1
|
Kumar K, Ghosh A. Radiochemistry, Production Processes, Labeling Methods, and ImmunoPET Imaging Pharmaceuticals of Iodine-124. Molecules 2021; 26:E414. [PMID: 33466827 PMCID: PMC7830191 DOI: 10.3390/molecules26020414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
Target-specific biomolecules, monoclonal antibodies (mAb), proteins, and protein fragments are known to have high specificity and affinity for receptors associated with tumors and other pathological conditions. However, the large biomolecules have relatively intermediate to long circulation half-lives (>day) and tumor localization times. Combining superior target specificity of mAbs and high sensitivity and resolution of the PET (Positron Emission Tomography) imaging technique has created a paradigm-shifting imaging modality, ImmunoPET. In addition to metallic PET radionuclides, 124I is an attractive radionuclide for radiolabeling of mAbs as potential immunoPET imaging pharmaceuticals due to its physical properties (decay characteristics and half-life), easy and routine production by cyclotrons, and well-established methodologies for radioiodination. The objective of this report is to provide a comprehensive review of the physical properties of iodine and iodine radionuclides, production processes of 124I, various 124I-labeling methodologies for large biomolecules, mAbs, and the development of 124I-labeled immunoPET imaging pharmaceuticals for various cancer targets in preclinical and clinical environments. A summary of several production processes, including 123Te(d,n)124I, 124Te(d,2n)124I, 121Sb(α,n)124I, 123Sb(α,3n)124I, 123Sb(3He,2n)124I, natSb(α, xn)124I, natSb(3He,n)124I reactions, a detailed overview of the 124Te(p,n)124I reaction (including target selection, preparation, processing, and recovery of 124I), and a fully automated process that can be scaled up for GMP (Good Manufacturing Practices) production of large quantities of 124I is provided. Direct, using inorganic and organic oxidizing agents and enzyme catalysis, and indirect, using prosthetic groups, 124I-labeling techniques have been discussed. Significant research has been conducted, in more than the last two decades, in the development of 124I-labeled immunoPET imaging pharmaceuticals for target-specific cancer detection. Details of preclinical and clinical evaluations of the potential 124I-labeled immunoPET imaging pharmaceuticals are described here.
Collapse
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, The Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University, Columbus, OH 43212, USA;
| | | |
Collapse
|
2
|
Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin 2020; 15:439-452. [DOI: 10.1016/j.cpet.2020.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
4
|
Benedetto R, Massicano AVF, Crenshaw BK, Oliveira R, Reis RM, Araújo EB, Lapi SE. 89Zr-DFO-Cetuximab as a Molecular Imaging Agent to Identify Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma. Cancer Biother Radiopharm 2019; 34:288-296. [PMID: 30865493 DOI: 10.1089/cbr.2018.2616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the improvement in clinical outcomes for head and neck squamous cell carcinoma (HNSCC) as the result of cetuximab, patients may present with or develop resistance that increases tumor recurrence rates and limits clinical efficacy. Therefore, identifying those patients who are or become resistant is essential to tailor the best therapeutic approach. Materials and Methods: Cetuximab was conjugated to p-NCS-Bz-DFO and labeled with 89Zr. The resistance model was developed by treating FaDu cells with cetuximab. Western blotting (WB) and specific binding assays were performed to evaluate epidermal growth factor receptor (EGFR) expression and 89Zr-DFO-cetuximab uptake in FaDu cetuximab-resistant (FCR) and FaDu cetuximab-sensitive (FCS) cells. Positron emission tomography imaging and biodistribution were conducted in NU/NU nude mice implanted with FCR or FCS cells. Results: Cetuximab was successfully radiolabeled with 89Zr (≥95%). Binding assays performed in FCR and FCS cells showed significantly lower 89Zr-DFO-cetuximab uptake in FCR (p < 0.0001). WB suggests that the resistance mechanism is associated with EGFR downregulation (p = 0.038). This result is in agreement with the low uptake of 89Zr-DFO-cetuximab in FCR cells. Tumor uptake of 89Zr-DFO-cetuximab in FCR was significantly lower than FCS tumors (p = 0.0340). Conclusions: In this work, the authors showed that 89Zr-DFO-cetuximab is suitable for identification of EGFR downregulation in vitro and in vivo. This radiopharmaceutical may be useful for monitoring resistance in HNSCC patients during cetuximab therapy.
