1
|
Morey-León G, Mejía-Ponce PM, Fernández-Cadena JC, García-Moreira E, Andrade-Molina D, Licona-Cassani C, Fresia P, Berná L. Global epidemiology of Mycobacterium tuberculosis lineage 4 insights from Ecuadorian genomic data. Sci Rep 2025; 15:3823. [PMID: 39885182 PMCID: PMC11782492 DOI: 10.1038/s41598-025-86079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
Tuberculosis is a global public health concern, and understanding Mycobacterium tuberculosis transmission routes and genetic diversity of M. tuberculosis is crucial for outbreak control. This study aimed to explore the genomic epidemiology and genetic diversity of M. tuberculosis in Ecuador by analyzing 88 local isolates and 415 public genomes from 19 countries within the Euro-American lineage (L4). Our results revealed significant genomic diversity among the isolates, particularly in the genes related to protein processing, carbohydrate metabolism, lipid metabolism, and xenobiotic biodegradation and metabolism. The population structure analysis showed that sub-lineages 4.3.2/3 (35.4%), 4.1.2.1 (22.7%), 4.4.1 (12.7%), and 4.1.1. (10.7%) were the most prevalent. Phylogenetic and transmission network analyses suggest that these isolates circulating within Ecuador share genetic ties with isolates from other continents, implying historical and ongoing intercontinental transmission events. Our findings underscore the importance of integrating genomic data into public health strategies for tuberculosis control and suggest that enhanced genomic surveillance is essential for understanding and mitigating the global spread of M. tuberculosis. This study provides a comprehensive genomic framework for future epidemiological investigations and control measures targeting M. tuberculosis L4 in Ecuador.
Collapse
Affiliation(s)
- Gabriel Morey-León
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador.
- Universidad de la República, Montevideo, Uruguay.
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - Paulina M Mejía-Ponce
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Juan Carlos Fernández-Cadena
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | | | - Derly Andrade-Molina
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Cuauhtémoc Licona-Cassani
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Pablo Fresia
- Unidad Mixta Pasteur + INIA (UMPI), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Buenestado-Serrano S, Martínez-Lirola M, Dippenaar A, Sanz-Pérez A, Garrido-Cárdenas JA, Esteban-García AB, García-Toledo AJ, Rodríguez-Grande C, Herranz-Martín M, Saleeb SM, Muñoz P, Warren RM, Pérez-Lago L, García de Viedma D. Bridging the gap between molecular and genomic epidemiology in tuberculosis: inferring MIRU-VNTR patterns from genomic data. J Clin Microbiol 2024; 62:e0074124. [PMID: 39136450 PMCID: PMC11389143 DOI: 10.1128/jcm.00741-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/18/2024] [Indexed: 09/12/2024] Open
Abstract
The transition from MIRU-VNTR-based epidemiology studies in tuberculosis (TB) to genomic epidemiology has transformed how we track transmission. However, short-read sequencing is poor at analyzing repetitive regions such as the MIRU-VNTR loci. This causes a gap between the new genomic data and the large amount of information stored in historical databases. Long-read sequencing could bridge this knowledge gap by allowing analysis of repetitive regions. However, the feasibility of extracting MIRU-VNTRs from long reads and linking them to historical data has not been evaluated. In our study, an in silico arm, consisting of inference of MIRU patterns from long-read sequences (using MIRUReader program), was compared with an experimental arm, involving standard amplification and fragment sizing. We analyzed overall performance on 39 isolates from South Africa and confirmed reproducibility in a sample enriched with 62 clustered cases from Spain. Finally, we ran 25 consecutive incident cases, demonstrating the feasibility of correctly assigning new clustered/orphan cases by linking data inferred from genomic analysis to MIRU-VNTR databases. Of the 3,024 loci analyzed, only 11 discrepancies (0.36%) were found between the two arms: three attributed to experimental error and eight to misassigned alleles from long-read sequencing. A second round of analysis of these discrepancies resulted in agreement between the experimental and in silico arms in all but one locus. Adjusting the MIRUReader program code allowed us to flag potential in silico misassignments due to suboptimal coverage or unfixed double alleles. Our study indicates that long-read sequencing could help address potential chronological and geographical gaps arising from the transition from molecular to genomic epidemiology of tuberculosis. IMPORTANCE The transition from molecular epidemiology in tuberculosis (TB), based on the analysis of repetitive regions (VNTR-based genotyping), to genomic epidemiology transforms in the precision with which we track transmission. However, short-read sequencing, the most common method for performing genomic analysis, is poor at analyzing repetitive regions. This means that we face a gap between the new genomic data and the large amount of information stored in historical databases, which is also an obstacle to cross-national surveillance involving settings where only molecular data are available. Long-read sequencing could help bridge this knowledge gap by allowing analysis of repetitive regions. Our study demonstrates that MIRU-VNTR patterns can be successfully inferred from long-read sequences, allowing the correct assignment of new cases as clustered/orphan by linking new data extracted from genomic analysis to historical MIRU-VNTR databases. Our data may provide a starting point for bridging the knowledge gap between the molecular and genomic eras in tuberculosis epidemiology.
Collapse
Affiliation(s)
- Sergio Buenestado-Serrano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Escuela de Doctorado, Universidad de Alcalá, Plaza de San Diego, Alcalá de Henares, Madrid, Spain
| | - Miguel Martínez-Lirola
- Unidad de Gestión de Laboratorios, UGMI, Complejo Hospitalario Torrecárdenas, Almería, Spain
| | - Anzaan Dippenaar
- Department of Family Medicine and Population Health, Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Amadeo Sanz-Pérez
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | | | - Ana Belén Esteban-García
- Servicio de Análisis de Ácidos Nucleicos, Servicios Centrales de Investigación de la Universidad de Almería, Almería, Spain
| | - Adriana Justine García-Toledo
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Cristina Rodríguez-Grande
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marta Herranz-Martín
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Sheri M Saleeb
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Robin M Warren
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
3
|
Shabani S, Farnia P, Ghanavi J, Velayati AA, Farnia P. Pharmacogenetic Study of Drugs Affecting Mycobacterium tuberculosis. Int J Mycobacteriol 2024; 13:206-212. [PMID: 38916393 DOI: 10.4103/ijmy.ijmy_106_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Pharmacogenetic research has led to significant progress in understanding how genetic factors influence drug response in tuberculosis (TB) treatment. One ongoing challenge is the variable occurrence of adverse drug reactions in some TB patients. Previous studies have indicated that genetic variations in the N-acetyltransferase 2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) genes can impact the blood concentrations of the first-line anti-TB drugs isoniazid (INH) and rifampicin (RIF), respectively. This study aimed to investigate the influence of pharmacogenetic markers in the NAT2 and SLCO1B1 genes on TB treatment outcomes using whole-exome sequencing (WES) analysis. METHODS DNA samples were collected from 30 healthy Iranian adults aged 18-40 years. The allelic frequencies of single-nucleotide polymorphisms (SNPs) in the NAT2 and SLCO1B1 genes were determined through WES. RESULTS Seven frequent SNPs were identified in the NAT2 gene (rs1041983, rs1801280, rs1799929, rs1799930, rs1208, rs1799931, rs2552), along with 16 frequent SNPs in the SLCO1B1 gene (rs2306283, rs11045818, rs11045819, rs4149056, rs4149057, rs2291075, rs201722521, rs11045852, rs11045854, rs756393362, rs11045859, rs74064211, rs201556175, rs34671512, rs71581985, rs4149085). CONCLUSION Genetic variations in NAT2 and SLCO1B1 can affect the metabolism of INH and RIF, respectively. A better understanding of the pharmacogenetic profile in the study population may facilitate the design of more personalized and effective TB treatment strategies. Further research is needed to directly correlate these genetic markers with clinical outcomes in TB patients.
