hEPSCs) possess trophoblast differentiation potency for generating human trophoblast stem cells. Here we report protocols for deriving stable hEPSC lines directly from morula or early blastocyst stages of human preimplantation embryos (hEPSC-em) and by reprogramming human dermal fibroblasts (human induced EPSCs) using six exogenous factors, as an extension to our previous protocols on deriving porcine EPSCs from preimplantation embryos and by reprogramming somatic cells. These hEPSC lines proliferate robustly over long-term passaging and are amenable to both simple indels and precision genome editing. We provide guidance for characterizing these newly established hEPSCs, including cell-cycle analysis, pluripotency validation and karyotyping. The hEPSCs form teratomas with embryonic and extraembryonic cell lineages and readily differentiate into human trophoblast stem cells in vitro. At the molecular level, hEPSCs have unique features such as high expression of core histone genes and low H3K27me3 levels resembling eight-cell/morula stage embryos. These properties make hEPSCs a valuable tool not only for studying early human development but also for potential applications in regenerative medicine. The protocols presented in this manuscript can be readily performed by postgraduate students or postdoctoral fellows and completed within around 2 months.
Collapse
Affiliation(s)
- Degong Ruan
- Center for Translational Stem Cell Biology, Science Park, Hong Kong Special Administrative Region, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Andy Chun Hang Chen
- Center for Translational Stem Cell Biology, Science Park, Hong Kong Special Administrative Region, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Timothy Theodore Ka Ki Tam
- Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wen Huang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jilong Guo
- Center for Translational Stem Cell Biology, Science Park, Hong Kong Special Administrative Region, China
| | - Shao Xu
- Center for Translational Stem Cell Biology, Science Park, Hong Kong Special Administrative Region, China
| | - Hanzhang Ruan
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sze Wan Fong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xueyan Liu
- Center for Translational Stem Cell Biology, Science Park, Hong Kong Special Administrative Region, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - William Shu Biu Yeung
- Center for Translational Stem Cell Biology, Science Park, Hong Kong Special Administrative Region, China.
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Yin Lau Lee
- Center for Translational Stem Cell Biology, Science Park, Hong Kong Special Administrative Region, China.
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Pentao Liu
- Center for Translational Stem Cell Biology, Science Park, Hong Kong Special Administrative Region, China.
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
2
|
Geisler L, Detjen K, Hellberg T, Kohlhepp M, Grötzinger C, Knorr J, Eichhorn I, Mohr R, Holtmann T, Wiedenmann B, Tacke F, Roderburg C, Wree A. miR-223 and Chromogranin A Affect Inflammatory Immune Cell Activation in Liver Metastasis of Neuroendocrine Neoplasms. Cells 2025; 14:111. [PMID: 39851539 PMCID: PMC11763622 DOI: 10.3390/cells14020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Neuroendocrine neoplasms (NENs) are a diverse group originating from endocrine cells/their precursors in pancreas, small intestine, or lung. The key serum marker is chromogranin A (CgA). While commonly elevated in patients with NEN, its prognostic value is still under discussion. Secretion/posttranslational proteolytic cleavage of CgA results in multiple bioactive fragments, which are essential regulators of the cardiovascular and immune system. miR-223, regulator of Nrlp3 inflammasome and neutrophil activation, was recently found to have decreased in patients with NEN. We performed flow cytometry of circulating neutrophils in a patient cohort (n = 10) with NEN, microdissection and histology of tumor tissue. Subsequently, in vitro transfections using the well-established human pancreatic NEN cell line (BON), and co-culture experiments with primary macrophages and neutrophils were performed. Serum miR-223 in patients correlated with the expression of the neutrophil activation marker CD15 in circulating cells. Neutrophilic CD62L/CD63 showed good discrimination compared to healthy controls. Immune cell-derived miR-155, miR-193 and miR-223 colocalize with neutrophil in the extra-tumoral tissue alongside Nlrp3-associated caspase-1 activation. miR-223 knockdown in BON decreased the CgA intracellularly, increased in cellular granularity and caspase-1 activation. Plasmin inhibitor a2-aP reverted those effects. Western Blot showed fragmented CgA following miR-223 knockdown, which altered the inflammatory potential of neutrophils. Our data hence provide initial insights into an immunoregulatory mechanism via miR-223 and CgA in NEN cells, as regulation of miR-223 in NEN may affect tumor-associated inflammation.
