1
|
Compartmental Modeling of the Kinetics of 188Re-Labeled Pentaphosphonic Acid in Rats with Bone Callus. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Siebinga H, de Wit-van der Veen BJ, Beijnen JH, Stokkel MPM, Dorlo TPC, Huitema ADR, Hendrikx JJMA. A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors. EJNMMI Res 2021; 11:73. [PMID: 34398356 PMCID: PMC8368277 DOI: 10.1186/s13550-021-00821-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs. The aim of this study was to develop a PBPK model to describe organ distribution of 68Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs). Methods Clinical 68Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of 68Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification. Results 68Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts. Conclusions To conclude, biodistribution of 68Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.
Collapse
Affiliation(s)
- H Siebinga
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B J de Wit-van der Veen
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M P M Stokkel
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T P C Dorlo
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - A D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - J J M A Hendrikx
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Dai Y, Wang G, Chen D, Yin J, Zhan Y, Nie Y, Wu K, Liang J, Chen X. Intravenous Administration-Oriented Pharmacokinetic Model for Dynamic Bioluminescence Imaging. IEEE Trans Biomed Eng 2018; 66:843-847. [PMID: 30047868 DOI: 10.1109/tbme.2018.2858774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In vivo bioluminescence imaging (BLI) is a promising tool for monitoring the growth and metastasis of tumors. However, quantitative BLI research based on intravenous (IV) injection is limited, which greatly restricts its further application. To address this problem, we designed a pharmacokinetic (PK) model which is suitable for applying on IV administration of small amounts of D-Luciferin. METHODS After three weeks of postimplantation, mkn28-luc xenografted mice were subjected to 40-min dynamic BLI immediately following D-Luciferin intravenous injection on days 1, 3, 5, 7, and 9. Furthermore, the PK model was applied on dynamic BLI data to obtain the sum of kinetic rate constants (SKRC). RESULTS Results showed that the SKRC values decreased rapidly with the growth of the tumor. There was a statistical difference between the SKRC values measured at different time points, while the time point of luminous intensity peak was unaffected by the growth of the tumor. CONCLUSION In short, our results imply that dynamic BLI combined with our PK model can predict tumor growth earlier and with higher sensitivity compared to the conventional method, which is crucial for improving drug evaluation efficacy. In addition, the dynamic BLI may provide a valuable reference for the noninvasive acquiring arterial input function, which may also provide a new application prospect for hybrid PET-optical imaging.
Collapse
|
4
|
Hardiansyah D, Guo W, Attarwala AA, Kletting P, Mottaghy FM, Glatting G. Treatment planning in PRRT based on simulated PET data and a PBPK model. Nuklearmedizin 2018; 56:23-30. [DOI: 10.3413/nukmed-0819-16-04] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022]
Abstract
SummaryAim: To investigate the accuracy of treatment planning in peptide-receptor radionuclide therapy (PRRT) based on simulated PET data (using a PET noise model) and a physiologically based pharmacokinetic (PBPK) model. Methods: The parameters of a PBPK model were fitted to the biokinetic data of 15 patients. True mathematical phantoms of patients (MPPs) were the PBPK model with the fitted parameters. PET measurements after bolus injection of 150 MBq 68Ga-DOTATATE were simulated for the true MPPs. PET noise with typical noise levels was added to the data (i.e. c=0.3 [low], 3, 30 and 300 [high]). Organ activity data in the kidneys, tumour, liver and spleen were simulated at 0.5, 1 and 4 h p.i. PBPK model parameters were fitted to the simulated noisy PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 3.3 GBq of 90Y-DOTATATE over 30 min. Time-integrated activity coefficients (TIACs) of simulated therapy in tumour, kidneys, liver, spleen and remainder were calculated from both, true MPPs (true TIACs) and predicted MPPs (predicted TIACs). Variability v between true TIACs and predicted TIACs were calculated and analysed. Variability< 10 % was considered to be an accurate prediction. Results: For all noise level, variabilities for the kidneys, liver, and spleen showed an accurate prediction for TIACs, e.g. c=300: vkidney=(5 ± 2)%, vliver=(5 ± 2)%, vspleen=(4 ± 2)%. However, tumour TIAC predictions were not accurate for all noise levels, e.g. c=0.3: vtumour=(8 ± 5)%. Conclusion: PET based treatment planning with kidneys as the dose limiting organ seems possible for all reported noise levels using an adequate PBPK model and previous knowledge about the individual patient.
Collapse
|
5
|
Hardiansyah D, Attarwala AA, Kletting P, Mottaghy FM, Glatting G. Prediction of time-integrated activity coefficients in PRRT using simulated dynamic PET and a pharmacokinetic model. Phys Med 2017; 42:298-304. [PMID: 28739143 DOI: 10.1016/j.ejmp.2017.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE To investigate the accuracy of predicted time-integrated activity coefficients (TIACs) in peptide-receptor radionuclide therapy (PRRT) using simulated dynamic PET data and a physiologically based pharmacokinetic (PBPK) model. METHODS PBPK parameters were estimated using biokinetic data of 15 patients after injection of (152±15)MBq of 111In-DTPAOC (total peptide amount (5.78±0.25)nmol). True mathematical phantoms of patients (MPPs) were the PBPK model with the estimated parameters. Dynamic PET measurements were simulated as being done after bolus injection of 150MBq 68Ga-DOTATATE using the true MPPs. Dynamic PET scans around 35min p.i. (P1), 4h p.i. (P2) and the combination of P1 and P2 (P3) were simulated. Each measurement was simulated with four frames of 5min each and 2 bed positions. PBPK parameters were fitted to the PET data to derive the PET-predicted MPPs. Therapy was simulated assuming an infusion of 5.1GBq of 90Y-DOTATATE over 30min in both true and PET-predicted MPPs. TIACs of simulated therapy were calculated, true MPPs (true TIACs) and predicted MPPs (predicted TIACs) followed by the calculation of variabilities v. RESULTS For P1 and P2 the population variabilities of kidneys, liver and spleen were acceptable (v<10%). For the tumours and the remainders, the values were large (up to 25%). For P3, population variabilities for all organs including the remainder further improved, except that of the tumour (v>10%). CONCLUSION Treatment planning of PRRT based on dynamic PET data seems possible for the kidneys, liver and spleen using a PBPK model and patient specific information.