Collapse
Affiliation(s)
- Samira Shabani
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
4
|
Dohál M, Dvořáková V, Šperková M, Pinková M, Ghodousi A, Omrani M, Porvazník I, Rasmussen EM, Škereňová M, Krivošová M, Wallenfels J, Konstantynovska O, Walker TM, Nikolayevskyy V, Cirillo DM, Solovič I, Mokrý J. Tuberculosis in Ukrainian War Refugees and Migrants in the Czech Republic and Slovakia: A Molecular Epidemiological Study. J Epidemiol Glob Health 2024; 14:35-44. [PMID: 38048026 PMCID: PMC11043285 DOI: 10.1007/s44197-023-00166-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND The war in Ukraine has led to significant migration to neighboring countries, raising public health concerns. Notable tuberculosis (TB) incidence rates in Ukraine emphasize the immediate requirement to prioritize approaches that interrupt the spread and prevent new infections. METHODS We conducted a prospective genomic surveillance study to assess migration's impact on TB epidemiology in the Czech Republic and Slovakia. Mycobacterium tuberculosis isolates from Ukrainian war refugees and migrants, collected from September 2021 to December 2022 were analyzed alongside 1574 isolates obtained from Ukraine, the Czech Republic, and Slovakia. RESULTS Our study revealed alarming results, with historically the highest number of Ukrainian tuberculosis patients detected in the host countries. The increasing number of cases of multidrug-resistant TB, significantly linked with Beijing lineage 2.2.1 (p < 0.0001), also presents substantial obstacles to control endeavors. The genomic analysis identified the three highly related genomic clusters, indicating the recent TB transmission among migrant populations. The largest clusters comprised war refugees diagnosed in the Czech Republic, TB patients from various regions of Ukraine, and incarcerated individuals diagnosed with pulmonary TB specialized facility in the Kharkiv region, Ukraine, pointing to a national transmission sequence that has persisted for over 14 years. CONCLUSIONS The data showed that most infections were likely the result of reactivation of latent disease or exposure to TB before migration rather than recent transmission occurring within the host country. However, close monitoring, appropriate treatment, careful surveillance, and social support are crucial in mitigating future risks, though there is currently no evidence of local transmission in EU countries.
Collapse
Affiliation(s)
- Matúš Dohál
- Comenius University Bratislava, Malá Hora 4A, 036 01, Martin, Slovak Republic.
| | - Věra Dvořáková
- National Institute of Public Health, Prague, Czech Republic
| | | | | | - Arash Ghodousi
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele University, Milan, Italy
- University of Milan, Milan, Italy
| | - Maryam Omrani
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Igor Porvazník
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovak Republic
- Catholic University, Ružomberok, Slovak Republic
| | | | - Mária Škereňová
- Comenius University Bratislava, Malá Hora 4A, 036 01, Martin, Slovak Republic
| | - Michaela Krivošová
- Comenius University Bratislava, Malá Hora 4A, 036 01, Martin, Slovak Republic
| | | | | | - Timothy M Walker
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- University of Oxford, Oxford, UK
| | | | | | - Ivan Solovič
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Vyšné Hágy, Slovak Republic
- Catholic University, Ružomberok, Slovak Republic
| | - Juraj Mokrý
- Comenius University Bratislava, Malá Hora 4A, 036 01, Martin, Slovak Republic
| |
Collapse
|
5
|
Meaza A, Riviere E, Bonsa Z, Rennie V, Gebremicael G, de Diego-Fuertes M, Meehan CJ, Medhin G, Abebe G, Ameni G, Van Rie A, Gumi B. Genomic transmission clusters and circulating lineages of Mycobacterium tuberculosis among refugees residing in refugee camps in Ethiopia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105530. [PMID: 38008242 DOI: 10.1016/j.meegid.2023.105530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Understanding the transmission dynamics of Mycobacterium tuberculosis (Mtb) could benefit the design of tuberculosis (TB) prevention and control strategies for refugee populations. Whole Genome Sequencing (WGS) has not yet been used to document the Mtb transmission dynamics among refugees in Ethiopia. We applied WGS to accurately identify transmission clusters and Mtb lineages among TB cases in refugee camps in Ethiopia. METHOD AND DESIGN We conducted a cross-sectional study of 610 refugees in refugee camps in Ethiopia presenting with symptoms of TB. WGS data of 67 isolates was analyzed using the Maximum Accessible Genome for Mtb Analysis (MAGMA) pipeline; iTol and FigTree were used to visualize phylogenetic trees, lineages, and the presence of transmission clusters. RESULTS Mtb culture-positive refugees originated from South Sudan (52/67, 77.6%), Somalia (9/67, 13.4%). Eritrea (4/67, 6%), and Sudan (2/67, 3%). The majority (52, 77.6%) of the isolates belonged to Mtb lineage (L) 3, and one L9 was identified from a Somalian refugee. The vast majority (82%) of the isolates were pan-susceptible Mtb, and none were multi-drug-resistant (MDR)-TB. Based on the 5-single nucleotide polymorphisms cutoff, we identified eight potential transmission clusters containing 23.9% of the isolates. Contact investigation confirmed epidemiological links with either family or social interaction within the refugee camps or with neighboring refugee camps. CONCLUSION Four lineages (L1, L3, L4, and L9) were identified, with the majority of strains being L3, reflecting the Mtb L3 dominance in South Sudan, where the majority of refugees originated from. Recent transmission among refugees was relatively low (24%), likely due to the short study period. The improved understanding of the Mtb transmission dynamics using WGS in refugee camps could assist in designing effective TB control programs for refugees.