Collapse
Affiliation(s)
- Lukas Geisler
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
- Department of Biology, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Teresa Hellberg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Marlene Kohlhepp
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Jana Knorr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Ines Eichhorn
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Theresa Holtmann
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany
| |
Collapse
|
3
|
Angelicola S, Giunchi F, Ruzzi F, Frascino M, Pitzalis M, Scalambra L, Semprini MS, Pittino OM, Cappello C, Siracusa I, Chillico IC, Di Noia M, Turato C, De Siervi S, Lescai F, Ciavattini T, Lopatriello G, Bertoli L, De Jonge H, Iamele L, Altimari A, Gruppioni E, Ardizzoni A, Rossato M, Gelsomino F, Lollini PL, Palladini A. PD-L1 and IFN-γ modulate Non-Small Cell Lung Cancer (NSCLC) cell plasticity associated to immune checkpoint inhibitor (ICI)-mediated hyperprogressive disease (HPD). J Transl Med 2025; 23:2. [PMID: 39748404 PMCID: PMC11697469 DOI: 10.1186/s12967-024-06023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer death worldwide. Although immune checkpoint inhibitors (ICIs) have shown remarkable clinical efficacy, they can also induce a paradoxical cancer acceleration, known as hyperprogressive disease (HPD), whose causative mechanisms are still unclear. METHODS This study investigated the mechanisms of ICI resistance in an HPD-NSCLC model. Two primary cell cultures were established from samples of a NSCLC patient, before ICI initiation ("baseline", NSCLC-B) and during HPD ("hyperprogression", NSCLC-H). The cell lines were phenotypically and molecularly characterized through immunofluorescence, Western Blotting and RNA-Seq analysis. To assess cell plasticity and aggressiveness, cellular growth patterns were evaluated both in vitro and in vivo through 2D and 3D cell growth assays and patient-derived xenografts establishment. In vitro investigations, including the evaluation of cell sensitivity to interferon-gamma (IFN-γ) and cell response to PD-L1 modulation, were conducted to explore the influence of these factors on cell plasticity regulation. RESULTS NSCLC-H exhibited increased expression of specific CD44 isoforms and a more aggressive phenotype, including organoid formation ability, compared to NSCLC-B. Plastic changes in NSCLC-H were well described by a deep transcriptome shift, that also affected IFN-γ-related genes, including PD-L1. IFN-γ-mediated cell growth inhibition was compromised in both 2D-cultured NSCLC-B and NSCLC-H cells. Further, the cytokine induced a partial activation of both type I and type II IFN-pathway mediators, together with a striking increase in NSCLC-B growth in 3D cell culture systems. Finally, low IFN-γ doses and PD-L1 modulation both promoted plastic changes in NSCLC-B, increasing CD44 expression and its ability to produce spheres. CONCLUSIONS Our findings identified plasticity as a relevant hallmark of ICI-mediated HPD by demonstrating that ICIs can modulate the IFN-γ and PD-L1 pathways, driving tumor cell plasticity and fueling HPD development.
