1
|
El-Halwagy MO, Hegazy EM, Shalaby HK, Mahmoud EF. Impact of short and long-term application of low-level laser therapy on mandibular alveolar process of osteoporotic rats - a Histological and Molecular Study. Lasers Med Sci 2025; 40:5. [PMID: 39751945 PMCID: PMC11698838 DOI: 10.1007/s10103-024-04246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
This study aims to investigate and compare the effects of short and long-term application of low-level laser therapy on the mandibular alveolar process of osteoporotic rats. Forty adult male albino rats were included in this study. After animal grouping, the experimental group received dexamethasone (0.1 mg/kg b.wt./day for 60 days) for the induction of osteoporosis, then the rats were treated using LLLT (830 nm, 100 mW, at 60 J/cm2). The lower jaw specimens were collected and processed for histological, molecular, and histomorphometric assessments. The osteoporotic group exhibited alveolar bone resorption, accompanied by significantly upregulated RANKL and downregulated OPG mRNA expression. The short-term application of laser group showed alveolar bone partial improvement with slightly downregulated RANKL and slightly upregulated OPG levels. The long-term application of laser group showed dramatic positive changes in the alveolar bone, with markedly downregulated RANKL and upregulated OPG levels. LLLT shows potential as a low-risk and impactful local management for osteoporosis, with long-term laser application demonstrably improving bone quality, quantity, and organization compared to short-term application.
Collapse
Affiliation(s)
- Mai O El-Halwagy
- Oral Biology Department, Faculty of Dentistry, Suez University, P.O.Box:43221, Suez, Egypt.
| | - Enas M Hegazy
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, P.O.Box:41523, Ismailia, Egypt
| | - Hany K Shalaby
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Suez University, P.O.Box:43221, Suez, Egypt
| | - Elham F Mahmoud
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, P.O.Box:41523, Ismailia, Egypt
| |
Collapse
|
2
|
Asuka K, Zuiki M, Hasegawa T, Takada R, Konishi M, Yamano A, Ichise E, Hashigushi K, Hasegawa T, Iehara T. Chest Radiography Scores for Predicting the Severity of Respiratory Status in Newborns Weighing More Than 1,500 g. Cureus 2025; 17:e77315. [PMID: 39935933 PMCID: PMC11812488 DOI: 10.7759/cureus.77315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2025] [Indexed: 02/13/2025] Open
Abstract
Background Acute respiratory failure (ARF) may occur in neonates. Chest radiography is commonly used to evaluate the severity of ARF; however, the application of quantitative scales in clinical practice in neonatal intensive care units is uncommon. This study aimed to assess the usefulness of two semi-quantitative radiographical scales, the Brixia and radiographic assessment of lung edema (RALE) scores, in newborns weighing more than 1,500 g. Methods Newborns weighing > 1,500 g who received invasive respiratory support with arterial lines between January 2010 and October 2023 were enrolled in this study (n = 98; gestational age, 35.6 ± 3.1 weeks; birthweight, 2,321 ± 600 g). We investigated the correlation between the Brixia or RALE scores and the oxygen index (OI), alveolar-arterial oxygen gradient (A-aDO2), and ventilation index (VI). Furthermore, the cut-off points of the two radiographic scores for the prediction of these respiratory indices were determined. Results All respiratory indices correlated with the Brixia (OI: r = 0.71, p < 0.001; A-aDO2: r = 0.74, p < 0.001; VI: r = 0.56, p < 0.001) and RALE scores (OI: r = 0.78, p < 0.001; A-aDO2: r = 0.82, p < 0.001; VI: r = 0.60, p < 0.001). Additionally, the receiver operating characteristic curve showed that the radiographical scores had a statistically significant ability to predict respiratory index values. Conclusion Brixia and RALE scores are useful predictive markers of acute respiratory failure in infants weighing >1,500 g. These chest radiography scores may be good predictors of respiratory status and have wider clinical applications in neonatal care.
Collapse
Affiliation(s)
- Kisho Asuka
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Masashi Zuiki
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Tomohiro Hasegawa
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Rei Takada
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Madoka Konishi
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Akio Yamano
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Eisuke Ichise
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Kanae Hashigushi
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Tatsuji Hasegawa
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Tomoko Iehara
- Pediatrics and Neonatology, Kyoto Prefectural University of Medicine, Kyoto, JPN
| |
Collapse
|
3
|
Lim L, Hosseinkhah N, Van Buskirk M, Berk A, Loheswaran G, Abbaspour Z, Karimpoor M, Smith A, Ho KF, Pushparaj A, Zahavi M, White A, Rubine J, Zidel B, Henderson C, Clayton RG, Tingley DR, Miller DJ, Karimpoor M, Hamblin MR. Photobiomodulation Treatment with a Home-Use Device for COVID-19: A Randomized Controlled Trial for Efficacy and Safety. Photobiomodul Photomed Laser Surg 2024; 42:393-403. [PMID: 38940733 DOI: 10.1089/pho.2023.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Background: Photobiomodulation therapy (PBMT) using devices to deliver red and/or near-infrared light to tissues has shown promising effects in clinical settings for respiratory diseases, including potential benefits in managing symptoms associated with COVID-19. Objective: To determine if at-home self-administered PBMT for patients with COVID-19 is safe and effective. Methods: This was a randomized controlled trial (RCT) carried out at home during the COVID-19 pandemic (September 2020 to August 2021). The treatment group self-administered the Vielight RX Plus PBMT device (635 nm intranasal and 810 nm chest LEDs) and were monitored remotely. Eligible patients scored 4-7 (out of 7) for severity on the Wisconsin Upper Respiratory Symptom Survey (WURSS-44). Patients were randomized equally to Control group receiving standard-of-care (SOC) only or Treatment group receiving SOC plus PBMT. The device was used for 20 min 2X/day for 5 days and, subsequently, once daily for 30 days. The primary end-point was time-to-recovery (days) based on WURSS-44 question 1, "How sick do you feel today?". Subgroup analysis was performed, and Kaplan-Meier and Cox Proportional Hazards analysis were employed. Results: One hundred and ninety-nine eligible patients (18-65 years old) were divided into two subgroups as follows: 136 patients with 0-7 days of symptoms at baseline and 63 patients with 8-12 days of symptoms. Those with 0-7 days of symptoms at baseline recovered significantly faster with PBMT. The median for Treatment group was 18 days [95% confidence interval (CI), 13-20] versus the Control group 21 days (95% CI, 15-28), p = 0.050. The treatment:control hazard ratio was 1.495 (95% CI, 0.996-2.243), p = 0.054. Patients with symptom duration ≥7 days did not show any significant improvement. No deaths or severe adverse events (SAEs) occurred in the Treatment group, whereas there was 1 death and 3 SAEs requiring hospitalization in the Control group. Conclusions: Patients with ≤7 days of COVID-19 symptoms recovered significantly faster with PBMT compared to SOC. Beyond 7 days, PBMT showed no superiority over SOC. Trial Registration: ClinicalTrials.gov NCT04418505.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| | | | | | - Andrea Berk
- Impact Clinical Trials Marketing & Management Services, Thornhill, ON, Canada
| | | | | | - Mahta Karimpoor