Collapse
Affiliation(s)
- Raquel Benedetto
- 1 Instituto de Pesquisas Energéticas e Nucleares (IPEN), Sao Paulo, Brazil
| | - Adriana V F Massicano
- 2 Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| | - Bryant K Crenshaw
- 2 Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| | - Renato Oliveira
- 3 Molecular Oncology Research Center, Barretos Cancer Hospital, Sao Paulo, Brazil
| | - Rui M Reis
- 3 Molecular Oncology Research Center, Barretos Cancer Hospital, Sao Paulo, Brazil
| | - Elaine B Araújo
- 1 Instituto de Pesquisas Energéticas e Nucleares (IPEN), Sao Paulo, Brazil
| | - Suzanne E Lapi
- 2 Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| |
Collapse
|
5
|
Park BN, Lee SJ, Roh JH, Lee KH, An YS, Yoon JK. Radiolabeled Anti-Adenosine Triphosphate Synthase Monoclonal Antibody as a Theragnostic Agent Targeting Angiogenesis. Mol Imaging 2018; 16:1536012117737399. [PMID: 29239276 PMCID: PMC5734570 DOI: 10.1177/1536012117737399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The potential of a radioiodine-labeled, anti-adenosine triphosphate synthase monoclonal antibody (ATPS mAb) as a theragnostic agent for simultaneous cancer imaging and treatment was evaluated. METHODS Adenosine triphosphate synthase monoclonal antibody was labeled with radioiodine, then radiotracer uptake was measured in 6 different cancer cell lines. In vivo biodistribution was evaluated 24 and 48 hours after intravenous injection of 125I-ATPS mAb into MKN-45 tumor-bearing mice (n = 3). For radioimmunotherapy, 18.5 MBq 131I-ATPS mAb (n = 7), isotype immunoglobulin G (IgG) (n = 6), and vehicle (n = 6) were injected into MKN-45 tumor-bearing mice for 4 weeks, and tumor volume and percentage of tumor growth inhibition (TGI) were compared each week. RESULTS MKN-45 cells showed the highest in vitro cellular binding after 4 hours (0.00324 ± 0.00013%/μg), which was significantly inhibited by unlabeled ATPS mAb at concentrations of greater than 0.4 μM. The in vitro retention rate of 125I-ATPS mAb in MKN-45 cells was 64.1% ± 1.0% at 60 minutes. The highest tumor uptake of 125I-ATPS mAb in MKN-45 tumor-bearing mice was achieved 24 hours after injection (6.26% ± 0.47% injected dose [ID]/g), whereas tumor to muscle and tumor to blood ratios peaked at 48 hours. The 24-hour tumor uptake decreased to 3.43% ± 0.85% ID/g by blocking with unlabeled ATPS mAb. After 4 weeks of treatment, mice receiving 131I-ATPS mAb had significantly smaller tumors (679.4 ± 232.3 mm3) compared with control (1687.6 ± 420.4 mm3, P = .0431) and IgG-treated mice (2870.2 ± 484.1 mm3, P = .0010). The percentage of TGI of 131I-ATPS mAb was greater than 50% during the entire study period (range: 53.7%-75.9%). CONCLUSION The specific binding and antitumor effects of radioiodinated ATPS mAb were confirmed in in vitro and in vivo models of stomach cancer.