Collapse
Affiliation(s)
- Deni Hardiansyah
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Electrical Engineering, Universitas Padjadjaran, Bandung, Indonesia
| | - Ali Asgar Attarwala
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kletting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Felix M Mottaghy
- Klinik für Nuklearmedizin, University Hospital, RWTH Aachen University, Aachen, Germany; Department of Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany.
| |
Collapse
|
6
|
Dai Y, Chen X, Yin J, Kang X, Wang G, Zhang X, Nie Y, Wu K, Liang J. Investigation of injection dose and camera integration time on quantifying pharmacokinetics of a Cy5.5-GX1 probe with dynamic fluorescence imaging in vivo. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:86001. [PMID: 27488591 DOI: 10.1117/1.jbo.21.8.086001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/14/2016] [Indexed: 05/24/2023]
Abstract
The aim of this article is to investigate the influence of a tracer injection dose (ID) and camera integration time (IT) on quantifying pharmacokinetics of Cy5.5-GX1 in gastric cancer BGC-823 cell xenografted mice. Based on three factors, including whether or not to inject free GX1, the ID of Cy5.5-GX1, and the camera IT, 32 mice were randomly divided into eight groups and received 60-min dynamic fluorescence imaging. Gurfinkel exponential model (GEXPM) and Lammertsma simplified reference tissue model (SRTM) combined with a singular value decomposition analysis were used to quantitatively analyze the acquired dynamic fluorescent images. The binding potential (Bp) and the sum of the pharmacokinetic rate constants (SKRC) of Cy5.5-GX1 were determined by the SRTM and EXPM, respectively. In the tumor region, the SKRC value exhibited an obvious trend with change in the tracer ID, but the Bp value was not sensitive to it. Both the Bp and SKRC values were independent of the camera IT. In addition, the ratio of the tumor-to-muscle region was correlated with the camera IT but was independent of the tracer ID. Dynamic fluorescence imaging in conjunction with a kinetic analysis may provide more quantitative information than static fluorescence imaging, especially for a priori information on the optimal ID of targeted probes for individual therapy.
Collapse
Affiliation(s)
- Yunpeng Dai
- Xidian University, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, Xi'an 710071, China
| | - Xueli Chen
- Xidian University, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, Xi'an 710071, China
| | - Jipeng Yin
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Xiaoyu Kang
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Guodong Wang
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Xianghan Zhang
- Xidian University, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, Xi'an 710071, China
| | - Yongzhan Nie
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Kaichun Wu
- Fourth Military Medical University, State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, 127 Changle Road, Xi'an 710032, China
| | - Jimin Liang
- Xidian University, Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education and School of Life Science and Technology, 266 Xinglong Section of Xifeng Road, Xi'an 710071, China
| |
Collapse
|
7
|
Hardiansyah D, Begum NJ, Kletting P, Mottaghy FM, Glatting G. Sensitivity Analysis of a Physiologically Based Pharmacokinetic Model Used for Treatment Planning in Peptide Receptor Radionuclide Therapy. Cancer Biother Radiopharm 2016; 31:217-24. [PMID: 27403777 DOI: 10.1089/cbr.2016.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aim of this work was to evaluate the sensitivity of time-integrated activity coefficients (TIACs) on the erroneously chosen prior knowledge in a physiologically based pharmacokinetic (PBPK) model used for treatment planning in peptide receptor radionuclide therapy (PRRT). Parameters of the PBPK model were fitted to the biokinetic data of 15 patients after the injection of (111)In-DTPAOC. The fittings were performed using fixed parameter values taken from literature as prior knowledge (reference case, Ref). The fixed parameters were gender, physical information (e.g., body weight), dissociation rate koff, dissociation constant KD, fraction of blood flow, and spleen and liver volumes. The fittings were repeated with changed fixed parameters (Changed). The relative deviations (RDs) of TIACs calculated from Changed and Ref were analyzed for kidneys, tumor, liver, spleen, remainder, whole body, and serum. A changed koff has the largest effect on RD, the largest RD values were found for changed koff = 0.001 L/min: RDkidneys = (3 ± 3)%, RDtumor = (0.5 ± 4)%, RDliver = (6 ± 9)%, RDspleen = (5 ± 5)%, RDremainder = (2 ± 31)%, RDserum = (-4 ± 25)%, and RDwholebody = (3 ± 16)%. For other changed parameters, the maximum RDs were <1%. The calculation of organ TIACs in PRRT using the PBPK model was little affected by assigning wrong prior knowledge to the evaluated patients. The calculation of bone marrow-absorbed doses could be affected by the inaccurate TIACs of serum and remainder in the case of an inadequate koff.
Collapse
Affiliation(s)
- Deni Hardiansyah
- 1 Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University , Mannheim, Germany .,2 Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University , Mannheim, Germany
| | - Nusrat Jihan Begum
- 1 Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University , Mannheim, Germany .,3 Digitale Signalverarbeitung , Information Technology Faculty, Hochschule Mannheim, Mannheim, Germany
| | - Peter Kletting
- 4 Department of Nuclear Medicine, University Hospital Ulm , Ulm, Germany
| | - Felix M Mottaghy
- 5 Klinik für Nuklearmedizin, University Hospital, RWTH Aachen University , Aachen, Germany .,6 Department of Nuclear Medicine, Maastricht University Medical Center (MUMC+) , Maastricht, The Netherlands
| | - Gerhard Glatting
- 1 Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University , Mannheim, Germany
| |
Collapse
|
8
|
Dai Y, Yin J, Huang Y, Chen X, Wang G, Liu Y, Zhang X, Nie Y, Wu K, Liang J. In vivo quantifying molecular specificity of Cy5.5-labeled cyclic 9-mer peptide probe with dynamic fluorescence imaging. BIOMEDICAL OPTICS EXPRESS 2016; 7:1149-59. [PMID: 27446643 PMCID: PMC4929628 DOI: 10.1364/boe.7.001149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 05/13/2023]
Abstract
We quantified molecular specificity of Cy5.5-GX1 in vivo with dynamic fluorescence imaging to better understand its kinetic properties. According to whether or not free GX1 was injected and when it was injected, twelve of BGC-823 xenografted mice were randomly divided into three groups and underwent a 60 minute dynamic fluorescence scanning. Combined with a principal-component analysis, the binding potential (Bp) of the probe was determined by both Logan graphical analysis with reference tissue model (GARTM) and Lammertsma simplified reference tissue model (SRTM). The sum of the pharmacokinetic rate constants (SKRC) was quantified by the Gurfinkel exponential model (GEXPM). Cy5.5-GX1 specifically targeted tumor both in vitro and in vivo. We obtained similar quantification results of Bp (GARTM Bp = 0.582 ± 0.2655, SRTM Bp = 0.618 ± 0.2923), and obtained a good linear relation between the Bp value and the SKRC value. Our results indicate that the SKRC value is more suitable for an early-stage kinetic data analysis, and the Bp value depicts kinetic characteristics under the equilibrium state. Dynamic fluorescence imaging in conjunction with various kinetic models are optimal tools to quantify molecular specificity of the Cy5.5-GX1 probe in vivo.
