1
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Krishnamurthy G, Nguyen PT, Tran BN, Phan HT, Brennecke SP, Moses EK, Melton PE. Genomic variation associated with cardiovascular disease progression following preeclampsia: a systematic review. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1221222. [PMID: 38455895 PMCID: PMC10911037 DOI: 10.3389/fepid.2023.1221222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/14/2023] [Indexed: 03/09/2024]
Abstract
Background Women with a history of preeclampsia (PE) have been shown to have up to five times the risk of developing later-life cardiovascular disease (CVD). While PE and CVD are known to share clinical and molecular characteristics, there are limited studies investigating their shared genomics (genetics, epigenetics or transcriptomics) variation over time. Therefore, we sought to systematically review the literature to identify longitudinal studies focused on the genomic progression to CVD following PE. Methods A literature search of primary sources through PubMed, Scopus, Web of Science and Embase via OVID was performed. Studies published from January 1, 1980, to July 28, 2023, that investigated genomics in PE and CVD were eligible for inclusion. Included studies were screened based on Cochrane systematic review guidelines in conjunction with the PRISMA 2020 checklist. Eligible articles were further assessed for quality using the Newcastle-Ottawa scale. Results A total of 9,231 articles were screened, with 14 studies subjected to quality assessment. Following further evaluation, six studies were included for the final review. All six of these studies were heterogeneous in regard to CVD/risk factor as outcome, gene mapping approach, and in different targeted genes. The associated genes were RGS2, LPA, and AQP3, alongside microRNAs miR-122-5p, miR-126-3p, miR-146a-5p, and miR-206. Additionally, 12 differentially methylated regions potentially linked to later-life CVD following PE were identified. The only common variable across all six studies was the use of a case-control study design. Conclusions Our results provide critical insight into the heterogeneous nature of genomic studies investigating CVD following PE and highlight the urgent need for longitudinal studies to further investigate the genetic variation underlying the progression to CVD following PE.
Collapse
Affiliation(s)
- Gayathry Krishnamurthy
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Phuong Tram Nguyen
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Bao Ngoc Tran
- Wicking Dementia Research and Education Center, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Hoang T. Phan
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Shaun P. Brennecke
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, The Royal Women’s Hospital, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, The Royal Women’s Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric K. Moses
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
| | - Phillip E. Melton
- Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, TAS, Australia
- School of Global and Population Health, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
3
|
Aging whole blood transcriptome reveals candidate genes for SARS-CoV-2-related vascular and immune alterations. J Mol Med (Berl) 2021; 100:285-301. [PMID: 34741638 PMCID: PMC8571664 DOI: 10.1007/s00109-021-02161-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
Abstract The risk of severe COVID-19 increases with age as older patients are at highest risk. Thus, there is an urgent need to identify how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) interacts with blood components during aging. We investigated the whole blood transcriptome from the Genotype-Tissue Expression (GTEx) database to explore differentially expressed genes (DEGs) translated into proteins interacting with viral proteins during aging. From 22 DEGs in aged blood, FASLG, CTSW, CTSE, VCAM1, and BAG3 were associated with immune response, inflammation, cell component and adhesion, and platelet activation/aggregation. Males and females older than 50 years old overexpress FASLG, possibly inducing a hyperinflammatory cascade. The expression of cathepsins (CTSW and CTSE) and the anti-apoptotic co-chaperone molecule BAG3 also increased throughout aging in both genders. By exploring single-cell RNA-sequencing data from peripheral blood of SARS-CoV-2-infected patients, we found FASLG and CTSW expressed in natural killer cells and CD8 + T lymphocytes, whereas BAG3 was expressed mainly in CD4 + T cells, naive T cells, and CD14 + monocytes. In addition, T cell exhaustion was associated with increased expression of CCL4L2 and DUSP4 over blood aging. LAG3, PDCD1, TIGIT, VCAM1, HLA-DRA, and TOX also increased in individuals aged 60–69 years old; conversely, the RGS2 gene decreased with aging. We further identified a distinct gene expression profile associated with type I interferon signaling following blood aging. These results revealed changes in blood molecules potentially related to SARS-CoV-2 infection throughout aging, emphasizing them as therapeutic candidates for aggressive clinical manifestation of COVID-19. Key messages • Prediction of host-viral interactions in the whole blood transcriptome during aging. • Expression levels of FASLG, CTSW, CTSE, VCAM1, and BAG3 increase in aged blood. • Blood interactome reveals targets involved with immune response, inflammation, and blood clots. • SARS-CoV-2-infected patients with high viral load showed FASLG overexpression. • Gene expression profile associated with T cell exhaustion and type I interferon signaling were affected with blood aging. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02161-4.