Collapse
Affiliation(s)
- Bok-Nam Park
- 1 Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, South Korea
| | - Su Jin Lee
- 1 Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, South Korea
| | - Jung Hyun Roh
- 1 Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, South Korea
| | - Kyung-Han Lee
- 2 Department of Nuclear Medicine and Molecular Imaging, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young-Sil An
- 1 Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, South Korea
| | - Joon-Kee Yoon
- 1 Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
6
|
Pool M, de Boer HR, Hooge MNLD, van Vugt MA, de Vries EG. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine. Theranostics 2017; 7:2111-2133. [PMID: 28638489 PMCID: PMC5479290 DOI: 10.7150/thno.17934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.
Collapse
Affiliation(s)
- Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Rudolf de Boer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N. Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G.E. de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Lee FT, Burvenich IJG, Guo N, Kocovski P, Tochon-Danguy H, Ackermann U, O'Keefe GJ, Gong S, Rigopoulos A, Liu Z, Gan HK, Scott AM. L-Tyrosine Confers Residualizing Properties to a d-Amino Acid-Rich Residualizing Peptide for Radioiodination of Internalizing Antibodies. Mol Imaging 2016; 15:1536012116647535. [PMID: 27457521 PMCID: PMC5470130 DOI: 10.1177/1536012116647535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/28/2015] [Accepted: 03/17/2016] [Indexed: 12/01/2022] Open
Abstract
PURPOSE The aims of the study were to develop and evaluate a novel residualizing peptide for labeling internalizing antibodies with (124)I to support clinical development using immuno-positron emission tomography (PET). METHODS The anti-epidermal growth factor receptor antibody ch806 was radiolabeled directly or indirectly with isotopes and various residualizing peptides. Azido-derivatized radiolabeled peptides were conjugated to dibenzylcyclooctyne-derivatized ch806 antibody via click chemistry. The radiochemical purities, antigen-expressing U87MG.de2-7 human glioblastoma cell-binding properties, and targeting of xenografts at 72 hours post injection of all radioconjugates were compared. Biodistribution of (124)I-PEG4-tptddYddtpt-ch806 and immuno-PET imaging were evaluated in tumor-bearing mice. RESULTS Biodistribution studies using xenografts at 72 hours post injection showed that (131)I-PEG4-tptddYddtpt-ch806 tumor uptake was similar to (111)In-CHX-A″-DTPA-ch806. (125)I-PEG4-tptddyddtpt-ch806 showed a lower tumor uptake value but higher than directly labeled (125)I-ch806. (124)I-PEG4-tptddYddtpt-ch806 was produced at 23% labeling efficiency, 98% radiochemical purity, 25.9 MBq/mg specific activity, and 64% cell binding in the presence of antigen excess. Tumor uptake for (124)I-PEG4-tptddYddtpt-ch806 was similar to (111)In-CHX-A″-DTPA-ch806. High-resolution immuno-PET/magnetic resonance imaging of tumors showed good correlation with biodistribution data. CONCLUSIONS The mixed d/l-enantiomeric peptide, dThr-dPro-dThr-dAsp-dAsp-Tyr-dAsp-dAsp-dThr-dPro-dThr, is suitable for radiolabeling antibodies with radiohalogens such as (124)I for high-resolution immuno-PET imaging of tumors and for evaluation in early-phase clinical trials.
Collapse
Affiliation(s)
- Fook T Lee
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Ingrid J G Burvenich
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Nancy Guo
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Pece Kocovski
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Henri Tochon-Danguy
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Uwe Ackermann
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Graeme J O'Keefe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Sylvia Gong
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Angela Rigopoulos
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Zhanqi Liu
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Hui K Gan
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Andrew M Scott
- Tumour Targeting Program, Ludwig Institute For Cancer Research and Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
8
|
Burvenich IJG, Farrugia W, Lee FT, Catimel B, Liu Z, Makris D, Cao D, O'Keefe GJ, Brechbiel MW, King D, Spirkoska V, Allan LC, Ramsland PA, Scott AM. Cross-species analysis of Fc engineered anti-Lewis-Y human IgG1 variants in human neonatal receptor transgenic mice reveal importance of S254 and Y436 in binding human neonatal Fc receptor. MAbs 2016; 8:775-86. [PMID: 27030023 DOI: 10.1080/19420862.2016.1156285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2β, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2β, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2β, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic.