Collapse
Affiliation(s)
- Yunpeng Dai
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China;
| | - Guodong Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yajun Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Xianghan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China;
| |
Collapse
|
9
|
Tichauer KM, Wang Y, Pogue BW, Liu JTC. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging. Phys Med Biol 2015; 60:R239-69. [PMID: 26134619 PMCID: PMC4522156 DOI: 10.1088/0031-9155/60/14/r239] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
| | | | | | | |
Collapse
|
10
|
Grafström J, Stone-Elander S. Comparison of methods for evaluating radiolabelled Annexin A5 uptake in pre-clinical PET oncological studies. Nucl Med Biol 2014; 41:793-800. [PMID: 25156038 DOI: 10.1016/j.nucmedbio.2014.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE The uptakes of radiolabel led AnnexinA5 (AnxA5) and a size-matched control protein in experimental tumours were evaluated by kinetic analyses and compared with standard uptake values (SUVs) to investigate whether the method of analysis may impact on the conclusions that can be drawn. PROCEDURES PET scans of the (11)C-labelled proteins performed in untreated and doxorubicin-treated mice with head and neck carcinoma xenografts were retrospectively analysed. The appropriateness of using the Logan graphical analyses for reversibly binding radiotracers in these models was evaluated and confirmed. Distribution volume ratios (DVRs) of the regions of interest to reference muscle tissue were compared to those based on the image-derived input function from arterial blood. SUVs were calculated in the same individuals. RESULTS DVRs based on reference muscle tissue gave results similar to those based on the arterial blood and may be preferred since they are simpler to calculate. In the inter-group comparisons of baseline versus chemotherapy treatment or AnxA5 versus control protein, differences in DVR quantifications had a 20- to 40-fold higher statistical significance than differences in SUVs. As quantified using the control protein, the amount of free ligand in the vascular space of tumours may be large due to enhanced permeability and retention (EPR) contributions at baseline and affected during treatment, which has implications for quantifications of the specifically bound radioligand. CONCLUSIONS These results demonstrate that the quantification method as well as the controls used can be important for interpreting the uptake in tumours of the medium-sized protein ligand AnxA5 and its use in monitoring the effects of therapy on cell death in the tumours. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE These results provide additional support for the recognition that more detailed investigations on the effects of the tumour microenvironment on the targeting capability of imaging radiopharmaceuticals are needed.
Collapse
Affiliation(s)
- Jonas Grafström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sharon Stone-Elander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; PET Radiochemistry, Neuroradiology Department, R3:00, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
11
|
Bhatnagar S, Deschenes E, Liao J, Cilliers C, Thurber GM. Multichannel imaging to quantify four classes of pharmacokinetic distribution in tumors. J Pharm Sci 2014; 103:3276-86. [PMID: 25048378 DOI: 10.1002/jps.24086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/31/2023]
Abstract
Low and heterogeneous delivery of drugs and imaging agents to tumors results in decreased efficacy and poor imaging results. Systemic delivery involves a complex interplay of drug properties and physiological factors, and heterogeneity in the tumor microenvironment makes predicting and overcoming these limitations exceptionally difficult. Theoretical models have indicated that there are four different classes of pharmacokinetic behavior in tissue, depending on the fundamental steps in distribution. In order to study these limiting behaviors, we used multichannel fluorescence microscopy and stitching of high-resolution images to examine the distribution of four agents in the same tumor microenvironment. A validated generic partial differential equation model with a graphical user interface was used to select fluorescent agents exhibiting these four classes of behavior, and the imaging results agreed with predictions. BODIPY-FL exhibited higher concentrations in tissue with high blood flow, cetuximab gave perivascular distribution limited by permeability, high plasma protein and target binding resulted in diffusion-limited distribution for Hoechst 33342, and Integrisense 680 was limited by the number of binding sites in the tissue. Together, the probes and simulations can be used to investigate distribution in other tumor models, predict tumor drug distribution profiles, and design and interpret in vivo experiments.
Collapse
Affiliation(s)
- Sumit Bhatnagar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | | | | | |
Collapse
|
12
|
Liu D, Chalkidou A, Landau DB, Marsden PK, Fenwick JD. 18F-FLT uptake kinetics in head and neck squamous cell carcinoma: a PET imaging study. Med Phys 2014; 41:041911. [PMID: 24694142 DOI: 10.1118/1.4868462] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 02/11/2024] Open
Abstract
PURPOSE To analyze the kinetics of 3(')-deoxy-3(')-[F-18]-fluorothymidine (18F-FLT) uptake by head and neck squamous cell carcinomas and involved nodes imaged using positron emission tomography (PET). METHODS Two- and three-tissue compartment models were fitted to 12 tumor time-activity-curves (TACs) obtained for 6 structures (tumors or involved nodes) imaged in ten dynamic PET studies of 1 h duration, carried out for five patients. The ability of the models to describe the data was assessed using a runs test, the Akaike information criterion (AIC) and leave-one-out cross-validation. To generate parametric maps the models were also fitted to TACs of individual voxels. Correlations between maps of different parameters were characterized using Pearson'sr coefficient; in particular the phosphorylation rate-constants k3-2tiss and k5 of the two- and three-tissue models were studied alongside the flux parameters KFLT- 2tiss and KFLT of these models, and standardized uptake values (SUV). A methodology based on expectation-maximization clustering and the Bayesian information criterion ("EM-BIC clustering") was used to distil the information from noisy parametric images. RESULTS Fits of two-tissue models 2C3K and 2C4K and three-tissue models 3C5K and 3C6K comprising three, four, five, and six rate-constants, respectively, pass the runs test for 4, 8, 10, and 11 of 12 tumor TACs. The three-tissue models have lower AIC and cross-validation scores for nine of the 12 tumors. Overall the 3C6K model has the lowest AIC and cross-validation scores and its fitted parameter values are of the same orders of magnitude as literature estimates. Maps of KFLT and KFLT- 2tiss are strongly correlated (r = 0.85) and also correlate closely with SUV maps (r = 0.72 for KFLT- 2tiss, 0.64 for KFLT). Phosphorylation rate-constant maps are moderately correlated with flux maps (r = 0.48 for k3-2tiss vs KFLT- 2tiss and r = 0.68 for k5 vs KFLT); however, neither phosphorylation rate-constant correlates significantly with SUV. EM-BIC clustering reduces the parametric maps to a small number of levels--on average 5.8, 3.5, 3.4, and 1.4 for KFLT- 2tiss, KFLT, k3-2tiss, and k5. This large simplification is potentially useful for radiotherapy dose-painting, but demonstrates the high noise in some maps. Statistical simulations show that voxel level noise degrades TACs generated from the 3C6K model sufficiently that the average AIC score, parameter bias, and total uncertainty of 2C4K model fits are similar to those of 3C6K fits, whereas at the whole tumor level the scores are lower for 3C6K fits. CONCLUSIONS For the patients studied here, whole tumor FLT uptake time-courses are represented better overall by a three-tissue than by a two-tissue model. EM-BIC clustering simplifies noisy parametric maps, providing the best description of the underlying information they contain and is potentially useful for radiotherapy dose-painting. However, the clustering highlights the large degree of noise present in maps of the phosphorylation rate-constantsk5 and k3-2tiss, which are conceptually tightly linked to cellular proliferation. Methods must be found to make these maps more robust-either by constraining other model parameters or modifying dynamic imaging protocols.