- Vielight Inc., Toronto, ON, Canada
- Stanford University, Palo Alto, California, USA
| | - Alison Smith
- Vielight Inc., Toronto, ON, Canada
- Roga Life Inc., Toronto, ON, Canada
| | | | - Abhiram Pushparaj
- Ironstone Product Development, Toronto, ON, Canada
- +ROI Regulatory Advisory, Grimsby, ON, Canada
| | | | | | - Jonathan Rubine
- MKR Clinical Research Consultants, Inc., Boynton Beach, Florida, USA
| | - Brian Zidel
- Malton Medical Clinic, Mississauga, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
4
|
Zuiki M, Asuka K, Hasegawa T, Uesugi M, Takada R, Yamano A, Morimoto H, Hashiguchi K, Hasegawa T, Iehara T. Radiographic scores as a predictor of oxygenation index in very low-birthweight infants. Pediatr Int 2024; 66:e15811. [PMID: 39283134 DOI: 10.1111/ped.15811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Very low birthweight infants (VLBWIs) often undergo chest radiographic examinations without standardization or objectivity. This study aimed to assess the association of two radiographic scores, the Brixia and radiographic assessment of lung edema (RALE), with oxygenation index (OI) in ventilated VLBWIs and to determine the optimal cutoff values to predict hypoxic respiratory severity. METHODS VLBWIs who received invasive respiratory support with arterial lines between January 2010 and October 2023 were enrolled in this study (n = 144). The correlation between the Brixia or RALE scores and OI was investigated. Receiver operating characteristic curve analysis was performed to determine the optimal cutoff points of the two radiographic scores for predicting OI values (OI ≥5, ≥10, and ≥15). RESULTS The enrolled infants had a median gestational age of 27 weeks (interquartile range [IQR], 25-28 weeks) and a median birthweight of 855 g (IQR, 684-1003 g). Radiographic scoring methods correlated with the OI (Brixia score: r = 0.79, p < 0.001; RALE score: r = 0.72, p < 0.001). The optimal cutoff points for predicting OI values were as follows: Brixia score: OI ≥5, 10; OI ≥10, 13; OI ≥15, 15; RALE score: OI ≥5, 22; OI ≥10, 31; and OI ≥15, 40. CONCLUSIONS Brixia and RALE scores are useful predictive markers of the oxygenation status in intubated VLBWIs with stable hemodynamics. These scores are easy to use and promising tools for clinicians to identify patients with a higher risk of hypoxic respiratory failure.
Collapse
Affiliation(s)
- Masashi Zuiki
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kisho Asuka
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Hasegawa
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Madoka Uesugi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rei Takada
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akio Yamano
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hidechika Morimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanae Hashiguchi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuji Hasegawa
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Aguida B, Chabi MM, Baouz S, Mould R, Bell JD, Pooam M, André S, Archambault D, Ahmad M, Jourdan N. Near-Infrared Light Exposure Triggers ROS to Downregulate Inflammatory Cytokines Induced by SARS-CoV-2 Spike Protein in Human Cell Culture. Antioxidants (Basel) 2023; 12:1824. [PMID: 37891903 PMCID: PMC10604116 DOI: 10.3390/antiox12101824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The leading cause of mortality from SARS-CoV-2 is an exaggerated host immune response, triggering cytokine storms, multiple organ failure and death. Current drug- and vaccine-based therapies are of limited efficacy against novel viral variants. Infrared therapy is a non-invasive and safe method that has proven effective against inflammatory conditions for over 100 years. However, its mechanism of action is poorly understood and has not received widespread acceptance. We herein investigate whether near-infrared (NIR) light exposure in human primary alveolar and macrophage cells could downregulate inflammatory cytokines triggered by the SARS-CoV-2 spike (S) protein or lipopolysaccharide (LPS), and via what underlying mechanism. Our results showed a dramatic reduction in pro-inflammatory cytokines within days of NIR light treatment, while anti-inflammatory cytokines were upregulated. Mechanistically, NIR light stimulated mitochondrial metabolism, induced transient bursts in reactive oxygen species (ROS) and activated antioxidant gene transcription. These, in turn, downregulated ROS and inflammatory cytokines. A causal relationship was shown between the induction of cellular ROS by NIR light exposure and the downregulation of inflammatory cytokines triggered by SARS-CoV-2 S. If confirmed by clinical trials, this method would provide an immediate defense against novel SARS-CoV-2 variants and other inflammatory infectious diseases.
Collapse
Affiliation(s)
- Blanche Aguida
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| | | | - Soria Baouz
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| | - Rhys Mould
- Research Centre for Optimal Health, University of Westminster, London W1W 6UW, UK (J.D.B.)
| | - Jimmy D. Bell
- Research Centre for Optimal Health, University of Westminster, London W1W 6UW, UK (J.D.B.)
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Sebastien André
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne University, INSERM, 75013 Paris, France
| | - Dominique Archambault
- Laboratoire CHArt, University of Paris 8-Vincennes-Saint-Denis, 93526 Saint-Denis, France
| | - Margaret Ahmad
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
- Department of Biology, Xavier University, 3800 Victory Parkway, Cincinnati, OH 45207, USA
| | - Nathalie Jourdan
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| |
Collapse
|
6
|
Ehsani F, Bagheri R, Darban M, Hemati M, Bahrami M, Sharafieh F. Effects of Photobiomodulation Therapy on Lung Function and Inflammatory Factors in Patients with COVID-19 During Acute Stage. Photobiomodul Photomed Laser Surg 2023; 41:483-489. [PMID: 37738370 DOI: 10.1089/photob.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Objective: We aimed to evaluate the effects of photobiomodulation therapy on the respiratory function and laboratory parameters in COVID-19 participants with respiratory involvement. Methods: A randomized, double-blind controlled design was used. This study was conducted at Koosar Hospital. Thirty participants with COVID-19 who were hospitalized met the inclusion criteria and were randomly assigned to two groups. Patients were treated with a program of five sessions of high-power photobiomodulation (intervention group) and placebo photobiomodulation (control group). Both groups received standard treatment. Outcomes were assessed before and after the intervention (two sessions), according to the immune system function and laboratory tests for the respiratory rate (RR), oxygen saturation, and inflammatory factors, including C-reactive protein (CRP), white blood cells, and interleukin-6 (IL-6), as well as complete blood count (CBC), hematocrit, hemoglobin, and ferritin. Results: Findings indicated that the values of ferritin, erythrocyte sedimentation ratio, CRP, IL-6, O2 saturation, and RR were significantly improved after the intervention in both groups (p < 0.05). Independent T-test analyses also indicated significant differences in the CRP, IL-6, and O2 saturation in the photobiomodulation group compared with the control group after the five-session intervention (p < 0.05). Conclusions: Application of photobiomodulation is recommended for treatment of respiratory problems in patients with COVID-19 to improve clinical signs and control inflammatory factors. Clinical Trial Registration: IRCT2017070934969N1.