Collapse
Affiliation(s)
- Abyot Meaza
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), PO Box 1176, Sefere Selam campus, Addis Ababa, Ethiopia; Ethiopian Public Health Institute (EPHI), PO Box 1242, Swaziland Street, Addis Ababa, Ethiopia.
| | - Emmanuel Riviere
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zegeye Bonsa
- Mycobacteriology Research Center, Jimma University, Jimma, Ethiopia
| | - Vincent Rennie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Gebremedhin Gebremicael
- Ethiopian Public Health Institute (EPHI), PO Box 1242, Swaziland Street, Addis Ababa, Ethiopia
| | - Miguel de Diego-Fuertes
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Conor J Meehan
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), PO Box 1176, Sefere Selam campus, Addis Ababa, Ethiopia
| | - Gemeda Abebe
- Mycobacteriology Research Center, Jimma University, Jimma, Ethiopia; Department of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), PO Box 1176, Sefere Selam campus, Addis Ababa, Ethiopia; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology (ALIPB), Addis Ababa University (AAU), PO Box 1176, Sefere Selam campus, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Buenestado-Serrano S, Herranz M, Palomino-Cabrera R, Rodríguez-Grande C, Peñas-Utrilla D, Molero-Salinas A, Veintimilla C, Catalán P, Alonso R, Muñoz P, Pérez-Lago L, García de Viedma D. Rapid Identification of Relevant Microbial Strains by Identifying Multiple Marker Single Nucleotide Polymorphisms via Amplicon Sequencing: Epidemic Monkeypox Virus as a Proof of Concept. Microbiol Spectr 2023; 11:e0419622. [PMID: 36602352 PMCID: PMC9927504 DOI: 10.1128/spectrum.04196-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Despite the proven value of applying genomic data for epidemiological purposes, commonly used high-throughput sequencing formats are not adapted to the response times required to intervene and finally control outbreaks. In this study, we propose a fast alternative to whole-genome sequencing (WGS) to track relevant microbiological strains: nanopore sequencing of multiple amplicons including strain marker single nucleotide polymorphisms (SNPs). As a proof a concept, we evaluated the performance of our approach to offer a rapid response to the most recent public health global alarm, the monkeypox virus (MPXV) global outbreak. Through a multisequence alignment, a list of 42 SNPs were extracted as signature makers for this outbreak. Twenty primer pairs were designed to amplify in a multiplex PCR the regions including 22 of these SNPs. Amplicon pools were sequenced in a MinION device, and SNPs were called in real time by an in-house bioinformatic pipeline. A total of 120 specimens (95 MPXV-PCR positive, Ct values from 14 to 39) were selected. In 67.37% of the positive subset, all 22 SNPs were called. After excluding low viral load specimens, in 92% of samples ≥11 outbreak SNPs were called. No false positives were observed in any of the 25 negative specimens. The total turnaround time required for this strategy was 5 hours, and the cost per sample was 14 euros. Nanopore sequencing of multiple amplicons harboring signature SNPs escapes the targeting limitations of strain-specific PCRs and offers a powerful alternative to systematic WGS, paving the way to real-time genomic epidemiology and making immediate intervention possible to finally optimize transmission control. IMPORTANCE Nanopore sequencing of multiple amplicons harboring signature single nucleotide polymorphisms (SNPs) escapes the targeting limitations of strain-specific PCRs and offers a powerful alternative to systematic whole-genome analysis, paving the way to real-time genomic epidemiology and making immediate intervention possible to finally optimize transmission control.
Collapse
Affiliation(s)
- Sergio Buenestado-Serrano
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Escuela de Doctorado, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marta Herranz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rosalía Palomino-Cabrera
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Cristina Rodríguez-Grande
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Daniel Peñas-Utrilla
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Andrea Molero-Salinas
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Cristina Veintimilla
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pilar Catalán
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Roberto Alonso
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III (CIBERES), Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Gregorio Marañón General University Hospital, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III (CIBERES), Madrid, Spain
| |
Collapse
|
7
|
Distribution of Mycobacterium tuberculosis Lineages and Drug Resistance in Upper Myanmar. Trop Med Infect Dis 2022; 7:tropicalmed7120448. [PMID: 36548703 PMCID: PMC9781755 DOI: 10.3390/tropicalmed7120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis complex (MTBC) is divided into 9 whole genome sequencing (WGS) lineages. Among them, lineages 1−4 are widely distributed. Multi-drug resistant tuberculosis (MDR-TB) is a major public health threat. For effective TB control, there is a need to obtain genetic information on lineages of Mycobacterium tuberculosis (Mtb) and to understand distribution of lineages and drug resistance. This study aimed to describe the distribution of major lineages and drug resistance patterns of Mtb in Upper Myanmar. This was a cross-sectional study conducted with 506 sequenced isolates. We found that the most common lineage was lineage 2 (n = 223, 44.1%). The most common drug resistance mutation found was streptomycin (n = 44, 8.7%). Lineage 2 showed a higher number of MDR-TB compared to other lineages. There were significant associations between lineages of Mtb and drug resistance patterns, and between lineages and geographical locations of Upper Myanmar (p value < 0.001). This information on the distribution of Mtb lineages across the geographical areas will support a lot for the better understanding of TB transmission and control in Myanmar and other neighboring countries. Therefore, closer collaboration in cross border tuberculosis control is recommended.