Collapse
Affiliation(s)
- Dan Liu
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Anastasia Chalkidou
- Division of Imaging Sciences and Biomedical Engineering, School of Medicine, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - David B Landau
- Division of Imaging Sciences and Biomedical Engineering, School of Medicine, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Paul K Marsden
- Division of Imaging Sciences and Biomedical Engineering, School of Medicine, King's College London, St Thomas Hospital, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - John D Fenwick
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
13
|
Oxboel J, Brandt-Larsen M, Schjoeth-Eskesen C, Myschetzky R, El-Ali HH, Madsen J, Kjaer A. Comparison of two new angiogenesis PET tracers 68Ga-NODAGA-E[c(RGDyK)]2 and (64)Cu-NODAGA-E[c(RGDyK)]2; in vivo imaging studies in human xenograft tumors. Nucl Med Biol 2013; 41:259-67. [PMID: 24417983 DOI: 10.1016/j.nucmedbio.2013.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The aim of this study was to synthesize and perform a side-by-side comparison of two new tumor-angiogenesis PET tracers (68)Ga-NODAGA-E[c(RGDyK)](2) and (64)Cu-NODAGA-E[c(RGDyK)](2) in vivo using human xenograft tumors in mice. Human radiation burden was estimated to evaluate potential for future use as clinical PET tracers for imaging of neo-angiogenesis. METHODS A (68)Ge/(68)Ga generator was used for the synthesis of (68)Ga-NODAGA-E[c(RGDyK)](2). (68)Ga and (64)Cu labeled NODAGA-E[c(RGDyK)](2) tracers were administrated in nude mice bearing either human glioblastoma (U87MG) or human neuroendocrine (H727) xenograft tumors. PET/CT scans at 3 time points were used for calculating the tracer uptake in tumors (%ID/g), integrin αVβ3 target specificity was shown by blocking with cold NODAGA-E[c(RGDyK)](2), and biodistribution in normal organs were also examined. From biodistribution data in mice human radiation-absorbed doses were estimated using OLINDA/EXM software. RESULTS (68)Ga-NODAGA-E[c(RGDyK)](2) was synthesized with a radiochemical purity of 89%-99% and a specific activity (SA) of 16-153 MBq/nmol. (64)Cu-NODAGA-E[c(RGDyK)](2) had a purity of 92%-99% and an SA of 64-78 MBq/nmol. Both tracers showed similar uptake in xenograft tumors 1h after injection (U87MG: 2.23 vs. 2.31%ID/g; H727: 1.53 vs. 1.48%ID/g). Both RGD dimers showed similar tracer uptake in non-tumoral tissues and a human radiation burden of less than 10 mSv with an administered dose of 200 MBq was estimated. CONCLUSION (68)Ga-NODAGA-E[c(RGDyK)](2) and (64)Cu-NODAGA-E[c(RGDyK)](2) can be easily synthesized and are both promising candidates for PET imaging of integrin αVβ3 positive tumor cells. (68)Ga-NODAGA-E[c(RGDyK)](2) showed slightly more stable tumor retention. With the advantage of in-house commercially (68)Ge/(68)Ga generators, (68)Ga-NODAGA-E[c(RGDyK)](2) may be the best choice for future clinical PET imaging in humans.