Collapse
Affiliation(s)
- Stefania Angelicola
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Giunchi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Mary Pitzalis
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Scalambra
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Olga Maria Pittino
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Chiara Cappello
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Irene Siracusa
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Martina Di Noia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Silvia De Siervi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Lescai
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | - Luca Bertoli
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Hugo De Jonge
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luisa Iamele
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
- Genartis S.R.L., Verona, Italy
| | - Francesco Gelsomino
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Arianna Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Unità Operativa di Oncologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
4
|
Boumpas A, Papaioannou AS, Bousounis P, Grigoriou M, Bergo V, Papafragkos I, Tasis A, Iskas M, Boon L, Makridakis M, Vlachou A, Gavriilaki E, Hatzioannou A, Mitroulis I, Trompouki E, Verginis P. PD-L1 blockade immunotherapy rewires cancer-induced emergency myelopoiesis. Front Immunol 2024; 15:1386838. [PMID: 39464894 PMCID: PMC11502414 DOI: 10.3389/fimmu.2024.1386838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/06/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment, demonstrating exceptional clinical responses in a wide range of cancers. Despite the success, a significant proportion of patients still fail to respond, highlighting the existence of unappreciated mechanisms of immunotherapy resistance. Delineating such mechanisms is paramount to minimize immunotherapy failures and optimize the clinical benefit. Methods In this study, we treated tumour-bearing mice with PD-L1 blockage antibody (aPD-L1) immunotherapy, to investigate its effects on cancer-induced emergency myelopoiesis, focusing on bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). We examined the impact of aPD-L1 treatment on HSPC quiescence, proliferation, transcriptomic profile, and functionality. Results Herein, we reveal that aPD-L1 in tumour-bearing mice targets the HSPCs in the BM, mediating their exit from quiescence and promoting their proliferation. Notably, disruption of the PDL1/PD1 axis induces transcriptomic reprogramming in HSPCs, observed in both individuals with Hodgkin lymphoma (HL) and tumour-bearing mice, shifting towards an inflammatory state. Furthermore, HSPCs from aPDL1-treated mice demonstrated resistance to cancer-induced emergency myelopoiesis, evidenced by a lower generation of MDSCs compared to control-treated mice. Discussion Our findings shed light on unrecognized mechanisms of action of ICB immunotherapy in cancer, which involves targeting of BM-driven HSPCs and reprogramming of cancer-induced emergency myelopoiesis.
Collapse
Affiliation(s)
- Athina Boumpas
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Antonis S. Papaioannou
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Pavlos Bousounis
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Grigoriou
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Veronica Bergo
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Cellular and Molecular Immunology, International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Iosif Papafragkos
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Athanasios Tasis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Iskas
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlachou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Eleni Gavriilaki
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Mitroulis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Côte, Nice, France
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
5
|
Chau CW, To A, Au-Yeung RKH, Tang K, Xiang Y, Ruan D, Zhang L, Wong H, Zhang S, Au MT, Chung S, Song E, Choi DH, Liu P, Yuan S, Wen C, Sugimura R. SARS-CoV-2 infection activates inflammatory macrophages in vascular immune organoids. Sci Rep 2024; 14:8781. [PMID: 38627497 PMCID: PMC11021416 DOI: 10.1038/s41598-024-59405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
SARS-CoV-2 provokes devastating tissue damage by cytokine release syndrome and leads to multi-organ failure. Modeling the process of immune cell activation and subsequent tissue damage is a significant task. Organoids from human tissues advanced our understanding of SARS-CoV-2 infection mechanisms though, they are missing crucial components: immune cells and endothelial cells. This study aims to generate organoids with these components. We established vascular immune organoids from human pluripotent stem cells and examined the effect of SARS-CoV-2 infection. We demonstrated that infections activated inflammatory macrophages. Notably, the upregulation of interferon signaling supports macrophages' role in cytokine release syndrome. We propose vascular immune organoids are a useful platform to model and discover factors that ameliorate SARS-CoV-2-mediated cytokine release syndrome.