Collapse
|
8
|
Whole-genome sequencing of presumptive MDR-TB isolates from a tertiary healthcare setting in Mumbai. J Glob Antimicrob Resist 2022; 31:256-262. [PMID: 36272707 DOI: 10.1016/j.jgar.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/27/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Whole-genome sequencing (WGS) of Mycobacterium tuberculosis (MTB), proven to be a better alternative when compared with the combined sensitivity and specificity of all other modalities for diagnosis of tuberculosis (TB), aids epidemiological surveillance investigations by combining the current research with diagnostics. This study was conducted to identify and resolve operational challenges in performing WGS-based drug resistance testing (DRT) for MTB in a TB culture and drug susceptibility testing (DST) laboratory. Three critical, non-redundant steps for WGS-based DRT were tested: viz. DNA extraction, high-throughput paired-end next-generation sequencing (NGS), and genomic analysis pipeline for automated reporting of WGS-based DRT. METHODS DNA was extracted from 100 liquid culture isolates on a mycobacterial growth indicator tube (MGIT) using DNEASY Ultraclean Microbial Kit (Qiagen, USA) as per the manufacturer's instructions. Illumina paired-end sequencing was performed. All analysis steps were automated using custom python scripts, requiring no intervention. Variant calling was performed as per the World Health Organization (WHO) technical guide. RESULTS The number of cultures resistant to rifampicin, isoniazid, pyrazinamide, ethambutol, and streptomycin was 89, 88, 35, 67, and 73, respectively. Resistance to amikacin, kanamycin, and capreomycin was found in 15, 17, and 15 cultures, respectively. Seventy cultures were resistant to fluoroquinolones, four were resistant to ethionamide, and 12 were resistant to linezolid. Six cultures were resistant to only one of the 18 drugs tested. Seventy-five cultures were resistant to more than three anti-TB drugs. One culture was resistant to 13 of the 18 anti-TB drugs tested for this study. The maximum number of variants were observed in the rpoB gene (n = 93, 93%), wherein the Ser450Leu was the predominant mutation (n = 68, 73%). Ser315Thr was the most common variant (n = 86, 97%) that encoded resistance to isoniazid. The Lys43Arg variant encodes resistance to streptomycin and was the third most predominant variant (n = 65, 89%). In addition to the high levels of resistance observed in the dataset, we also observed a high proportion of Beijing strains (n = 63, 63%). CONCLUSION Compared with results from routine diagnostics based on the 'Guidelines on Programmatic Management of Drug-Resistant TB (PMDT) in India', none of the samples had DST available for all 18 drugs. This represents a gap in PMDT guidelines. The WGS-DRT must be considered as the primary DST method after a sample is flagged rifampicin-resistant by cartridge-based nucleic acid amplification testing (CBNAAT). With several research studies currently underway globally to identify novel variants associated with drug resistance and classifiy their minimum inhibitory coefficients, WGS-DRT presents a scalable technology that updates analytical pipelines, relegating the need for changing microbiological protocols.
Collapse
|
9
|
Wang M, Zhang Y, Huang C, Li J, Shen X, Zhao G, Jiang Y, Pan Q. A Whole-Genome Sequencing-Based Study to Delineate the Risk and Characteristics of Tuberculosis Transmission in an Insular Population Over 10 Years in Shanghai. Front Microbiol 2022; 12:768659. [PMID: 35250898 PMCID: PMC8888905 DOI: 10.3389/fmicb.2021.768659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Tuberculosis (TB) has remained a tough problem in China. This study aims to identify the risk of tuberculosis transmission and to assess its characteristics. Methods We performed a molecular epidemiological study for patients with culture-positive Mycobacterium tuberculosis (M. tuberculosis) in Shanghai, from 2009 to 2018. Demographic information was obtained from the Tuberculosis Information Management System. Whole-genome sequencing (WGS) was conducted with a threshold of 12 single-nucleotide polymorphisms (SNPs) to distinguish the genomic cluster. To analyze the characteristics of TB transmission, the contact investigation for clustered cases was performed. Results In total, 94 (27.25%) of the 345 enrolled patients were grouped into 42 genomic clusters, indicating local transmission of M. tuberculosis strains. Compared to a health system delay <14 days, patients with a health system delay ≥14 days [adjusted odds ratios (AOR) = 2.57, 95% confidence interval (CI): 1.34–4.95] were more likely to be clustered. Patients under 65 years old (AOR = 3.11, 95% CI: 1.76–5.49), residents (AOR = 2.43, 95% CI: 1.18–4.99), and Beijing genotype strains (AOR = 3.35, 95% CI: 1.32–8.53) were associated with increased risk of clustering. Interestingly, patients with resistance to isoniazid (AOR = 2.36, 95% CI: 1.15–4.88) had a higher risk of transmission. Sixteen confirmed/probable epidemiological links were identified. Local transmission of imported cases and household transmission were prominent. Conclusion Health system delay is a crucial factor for TB transmission. Patients with resistance to isoniazid should be priority targets for contact investigation to reduce transmission.
Collapse
Affiliation(s)
- Min Wang
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.,Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Yangyi Zhang
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.,Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Cheng Huang
- Department of Tuberculosis Control, Chongming District Center for Disease Control and Prevention, Shanghai, China
| | - Jing Li
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Shen
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Genming Zhao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Yuan Jiang
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Qichao Pan
- Division of TB and HIV/AIDS Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
10
|
Acosta F, Martínez-Lirola M, Sola-Campoy PJ, Sicilia J, Guerra-Galán T, Maus SR, Muñoz P, Pérez-Lago L, García de Viedma D. Insights into the Complexity of a Dormant Mycobacterium tuberculosis Cluster Once Transmission Is Resumed. Microbiol Spectr 2022; 10:e0138121. [PMID: 35044196 PMCID: PMC8768656 DOI: 10.1128/spectrum.01381-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
Genotyping tools help identify the complexity in Mycobacterium tuberculosis transmission clusters. We carried out a thorough analysis of the epidemiological and bacteriological complexity of a cluster in Almería, Spain. The cluster, initially associated with Moroccan migrants and with no secondary cases identified in 4 years, then reappeared in Spanish-born individuals. In one case, two Mycobacterium tuberculosis clonal variants were identified. We reanalyzed the cluster, supported by the characterization of multiple cultured isolates and respiratory specimens, whole-genome sequencing, and epidemiological case interviews. Our findings showed that the cluster, which was initially thought to have restarted activity with just a single case harboring a small degree of within-host diversity, was in fact currently growing due to coincidental reactivation of past exposures, with clonal diversity transmitted throughout the cluster. In one case, within-host diversity was amplified, probably due to prolonged diagnostic delay. IMPORTANCE The precise study of the dynamics of tuberculosis transmission in socio-epidemiologically complex scenarios may require more thorough analysis than the standard molecular epidemiology strategies. Our study illustrates the epidemiological and bacteriological complexity present in a transmission cluster in a challenging epidemiological setting with a high proportion of migrant cases. The combination of whole-genome sequencing, refined and refocused epidemiological interviews, and in-depth analysis of the bacterial composition of sputa and cultured isolates was crucial in order to correctly reinterpret the true nature of this cluster. Our global approach allowed us to reinterpret correctly the unnoticed epidemiological and bacteriological complexity involved in the Mycobacterium tuberculosis transmission event under study, which had been overlooked by the usual molecular epidemiology approaches.