Collapse
Affiliation(s)
- Jytte Oxboel
- Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Malene Brandt-Larsen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | - Rebecca Myschetzky
- Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Henrik H El-Ali
- Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Tichauer KM, Deharvengt SJ, Samkoe KS, Gunn JR, Bosenberg MW, Turk MJ, Hasan T, Stan RV, Pogue BW. Tumor endothelial marker imaging in melanomas using dual-tracer fluorescence molecular imaging. Mol Imaging Biol 2013; 16:372-82. [PMID: 24217944 DOI: 10.1007/s11307-013-0692-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE Cancer-specific endothelial markers available for intravascular binding are promising targets for new molecular therapies. In this study, a molecular imaging approach of quantifying endothelial marker concentrations (EMCI) is developed and tested in highly light-absorbing melanomas. The approach involves injection of targeted imaging tracer in conjunction with an untargeted tracer, which is used to account for nonspecific uptake and tissue optical property effects on measured targeted tracer concentrations. PROCEDURES Theoretical simulations and a mouse melanoma model experiment were used to test out the EMCI approach. The tracers used in the melanoma experiments were fluorescently labeled anti-Plvap/PV1 antibody (plasmalemma vesicle associated protein Plvap/PV1 is a transmembrane protein marker exposed on the luminal surface of endothelial cells in tumor vasculature) and a fluorescent isotype control antibody, the uptakes of which were measured on a planar fluorescence imaging system. RESULTS The EMCI model was found to be robust to experimental noise under reversible and irreversible binding conditions and was capable of predicting expected overexpression of PV1 in melanomas compared to healthy skin despite a 5-time higher measured fluorescence in healthy skin compared to melanoma: attributable to substantial light attenuation from melanin in the tumors. CONCLUSIONS This study demonstrates the potential of EMCI to quantify endothelial marker concentrations in vivo, an accomplishment that is currently unavailable through any other methods, either in vivo or ex vivo.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Quantitative positron emission tomography imaging of angiogenesis in rats with forelimb ischemia using 68Ga-NOTA-c(RGDyK). Angiogenesis 2013; 16:837-46. [DOI: 10.1007/s10456-013-9359-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/10/2013] [Indexed: 01/23/2023]
|
16
|
Wan W, Guo N, Pan D, Yu C, Weng Y, Luo S, Ding H, Xu Y, Wang L, Lang L, Xie Q, Yang M, Chen X. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J Nucl Med 2013; 54:691-8. [PMID: 23554506 PMCID: PMC3683452 DOI: 10.2967/jnumed.112.113563] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED (18)F-FPPRGD2, which was approved for clinical study recently, has favorable properties for integrin targeting and showed potential for antiangiogenic therapy and early response monitoring. However, the time-consuming multiple-step synthesis may limit its widespread applications in the clinic. In this study, we developed a simple lyophilized kit for labeling PRGD2 peptide ((18)F-AlF-NOTA-PRGD2, denoted as (18)F-alfatide) using a fluoride-aluminum complex that significantly simplified the labeling procedure. METHODS Nine patients with a primary diagnosis of lung cancer were examined by both static and dynamic PET imaging with (18)F-alfatide, and 1 tuberculosis patient was investigated using both (18)F-alfatide and (18)F-FDG imaging. Standardized uptake values were measured in tumors and other main organs at 30 min and 1 h after injection. Kinetic parameters were calculated by Logan graphical analysis. Immunohistochemistry and staining intensity quantification were performed to confirm the expression of integrin α(v)β(3). RESULTS Under the optimal conditions, the whole radiosynthesis including purification was accomplished within 20 min with a decay-corrected yield of 42.1% ± 2.0% and radiochemical purity of more than 95%. (18)F-alfatide PET imaging identified all tumors, with mean standardized uptake values of 2.90 ± 0.10. Tumor-to-muscle and tumor-to-blood ratios were 5.87 ± 2.02 and 2.71 ± 0.92, respectively. CONCLUSION (18)F-alfatide can be produced with excellent radiochemical yield and purity via a simple, 1-step, lyophilized kit. PET scanning with (18)F-alfatide allows specific imaging of αvβ3 expression with good contrast in lung cancer patients. This technique might be used for the assessment of angiogenesis and for planning and response evaluation of cancer therapies that would affect angiogenesis status and integrin expression levels.
Collapse
Affiliation(s)
- Weixing Wan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
- Department of Nuclear Medicine, Wuxi No. 4 People’s Hospital, Wuxi, China
| | - Ning Guo
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Center for Molecular Imaging and Translational Medicine, Xiamen University, Xiamen, Fujian, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Wuxi No. 4 People’s Hospital, Wuxi, China
| | - Yuan Weng
- Department of Nuclear Medicine, Wuxi No. 4 People’s Hospital, Wuxi, China
| | - Shineng Luo
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Hong Ding
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Guo N, Lang L, Gao H, Niu G, Kiesewetter DO, Xie Q, Chen X. Quantitative analysis and parametric imaging of 18F-labeled monomeric and dimeric RGD peptides using compartment model. Mol Imaging Biol 2012; 14:743-52. [PMID: 22437879 PMCID: PMC3401513 DOI: 10.1007/s11307-012-0541-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Non-invasive PET imaging with radiolabeled RGD peptides for α(v)β(3) integrin targeting has become an important tool for tumor diagnosis and treatment monitoring in both pre-clinical and clinical studies. To better understand the molecular process and tracer pharmacokinetics, we introduced kinetic modeling in the investigation of (18)F-labeled RGD peptide monomer (18)F-FP-c(RGDyK) (denoted as (18)F-FPRGD) and dimer (18)F-FP-PEG3-E[c(RGDyK)](2) (denoted as (18)F-FPPRGD2). PROCEDURES MDA-MB-435 tumor-bearing mice underwent 60 min dynamic PET scans following the injection of either (18)F-FPRGD or (18)F-FPPRGD2. Blocking studies with pre-injection of a blocking mass dose were performed for both monomeric and dimeric RGD groups. (18)F-FPRAD (RAD) was used as a negative control. Kinetic parameters (K(1), k(2), k(3), k(4)) of a three-compartment model were fitted to the dynamic data to allow quantitative comparisons between the monomeric and dimeric RGD peptides. RESULTS Dimeric RGD peptide tracer showed significantly higher binding potential (Bp(ND) = k(3)/k(4), 5.87 ± 0.31) than that of the monomeric analog (2.75 ± 0.48, p = 0.0022, n = 4/group). The Bp(ND) values showed a significantly greater ratio (dimer/monomer ~2.1) than the difference in %ID/g uptake measured from static images (dimer/monomer ~1.5, p = 0.0045). Significant decrease in Bp(ND) was found in the blocked groups compared with the unblocked ones (dimer p = 0.00024, monomer p = 0.005, n = 4/group). Similarly, the RAD control group showed the lowest Bp(ND) value among all the test groups, as the RAD peptide does not bind to integrin α(v)β(3). Volume of distribution (V(T) = K(1)/k (2)(1 + k (3)/k (4))) could be separated into non-specific (V (ND) = K (1)/k (2)) and specific (V (S) = K (1) k (3)/(k (2) k (4))) components. Specific distribution volume (V(S)) was the dominant component of V(T) in the unblocked groups and decreased in the blocked groups. Unblocked RGD dimer also showed higher V(S) than that of the monomer (dimer V(S) = 2.38 ± 0.15, monomer V(S) = 0.90 ± 0.17, p = 0.0013, n = 4/group), well correlated with Bp(ND) calculations. Little difference in V(ND) was found among all groups. Moreover, parametric maps allowed quantitative analysis at voxel level and provided higher tumor-to-background contrast for Bp(ND) maps than the static images. Tumor heterogeneity in kinetic parameters was found in parametric images, which could not be clearly identified in static intensity images. CONCLUSIONS The pharmacokinetics of both monomeric and dimeric RGD peptide tracers was compared, and the RGD dimers showed significantly higher binding affinity than the monomeric analogs. Kinetic parameters were demonstrated to be valuable for separating specific and non-specific binding and may allow more sensitive and detailed quantification than simple standardized uptake value analysis.