Collapse
|
4
|
Zhou D, Xue J, Miyamoto Y, Poulsen O, Eckmann L, Haddad GG. Microbiota Modulates Cardiac Transcriptional Responses to Intermittent Hypoxia and Hypercapnia. Front Physiol 2021; 12:680275. [PMID: 34248668 PMCID: PMC8267877 DOI: 10.3389/fphys.2021.680275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
The microbiota plays a critical role in regulating organismal health and response to environmental stresses. Intermittent hypoxia and hypercapnia, a condition that represents the main hallmark of obstructive sleep apnea in humans, is known to induce significant alterations in the gut microbiome and metabolism, and promotes the progression of atherosclerosis in mouse models. To further understand the role of the microbiome in the cardiovascular response to intermittent hypoxia and hypercapnia, we developed a new rodent cage system that allows exposure of mice to controlled levels of O2 and CO2 under gnotobiotic conditions. Using this experimental setup, we determined the impact of the microbiome on the transcriptional response to intermittent hypoxia and hypercapnia in the left ventricle of the mouse heart. We identified significant changes in gene expression in both conventionally reared and germ-free mice. Following intermittent hypoxia and hypercapnia exposure, we detected 192 significant changes in conventionally reared mice (96 upregulated and 96 downregulated) and 161 significant changes (70 upregulated and 91 downregulated) in germ-free mice. Only 19 of these differentially expressed transcripts (∼10%) were common to conventionally reared and germ-free mice. Such distinct transcriptional responses imply that the host microbiota plays an important role in regulating the host transcriptional response to intermittent hypoxia and hypercapnia in the mouse heart.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Orit Poulsen
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital-San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
6
|
O'Brien JB, Wilkinson JC, Roman DL. Regulator of G-protein signaling (RGS) proteins as drug targets: Progress and future potentials. J Biol Chem 2019; 294:18571-18585. [PMID: 31636120 PMCID: PMC6901330 DOI: 10.1074/jbc.rev119.007060] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play critical roles in regulating processes such as cellular homeostasis, responses to stimuli, and cell signaling. Accordingly, GPCRs have long served as extraordinarily successful drug targets. It is therefore not surprising that the discovery in the mid-1990s of a family of proteins that regulate processes downstream of GPCRs generated great excitement in the field. This finding enhanced the understanding of these critical signaling pathways and provided potentially new targets for pharmacological intervention. These regulators of G-protein signaling (RGS) proteins were viewed by many as nodes downstream of GPCRs that could be targeted with small molecules to tune signaling processes. In this review, we provide a brief overview of the discovery of RGS proteins and of the gradual and continuing discovery of their roles in disease states, focusing particularly on cancer and neurological disorders. We also discuss high-throughput screening efforts that have led to the discovery first of peptide-based and then of small-molecule inhibitors targeting a subset of the RGS proteins. We explore the unique mechanisms of RGS inhibition these chemical tools have revealed and highlight the most up-to-date studies using these tools in animal experiments. Finally, we discuss the future opportunities in the field, as there are clearly more avenues left to be explored and potentials to be realized.
Collapse
Affiliation(s)
- Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - Joshua C Wilkinson
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa 52242; Iowa Neuroscience Institute, Iowa City, Iowa 52242; Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242.
| |
Collapse
|
7
|
Sjögren B. The evolution of regulators of G protein signalling proteins as drug targets - 20 years in the making: IUPHAR Review 21. Br J Pharmacol 2017; 174:427-437. [PMID: 28098342 DOI: 10.1111/bph.13716] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/11/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022] Open
Abstract
Regulators of G protein signalling (RGS) proteins are celebrating the 20th anniversary of their discovery. The unveiling of this new family of negative regulators of G protein signalling in the mid-1990s solved a persistent conundrum in the G protein signalling field, in which the rate of deactivation of signalling cascades in vivo could not be replicated in exogenous systems. Since then, there has been tremendous advancement in the knowledge of RGS protein structure, function, regulation and their role as novel drug targets. RGS proteins play an important modulatory role through their GTPase-activating protein (GAP) activity at active, GTP-bound Gα subunits of heterotrimeric G proteins. They also possess many non-canonical functions not related to G protein signalling. Here, an update on the status of RGS proteins as drug targets is provided, highlighting advances that have led to the inclusion of RGS proteins in the IUPHAR/BPS Guide to PHARMACOLOGY database of drug targets.