Collapse
Affiliation(s)
- Fermin Acosta
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Pedro J. Sola-Campoy
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jon Sicilia
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Teresa Guerra-Galán
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Sandra R. Maus
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
11
|
Shafipour M, Shirzad-Aski H, Ghaemi EA, Sohrabi A, Babaii Kochaksaraei M, Taziki M, Rahimi S, Ghazvini K, Baei B. Mycobacterium tuberculosis typing using Allele-specific oligonucleotide multiplex PCR (ASO-PCR) method. Curr Microbiol 2021; 78:4009-4013. [PMID: 34570276 DOI: 10.1007/s00284-021-02659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) genotyping provides valuable information related to the origin and the evolution of the isolates. This study aimed to evaluate the applicability of single-nucleotide polymorphisms (SNPs) technique for lineages identification of M. tuberculosis and compare it with mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) method. The lineages of 162 clinically isolates were evaluated using six pair primers by Multiplex-PCR based on SNPs. Among 162 isolates, 70 (43.2%) isolates were lineage 4, following that 62 (38.3%) and 22 (13.6%) isolates were lineage 3 and 2, respectively. The method could not type 8 (4.9%) isolates. Moreover, we could identify 71 out of 79 unknown isolates resulted from the MIRU-VNTR method. The results showed that the SNP typing method has the potential to determine the lineages of M. tuberculosis as a rapid laboratory screening test.
Collapse
Affiliation(s)
- Maryam Shafipour
- Infectious Diseases Research Center, Golestan University of Medical Sciences, 49178-67439, Gorgan, Iran.,Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Hesamaddin Shirzad-Aski
- Infectious Diseases Research Center, Golestan University of Medical Sciences, 49178-67439, Gorgan, Iran.
| | - Ezzat Allah Ghaemi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, 49178-67439, Gorgan, Iran
| | - Ahmad Sohrabi
- Infectious Diseases Research Center, Golestan University of Medical Sciences, 49178-67439, Gorgan, Iran.,Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Maya Babaii Kochaksaraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, 49178-67439, Gorgan, Iran
| | - Masoume Taziki
- Tuberculosis Laboratory of Health Care Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Rahimi
- Tuberculosis Laboratory of Health Care Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Basireh Baei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, 49178-67439, Gorgan, Iran
| |
Collapse
|
12
|
Genestet C, Perdigão J, Herranz M, Maus SR, Berland JL, Chiner-Oms Á, Comas I, Muñoz P, Portugal I, Dumitrescu O, Pérez-Lago L, García de Viedma D. Expanded tracking of a Beijing Mycobacterium tuberculosis strain involved in an outbreak in France. Travel Med Infect Dis 2021; 44:102167. [PMID: 34543757 DOI: 10.1016/j.tmaid.2021.102167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Charlotte Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | - João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Herranz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Sandra R Maus
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jean-Luc Berland
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France
| | | | - Iñaki Comas
- Instituto de Biomedicina de Valencia-CSIC, Valencia, Spain; CIBER Salud Pública (CIBERESP), Spain
| | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain; Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Isabel Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Oana Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Lyon, France.
| | - Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
13
|
Asare P, Asante-Poku A, Osei-Wusu S, Otchere ID, Yeboah-Manu D. The Relevance of Genomic Epidemiology for Control of Tuberculosis in West Africa. Front Public Health 2021; 9:706651. [PMID: 34368069 PMCID: PMC8342769 DOI: 10.3389/fpubh.2021.706651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis complex (MTBC), remains a global health problem. West Africa has a unique epidemiology of TB that is characterized by medium- to high-prevalence. Moreover, the geographical restriction of M. africanum to the sub-region makes West Africa have an extra burden to deal with a two-in-one pathogen. The region is also burdened with low case detection, late reporting, poor treatment adherence leading to development of drug resistance and relapse. Sporadic studies conducted within the subregion report higher burden of drug resistant TB (DRTB) than previously thought. The need for more sensitive and robust tools for routine surveillance as well as to understand the mechanisms of DRTB and transmission dynamics for the design of effective control tools, cannot be overemphasized. The advancement in molecular biology tools including traditional fingerprinting and next generation sequencing (NGS) technologies offer reliable tools for genomic epidemiology. Genomic epidemiology provides in-depth insight of the nature of pathogens, circulating strains and their spread as well as prompt detection of the emergence of new strains. It also offers the opportunity to monitor treatment and evaluate interventions. Furthermore, genomic epidemiology can be used to understand potential emergence and spread of drug resistant strains and resistance mechanisms allowing the design of simple but rapid tools. In this review, we will describe the local epidemiology of MTBC, highlight past and current investigations toward understanding their biology and spread as well as discuss the relevance of genomic epidemiology studies to TB control in West Africa.
Collapse
Affiliation(s)
- Prince Asare
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
14
|
Oudghiri A, Momen G, Aainouss A, Laglaoui A, El Messaoudi MD, El Mzibri M, Chaoui I. Genotypic diversity of multi- and pre-extremely drug-resistant Mycobacterium tuberculosis isolates from Morocco. PLoS One 2021; 16:e0253826. [PMID: 34214120 PMCID: PMC8253442 DOI: 10.1371/journal.pone.0253826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/13/2021] [Indexed: 12/02/2022] Open
Abstract
In Morocco, the prevalence of multidrug resistant tuberculosis (MDR-TB) continues to increase especially within previously treated cases; these MDR cases may evolve to extensively drug resistant tuberculosis (XDR-TB) raising major concern to TB control programs. From an epidemiological window, scarce informations are available about the genetic diversity of Mycobacterium tuberculosis (MTB) strains fueling these forms of resistance. The aim of this study was to assess to genetic diversity of MDR-MTB strains. Hence, this prospective study was conducted on patients diagnosed with MDR-TB at Pasteur Institute of Casablanca from 2010 to 2013. A total of 70 MDR-MTB isolates were genotyped by spoligotyping and 15-loci MIRU-VNTR methods. Spoligotyping generated four orphan patterns, five unique profiles whereas 61 strains were grouped in nine clusters (2 to 25 strains per cluster), the clustering rates being 87.1%. Subtyping by 15 loci MIRU-VNTR splitted all clusters already established by spoligotyping and generated 70 unique profiles not recognized in SITVIT2 database; clustering rate was equal to zero. HGDI analysis of 15 loci MIRU demonstrated that eight out of 15 loci were highly discriminant. Of note, all pre-XDR strains belongs to many clades, meaning that there no association between gyrA mutants and particular clade. Overall, the data generated by this study (i) describe the population structure of MDR MTBC in Morocco which is highly homogenous, (ii) confirm that TB in Morocco is almost exclusively transmitted by modern and evolutionary lineages with high level of biodiversity seen by MIRU, and (iii) validate the use of optimized 15-loci MIRU-VNTR format for future investigations in Morocco.