Collapse
Affiliation(s)
- Ning Guo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Haokao Gao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Kletting P, Muller B, Erentok B, Schmaljohann J, Behrendt FF, Reske SN, Mottaghy FM, Glatting G. Differences in predicted and actually absorbed doses in peptide receptor radionuclide therapy. Med Phys 2012; 39:5708-17. [PMID: 22957636 DOI: 10.1118/1.4747266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE An important assumption in dosimetry prior to radionuclide therapy is the equivalence of pretherapeutic and therapeutic biodistribution. In this study the authors investigate if this assumption is justified in sst2-receptor targeting peptide therapy, as unequal amounts of peptide and different peptides for pretherapeutic measurements and therapy are commonly used. METHODS Physiologically based pharmacokinetic models were developed. Gamma camera and serum measurements of ten patients with metastasizing neuroendocrine tumors were conducted using (111)In-DTPAOC. The most suitable model was selected using the corrected Akaike information criterion. Based on that model and the estimated individual parameters, predicted and measured (90)Y-DOTATATE excretions during therapy were compared. The residence times for the pretherapeutic (measured) and therapeutic scenarios (simulated) were calculated. RESULTS Predicted and measured therapeutic excretion differed in three patients by 10%, 31%, and 7%. The measured pretherapeutic and therapeutic excretion differed by 53%, 56%, and 52%. The simulated therapeutic residence times of kidney and tumor were 3.1 ± 0.6 and 2.5 ± 1.2 fold higher than the measured pretherapeutic ones. CONCLUSIONS To avoid the introduction of unnecessary inaccuracy in dosimetry, using the same substance along with the same amount for pretherapeutic measurements and therapy is recommended.
Collapse
Affiliation(s)
- Peter Kletting
- Klinik für Nuklearmedizin, Universität Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
(64)Cu-NODAGA-c(RGDyK) Is a Promising New Angiogenesis PET Tracer: Correlation between Tumor Uptake and Integrin α(V)β(3) Expression in Human Neuroendocrine Tumor Xenografts. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2012; 2012:379807. [PMID: 23091717 PMCID: PMC3469102 DOI: 10.1155/2012/379807] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/24/2012] [Accepted: 08/26/2012] [Indexed: 01/28/2023]
Abstract
Purpose. The purpose of this paper is to evaluate a new PET tracer 64Cu-NODAGA-c(RGDyK) for imaging of tumor angiogenesis using gene expression of angiogenesis markers as reference and to estimate radiation dosimetry for humans. Procedures. Nude mice with human neuroendocrine tumor xenografts (H727) were administered 64Cu-NODAGA-c(RGDyK) i.v. for study of biodistribution as well as for dynamic PET. Gene expression of angiogenesis markers integrin αV, integrin β3, and VEGF-A were analyzed using QPCR and correlated to the tracer uptake in the tumors (%ID/g). From biodistribution data human radiation-absorbed doses were estimated using OLINDA/EXM. Results. Tumor uptake was 1.2%ID/g with strong correlations between gene expression and tracer uptake, for integrin αV
R = 0.76, integrin β3
R = 0.75 and VEGF-A R = 0.81 (all P < 0.05). The whole body effective dose for humans was estimated to be 0.038 and 0.029 mSv/MBq for females and males, respectively, with highest absorbed dose in bladder wall. Conclusion. 64Cu-NODAGA-c(RGDyK) is a promising new angiogenesis PET tracer with potential for human use.
Collapse
|
20
|
Tichauer KM, Samkoe KS, Klubben WS, Hasan T, Pogue BW. Advantages of a dual-tracer model over reference tissue models for binding potential measurement in tumors. Phys Med Biol 2012; 57:6647-59. [PMID: 23022732 DOI: 10.1088/0031-9155/57/20/6647] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The quantification of tumor molecular expression in vivo could have a significant impact for informing and monitoring emerging targeted therapies in oncology. Molecular imaging of targeted tracers can be used to quantify receptor expression in the form of a binding potential (BP) if the arterial input curve or a surrogate of it is also measured. However, the assumptions of the most common approaches (reference tissue models) may not be valid for use in tumors. In this study, the validity of reference tissue models is investigated for use in tumors experimentally and in simulations. Three different tumor lines were grown subcutaneously in athymic mice and the mice were injected with a mixture of an epidermal growth factor receptor-targeted fluorescent tracer and an untargeted fluorescent tracer. A one-compartment plasma input model demonstrated that the transport kinetics of both tracers was significantly different between tumors and all potential reference tissues, and using the reference tissue model resulted in a theoretical underestimation in BP of 50% ± 37%. On the other hand, the targeted and untargeted tracers demonstrated similar transport kinetics, allowing a dual-tracer approach to be employed to accurately estimate BP (with a theoretical error of 0.23% ± 9.07%). These findings highlight the potential for using a dual-tracer approach to quantify receptor expression in tumors with abnormal hemodynamics, possibly to inform the choice or progress of molecular cancer therapies.
Collapse
Affiliation(s)
- K M Tichauer
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | | | |
Collapse
|
21
|
Zhu L, Guo N, Li Q, Ma Y, Jacboson O, Lee S, Choi HS, Mansfield JR, Niu G, Chen X. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe. Am J Cancer Res 2012; 2:746-56. [PMID: 22916074 PMCID: PMC3425122 DOI: 10.7150/thno.4762] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 11/30/2022] Open
Abstract
Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.
Collapse
|
22
|
Hijnen NM, de Vries A, Nicolay K, Grüll H. Dual-isotope 111In/177Lu SPECT imaging as a tool in molecular imaging tracer design. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:214-22. [PMID: 22434634 DOI: 10.1002/cmmi.485] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthesis, design and subsequent pre-clinical testing of new molecular imaging tracers are topic of extensive research in healthcare. Quantitative dual-isotope SPECT imaging is proposed here as a tool in the design and validation of such tracers, as it can be used to quantify and compare the biodistribution of a specific ligand and its nonspecific control ligand, labeled with two different radionuclides, in the same animal. Since the biodistribution results are not blurred by experimental or physiological inter-animal variations, this approach allows determination of the ligand's net targeting effect. However, dual-isotope quantification is complicated by crosstalk between the two radionuclides used and the radionuclides should not influence the biodistribution of the tracer. Here, we developed a quantitative dual-isotope SPECT protocol using combined (111)Indium and (177)Lutetium and tested this tool for a well-known angiogenesis-specific ligand (cRGD peptide) in comparison to a potential nonspecific control (cRAD peptide). Dual-isotope SPECT imaging of the peptides showed a similar organ and tumor uptake to single-isotope studies (cRGDfK-DOTA, 1.5 ± 0.8%ID cm(-3); cRADfK-DOTA, 0.2 ± 0.1%ID cm(-3)), but with higher statistical relevance (p-value 0.007, n = 8). This demonstrated that, for the same relevance, seven animals were required in case of a single-isotope test design as compared with only three animals when a dual-isotope test was used. Interchanging radionuclides did not influence the biodistribution of the peptides. Dual-isotope SPECT after simultaneous injection of (111)In and (177)Lu-labeled cRGD and cRAD was shown to be a valuable method for paired testing of the in vivo target specificity of ligands in molecular imaging tracer design.