Collapse
Affiliation(s)
- B Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Strong E, Butcher D, Singhania R, Mervis C, Morris C, De Carvalho D, Weksberg R, Osborne L. Symmetrical Dose-Dependent DNA-Methylation Profiles in Children with Deletion or Duplication of 7q11.23. Am J Hum Genet 2015; 97:216-27. [PMID: 26166478 DOI: 10.1016/j.ajhg.2015.05.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022] Open
Abstract
Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.5-Mb region that includes several genes with a role in epigenetic regulation. We have identified striking differences in DNA methylation across the genome between blood cells from children with WS or Dup7 and blood cells from typically developing (TD) children. Notably, regions that were differentially methylated in both WS and Dup7 displayed a significant and symmetrical gene-dose-dependent effect, such that WS typically showed increased and Dup7 showed decreased DNA methylation. Differentially methylated genes were significantly enriched with genes in pathways involved in neurodevelopment, autism spectrum disorder (ASD) candidate genes, and imprinted genes. Using alignment with ENCODE data, we also found the differentially methylated regions to be enriched with CCCTC-binding factor (CTCF) binding sites. These findings suggest that gene(s) within 7q11.23 alter DNA methylation at specific sites across the genome and result in dose-dependent DNA-methylation profiles in WS and Dup7. Given the extent of DNA-methylation changes and the potential impact on CTCF binding and chromatin regulation, epigenetic mechanisms most likely contribute to the complex neurological phenotypes of WS and Dup7. Our findings highlight the importance of DNA methylation in the pathogenesis of WS and Dup7 and provide molecular mechanisms that are potentially shared by WS, Dup7, and ASD.
Collapse
|
9
|
Li Y, Li L, Lin J, Hu X, Li B, Xue A, Shen Y, Jiang J, Zhang M, Xie J, Zhao Z. Deregulation of RGS17 Expression Promotes Breast Cancer Progression. J Cancer 2015; 6:767-775. [PMID: 26185539 PMCID: PMC4504113 DOI: 10.7150/jca.11833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE A high level of RGS17 expression is observed in diverse human cancers and correlates with tumor progression. Herein, we aim to investigate its expression and function in breast cancer. METHODS The expression of RGS17 was detected by immunohistochemical analysis and western blot analysis. The level of miR-32 expression was investigated by qRT-PCR. Western blot analysis was used to determine the relationship between RGS17 and miR-32. A series of loss or gain of function assays was performed to measure the effects of RGS17 or miR-32 on tumor migration, invasion, and proliferation. RESULTS Compared to that in normal breast specimen, the expression of RGS17 had a significantly higher expression level in breast cancer tissues and cell lines. Although the potential relationship of RGS17 expression with clinicopathological features was not observed, there was a significant correlation of RGS17 expression with p63 expression. In cells, inhibition of RGS17 expression impaired cell migration, invasion, and proliferation. Further, RGS17 was identified as a direct and functional target of miR-32. Overexpression of miR-32 in cells could decrease the expression of RGS17 and inhibit cell migration, invasion, and proliferation. In contrast, ectopic expression of RGS17 could attenuate phenotypes caused by miR-32 overexpression. CONCLUSION The expression of RGS17 was upregulated in breast cancer, which could enhance cell migration, invasion, and proliferation. Moreover, the RGS17 was identified as a target of miR-32. Our results suggest that RGS17 might play an important role in breast cancer progression and could be a potential target for human breast cancer treatment.
Collapse
Affiliation(s)
- Yuhua Li
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Liliang Li
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junyi Lin
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xin Hu
- 2. Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Beixu Li
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Aimin Xue
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yiwen Shen
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jieqing Jiang
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mingchang Zhang
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianhui Xie
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ziqin Zhao
- 1. Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
10
|
Sjögren B, Swaney S, Neubig RR. FBXO44-Mediated Degradation of RGS2 Protein Uniquely Depends on a Cullin 4B/DDB1 Complex. PLoS One 2015; 10:e0123581. [PMID: 25970626 PMCID: PMC4430315 DOI: 10.1371/journal.pone.0123581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/05/2015] [Indexed: 12/30/2022] Open
Abstract