Collapse
Affiliation(s)
- Amal Oudghiri
- Department of Life Sciences, Medical and Biological Research Unit, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
- Faculty of Sciences and Techniques, Biotechnology and Bimolecular Engineering Research Laboratory, Tangier, Morocco
| | - Ghizlane Momen
- Laboratory of Mycabacteria, Pasteur Institute of Morocco, Casablanca, Morocco
- Faculty of Sciences, Laboratory of Microbiology Pharmacology, Biotechnology and Environment, Casablanca, Morocco
| | - Achraf Aainouss
- Laboratory of Mycabacteria, Pasteur Institute of Morocco, Casablanca, Morocco
- Faculty of Sciences Ben M’Sik, Laboratory of Ecology and Environment, Casablanca, Morocco
| | - Amin Laglaoui
- Faculty of Sciences and Techniques, Biotechnology and Bimolecular Engineering Research Laboratory, Tangier, Morocco
| | | | - Mohammed El Mzibri
- Department of Life Sciences, Medical and Biological Research Unit, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Imane Chaoui
- Department of Life Sciences, Medical and Biological Research Unit, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
- * E-mail: ,
| |
Collapse
|
15
|
Martínez-Lirola M, Jajou R, Mathys V, Martin A, Cabibbe AM, Valera A, Sola-Campoy PJ, Abascal E, Rodríguez-Maus S, Garrido-Cárdenas JA, Bonillo M, Chiner-Oms Á, López B, Vallejo-Godoy S, Comas I, Muñoz P, Cirillo DM, van Soolingen D, Pérez-Lago L, García de Viedma D. Integrative transnational analysis to dissect tuberculosis transmission events along the migratory route from Africa to Europe. J Travel Med 2021; 28:6211020. [PMID: 33822988 DOI: 10.1093/jtm/taab054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Growing international migration has increased the complexity of tuberculosis transmission patterns. Italy's decision to close its borders in 2018 made of Spain the new European porte entrée for migration from the Horn of Africa (HA). In one of the first rescues of migrants from this region at the end of 2018, tuberculosis was diagnosed in eight subjects, mainly unaccompanied minors. METHODS Mycobacterium tuberculosis isolates from these recently arrived migrants were analysed by Mycobacterial Interspersed Repetitive-Unit/Variable-Number of Tandem Repeat (MIRU-VNTR) and subsequent whole genome sequencing (WGS) analysis. Data were compared with those from collections from other European countries receiving migrants from the HA and a strain-specific PCR was applied for a fast searching of common strains. Infections in a cellular model were performed to assess strain virulence. RESULTS MIRU-VNTR analysis allowed identifying an epidemiological cluster involving three of the eight cases from Somalia (0 single-nucleotide polymorphisms between isolates, HA cluster). Following detailed interviews revealed that two of these cases had shared the same migratory route in most of the trip and had spent a long time at a detention camp in Libya. To confirm potential en route transmission for the three cases, we searched the same strain in collections from other European countries receiving migrants from the HA. MIRU-VNTR, WGS and a strain-specific PCR for the HA strain were applied. The same strain was identified in 12 cases from Eritrea diagnosed soon after their arrival in 2018 to the Netherlands, Belgium and Italy. Intracellular replication rate of the strain did not reveal abnormal virulence. CONCLUSIONS Our study suggests a potential en route transmission of a pan-susceptible strain, which caused at least 15 tuberculosis cases in Somalian and Eritrean migrants diagnosed in four different European countries.
Collapse
Affiliation(s)
| | - Rana Jajou
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Vanessa Mathys
- Unit Bacterial Diseases Service, Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Anandi Martin
- Université catholique de Louvain (UCLouvain) & Syngulon, 4102, Seraing, Belgium
| | - Andrea Maurizio Cabibbe
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ana Valera
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pedro J Sola-Campoy
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Estefanía Abascal
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Sandra Rodríguez-Maus
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Magdalena Bonillo
- Unidad de Prevención, Promoción y Vigilancia de la Salud del Área Sanitaria Norte de Almería. Consejería de Salud. Junta de Andalucia, Almería, Spain
| | - Álvaro Chiner-Oms
- Centro Superior de Investigación en Salud Pública (FISABIO)-Universitat de València, Valencia, Spain
| | - Begoña López
- UPPV Distrito Sanitario Granada metropolitano, Granada, Spain
| | | | - Iñaki Comas
- Instituto de Biomedicina de Valencia-CSIC, Valencia, Spain.,CIBER Salud Pública (CIBERESP), Madrid, Spain
| | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dick van Soolingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Laura Pérez-Lago
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
16
|
Abascal E, Genestet C, Valera A, Herranz M, Martinez-Lirola M, Muñoz P, Dumitrescu O, García de Viedma D. Assessment of closely related Mycobacterium tuberculosis variants with different transmission success and in vitro infection dynamics. Sci Rep 2021; 11:11041. [PMID: 34040136 PMCID: PMC8155013 DOI: 10.1038/s41598-021-90568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
Whole genome sequencing (WGS) is able to differentiate closely related Mycobacterium tuberculosis variants within the same transmission cluster. Our aim was to evaluate if this higher discriminatory power may help identify and characterize more actively transmitted variants and understand the factors behind their success. We selected a robust MIRU-VNTR-defined cluster from Almería, Spain (22 cases throughout 2003–2019). WGS allowed discriminating, within the same epidemiological setting, between a successfully transmitted variant and seven closely related variants that did not lead to secondary cases, or were involved in self-limiting transmission (one single secondary case). Intramacrophagic growth of representative variants was evaluated in an in vitro infection model using U937 cells. Intramacrophage multiplication ratios (CFUs at Day 4/CFUs at Day 0) were higher for the actively transmitted variant (range 5.3–10.7) than for the unsuccessfully transmitted closely related variants (1.5–3.95). Two SNPs, mapping at the DNA binding domain of DnaA and at kdpD, were found to be specific of the successful variant.