Collapse
Affiliation(s)
- Nicole M Hijnen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | | | | | | |
Collapse
|
23
|
Guo N, Lang L, Li W, Kiesewetter DO, Gao H, Niu G, Xie Q, Chen X. Quantitative analysis and comparison study of [18F]AlF-NOTA-PRGD2, [18F]FPPRGD2 and [68Ga]Ga-NOTA-PRGD2 using a reference tissue model. PLoS One 2012; 7:e37506. [PMID: 22624041 PMCID: PMC3356326 DOI: 10.1371/journal.pone.0037506] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/23/2012] [Indexed: 02/01/2023] Open
Abstract
With favorable pharmacokinetics and binding affinity for αvβ3 integrin, 18F-labeled dimeric cyclic RGD peptide ([18F]FPPRGD2) has been intensively used as a PET imaging probe for lesion detection and therapy response monitoring. A recently introduced kit formulation method, which uses an 18F-fluoride-aluminum complex labeled RGD tracer ([18F]AlF-NOTA-PRGD2), provides a strategy for simplifying the labeling procedure to facilitate clinical translation. Meanwhile, an easy-to-prepare 68Ga-labeled NOTA-PRGD2 has also been reported to have promising properties for imaging integrin αvβ3. The purpose of this study is to quantitatively compare the pharmacokinetic parameters of [18F]FPPRGD2, [18F]AlF-NOTA-PRGD2, and [68Ga]Ga-NOTA-PRGD2. U87MG tumor-bearing mice underwent 60-min dynamic PET scans following the injection of three tracers. Kinetic parameters were calculated using Logan graphical analysis with reference tissue. Parametric maps were generated using voxel-level modeling. All three compounds showed high binding potential (BpND = k3/k4) in tumor voxels. [18F]AlF-NOTA-PRGD2 showed comparable BpND value (3.75±0.65) with those of [18F]FPPRGD2 (3.39±0.84) and [68Ga]Ga-NOTA-PRGD2 (3.09±0.21) (p>0.05). Little difference was found in volume of distribution (VT) among these three RGD tracers in tumor, liver and muscle. Parametric maps showed similar kinetic parameters for all three tracers. We also demonstrated that the impact of non-specific binding could be eliminated in the kinetic analysis. Consequently, kinetic parameter estimation showed more comparable results among groups than static image analysis. In conclusion, [18F]AlF-NOTA-PRGD2 and [68Ga]Ga-NOTA-PRGD2 have comparable pharmacokinetics and quantitative parameters compared to those of [18F]FPPRGD2. Despite the apparent difference in tumor uptake (%ID/g determined from static images) and clearance pattern, the actual specific binding component extrapolated from kinetic modeling appears to be comparable for all three dimeric RGD tracers.
Collapse
Affiliation(s)
- Ning Guo
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Weihua Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Haokao Gao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
24
|
Abstract
Angiogenesis is a fundamental requirement for tumor growth and therefore it is a primary target for anti-cancer therapy. Molecular imaging of angiogenesis may provide novel opportunities for early diagnostic and for image-guided optimization and management of therapeutic regimens. Here we reviewed the advances in targeted imaging of key biomarkers of tumor angiogenesis, integrins and receptors for vascular endothelial growth factor (VEGF). Tracers for targeted imaging of these biomarkers in different imaging modalities are now reasonably well-developed and PET tracers for integrin imaging are currently in clinical trials. Molecular imaging of longitudinal responses to anti-angiogenic therapy in model tumor systems revealed a complex pattern of changes in targeted tracer accumulation in tumor, which reflects drug-induced tumor regression followed by vascular rebound. Further work will define the competitiveness of targeted imaging of key angiogenesis markers for early diagnostic and image-guided therapy.
Collapse
|
25
|
Backer MV, Backer JM. Imaging key biomarkers of tumor angiogenesis. Theranostics 2012; 2:502-15. [PMID: 22737188 PMCID: PMC3364556 DOI: 10.7150/thno.3623] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/07/2012] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis is a fundamental requirement for tumor growth and therefore it is a primary target for anti-cancer therapy. Molecular imaging of angiogenesis may provide novel opportunities for early diagnostic and for image-guided optimization and management of therapeutic regimens. Here we reviewed the advances in targeted imaging of key biomarkers of tumor angiogenesis, integrins and receptors for vascular endothelial growth factor (VEGF). Tracers for targeted imaging of these biomarkers in different imaging modalities are now reasonably well-developed and PET tracers for integrin imaging are currently in clinical trials. Molecular imaging of longitudinal responses to anti-angiogenic therapy in model tumor systems revealed a complex pattern of changes in targeted tracer accumulation in tumor, which reflects drug-induced tumor regression followed by vascular rebound. Further work will define the competitiveness of targeted imaging of key angiogenesis markers for early diagnostic and image-guided therapy.