The ubiquitin-proteasome system for protein degradation plays a major role in regulating cell function and many signaling proteins are tightly controlled by this mechanism. Among these, Regulator of G Protein Signaling 2 (RGS2) is a target for rapid proteasomal degradation, however, the specific enzymes involved are not known. Using a genomic siRNA screening approach, we identified a novel E3 ligase complex containing cullin 4B (CUL4B), DNA damage binding protein 1 (DDB1) and F-box protein 44 (FBXO44) that mediates RGS2 protein degradation. While the more typical F-box partners CUL1 and Skp1 can bind FBXO44, that E3 ligase complex does not bind RGS2 and is not involved in RGS2 degradation. These observations define an unexpected DDB1/CUL4B-containing FBXO44 E3 ligase complex. Pharmacological targeting of this mechanism provides a novel therapeutic approach to hypertension, anxiety, and other diseases associated with RGS2 dysregulation.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology & Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, United States of America
| | - Steven Swaney
- Center for Chemical Genomics, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, United States of America
| | - Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, United States of America
| |
Collapse
|
11
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
12
|
Patanè S. Regulator of G-protein signaling 2 (RGS2) in cardiology and oncology. Int J Cardiol 2014; 179:63-5. [PMID: 25464414 DOI: 10.1016/j.ijcard.2014.10.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Salvatore Patanè
- Cardiologia Ospedale San Vincenzo - Taormina (Me) Azienda Sanitaria Provinciale di Messina, 98039 Taormina, Messina, Italy. patane-@libero.it
| |
Collapse
|
13
|
Raveh A, Schultz PJ, Aschermann L, Carpenter C, Tamayo-Castillo G, Cao S, Clardy J, Neubig RR, Sherman DH, Sjögren B. Identification of protein kinase C activation as a novel mechanism for RGS2 protein upregulation through phenotypic screening of natural product extracts. Mol Pharmacol 2014; 86:406-16. [PMID: 25086086 PMCID: PMC6067637 DOI: 10.1124/mol.114.092403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/31/2014] [Indexed: 11/22/2022] Open
Abstract
Biochemical high-throughput screening is widely used in drug discovery, using a variety of small molecule libraries. However, broader screening strategies may be more beneficial to identify novel biologic mechanisms. In the current study we used a β-galactosidase complementation method to screen a selection of microbial-derived pre-fractionated natural product extracts for those that increase regulator of G protein signaling 2 (RGS2) protein levels. RGS2 is a member of a large family of proteins that all regulate signaling through G protein-coupled receptors (GPCRs) by accelerating GTPase activity on active Gα as well as through other mechanisms. RGS2(-/-) mice are hypertensive, show increased anxiety, and are prone to heart failure. RGS2 has a very short protein half-life due to rapid proteasomal degradation, and we propose that enhancement of RGS2 protein levels could be a beneficial therapeutic strategy. Bioassay-guided fractionation of one of the hit strains yielded a pure compound, Indolactam V, a known protein kinase C (PKC) activator, which selectively increased RGS2 protein levels in a time- and concentration-dependent manner. Similar results were obtained with phorbol 12-myristate 13-acetate as well as activation of the Gq-coupled muscarinic M3 receptor. The effect on RGS2 protein levels was blocked by the nonselective PKC inhibitor Gö6983 (3-[1-[3-(dimethylamino)propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione), the PKCβ-selective inhibitor Ruboxastaurin, as well as small interfering RNA-mediated knockdown of PKCβ. Indolactam V-mediated increases in RGS2 protein levels also had functional effects on GPCR signaling. This study provides important proof-of-concept for our screening strategy and could define a negative feedback mechanism in Gq/Phospholipase C signaling through RGS2 protein upregulation.
Collapse
Affiliation(s)
- Avi Raveh
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Pamela J Schultz
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Lauren Aschermann
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Colleen Carpenter
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Giselle Tamayo-Castillo
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Shugeng Cao
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Jon Clardy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Richard R Neubig
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| | - Benita Sjögren
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (A.R., P.J.S., D.H.S.); Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan (L.A., R.R.N., B.S.); Department of Pharmacology (C.C.), Department of Medicinal Chemistry (D.H.S.), Department of Microbiology and Immunology (D.H.S.), Department of Chemistry (D.H.S.), Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan (D.H.S.); Unidad Estrategica de Bioprospección, Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Costa Rica & CIPRONA, Escuela de Química, Universidad de Costa Rica, San Pedro, Costa Rica (G.T-C.); Harvard Medical School, Boston, Massachusetts (S.C., J.C.); and University of Hawaii Cancer Center, Honolulu, Hawaii (S.C.)