Collapse
Affiliation(s)
- Estefanía Abascal
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Charlotte Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Inserm U1111, CNRS UMR5308, Université Claude Bernard Lyon-1, 69007, Lyon, France.,Laboratoire de bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, 69317, Lyon Cedex 04, France
| | - Ana Valera
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Marta Herranz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Patricia Muñoz
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Oana Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Inserm U1111, CNRS UMR5308, Université Claude Bernard Lyon-1, 69007, Lyon, France.,Laboratoire de bactériologie, Institut des Agents Infectieux, Hospices Civils de Lyon, 69317, Lyon Cedex 04, France
| | - Darío García de Viedma
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain. .,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
17
|
Scandurra G, Degeling C, Douglas P, Dobler CC, Marais B. Tuberculosis in migrants - screening, surveillance and ethics. Pneumonia (Nathan) 2020; 12:9. [PMID: 32923311 PMCID: PMC7473829 DOI: 10.1186/s41479-020-00072-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is the leading infectious cause of human mortality and is responsible for nearly 2 million deaths every year. It is often regarded as a 'silent killer' because it predominantly affects the poor and marginalized, and disease outbreaks occur in 'slow motion' compared to Ebola or coronavirus 2 (COVID-19). In low incidence countries, TB is predominantly an imported disease and TB control in migrants is pivotal for countries to progress towards TB elimination in accordance with the World Health Organisations (WHO's) End TB strategy. This review provides a brief overview of the different screening approaches and surveillance processes that are in place in low TB incidence countries. It also includes a detailed discussion of the ethical issues related to TB screening of migrants in these settings and the different interests that need to be balanced. Given recognition that a holistic approach that recognizes and respects basic human rights is required to end TB, the review considers the complexities that require consideration in low-incidence countries that are aiming for TB elimination.
Collapse
Affiliation(s)
- Gabriella Scandurra
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Chris Degeling
- Australian Centre for Health Engagement Evidence and Values, University of Wollongong, Wollongong, Australia
| | - Paul Douglas
- International Organization for Migration (IOM), Geneva, Switzerland
| | - Claudia C. Dobler
- Institute for Evidenced-Based Healthcare, Bond University, Gold Coast, Australia
| | - Ben Marais
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| |
Collapse
|
18
|
Asgharzadeh M, Ozma MA, Rashedi J, Poor BM, Agharzadeh V, Vegari A, Shokouhi B, Ganbarov K, Ghalehlou NN, Leylabadlo HE, Kafil HS. False-Positive Mycobacterium tuberculosis Detection: Ways to Prevent Cross-Contamination. Tuberc Respir Dis (Seoul) 2020; 83:211-217. [PMID: 32578410 PMCID: PMC7362751 DOI: 10.4046/trd.2019.0087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/30/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023] Open
Abstract
The gold standard method for diagnosis of tuberculosis is the isolation of Mycobacterium tuberculosis through culture, but there is a probability of cross-contamination in simultaneous cultures of samples causing false-positives. This can result in delayed treatment of the underlying disease and drug side effects. In this paper, we reviewed studies on falsepositive cultures of M. tuberculosis. Rate of occurrence, effective factors, and extent of false-positives were analyzed. Ways to identify and reduce the false-positives and management of them are critical for all laboratories. In most cases, falsepositive is occurring in cases with only one positive culture but negative direct smear. The three most crucial factors in this regard are inappropriate technician function, contamination of reagents, and aerosol production. Thus, to reduce false-positives, good laboratory practice, as well as use of whole-genome sequencing or genotyping of all positive culture samples with a robust, extra pure method and rapid response, are essential for minimizing the rate of false-positives. Indeed, molecular approaches and epidemiological surveillance can provide a valuable tool besides culture to identify possible false positives.
Collapse
Affiliation(s)
- Mohammad Asgharzadeh
- Biotechnology Research Center, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Rashedi
- Tuberculosis and Lung Diseases Research Center, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behroz Mahdavi Poor
- Tuberculosis and Lung Diseases Research Center, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Agharzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Vegari
- Department of Medical Physics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behrooz Shokouhi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Garrido-Cardenas JA, de Lamo-Sevilla C, Cabezas-Fernández MT, Manzano-Agugliaro F, Martínez-Lirola M. Global tuberculosis research and its future prospects. Tuberculosis (Edinb) 2020; 121:101917. [PMID: 32279873 DOI: 10.1016/j.tube.2020.101917] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/02/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
Tuberculosis is the infectious disease that causes the most deaths each year in the world. Around 25% of the population is estimated to be infected with, Mycobacterium tuberculosis, the bacteria that gives rise to the disease, and more than one and a half million people die each year from this cause. A rigorous bibliometric analysis has been developed around tuberculosis disease, and the most remarkable results are presented in this paper. It is observed that interest in tuberculosis is growing, and the control of its spread has become one of the main health priorities in the world, with the United States, the United Kingdom, and India, leading the research in this area. On the other hand, it has been observed that there are two main health concerns around the tuberculosis: drug-resistant tuberculosis and co-infection with HIV. Finally, conclusions are offered, playing a frontline role in science policy decisions and research performance evaluations.
Collapse
Affiliation(s)
- J A Garrido-Cardenas
- Department of Biology and Geology, University of Almeria, 04120, Almeria, Spain.
| | - C de Lamo-Sevilla
- Complejo Hospitalario Torrecardenas de Almeria, Almeria, UGC, Spain.
| | - M T Cabezas-Fernández
- UGC Biotecnología, Complejo Hospitalario Torrecárdenas, Servicio Andaluz de Salud, Almería, Spain.
| | | | | |
Collapse
|
20
|
Abascal E, Herranz M, Acosta F, Agapito J, Cabibbe AM, Monteserin J, Ruiz Serrano MJ, Gijón P, Fernández-González F, Lozano N, Chiner-Oms Á, Cáceres T, Pintado PG, Acín E, Valencia E, Muñoz P, Comas I, Cirillo DM, Ritacco V, Gotuzzo E, García de Viedma D. Screening of inmates transferred to Spain reveals a Peruvian prison as a reservoir of persistent Mycobacterium tuberculosis MDR strains and mixed infections. Sci Rep 2020; 10:2704. [PMID: 32066749 PMCID: PMC7026066 DOI: 10.1038/s41598-020-59373-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/22/2020] [Indexed: 11/09/2022] Open
Abstract
It is relevant to evaluate MDR-tuberculosis in prisons and its impact on the global epidemiology of this disease. However, systematic molecular epidemiology programs in prisons are lacking. A health-screening program performed on arrival for inmates transferred from Peruvian prisons to Spain led to the diagnosis of five MDR-TB cases from one of the biggest prisons in Latin America. They grouped into two MIRU-VNTR-clusters (Callao-1 and Callao-2), suggesting a reservoir of two prevalent MDR strains. A high-rate of overexposure was deduced because one of the five cases was coinfected by a pansusceptible strain. Callao-1 strain was also identified in 2018 in a community case in Spain who had been in the same Peruvian prison in 2002-5. A strain-specific-PCR tailored from WGS data was implemented in Peru, allowing the confirmation that these strains were currently responsible for the majority of the MDR cases in that prison, including a new mixed infection.