Collapse
Affiliation(s)
- Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasool Bagheri
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahbubeh Darban
- Department of Internal Medicine, Kosar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Bahrami
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Sharafieh
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Bowen R, Arany PR. Use of either transcranial or whole-body photobiomodulation treatments improves COVID-19 brain fog. JOURNAL OF BIOPHOTONICS 2023; 16:e202200391. [PMID: 37018063 DOI: 10.1002/jbio.202200391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
There is increasing recognition of post-COVID-19 sequelae involving chronic fatigue and brain fog, for which photobiomodulation (PBM) therapy has been utilized. This open-label, pilot, human clinical study examined the efficacy of two PBM devices, for example, a helmet (1070 nm) for transcranial (tPBM) and a light bed (660 and 850 nm) for whole body (wbPBM), over a 4-week period, with 12 treatments for two separate groups (n = 7 per group). Subjects were evaluated with a neuropsychological test battery, including the Montreal Cognitive Assessment (MoCA), the digit symbol substitution test (DSST), the trail-making tests A and B, the physical reaction time (PRT), and a quantitative electroencephalography system (WAVi), both pre- and post- the treatment series. Each device for PBM delivery was associated with significant improvements in cognitive tests (p < 0.05 and beyond). Changes in WAVi supported the findings. This study outlines the benefits of utilizing PBM therapy (transcranial or whole-body) to help treat long-COVID brain fog.
Collapse
Affiliation(s)
- Robert Bowen
- Shepherd University, Shepherdstown, West Virginia, USA
- West Virginia University, Martinsburg, West Virginia, USA
| | - Praveen R Arany
- Shepherd University, Shepherdstown, West Virginia, USA
- University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
8
|
Kekovic V, Schicho K, Perisanidis C, Mikovic N, Stanimirovic D, Soldatovic I, Sinobad V. Effect of Low-level Light Therapy on Post-operative Healing of Secondary Chronic Osteomyelitis of the Jaws - A Prospective Study. Ann Maxillofac Surg 2023; 13:200-204. [PMID: 38405576 PMCID: PMC10883228 DOI: 10.4103/ams.ams_105_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 02/27/2024] Open
Abstract
Introduction Osteomyelitis of the jaws is a common disease of the maxillofacial region. The goal of treatment is to alleviate pain, reduce infection, inhibit the progression of the disease and induce bone and mucosal healing. In addition to surgical management and antibiotic and oxygen hyperbaric therapy, new therapeutic strategies for the treatment of osteomyelitis are developed. One of the novel approaches is photobiomodulation therapy or low-level light therapy (LLLT). Materials and Methods After surgical treatment, experimental group patients (n = 4) were treated with LLLT for five sessions with an extraoral pulsed 635-nm LED lamp (Repuls7, Repuls Lichtmedizintechnik GmbH, Austria), maximum output power: 140 mW/cm2, frequency: 2.5 Hz, duty cycle: 50%. Clinical achievement and patient pain perception (through Visual Analogue Scale score) were evaluated at 1-, 3- and 6-month follow-up appointments and compared with control group (n = 4) patients, treated with standard therapy. Results At three and six months, clinical achievement was better in patients treated with LLLT. Pain and discomfort resolution was significantly greater in the experimental group. Discussion Taking into consideration the results of this study, it can be concluded that LLLT shows potential for improving clinical outcome of surgical and medical treatment of secondary chronic osteomyelitis of the jaws. Furthermore, pain and discomfort were significantly reduced in patients treated with LLLT. Further research with a larger sample size is needed to obtain a more accurate insight into this promising field.
Collapse
Affiliation(s)
- Vladan Kekovic
- Department of Maxillofacial Surgery, Faculty of Dentistry, University of Belgrade, Belgrade, Serbia
| | - Kurt Schicho
- Department of Cranio-Maxillofacial Surgery, AKH University Hospital, Vienna, Austria
| | - Christos Perisanidis
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Athens, Greece
| | - Nikola Mikovic
- Department of Maxillofacial Surgery, Faculty of Dentistry, University of Belgrade, Belgrade, Serbia
| | - Dragan Stanimirovic
- Department of Periodontics and Oral Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Soldatovic
- Department of Biomedical Statistics, University of Belgrade, Belgrade, Serbia
| | - Vladimir Sinobad
- Department of Maxillofacial Surgery, Faculty of Dentistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Shojaeddin A, Fatemi A, Razzaghi Z, Pishgahi M, Jahani Sherafat S, Razzaghi M, Shahrzad MK, Anaraki N, Salehi C, Amiri A. The Clinical Effects of Laser Acupuncture on Hospitalized Patients With Severe COVID-19: A Randomized Clinical Trial. J Lasers Med Sci 2023; 14:e14. [PMID: 37583492 PMCID: PMC10423955 DOI: 10.34172/jlms.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/08/2023] [Indexed: 08/17/2023]
Abstract
Introduction: The coronavirus disease (COVID-19) was extended to the entire population in China and around the world, and its mortality rate was about 3.4%. The impact of laser therapy on chronic respiratory diseases has been shown in previous studies. This study was aimed at examining the effects of laser acupuncture (LA) on patients with severe COVID-19. Methods: In the present study, 60 patients with a positive reverse transcription-polymerase chain reaction (RT-PCR) test were assigned to the intervention and control groups (30 patients in each group). The intervention group was treated with LA, that is, laser light with low energy on acupuncture points, once a day for five consecutive days. Results: The participants' mean age in the intervention and control groups was 48.96±12.65 and 53.16±12.28 respectively; 70% of the patients were male and 30% of them were female. IL6 had a significant reduction in the intervention group (P value=0.038) in comparison with the control group (P value=0.535). Furthermore, the mean admission time in the control group was significantly higher than that in the intervention group (P value=0.047). However, the mortality rate in the intervention group was zero, but three patients in the control group died. Conclusion: Our study showed that LA can be used as supportive therapy for routine treatment in patients with severe COVID-19. Moreover, due to LA safety and it's low cost, it could be recommended as an adjuvant to conventional therapy in patients interested in treating their disease with such a method.