| |
Collapse
|
14
|
Kvehaugen AS, Melien Ø, Holmen OL, Laivuori H, Dechend R, Staff AC. Hypertension after preeclampsia and relation to the C1114G polymorphism (rs4606) in RGS2: data from the Norwegian HUNT2 study. BMC MEDICAL GENETICS 2014; 15:28. [PMID: 24593135 PMCID: PMC3973870 DOI: 10.1186/1471-2350-15-28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/13/2014] [Indexed: 12/17/2022]
Abstract
Background Preeclampsia is associated with an increased risk of hypertension later in life. The regulator of G protein signaling 2 negatively regulates several vasoconstrictors. We recently demonstrated an association between preeclampsia and the CG or GG genotype of the C1114G polymorphism (rs4606) of the regulator of G protein signaling 2 gene. Here, we examined the polymorphism with respect to the development of hypertension after pregnancy. Methods We genotyped 934 women on average 15.1 years after preeclampsia and 2011 age matched women with previous normotensive pregnancy. All women in this study were retrospectively recruited from the Nord-Trøndelag Health Study (HUNT2). Information from HUNT2 was linked to the Medical Birth Registry of Norway to identify women with a history of preeclampsia and women without a history of preeclampsia. Results No significant association was found between hypertension (blood pressure ≥140/90 mmHg and/or taking antihypertensive drugs) and the polymorphism in crude analysis (OR (95% CI): CG genotype: 1.07 (0.90-1.27); GG genotype: 1.23 (0.90-1.67)). However, in a minimally adjusted model (age and BMI adjusted), a significant association between the GG genotype and hypertension was found (OR (95% CI): 1.49 (1.05-2.11)). This association remained significant also after adjustment for a history of preeclampsia (OR (95% CI): 1.46 (1.02-2.09)), but not in a model adjusted for multiple other variables (OR (95% CI): 1.26 (0.82-1.94)). In multivariate, but not in crude, analysis, the GG genotype of rs4606 (OR (95% CI): 1.93 (1.05-3.53)) was significantly and independently associated with severe hypertension later in life, defined as systolic blood pressure ≥160 mmHg (stage 2 hypertension) and/or taking antihypertensive drugs. A significant association was also found for the merged CG and GG genotypes (OR (95% CI): 1.43 (1.02-2.00)). Moreover, an interaction with physical activity was found. A history of preeclampsia was a significant and independent predictor of either definition of hypertension, both in crude and adjusted analyses. Conclusion Women carrying the rs4606 CG or GG genotype are at elevated risk for developing hypertension after delivery. Physical activity may interact with the association. Preeclampsia remains an independent risk factor for subsequent hypertension after adjusting for this polymorphism and classical CVD risk factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Cathrine Staff
- From the Department of Obstetrics and Department of Gynecology, Oslo University Hospital, Ulleval, Oslo, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
15
|
Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F, Ribas C. Gαq signalling: the new and the old. Cell Signal 2014; 26:833-48. [PMID: 24440667 DOI: 10.1016/j.cellsig.2014.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/25/2023]
Abstract
In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cβ (PLCβ), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCβ-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Carlota García-Hoz
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Anna M Aragay
- Department of Cell Biology, Molecular Biology Institute of Barcelona, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|
16
|
Littlejohn NK, Siel RB, Ketsawatsomkron P, Pelham CJ, Pearson NA, Hilzendeger AM, Buehrer BA, Weidemann BJ, Li H, Davis DR, Thompson AP, Liu X, Cassell MD, Sigmund CD, Grobe JL. Hypertension in mice with transgenic activation of the brain renin-angiotensin system is vasopressin dependent. Am J Physiol Regul Integr Comp Physiol 2013; 304:R818-28. [PMID: 23535460 DOI: 10.1152/ajpregu.00082.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An indispensable role for the brain renin-angiotensin system (RAS) has been documented in most experimental animal models of hypertension. To identify the specific efferent pathway activated by the brain RAS that mediates hypertension, we examined the hypothesis that elevated arginine vasopressin (AVP) release is necessary for hypertension in a double-transgenic model of brain-specific RAS hyperactivity (the "sRA" mouse model). sRA mice experience elevated brain RAS activity due to human angiotensinogen expression plus neuron-specific human renin expression. Total daily loss of the 4-kDa AVP prosegment (copeptin) into urine was grossly elevated (≥8-fold). Immunohistochemical staining for AVP was increased in the supraoptic nucleus of sRA mice (~2-fold), but no quantitative difference in the paraventricular nucleus was observed. Chronic subcutaneous infusion of a nonselective AVP receptor antagonist conivaptan (YM-087, Vaprisol, 22 ng/h) or the V(2)-selective antagonist tolvaptan (OPC-41061, 22 ng/h) resulted in normalization of the baseline (~15 mmHg) hypertension in sRA mice. Abdominal aortas and second-order mesenteric arteries displayed AVP-specific desensitization, with minor or no changes in responses to phenylephrine and endothelin-1. Mesenteric arteries exhibited substantial reductions in V(1A) receptor mRNA, but no significant changes in V(2) receptor expression in kidney were observed. Chronic tolvaptan infusion also normalized the (5 mmol/l) hyponatremia of sRA mice. Together, these data support a major role for vasopressin in the hypertension of mice with brain-specific hyperactivity of the RAS and suggest a primary role of V(2) receptors.