Collapse
Affiliation(s)
- Estefanía Abascal
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Marta Herranz
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias, (CIBERES), Spain
| | - Fermín Acosta
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Juan Agapito
- TB Research Unit, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea M Cabibbe
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Johana Monteserin
- Instituto Nacional de Enfermedades Infecciosas INEI-ANLIS, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - María Jesús Ruiz Serrano
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias, (CIBERES), Spain
| | - Paloma Gijón
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Francisco Fernández-González
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Nuria Lozano
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Álvaro Chiner-Oms
- Unidad Mixta Genómica y Salud, Centro Superior de Investigación en Salud Pública (FISABIO)-Universitat de València, Valencia, Spain
| | - Tatiana Cáceres
- TB Research Unit, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pilar Gómez Pintado
- General Subdirection of Penitentiary Health - Penitentiary Institutions - Ministry of Interior of Spain, Madrid, Spain
| | - Enrique Acín
- General Subdirection of Penitentiary Health - Penitentiary Institutions - Ministry of Interior of Spain, Madrid, Spain
| | | | - Patricia Muñoz
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER Enfermedades Respiratorias, (CIBERES), Spain
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia (IBV) Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.,CIBER en Epidemiología y Salud, Pública, Spain
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Viviana Ritacco
- Instituto Nacional de Enfermedades Infecciosas INEI-ANLIS, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Gotuzzo
- TB Research Unit, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Darío García de Viedma
- Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,CIBER Enfermedades Respiratorias, (CIBERES), Spain.
| |
Collapse
|
21
|
García de Viedma D. Pathways and strategies followed in the genomic epidemiology of Mycobacterium tuberculosis. INFECTION GENETICS AND EVOLUTION 2019; 72:4-9. [DOI: 10.1016/j.meegid.2019.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
|
22
|
A Mycobacterium tuberculosis Beijing strain persists at high rates and extends its geographic boundaries 20 years after importation. Sci Rep 2019; 9:4687. [PMID: 30886337 PMCID: PMC6423232 DOI: 10.1038/s41598-019-40525-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 02/04/2019] [Indexed: 11/15/2022] Open
Abstract
Transmission of Beijing Mycobacterium tuberculosis can be investigated based on genotypic analysis of clinical isolates. A Beijing strain began to spread on Gran Canaria Island, Spain, at the end of the last century. In 1996, only 3 years after its importation to the island, its frequency had increased to 27.1% of all the isolates. The strain was tracked during the following years, and the most recent data obtained corresponded to 2007-8, when its presence continued to be alarming (21%). In the current study, we updated data on the distribution of this strain 20 years (2013–2014) after it was first detected on the island and extended the analysis for the first time to all the mycobacteriology laboratories covering the population of the Canary Island archipelago. Rapid updating was enabled by means of 2 different strain-specific PCRs: one targeting a peculiar feature of the strain, which was identified based on an IS6110 copy mapping in the Rv2180c gene, and a newly defined strain-specific single nucleotide polymorphism, which was identified by whole-genome sequencing. The results showed that the strain has remained highly prevalent (20.90% of all isolates), has spread throughout the neighbouring islands, and has also reached high representativeness in them (11–32%).
Collapse
|
23
|
Domínguez J, Acosta F, Pérez-Lago L, Sambrano D, Batista V, De La Guardia C, Abascal E, Chiner-Oms Á, Comas I, González P, Bravo J, Del Cid P, Rosas S, Muñoz P, Goodridge A, García de Viedma D. Simplified Model to Survey Tuberculosis Transmission in Countries Without Systematic Molecular Epidemiology Programs. Emerg Infect Dis 2019; 25:507-514. [PMID: 30789134 PMCID: PMC6390753 DOI: 10.3201/eid2503.181593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Systematic molecular/genomic epidemiology studies for tuberculosis surveillance cannot be implemented in many countries. We selected Panama as a model for an alternative strategy. Mycobacterial interspersed repetitive unit-variable-number tandem-repeat (MIRU-VNTR) analysis revealed a high proportion (50%) of Mycobacterium tuberculosis isolates included in 6 clusters (A-F) in 2 provinces (Panama and Colon). Cluster A corresponded to the Beijing sublineage. Whole-genome sequencing (WGS) differentiated clusters due to active recent transmission, with low single-nucleotide polymorphism-based diversity (cluster C), from clusters involving long-term prevalent strains with higher diversity (clusters A, B). Prospective application in Panama of 3 tailored strain-specific PCRs targeting marker single-nucleotide polymorphisms identified from WGS data revealed that 31.4% of incident cases involved strains A-C and that the Beijing strain was highly represented and restricted mainly to Colon. Rational integration of MIRU-VNTR, WGS, and tailored strain-specific PCRs could be a new model for tuberculosis surveillance in countries without molecular/genomic epidemiology programs.
Collapse
Affiliation(s)
| | | | - Laura Pérez-Lago
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Dilcia Sambrano
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Victoria Batista
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Carolina De La Guardia
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Estefanía Abascal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Álvaro Chiner-Oms
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Iñaki Comas
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Prudencio González
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Jaime Bravo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Pedro Del Cid
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Samantha Rosas
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | - Patricia Muñoz
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama (J. Domínguez, F. Acosta, D. Sambrano, V. Batista, C. De La Guardia, A. Goodridge)
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama (J. Domínguez, P. González, J. Bravo, P. Del Cid, S. Rosas)
- Hospital General Universitario Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (F. Acosta, L. Pérez-Lago, E. Abascal, P. Muñoz, D. García de Viedma)
- Centro Superior de investigación en Salud Pública (FISABIO)–Universitat de València, Valencia, Spain (Á. Chiner-Oms)
- Instituto de Biomedicina de Valencia Consejo Superior de Investigaciones Científicas, Valencia (I. Comas)
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Madrid (I. Comas)
- Universidad Complutense de Madrid, Madrid (P. Muñoz)
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Madrid (P. Muñoz, D. García de Viedma)
| | | | | |
Collapse
|
24
|
Moran-Gilad J. How do advanced diagnostics support public health policy development? Euro Surveill 2019; 24:1900068. [PMID: 30696524 PMCID: PMC6351996 DOI: 10.2807/1560-7917.es.2019.24.4.1900068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- Jacob Moran-Gilad
- Dept. of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- ESCMID Study Group for Genomic and Molecular Diagnostics, Basel, Switzerland
| |
Collapse
|