Collapse
Affiliation(s)
- Arista Shojaeddin
- laser Application in Medical Sciences Research Center, Shahid Beheshti University Of Medical Sciences, Tehran, Iran
| | - Alireza Fatemi
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- laser Application in Medical Sciences Research Center, Shahid Beheshti University Of Medical Sciences, Tehran, Iran
| | - Mehdi Pishgahi
- Cardiology Department, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani Sherafat
- laser Application in Medical Sciences Research Center, Shahid Beheshti University Of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- laser Application in Medical Sciences Research Center, Shahid Beheshti University Of Medical Sciences, Tehran, Iran
| | - Mohamad Karim Shahrzad
- Internal Medicine and Endocrinology Department, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Anaraki
- Internal Medicine and Endocrinology Department, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Chiman Salehi
- Internal Medicine and Endocrinology Department, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aslan Amiri
- Internal Medicine and Endocrinology Department, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Arjmand B, Rahim F. The Probable Protective Effect of Photobiomodulation on the Immunologic Factor's mRNA Expression Level in the Lung: An Extended COVID-19 Preclinical and Clinical Meta-analysis. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X221127683. [PMID: 36938515 PMCID: PMC10014418 DOI: 10.1177/2632010x221127683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/02/2022] [Indexed: 03/14/2023]
Abstract
Background Different expression of cytokine genes in the body determines the type of immune response (Th1 or Th2), which can play an important role in the pathogenesis of the COVID-19 disease. Aims This meta-analysis was conducted to evaluate the probable effect of photobiomodulation (PBMT) therapy on the cytokine's mRNA expression in the lung. Methods We systematically searched indexing databases, including PubMed/Medline, ISI web of science, Scopus, EMBASE, and Cochrane central, using standard terms without language, study region or type restrictions. Studies on using PBM in lung injury modeling with samples collected from lung tissue to observe IL-1β, TNF-α, IL-10, and IL-6 mRNA expression were included. RevMan 5.3 software was used for data analysis and standardized mean difference as effect size. Results Of the 438 studies found through initial searches, 17 met the inclusion criteria. The main properties of 13 articles on 384 animals included in this meta-analysis with a wide range of species include rats (n = 10) and rabbits (n = 3). The analysis revealed that PBMT reduced the mRNA expression of TNFα (SMD: -3.70, 95% CI: -6.29, -1.11, P = .005,I 2 = 71%) and IL-1β (SMD: -5.85, 95% CI: -8.01, -3.69, P < .00001,I 2 = 37%) significantly, but no statistically significant reduction in IL-6 (SMD: -2.89, 95% CI: -5.79, 0.01, P = .05,I 2 = 88%) was observed compared with the model controls. Also, PBMT increased IL-10 mRNA expression significantly compared with the model controls (SMD: 1.04, 95% CI: 0.43, 1.64, P = .0008,I 2 = 17%). Conclusion This meta-analysis revealed that the PBMT utilizes beneficial anti-inflammatory effects and modulation of the immune system on lung damage in animal models and clinical studies. However, animal models and clinical studies appear limited considering the evidence's quality; therefore, large clinical trials are still required.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine
Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute,
Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research
Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran
University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Metabolomics and Genomics Research
Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran
University of Medical Sciences, Tehran, Iran
- Health Research Institute, Thalassemia
and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical
Sciences, Ahvaz, Iran
- Fakher Rahim, Health Research Institute,
Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University
of Medical Sciences, Ahvaz 61357-15794, Iran.
| |
Collapse
|
11
|
Pereira PC, de Lima CJ, Fernandes AB, Zângaro RA, Villaverde AB. Cardiopulmonary and hematological effects of infrared LED photobiomodulation in the treatment of SARS-COV2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112619. [PMID: 36495670 PMCID: PMC9721157 DOI: 10.1016/j.jphotobiol.2022.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND COVID-19 disease is caused by SARS-CoV-2 which can trigger acute respiratory syndrome, which presents with dense alveolar and interstitial infiltrates and pulmonary edema, causing severe hypoxemia and significant alteration to pulmonary mechanics with reduced pulmonary compliance. The photobiomodulation technique alters cellular and molecular metabolism, showing promising results regarding the reduction of acute pulmonary inflammation. OBJECTIVE To compare the photomodulation technique using near-infrared LED to conventional respiratory physiotherapy treatment in patients with COVID-19 in reversing acute conditions, reducing hospitalization time, and decreasing the need for oxygen therapy. METHODOLOGY The cohort was comprised of 30 patients undergoing COVID-19 treatment who were divided and allocated into two equal groups randomly: the LED group (LED), treated with infrared LED at 940 nm and conventional therapy, and the control group (CON), who received conventional treatment (antibiotic therapy for preventing superimposed bacterial infections, and physiotherapy) with LED irradiation off. Phototherapy used a vest with an array of 300 LEDs (940 nm) mounted on a 36 cm × 58 cm area and positioned in the patient's anterior thoracic and abdominal regions. The total power was 6 W, with 15 min irradiation time. Cardiopulmonary functions and blood count were monitored before and after treatment. The patients were treated daily for 7 days. Statistical analysis was conducted using a two-tailed unpaired Student's t-test at a significance level of α = 0.05. RESULTS Post-treatment, the LED group showed a reduction in hospital discharge time and a statistically significant improvement for the following cardiopulmonary functions: Partial Oxygen Saturation, Tidal Volume, Maximum Inspiratory, and Expiratory Pressures, Respiratory Frequency, Heart Rate, and Systolic Blood Pressure (p < 0.05). Regarding blood count, it was observed that post-treatment, the LED group presented with significant differences in the count of leukocytes, neutrophils, and lymphocytes. CONCLUSION Photobiomodulation therapy can be used as a complement to conventional treatment of COVID-19, promoting the improvement of cardiopulmonary functions, and minimization of respiratory symptoms.
Collapse
Affiliation(s)
- Pâmela Camila Pereira
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,University Center of Itajubá – (FEPI), Rua Dr. Antônio Braga Filho 687, Bairro Varginha, CEP: 37501-002 Itajubá, MG, Brazil
| | - Carlos José de Lima
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Center of Innovation, Technology and Education – (CITE), Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil
| | - Adriana Barrinha Fernandes
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Center of Innovation, Technology and Education – (CITE), Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil
| | - Renato Amaro Zângaro
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Center of Innovation, Technology and Education – (CITE), Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil
| | - Antonio Balbin Villaverde
- Anhembi Morumbi University (UAM), Institute of Biomedical Engineering, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Center of Innovation, Technology and Education – (CITE), Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil,Corresponding author at: Center of Innovation, Technology and Education – CITE, Estrada Dr. Altino Bondensan 500, Distrito de Eugênio de Melo, CEP: 12.247-016 São José dos Campos, SP, Brazil
| |
Collapse
|
12
|
Miachon MD, Pinto NC, Zamuner SR, Chavantes MC. Analysis of the Potential of Blood Transvascular Sublingual with Light-Emitting Diode Irradiation in COVID-19 Patients: A Pilot Clinical Study. Photobiomodul Photomed Laser Surg 2022; 40:622-631. [DOI: 10.1089/photob.2021.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mateus Domingues Miachon
- Post-Graduate Department in Medical School, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Nathali Cordeiro Pinto
- Heart Institute, Clinical Hospital, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Sao Paulo, Brazil
| | - Stella Regina Zamuner
- Graduate and Post-Graduate Department in Medical School, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Maria Cristina Chavantes
- Graduate and Post-Graduate Department in Medical School, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Marques P, Fernandez-Presa L, Carretero A, Gómez-Cabrera MC, Viña J, Signes-Costa J, Sanz MJ. The radiographic assessment of lung edema score of lung edema severity correlates with inflammatory parameters in patients with coronavirus disease 2019—Potential new admission biomarkers to predict coronavirus disease 2019 worsening. Front Med (Lausanne) 2022; 9:871714. [PMID: 36035415 PMCID: PMC9402930 DOI: 10.3389/fmed.2022.871714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCoronavirus disease 2019 (COVID-19) has placed enormous pressure on intensive care units (ICUs) and on healthcare systems in general. A deeper understanding of the pathophysiology of the most severe forms of COVID-19 would help guide the development of more effective interventions. Herein, we characterized the inflammatory state of patients with COVID-19 of varying degrees of severity to identify admission biomarkers for predicting COVID-19 worsening.DesignAdmission blood samples were obtained from 78 patients with COVID-19. Radiographic assessment of lung edema (RALE) scoring was calculated by imaging. Platelet and leukocyte counts were measured by flow cytometry, and plasma levels of C-reactive protein were assessed by immunoturbidimetry, and interleukin (IL)-8/CXCL8, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and monocyte chemoattractant protein-1 (MCP-1/CCL2) levels by enzyme-linked immunosorbent assay (ELISA).ResultsThe RALE score correlated with several admission hemogram (platelets, neutrophils, and lymphocytes) and inflammatory (IL-8/CXCL8, MCP-1/CCL2, IL-10, and C-reactive protein) parameters. COVID-19 worsening, based on the need for oxygen (Δoxygen supply) during hospitalization, correlated negatively with admission lymphocyte counts but positively with neutrophil-to-lymphocyte ratio and with plasma levels of the inflammatory parameters correlating with RALE score.ConclusionOur data indicate a correlation between the RALE score and Δoxygen supply and admission inflammatory status. The identification of a panel of biomarkers that reflect COVID severity might be useful to predict disease worsening during hospitalization and to guide clinical management of COVID-19-related complications. Finally, therapies targeting IL-8/CXCL8- or IL-10 activity may offer therapeutic approaches in COVID-19 treatment.