Collapse
|
26
|
Abstract
Radiolabeled peptides targeted against receptors on the cell surface have been shown to be remarkably specific and effective in the diagnosis and therapy of malignant disease. Much of the early work in this field took place outside the United States, but in recent years the research effort within the United States has accelerated. Most of the initial studies in the United States focused on somatostatin receptor ligands. (111)In-pentetreotide was approved in 1994 and has been used extensively in the diagnosis and management of a wide variety of neuroendocrine tumors, particularly carcinoid. This work was extended to (99m)Tc-labeled analogs, and the most successful, (99m)Tc-depreotide, was approved in 1999. This agent was found to be accurate in the diagnosis of lung cancer, but it was not particularly successful because it was supplanted by (18)F-FDG imaging with positron tomography. More recently, studies with (68)Ga-labeled somatostatin analogs were initiated in the United States. This effort was delayed relative to that in other parts of the world because of difficulty in obtaining the necessary generators and regulatory uncertainty, both of which are less of a problem currently. Several ligands are being developed to image melanoma through targeting of the melanocyte-stimulating hormone receptor. Other ligands are being developed to use the arginine-glycine-aspartate oligopeptide to target angiogenesis and to use bombesin analogs to target the gastrin-releasing peptide receptor for the diagnosis and potential therapy of prostate cancer. Peptide dimers that target 2 receptors simultaneously are also being constructed, potentially increasing the selectivity of the approach significantly. Radiopeptide therapy has been explored with these ligands, initially with high-dose (111)In-pentetreotide. This step has been followed by U.S. participation in several trials with (90)Y-, (177)Lu-, and (188)Re-labeled analogs. Some of these agents are now available clinically outside the United States, and it is important to design and conduct the appropriate trials so that this therapy can be offered within the United States.
Collapse
Affiliation(s)
- Michael M Graham
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
27
|
Dumont RA, Deininger F, Haubner R, Maecke HR, Weber WA, Fani M. Novel (64)Cu- and (68)Ga-labeled RGD conjugates show improved PET imaging of α(ν)β(3) integrin expression and facile radiosynthesis. J Nucl Med 2011; 52:1276-84. [PMID: 21764795 DOI: 10.2967/jnumed.111.087700] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED PET with (18)F-labeled arginine-glycine-aspartic acid (RGD) peptides can visualize and quantify α(ν)β(3) integrin expression in patients, but radiolabeling is complex and image contrast is limited in some tumor types. The development of (68)Ga-RGD peptides would be of great utility given the convenience of (68)Ga production and radiolabeling, and (64)Cu-RGD peptides allow for delayed imaging with potentially improved tumor-to-background ratios. METHODS We used the chelators DOTA,1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), and 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-TE2A) to radiolabel the cyclic pentapeptide c(RGDfK) with (68)Ga or (64)Cu. NODAGA-c(RGDfK) was labeled at room temperature with both radionuclides within 10 min. Incubation at 95°C for up to 30 min was used for the other conjugates. The affinity profile of the metallopeptides was evaluated by a cell-based receptor-binding assay. Small-animal PET studies and biodistribution studies were performed in nude mice bearing subcutaneous U87MG glioblastoma xenografts. RESULTS The conjugates were labeled with a radiochemical purity greater than 97% and specific activities of 15-20 GBq/μmol. The affinity profile was similar for all metallopeptides and comparable to the reference standard c(RGDfV). In the biodistribution studies, all compounds demonstrated a relatively similar tumor and normal organ uptake at 1 h after injection that was comparable to published data on (18)F-labeled RGD peptides. At 18 h after injection, however, (64)Cu-NODAGA-c(RGDfK) and (64)Cu-CB-TE2A-c(RGDfK) showed up to a 20-fold increase in tumor-to-organ ratios. PET studies demonstrated high-contrast images of the U87MG tumors at 18 h, confirming the biodistribution data. CONCLUSION The ease of radiolabeling makes (68)Ga-NODAGA-c(RGDfK) an attractive alternative to (18)F-labeled RGD peptides. The high tumor-to-background ratios of (64)Cu-NODAGA-c(RGDfK) and (64)Cu-CB-TE2A-c(RGDfK) at 18 h warrant testing of (64)Cu-labeled RGD peptides in patients.
Collapse
Affiliation(s)
- Rebecca A Dumont
- Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Ng QKT, Su H, Armijo AL, Czernin J, Radu CG, Segura T. Clustered Arg-Gly-Asp peptides enhances tumor targeting of nonviral vectors. ChemMedChem 2011; 6:623-7. [PMID: 21442757 PMCID: PMC3079200 DOI: 10.1002/cmdc.201000541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Indexed: 11/10/2022]
Affiliation(s)
- Quinn K T Ng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wheeler TD, Zeng D, Desai AV, Önal B, Reichert DE, Kenis PJA. Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine. LAB ON A CHIP 2010; 10:3387-3396. [PMID: 20941431 DOI: 10.1039/c0lc00162g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (<5%) upon repeated use. A direct comparison between the radiolabeling yields obtained using the microreactor and conventional radiolabeling methods shows that improved mixing and heat transfer in the microreactor leads to higher yields for identical reaction conditions. Most importantly, by using small volumes (~10 µL) of concentrated solutions of reagents (>50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.
Collapse
Affiliation(s)
- Tobias D Wheeler
- Institute for Genomic Biology, University of Illinois at Urbana Champaign, 1206 W. Gregory Dr., Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ferl GZ, Xu L, Friesenhahn M, Bernstein LJ, Barboriak DP, Port RE. An automated method for nonparametric kinetic analysis of clinical DCE-MRI data: application to glioblastoma treated with bevacizumab. Magn Reson Med 2010; 63:1366-75. [PMID: 20432307 DOI: 10.1002/mrm.22335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Here, we describe an automated nonparametric method for evaluating gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) kinetics, based on dynamic contrast-enhanced-MRI scans of glioblastoma patients taken before and after treatment with bevacizumab; no specific model or equation structure is assumed or used. Tumor and venous blood concentration-time profiles are smoothed, using a robust algorithm that removes artifacts due to patient motion, and then deconvolved, yielding an impulse response function. In addition to smoothing, robustness of the deconvolution operation is assured by excluding data that occur prior to the plasma peak; an exhaustive analysis was performed to demonstrate that exclusion of the prepeak plasma data does not significantly affect results. All analysis steps are executed by a single R script that requires blood and tumor curves as the sole input. Statistical moment analysis of the Impulse response function yields the area under the curve (AUC) and mean residence time (MRT). Comparison of deconvolution results to fitted Tofts model parameters suggests that AUCMRT and AUC of the Impulse response function closely approximate fractional clearance from plasma to tissue (K(trans)) and fractional interstitial volume (v(e)). Intervisit variability is shown to be comparable when using the deconvolution method (11% [AUCMRT] and 13%[AUC]) compared to the Tofts model (14%[K(trans)] and 24%[v(e)]). AUC and AUCMRT both exhibit a statistically significant decrease (P < 0.005) 1 day after administration of bevacizumab.
Collapse
Affiliation(s)
- Gregory Z Ferl
- Early Development PKPD, Genentech, Inc, South San Francisco, California 94080, USA.
| | | | | | | | | | | |
Collapse
|