Collapse
Affiliation(s)
- Nicole K Littlejohn
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nance MR, Kreutz B, Tesmer VM, Sterne-Marr R, Kozasa T, Tesmer JJG. Structural and functional analysis of the regulator of G protein signaling 2-gαq complex. Structure 2013; 21:438-48. [PMID: 23434405 DOI: 10.1016/j.str.2012.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/20/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
The heterotrimeric G protein Gαq is a key regulator of blood pressure, and excess Gαq signaling leads to hypertension. A specific inhibitor of Gαq is the GTPase activating protein (GAP) known as regulator of G protein signaling 2 (RGS2). The molecular basis for how Gαq/11 subunits serve as substrates for RGS proteins and how RGS2 mandates its selectivity for Gαq is poorly understood. In crystal structures of the RGS2-Gαq complex, RGS2 docks to Gαq in a different orientation from that observed in RGS-Gαi/o complexes. Despite its unique pose, RGS2 maintains canonical interactions with the switch regions of Gαq in part because its α6 helix adopts a distinct conformation. We show that RGS2 forms extensive interactions with the α-helical domain of Gαq that contribute to binding affinity and GAP potency. RGS subfamilies that do not serve as GAPs for Gαq are unlikely to form analogous stabilizing interactions.
Collapse
Affiliation(s)
- Mark R Nance
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | | | | | |
Collapse
|
18
|
Guo S, Zhou Y, Xing C, Lok J, Som AT, Ning M, Ji X, Lo EH. The vasculome of the mouse brain. PLoS One 2012; 7:e52665. [PMID: 23285140 PMCID: PMC3527566 DOI: 10.1371/journal.pone.0052665] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/20/2012] [Indexed: 01/08/2023] Open
Abstract
The blood vessel is no longer viewed as passive plumbing for the brain. Increasingly, experimental and clinical findings suggest that cerebral endothelium may possess endocrine and paracrine properties – actively releasing signals into and receiving signals from the neuronal parenchyma. Hence, metabolically perturbed microvessels may contribute to central nervous system (CNS) injury and disease. Furthermore, cerebral endothelium can serve as sensors and integrators of CNS dysfunction, releasing measurable biomarkers into the circulating bloodstream. Here, we define and analyze the concept of a brain vasculome, i.e. a database of gene expression patterns in cerebral endothelium that can be linked to other databases and systems of CNS mediators and markers. Endothelial cells were purified from mouse brain, heart and kidney glomeruli. Total RNA were extracted and profiled on Affymetrix mouse 430 2.0 micro-arrays. Gene expression analysis confirmed that these brain, heart and glomerular preparations were not contaminated by brain cells (astrocytes, oligodendrocytes, or neurons), cardiomyocytes or kidney tubular cells respectively. Comparison of the vasculome between brain, heart and kidney glomeruli showed that endothelial gene expression patterns were highly organ-dependent. Analysis of the brain vasculome demonstrated that many functionally active networks were present, including cell adhesion, transporter activity, plasma membrane, leukocyte transmigration, Wnt signaling pathways and angiogenesis. Analysis of representative genome-wide-association-studies showed that genes linked with Alzheimer’s disease, Parkinson’s disease and stroke were detected in the brain vasculome. Finally, comparison of our mouse brain vasculome with representative plasma protein databases demonstrated significant overlap, suggesting that the vasculome may be an important source of circulating signals in blood. Perturbations in cerebral endothelial function may profoundly affect CNS homeostasis. Mapping and dissecting the vasculome of the brain in health and disease may provide a novel database for investigating disease mechanisms, assessing therapeutic targets and exploring new biomarkers for the CNS.
Collapse
Affiliation(s)
- Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SG); (EHL)
| | - Yiming Zhou
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute, Massachusetts Institute of Technology and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Changhong Xing
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angel T. Som
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - MingMing Ning
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xunming Ji
- Cerebrovascular Research Center, XuanWu Hospital, Capital Medical University, Beijing, Peoples Republic of China
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Clinical Proteomics Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SG); (EHL)
| |
Collapse
|
19
|
Jones DL, Tuomi JM, Chidiac P. Role of Cholinergic Innervation and RGS2 in Atrial Arrhythmia. Front Physiol 2012; 3:239. [PMID: 22754542 PMCID: PMC3386567 DOI: 10.3389/fphys.2012.00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 06/12/2012] [Indexed: 01/25/2023] Open
Abstract
The heart receives sympathetic and parasympathetic efferent innervation as well as the ability to process information internally via an intrinsic cardiac autonomic nervous system (ICANS). For over a century, the role of the parasympathetics via vagal acetylcholine release was related to controlling primarily heart rate. Although in the late 1800s shown to play a role in atrial arrhythmia, the myocardium took precedence from the mid-1950s until in the last decade a resurgence of interest in the autonomics along with signaling cascades, regulators, and ion channels. Originally ignored as being benign and thus untreated, recent emphasis has focused on atrial arrhythmia as atrial fibrillation (AF) is the most common arrhythmia seen by the general practitioner. It is now recognized to have significant mortality and morbidity due to resultant stroke and heart failure. With the aging population, there will be an unprecedented increased burden on health care resources. Although it has been known for more than half a century that cholinergic stimulation can initiate AF, the classical concept focused on the M2 receptor and its signaling cascade including RGS4, as these had been shown to have predominant effects on nodal function (heart rate and conduction block) as well as contractility. However, recent evidence suggests that the M3 receptor may also playa role in initiation and perpetuation of AF and thus RGS2, a putative regulator of the M3 receptor, may be a target for therapeutic intervention. Mice lacking RGS2 (RGS2−/−), were found to have significantly altered electrophysiological atrial responses and were more susceptible to electrically induced AF. Vagally induced or programmed stimulation-induced AF could be blocked by the selective M3R antagonist, darifenacin. These results suggest a potential surgical target (ICANS) and pharmacological targets (M3R, RGS2) for the management of AF.