Collapse
Affiliation(s)
- Patrice Marques
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Lucia Fernandez-Presa
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
- Pneumology Unit, University Clinic Hospital of Valencia, Valencia, Spain
| | - Aitor Carretero
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Maria-Carmen Gómez-Cabrera
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - José Viña
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
- *Correspondence: José Viña,
| | - Jaime Signes-Costa
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
- Pneumology Unit, University Clinic Hospital of Valencia, Valencia, Spain
- Jaime Signes-Costa,
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
- CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, ISCIII, Madrid, Spain
- Maria-Jesus Sanz,
| |
Collapse
|
14
|
Williams RK, Raimondo J, Cahn D, Williams A, Schell D. Whole-organ transdermal photobiomodulation (PBM) of COVID-19: A 50-patient case study. JOURNAL OF BIOPHOTONICS 2022; 15:e202100194. [PMID: 34658147 PMCID: PMC8646787 DOI: 10.1002/jbio.202100194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/30/2021] [Indexed: 05/15/2023]
Abstract
A nonrandomized 50-person case study of COVID-19-positive patients was conducted employing (for the first time) a regimen of whole-organ deep-tissue transdermal dynamic photobiomodulation (PBM) as a primary (or exclusive) therapeutic modality in the treatment of coronavirus. Therapy sessions comprised algorithmically alternating red (650 nm) and near-infrared (NIR; 850 nm) LEDs with an average irradiance of 11 mW/cm2 dynamically sequenced at multiple pulse frequencies. Delivered via 3D bendable polymeric pads maintaining orthogonal optical incidence to body contours over 1,000 cm2 , a single 84-minute session concurrently delivered 20 kJ to the sinuses and 15 kJ to each lung at skin temperatures below 42°C. Therapeutic outcomes observed include significant reductions in the duration and severity of disease symptoms. Acute conditions including fever, body aches (BA) and respiratory distress comprising paroxysmal coughing; lung congestion, dyspnea and hypoxia; sinus congestion; acute eye inflammation; and extreme malaise were eliminated in 41/50 patients within 4 days of commencing PBM treatments with 50/50 patients fully recovering within 3 weeks with no supplemental oxygen requirements. SpO2 concentrations improved as much as 9 points (average 2.5 points) across the entire study population. The PBM sessions required to completely resolve COVID-19 conditions appears monotonically correlated to the time-to-treatment (TTTx)-the delay between the onset of a patient's symptoms and commencing PBM therapy. In contrast, acute inflammatory symptoms were resolved within 4 days irrespective of TTTx.
Collapse
|
15
|
Raji H, Arjmand B, Rahim F. The Probable Protective Effect of Photobiomodulation on the Inflammation of the Airway and Lung in COVID-19 Treatment: A Preclinical and Clinical Meta-Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:29-44. [PMID: 34907516 DOI: 10.1007/5584_2021_665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Preliminary studies also show that many of the fatalities of COVID-19 are due to over-activity of the immune system, and photobiomodulation (PBM) therapy mainly accelerates wound healing and reduces pain and inflammation. Therefore, this systematic review and meta-analysis was conducted to evaluate the probable effect of the PBM therapy on the lung inflammation or ARDS and accelerate the regeneration of the damaged tissue. We systematically searched major indexing databases, including PubMed/Medline, ISI web of science (WOS), Scopus, Embase, and Cochrane central, using standard terms without any language, study region, or type restrictions. Of the 438 studies found through initial searches, 13 met the inclusion criteria. After applying the exclusion criteria, the main properties of 13 articles on 384 animals included in this meta-analysis with a wide range of species include rat (n = 10) and rabbit (n = 3). The analysis revealed that PBM therapy reduced TNFα (SMD:-3.75, 95% CI: -4.49, -3.02, P < 0.00001, I2 = 10%), IL-1β (SMD:-4.65, 95% CI: -6.15, -3.16, P < 0.00001, I2 = 62%), and IL-6 (SMD:-4.20, 95% CI: -6.42, -1.97, P = 0.0002, I2 = 88%) significantly compared with the model controls. Hence, PBM therapy increased IL-10 significantly compared with the model controls (SMD:-4.65, 95% CI: -6.15, -3.16, P < 0.00001, I2 = 62%). PBM therapy also reduced MPO activity (SMD:-2.13, 95% CI: -3.38, -0.87, P = 0.0009, I2 = 64%) and vascular permeability (SMD:-2.59, 95% CI: -4.40, -0.77, P = 0.0052, I2 = 71%) in the lung using the Evans blue extravasation technique significantly compared with the model controls. This systematic review and meta-analysis revealed that the PBM therapy does utilize beneficial anti-inflammatory effect, modulation of the immune system, lung permeability, or bronchoalveolar lavage on lung damage in both animal models and clinical studies. However, animal model and clinical studies appear limited considering the quality of the included evidences; therefore, large clinical trials are still required.
Collapse
Affiliation(s)
- Hanieh Raji
- Department of Internal Medicine, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fakher Rahim
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,PhD in Clinical Bioinformatics, Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
16
|
CIORTEA VM, ILIESCU MI, BLENDEA E, MOTOASCA I, BORDA IM, CIUBEAN AD, UNGUR RA, PINTEA AL, POPA FL, IRSAY L. Effects of low laser level therapy in rehabilitation of patients with COVID19 pneumonia. BALNEO AND PRM RESEARCH JOURNAL 2021. [DOI: 10.12680/balneo.2021.458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. An unprecedented public health crisis has been triggered worldwide by SARS-CoV-2’s high contagiosity and it’s mortality rates of 1-5%. Although the majority of COVID-19 cases have a good outcome, there is a small percentage that develop severe pneumonia and citokine storm and may be in the need of mechanical ventilation.