Collapse
Affiliation(s)
- Chiu Wang Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Alex To
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rex K H Au-Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yang Xiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Degong Ruan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lanlan Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Hera Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shihui Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man Ting Au
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | | | | | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Centre for Translational Stem Cell Biology, Sha Tin, Hong Kong
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Centre for Translational Stem Cell Biology, Sha Tin, Hong Kong.
| |
Collapse
|
6
|
Tang WT, Sugimura R. Breakthroughs in synthetic controlling strategies for precision in CAR-T therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:61-100. [PMID: 39461755 DOI: 10.1016/bs.pmbts.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chimeric antigen receptors (CAR) are synthetic receptors engineered to target a user-defined antigen. They comprise an extracellular single-chain variable fragment for target recognition and intracellular signalling domains commonly derived from immune cells. CAR-T cells have proven to be successful in therapy of some cancers. CAR-T cells are activated upon antigen-priming and subsequent intracellular signalling. However, tonic signalling in CAR-T cells remains a challenge in developing CAR-T therapeutics of high efficacy as it causes early T-cell exhaustion, limiting therapeutic persistence. Moreover, a poor choice of target antigen leads to off-target cytotoxicity, often hampering the host's survival. In addition, conventional methods of delivering CAR gene circuits utilise viral vectors, such as lentiviruses and retroviruses, which insert the CAR gene circuits into transcriptionally active sites in the genome. This increases the risks of malignant transformation due to improper genome integration. Optimisation in CAR-T engineering, from the architecture of CAR gene circuits to the structure of CAR and the behaviour of CAR-T cells, is paramount to ensure high efficacy, persistence, and precision in CAR-T therapy. This review provides insights into engineering CAR-T cells for precision in cancer therapy by highlighting the key strategies recently developed to optimise the function and efficiency of CARs. The delivery method of CAR gene circuits, circuit and structural modification of CAR, T-cell phenotype manipulation and T-cell arming will be discussed to accentuate their interplay in regulating CAR-T therapy's safety, precision, and efficacy.
Collapse
Affiliation(s)
- Wang Tik Tang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; Centre for Translational Stem Cell Biology, Hong Kong SAR, China.
| |
Collapse
|
7
|
Geng Q, Jiao P. Anti-PD-L1-Based Bispecific Antibodies Targeting Co-Inhibitory and Co-Stimulatory Molecules for Cancer Immunotherapy. Molecules 2024; 29:454. [PMID: 38257366 PMCID: PMC10819708 DOI: 10.3390/molecules29020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Targeting PD-L1 via monospecific antibodies has shown durable clinical benefits and long-term remissions where patients exhibit no clinical cancer signs for many years after treatment. However, the durable clinical benefits and long-term remissions by anti-PD-L1 monotherapy have been limited to a small fraction of patients with certain cancer types. Targeting PD-L1 via bispecific antibodies (referred to as anti-PD-L1-based bsAbs) which can simultaneously bind to both co-inhibitory and co-stimulatory molecules may increase the durable antitumor responses in patients who would not benefit from PD-L1 monotherapy. A growing number of anti-PD-L1-based bsAbs have been developed to fight against this deadly disease. This review summarizes recent advances of anti-PD-L1-based bsAbs for cancer immunotherapy in patents and literatures, and discusses their anti-tumor efficacies in vitro and in vivo. Over 50 anti-PD-L1-based bsAbs targeting both co-inhibitory and co-stimulatory molecules have been investigated in biological testing or in clinical trials since 2017. At least eleven proteins, such as CTLA-4, LAG-3, PD-1, PD-L2, TIM-3, TIGIT, CD28, CD27, OX40, CD137, and ICOS, are involved in these investigations. Twenty-two anti-PD-L1-based bsAbs are being evaluated to treat various advanced cancers in clinical trials, wherein the indications include NSCLC, SNSCLC, SCLC, PDA, MBNHL, SCCHN, UC, EC, TNBC, CC, and some other malignancies. The released data from clinical trials indicated that most of the anti-PD-L1-based bsAbs were well-tolerated and showed promising antitumor efficacy in patients with advanced solid tumors. However, since the approved and investigational bsAbs have shown much more significant adverse reactions compared to PD-L1 monospecific antibodies, anti-PD-L1-based bsAbs may be further optimized via molecular structure modification to avoid or reduce these adverse reactions.
Collapse
Affiliation(s)
- Qiaohong Geng
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China
| |
Collapse
|