Collapse
Affiliation(s)
- Douglas L Jones
- Department of Physiology and Pharmacology, The University of Western Ontario London, ON, Canada
| | | | | |
Collapse
|
20
|
Regulatory mechanisms underlying the modulation of GIRK1/GIRK4 heteromeric channels by P2Y receptors. Pflugers Arch 2012; 463:625-33. [PMID: 22362083 DOI: 10.1007/s00424-012-1082-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 01/10/2023]
Abstract
The muscarinic K(+) channel (I (K,ACh)) is a heterotetramer composed of GIRK1 (Kir3.1) and GIRK4 (Kir3.4) subunits of a G protein-coupled inwardly rectifying channel, and plays an important role in mediating electrical responses to the vagal stimulation in the heart. I (K,ACh) displays biphasic changes (activation followed by inhibition) through the stimulation of the purinergic P2Y receptors, but the regulatory mechanism involved in these modulation of I (K,ACh) by P2Y receptors remains to be fully elucidated. Various P2Y receptor subtypes and GIRK1/GIRK4 (I (GIRK)) were co-expressed in Chinese hamster ovary cells, and the effect of stimulation of P2Y receptor subtypes on I (GIRK) were examined using the whole-cell patch-clamp method. Extracellular application of 10 μM ATP induced a transient activation of I (GIRK) through the P2Y(1) receptor, which was completely abolished by pretreatment with pertussis toxin. ATP initially caused an additive transient increase in ACh-activated I (GIRK) (via M(2) receptor), which was followed by subsequent inhibition. This inhibition of I (GIRK) by ATP was attenuated by co-expression of regulator of G-protein signaling 2, or phosphatidylinositol-4-phosphate-5-kinase, or intracellular phosphatidylinositol 4,5-bisphosphate loading, but not by the exposure to protein kinase C inhibitors. P2Y(4) stimulation also persistently suppressed the ACh-activated I (GIRK). In addition, I (GIRK) evoked by the stimulation of the P2Y(4) receptor exhibited a transient activation, but that evoked by the stimulation of P2Y(2) or P2Y(12) receptor showed a rather persistent activation. These results reveal (1) that P2Y(1) and P2Y(4) are primarily coupled to the G(q)-phospholipase C-pathway, while being weakly linked to G(i/o), and (2) that P2Y(2) and P2Y(12) involve G(i/o) activation.