Methods. Identifying the exact drivers of the excessive inflammation and the biomarkers that can predict a hyperinflammatory response to SARS-CoV-2 would be extremly helpful in finding efficient anti-inflammatory interventions that may stop the progression to acute respiratory distress syndrome (ARDS).
Results. In the search for such interventions we have identified the promising effect of low level LASER therapy (LLLT) on lung inflammation from COVID-19 pneumonia. Due to its well known anti-inflammatory effect and modulatory activity on immune cells, laser therapy may be able to decrease lung and systemic inflammation without affecting lung function in acute lung lesions, relieve respiratory symptoms, normalize respiratory function and stimulate the healing process of lung tissue. The recovery time may also be significantly shortened and all blood, immunological and radiological parameters may improve.
Conclusions. This findings need further confirmation from clinical trials but we are hopeful for their contribution on the global battle against COVID-19 pandemic.
Keywords: SARS-CoV-2, pneumonia, low LASER level therapy, anti-inflammatory effect, citokine storm,
Collapse
Affiliation(s)
- Viorela Mihaela CIORTEA
- ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Department of Rehabilitation, Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | - Mădălina Iliescu ILIESCU
- Faculty of Medicine, ‘Ovidius’ University of Constanta, Techirghiol Department of Rehabilitation, Techirghiol, Constanta, Romania
| | - Eliza BLENDEA
- Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | | | - Ileana Monica BORDA
- ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Department of Rehabilitation, Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | - Alina Deniza CIUBEAN
- ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Department of Rehabilitation, Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | - Rodica Ana UNGUR
- ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Department of Rehabilitation, Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | - Alina Liliana PINTEA
- Dental Medicine and Nursing Department, ”Lucian Blaga” University of Sibiu, Faculty of Medicine, Academic Emergency Hospital of Sibiu, Romania
| | - Florina Ligia POPA
- Physical Medicine and Rehabilitation Department, ”Lucian Blaga” University of Sibiu, Faculty of Medicine, Academic Emergency Hospital of Sibiu, Romania
| | - Laszlo IRSAY
- ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Department of Rehabilitation, Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| |
Collapse
|
17
|
Multi-Wavelength Photobiomodulation Therapy Combined with Static Magnetic Field on Long-Term Pulmonary Complication after COVID-19: A Case Report. Life (Basel) 2021; 11:life11111124. [PMID: 34833000 PMCID: PMC8617935 DOI: 10.3390/life11111124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Photobiomodulation therapy, alone (PBMT) or combined with a static magnetic field (PBMT-sMF), has been demonstrated to be effective in the regeneration of tissues, modulation of inflammatory processes, and improvement in functional capacity. However, the effects of PBMT-sMF on the pulmonary system and COVID-19 patients remain scarce. Therefore, in this case report, we demonstrated the use of PBMT-sMF for peripheral oxygen saturation, pulmonary function, massive lung damage, and fibrosis as a pulmonary complication after COVID-19. CASE REPORT A 53-year-old Mexican man who presented with decreased peripheral oxygen saturation, massive lung damage, and fibrosis after COVID-19 received PBMT-sMF treatment once a day for 45 days. The treatment was irradiated at six sites in the lower thorax and upper abdominal cavity and two sites in the neck area. We observed that the patient was able to leave the oxygen support during the treatment, and increase his peripheral oxygen saturation. In addition, the patient showed improvements in pulmonary severity scores and radiological findings. Finally, the patient presented with normal respiratory mechanics parameters in the medium-term, indicating total pulmonary recovery. CONCLUSIONS The use of PBMT-sMF may potentially lead to safe treatment of and recovery from pulmonary complications after COVID-19, with regard to the structural and functional aspects.
Collapse
|
18
|
Aguida B, Pooam M, Ahmad M, Jourdan N. Infrared light therapy relieves TLR-4 dependent hyper-inflammation of the type induced by COVID-19. Commun Integr Biol 2021; 14:200-211. [PMID: 34552685 PMCID: PMC8451450 DOI: 10.1080/19420889.2021.1965718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The leading cause of mortality from COVID-19 infection is respiratory distress due to an exaggerated host immune response, resulting in hyper-inflammation and ensuing cytokine storms in the lungs. Current drug-based therapies are of limited efficacy, costly, and have potential negative side effects. By contrast, photobiomodulation therapy, which involves periodic brief exposure to red or infrared light, is a noninvasive, safe, and affordable method that is currently being used to treat a wide range of diseases with underlying inflammatory conditions. Here, we show that exposure to two 10-min, high-intensity periods per day of infrared light causes a marked reduction in the TLR-4 dependent inflammatory response pathway, which has been implicated in the onset of cytokine storms in COVID-19 patients. Infrared light exposure resulted in a significant decline in NFkB and AP1 activity as measured by the reporter gene assay; decreased expression of inflammatory marker genes IL-6, IL-8, TNF-alpha, INF-alpha, and INF-beta as determined by qPCR gene expression assay; and an 80% decline in secreted cytokine IL6 as measured by ELISA assay in cultured human cells. All of these changes occurred after only 48 hours of treatment. We suggest that an underlying cellular mechanism involving modulation of ROS may downregulate the host immune response after Infrared Light exposure, leading to decrease in inflammation. We further discuss technical considerations involving light sources and exposure conditions to put these observations into potential clinical use to treat COVID-19 induced mortality.
Collapse
Affiliation(s)
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Margaret Ahmad
- Cnrs, Ibps, Sorbonne Université, Paris, France.,Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | | |
Collapse
|
19
|
De Marchi T, Frâncio F, Ferlito JV, Weigert R, de Oliveira C, Merlo AP, Pandini DL, Pasqual-Júnior BA, Giovanella D, Tomazoni SS, Leal-Junior EC. Effects of Photobiomodulation Therapy Combined with Static Magnetic Field in Severe COVID-19 Patients Requiring Intubation: A Pragmatic Randomized Placebo-Controlled Trial. J Inflamm Res 2021; 14:3569-3585. [PMID: 34335043 PMCID: PMC8318710 DOI: 10.2147/jir.s318758] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/10/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose We aimed to investigate the effects of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) on the length of intensive care unit (ICU) stay and mortality rate of severe COVID-19 patients requiring invasive mechanical ventilation and assess its role in preserving respiratory muscles and modulating inflammatory processes. Patients and Methods We conducted a prospectively registered, triple-blinded, randomized, placebo-controlled trial of PBMT-sMF in severe COVID-19 ICU patients requiring invasive mechanical ventilation. Patients were randomly assigned to receive either PBMT-sMF or a placebo daily throughout their ICU stay. The primary outcome was length of ICU stay, defined by either discharge or death. The secondary outcomes were survival rate, diaphragm muscle function, and the changes in blood parameters, ventilatory parameters, and arterial blood gases. Results Thirty patients were included and equally randomized into the two groups. There were no significant differences in the length of ICU stay (mean difference, MD = −6.80; 95% CI = −18.71 to 5.11) between the groups. Among the secondary outcomes, significant differences were observed in diaphragm thickness, fraction of inspired oxygen, partial pressure of oxygen/fraction of inspired oxygen ratio, C-reactive protein levels, lymphocyte count, and hemoglobin (p < 0.05). Conclusion Among severe COVID-19 patients requiring invasive mechanical ventilation, the length of ICU stay was not significantly different between the PBMT-sMF and placebo groups. In contrast, PBMT-sMF was significantly associated with reduced diaphragm atrophy, improved ventilatory parameters and lymphocyte count, and decreased C-reactive protein levels and hemoglobin count. Trial Registration Number (Clinical Trials.gov) NCT04386694.
Collapse
Affiliation(s)
- Thiago De Marchi
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil.,Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Fabiano Frâncio
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil.,Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Renata Weigert
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Ana Paula Merlo
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | | | | | - Shaiane Silva Tomazoni
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| | - Ernesto Cesar Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil.,Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| |
Collapse
|
20
|
De Marchi T, Frâncio F, Ferlito JV, Weigert R, de Oliveira C, Merlo AP, Pandini DL, Pasqual-Júnior BA, Giovanella D, Tomazoni SS, Leal-Junior EC. Effects of Photobiomodulation Therapy Combined with Static Magnetic Field in Severe COVID-19 Patients Requiring Intubation: A Pragmatic Randomized Placebo-Controlled Trial. J Inflamm Res 2021; 14:3569-3585. [PMID: 34335043 DOI: 10.1101/2020.12.02.20237974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/10/2021] [Indexed: 05/28/2023] Open
Abstract
PURPOSE We aimed to investigate the effects of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) on the length of intensive care unit (ICU) stay and mortality rate of severe COVID-19 patients requiring invasive mechanical ventilation and assess its role in preserving respiratory muscles and modulating inflammatory processes. PATIENTS AND METHODS We conducted a prospectively registered, triple-blinded, randomized, placebo-controlled trial of PBMT-sMF in severe COVID-19 ICU patients requiring invasive mechanical ventilation. Patients were randomly assigned to receive either PBMT-sMF or a placebo daily throughout their ICU stay. The primary outcome was length of ICU stay, defined by either discharge or death. The secondary outcomes were survival rate, diaphragm muscle function, and the changes in blood parameters, ventilatory parameters, and arterial blood gases. RESULTS Thirty patients were included and equally randomized into the two groups. There were no significant differences in the length of ICU stay (mean difference, MD = -6.80; 95% CI = -18.71 to 5.11) between the groups. Among the secondary outcomes, significant differences were observed in diaphragm thickness, fraction of inspired oxygen, partial pressure of oxygen/fraction of inspired oxygen ratio, C-reactive protein levels, lymphocyte count, and hemoglobin (p < 0.05). CONCLUSION Among severe COVID-19 patients requiring invasive mechanical ventilation, the length of ICU stay was not significantly different between the PBMT-sMF and placebo groups. In contrast, PBMT-sMF was significantly associated with reduced diaphragm atrophy, improved ventilatory parameters and lymphocyte count, and decreased C-reactive protein levels and hemoglobin count. TRIAL REGISTRATION NUMBER CLINICAL TRIALSGOV NCT04386694.
Collapse
Affiliation(s)
- Thiago De Marchi
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Fabiano Frâncio
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Renata Weigert
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Ana Paula Merlo
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | | | | | - Shaiane Silva Tomazoni
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| | - Ernesto Cesar Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| |
Collapse
|
21
|
de Matos BTL, Buchaim DV, Pomini KT, Barbalho SM, Guiguer EL, Reis CHB, Bueno CRDS, da Cunha MR, Pereira EDSBM, Buchaim RL. Photobiomodulation Therapy as a Possible New Approach in COVID-19: A Systematic Review. Life (Basel) 2021; 11:580. [PMID: 34207199 PMCID: PMC8233727 DOI: 10.3390/life11060580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
COVID-19 is a viral disease characterized as a pandemic by the World Health Organization in March 2020. Since then, researchers from all over the world have been looking for ways to fight this disease. Many cases of complications arise from insufficient immune responses due to low immunity, with intense release of pro-inflammatory cytokines that can damage the structure of organs such as the lung. Thus, the hypothesis arises that photobiomodulation therapy (PBMT) with the use of a low-level laser (LLLT) may be an ally approach to patients with COVID-19 since it is effective for increasing immunity, helping tissue repair, and reducing pro-inflammatory cytokines. This systematic review was performed with the use of PubMed/MEDLINE, Web of Science, Scopus and Google Scholar databases with the following keywords: "low-level laser therapy OR photobiomodulation therapy AND COVID-19". The inclusion criteria were complete articles published from January 2020 to January 2021 in English. The exclusion criteria were other languages, editorials, reviews, brief communications, letters to the editor, comments, conference abstracts, and articles that did not provide the full text. The bibliographic search found 18 articles in the Pubmed/MEDLINE database, 118 articles on the Web of Science, 23 articles on Scopus, and 853 articles on Google Scholar. Ten articles were included for qualitative synthesis, of which four commentary articles discussed the pathogenesis and the effect of PBMT in COVID-19. Two in vitro and lab experiments showed the effect of PBMT on prevention of thrombosis and positive results in wound healing during viral infection, using the intravascular irradiation (ILIB) associated with Phthalomethyl D. Two case reports showed PBMT improved the respiratory indexes, radiological findings, and inflammatory markers in severe COVID-19 patients. One case series reported the clinical improvement after PBMT on 14 acute COVID-19 patients, rehabilitation on 24 patients, and as a preventive treatment on 70 people. One clinical trial of 30 patients with severe COVID-19 who require invasive mechanical ventilation, showed PBMT-static magnetic field was not statistically different from placebo for the length of stay in the Intensive Care Unit, but improved diaphragm muscle function and ventilation and decreased the inflammatory markers. This review suggests that PBMT may have a positive role in treatment of COVID-19. Still, the necessity for more clinical trials remains in this field and there is not sufficient research evidence regarding the effects of PBMT and COVID-19 disease, and there is a large gap.
Collapse
Affiliation(s)
- Brenda Thaynne Lima de Matos
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
- Department of Human Anatomy and Neuroanatomy, University Center of Adamantina (UniFAI), Medical School, Adamantina 17800-000, SP, Brazil
| | - Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
- Department of Biochemistry and Nutrition, School of Food Technology of Marília, Marília 17506-000, SP, Brazil
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
- Department of Biochemistry and Nutrition, School of Food Technology of Marília, Marília 17506-000, SP, Brazil
| | - Carlos Henrique Bertoni Reis
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
| | - Cleuber Rodrigo de Souza Bueno
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
| | | | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, SP, Brazil; (D.V.B.); (S.M.B.); (E.L.G.); (E.d.S.B.M.P.)