Collapse
|
21
|
Multifaceted cardiac signal transduction mediated by G protein-coupled receptors: Potential target sites where an unambiguous attention is needed for exploring new drugs for cardiovascular disorders. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.biomag.2011.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions and has been widely implicated in human disease. Regulators of G-protein signaling (RGS proteins) belong to a diverse protein family that was originally discovered for their ability to accelerate signal termination in response to GPCR stimulation, thereby reducing the amplitude and duration of GPCR effects. All RGS proteins share a common RGS domain that interacts with G protein α subunits and mediates their biological regulation of GPCR signaling. However, RGS proteins differ widely in size and the organization of their sequences flanking the RGS domain, which contain several additional functional domains that facilitate protein-protein (or protein-lipid) interactions. RGS proteins are subject to posttranslational modifications, and, in addition, their expression, activity, and subcellular localization can be dynamically regulated. Thus, there exists a wide array of mechanisms that facilitate their proper function as modulators and integrators of G-protein signaling. Several RGS proteins have been implicated in the cardiac remodeling response and heart rate regulation, and changes in RGS protein expression and/or function are believed to participate in the pathophysiology of cardiac hypertrophy, failure and arrhythmias as well as hypertension. This review is based on recent advances in our understanding of the expression pattern, regulation, and functional role of canonical RGS proteins, with a special focus on the healthy heart and the diseased heart. In addition, we discuss their potential and promise as therapeutic targets as well as strategies to modulate their expression and function.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown University, 1 Hoppin St, Providence, RI 02903, USA
| | | |
Collapse
|
23
|
Mullick A, Tremblay J, Leon Z, Gros P. A novel role for the fifth component of complement (C5) in cardiac physiology. PLoS One 2011; 6:e22919. [PMID: 21829669 PMCID: PMC3148243 DOI: 10.1371/journal.pone.0022919] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/09/2011] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that C5-deficient A/J and recombinant congenic BcA17 mice suffer from cardiac dysfunction when infected with C. albicans blastospores intravenously. During these studies we had observed that, even in the control un-infected state, BcA17 hearts displayed alterations in gene expression that have been associated with pathological cardiac hypertrophy in comparison to parental C5-sufficient C57Bl/6J (B6) mice. Of note was an increase in the expression of Nppb, a member of the fetal gene program and a decrease in the expression of Rgs2, an inhibitor of the hypertrophic response. We now report that C5-deletion has also affected the expression of other elements of the fetal gene program. Moreover deleting the C5a receptor, C5aR, has essentially the same effect as deleting C5, indicating a key role for C5a-C5aR signaling in the phenotype. Having noted a pathological phenotype in the un-infected state, we investigated the role of C5 in the response to cardiac stress. In previous studies, comparison of the expression profiles of C. albicans-infected BcA17 and similarly infected B6 hearts had revealed a paucity of cardioprotective genes in the C5-deficient heart. To determine whether this was also directly linked to C5-deficiency, we tested the expression of 5 such genes in the C. albicans-infected C5aR(-/-) mice. We found again that deletion of C5aR recapitulated the alterations in stress response of BcA17. To determine whether our observations were relevant to other forms of cardiac injury, we tested the effect of C5-deficiency on the response to isoproterenol-induced hypertrophic stimulation. Consistent with our hypothesis, A/J, BcA17 and C5aR(-/-) mice responded with higher levels of Nppa expression than B6 and BALB/c mice. In conclusion, our results suggest that an absence of functional C5a renders the heart in a state of distress, conferring a predisposition to cardiac dysfunction in the face of additional injury.
Collapse
Affiliation(s)
- Alaka Mullick
- Biotechnology Research Institute, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
24
|
Zhang P, Su J, King ME, Maldonado AE, Park C, Mende U. Regulator of G protein signaling 2 is a functionally important negative regulator of angiotensin II-induced cardiac fibroblast responses. Am J Physiol Heart Circ Physiol 2011; 301:H147-56. [PMID: 21498776 DOI: 10.1152/ajpheart.00026.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibroblasts play a key role in fibrosis development in response to stress and injury. Angiotensin II (ANG II) is a major profibrotic activator whose downstream effects (such as phospholipase Cβ activation, cell proliferation, and extracellular matrix secretion) are mainly mediated via G(q)-coupled AT(1) receptors. Regulators of G protein signaling (RGS), which accelerate termination of G protein signaling, are expressed in the myocardium. Among them, RGS2 has emerged as an important player in modulating G(q)-mediated hypertrophic remodeling in cardiac myocytes. To date, no information is available on RGS in cardiac fibroblasts. We tested the hypothesis that RGS2 is an important regulator of ANG II-induced signaling and function in ventricular fibroblasts. Using an in vitro model of fibroblast activation, we have demonstrated expression of several RGS isoforms, among which only RGS2 was transiently upregulated after short-term ANG II stimulation. Similar results were obtained in fibroblasts isolated from rat hearts after in vivo ANG II infusion via minipumps for 1 day. In contrast, prolonged ANG II stimulation (3-14 days) markedly downregulated RGS2 in vivo. To delineate the functional effects of RGS expression changes, we used gain- and loss-of-function approaches. Adenovirally infected RGS2 had a negative regulatory effect on ANG II-induced phospholipase Cβ activity, cell proliferation, and total collagen production, whereas RNA interference of endogenous RGS2 had opposite effects, despite the presence of several other RGS. Together, these data suggest that RGS2 is a functionally important negative regulator of ANG II-induced cardiac fibroblast responses that may play a role in ANG II-induced fibrosis development.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital and Alpert Medical School of Brown Univ., 1 Hoppin St., Providence, RI 02903, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Zhu W, Woo AYH, Zhang Y, Cao CM, Xiao RP. β-adrenergic receptor subtype signaling in the heart: from bench to the bedside. CURRENT TOPICS IN MEMBRANES 2011; 67:191-204. [PMID: 21771491 DOI: 10.1016/b978-0-12-384921-2.00009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Weizhong Zhu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|