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, SP, Brazil; (B.T.L.d.M.); (K.T.P.); (C.H.B.R.); (C.R.d.S.B.)
| |
Collapse
|
22
|
Pelletier‐Aouizerate M, Zivic Y. Early cases of acute infectious respiratory syndrome treated with photobiomodulation, diagnosis and intervention: Two case reports. Clin Case Rep 2021; 9:2429-2437. [PMID: 33959281 PMCID: PMC8077509 DOI: 10.1002/ccr3.4058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
PBMT using 630 + 660 nm wavelengths transcutaneously at 7 cm above chest area irradiating lungs and heart regions of patients with acute, infectious respiratory syndrome alleviated their respiratory symptoms, mitigated pulmonary inflammation and hypoxia. PBMT could prevent more severe respiratory distress requiring emergency care and reduce the strain on healthcare. This case report's clinical experience can be the basis of future research evaluating oxygen saturation levels pre- and post-PBMT.
Collapse
|
23
|
Vetrici MA, Mokmeli S, Bohm AR, Monici M, Sigman SA. Evaluation of Adjunctive Photobiomodulation (PBMT) for COVID-19 Pneumonia via Clinical Status and Pulmonary Severity Indices in a Preliminary Trial. J Inflamm Res 2021; 14:965-979. [PMID: 33776469 PMCID: PMC7989376 DOI: 10.2147/jir.s301625] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Evidence-based and effective treatments for COVID-19 are limited, and a new wave of infections and deaths calls for novel, easily implemented treatment strategies. Photobiomodulation therapy (PBMT) is a well-known adjunctive treatment for pain management, wound healing, lymphedema, and cellulitis. PBMT uses light to start a cascade of photochemical reactions that lead to local and systemic anti-inflammatory effects at multiple levels and that stimulate healing. Numerous empirical studies of PBMT for patients with pulmonary disease such as pneumonia, COPD and asthma suggest that PBMT is a safe and effective adjunctive treatment. Recent systematic reviews suggest that PBMT may be applied to target lung tissue in COVID-19 patients. In this preliminary study, we evaluated the effect of adjunctive PBMT on COVID-19 pneumonia and patient clinical status. PATIENTS AND METHODS We present a small-scale clinical trial with 10 patients randomized to standard medical care or standard medical care plus adjunctive PBMT. The PBMT group received four daily sessions of near-infrared light treatment targeting the lung tissue via a Multiwave Locked System (MLS) laser. Patient outcomes were measured via blood work, chest x-rays, pulse oximetry and validated scoring tools for pneumonia. RESULTS PBMT patients showed improvement on pulmonary indices such as SMART-COP, BCRSS, RALE, and CAP (Community-Acquired Pneumonia questionnaire). PBMT-treated patients showed rapid recovery, did not require ICU admission or mechanical ventilation, and reported no long-term sequelae at 5 months after treatment. In the control group, 60% of patients were admitted to the ICU for mechanical ventilation. The control group had an overall mortality of 40%. At a 5-month follow-up, 40% of the control group experienced long-term sequelae. CONCLUSION PBMT is a safe and effective potential treatment for COVID-19 pneumonia and improves clinical status in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Mariana A Vetrici
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Soheila Mokmeli
- Training Institute, Canadian Optic and Laser Center, Victoria, BC, Canada
| | - Andrew R Bohm
- Department of Orthopedics, Lenox Hill Hospital, New York, NY, USA
| | - Monica Monici
- ASA Campus J.L., ASA Res. Division – Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Scott A Sigman
- Department of Orthopedics, Lowell General Hospital, Lowell, MA, 01863, USA
| |
Collapse
|
24
|
Hanna R, Dalvi S, Sălăgean T, Pop ID, Bordea IR, Benedicenti S. Understanding COVID-19 Pandemic: Molecular Mechanisms and Potential Therapeutic Strategies. An Evidence-Based Review. J Inflamm Res 2021; 14:13-56. [PMID: 33447071 PMCID: PMC7802346 DOI: 10.2147/jir.s282213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Initially, the SARS-CoV-2 virus was considered as a pneumonia virus; however, a series of peer reviewed medical papers published in the last eight months suggest that this virus attacks the brain, heart, intestine, nervous and vascular systems, as well the blood stream. Although many facts remain unknown, an objective appraisal of the current scientific literature addressing the latest progress on COVID-19 is required. The aim of the present study was to conduct a critical review of the literature, focusing on the current molecular structure of SARS-CoV-2 and prospective treatment modalities of COVID-19. The main objectives were to collect, scrutinize and objectively evaluate the current scientific evidence-based information, as well to provide an updated overview of the topic that is ongoing. The authors underlined potential prospective therapies, including vaccine and phototherapy, as a monotherapy or combined with current treatment modalities. The authors concluded that this review has produced high quality evidence, which can be utilized by the clinical scientific community for future reference, as the knowledge and understanding of the SARS-CoV-2 virus are evolving, in terms of its epidemiological, pathogenicity, and clinical manifestations, which ultimately map the strategic path, towards an effective and safe treatment and production of a reliable and potent vaccine.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, London, UK
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, India
| | - Tudor Sălăgean
- Department of Land Measurements and Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana Delia Pop
- Department of Land Measurements and Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
Jahani Sherafat S, Mokmeli S, Rostami-Nejad M, Razaghi Z, Rezaei Tavirani M, Razzaghi M. The Effectiveness of Photobiomudulation Therapy (PBMT) in COVID-19 Infection. J Lasers Med Sci 2020; 11:S23-S29. [PMID: 33995965 DOI: 10.34172/jlms.2020.s4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Currently, the COVID-19 pandemic is an important health challenge worldwide. Due to the cytokine storm, the mortality rate in acute respiratory distress syndrome (ARDS) is high, but until now no therapy for these patients was approved. The aim of this review was to discuss the possible anti-inflammatory effect of photobiomodulation therapy (PBMT) on ARSD patients and present the potential role of low-level laser therapy (LLLT) in the improvement of respiratory symptoms associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: Studies about PBMT in inflammation and ARSD patients were examined. A primary search with reviewing English-language citations between 2005 and 2020 using the keywords COVID-19, ADRS, cytokine storm, low-level laser therapy, anti-inflammatory, and photobiomodulation was performed. The initial search yielded 818 articles; however, 60 articles were selected and discussed in the present study. Results: The results of the selected studies showed the usefulness of PBMT in the treatment of inflammation and ARSD in patients with COVID-19 infection. This therapy is non-invasive and safe to modulate the immune responses in ARSD patients. Conclusion: PBMT can potentially reduce the viral load and bacterial super-infections in patients with COVID-19 infection and control the inflammatory response. Therefore, the use of PBMT could be an efficient strategy for preventing severe and critical illness in SARS-COV2 infection.
Collapse
Affiliation(s)
- Somayeh Jahani Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Mokmeli
- Canadian Optic and Laser Center (Training Institute), Victoria, BC, Canada
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|