Collapse
Affiliation(s)
- Ingrid J G Burvenich
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia.,b School of Cancer Medicine, La Trobe University , Melbourne , VIC , Australia
| | - William Farrugia
- c Centre for Biomedical Research, Burnet Institute , Melbourne , VIC , Australia
| | - Fook T Lee
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Bruno Catimel
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Zhanqi Liu
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Dahna Makris
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Diana Cao
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Graeme J O'Keefe
- b School of Cancer Medicine, La Trobe University , Melbourne , VIC , Australia.,d Department of Molecular Imaging and Therapy, Austin Health , Melbourne , Australia
| | - Martin W Brechbiel
- e Radioimmune Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute , Bethesda , MD , USA
| | - Dylan King
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Violeta Spirkoska
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Laura C Allan
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia
| | - Paul A Ramsland
- c Centre for Biomedical Research, Burnet Institute , Melbourne , VIC , Australia.,f School of Science, RMIT University , Bundoora , VIC , Australia.,g Department of Immunology , Monash University , Melbourne , VIC , Australia.,h Department of Surgery Austin Health , University of Melbourne , Heidelberg , VIC , Australia
| | - Andrew M Scott
- a Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute , Melbourne , VIC , Australia.,b School of Cancer Medicine, La Trobe University , Melbourne , VIC , Australia.,d Department of Molecular Imaging and Therapy, Austin Health , Melbourne , Australia.,i Faculty of Medicine, University of Melbourne , Melbourne , VIC , Australia
| |
Collapse
|
9
|
Burvenich IJG, Lee FT, O'Keefe GJ, Makris D, Cao D, Gong S, Rigopoulos A, Allan LC, Brechbiel MW, Liu Z, Ramsland PA, Scott AM. Engineering anti-Lewis-Y hu3S193 antibodies with improved therapeutic ratio for radioimmunotherapy of epithelial cancers. EJNMMI Res 2016; 6:26. [PMID: 26983636 PMCID: PMC4796444 DOI: 10.1186/s13550-016-0180-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/03/2016] [Indexed: 08/23/2023] Open
Abstract
Background The aim of the study was to explore Fc mutations of a humanised anti-Lewis-Y antibody (IgG1) hu3S193 as a strategy to improve therapeutic ratios for therapeutic payload delivery. Methods Four hu3S193 variants (I253A, H310A, H435A and I253A/H310A) were generated via site-directed mutagenesis and radiolabelled with diagnostic isotopes iodine-125 or indium-111. Biodistribution studies in Lewis-Y-positive tumour-bearing mice were used to calculate the dose in tumours and organs for therapeutic isotopes (iodine-131, yttrium-90 and lutetium-177). Results 111In-labelled I253A and H435A showed similar slow kinetics (t1/2β, 63.2 and 62.2 h, respectively) and a maximum tumour uptake of 33.11 ± 4.05 and 33.69 ± 3.77 percentage injected dose per gramme (%ID/g), respectively. 111In-labelled I253A/H310A cleared fastest (t1/2β, 9.1 h) with the lowest maximum tumour uptake (23.72 ± 0.85 %ID/g). The highest increase in tumour-to-blood area under the curve (AUC) ratio was observed with the metal-labelled mutants (90Y and 177Lu). 177Lu-CHX-A" DTPA-hu3S193 I253A/H310A (6:1) showed the highest tumour-to-blood AUC ratio compared to wild type (3:1) and other variants and doubling of calculated dose to tumour based on red marrow dose constraints. Conclusions These results suggest that hu3S193 Fc can be engineered with improved therapeutic ratios for 90Y- and 177Lu-based therapy, with the best candidate being hu3S193 I253A/H310A for 177Lu-based therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0180-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ingrid J G Burvenich
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Fook-Thean Lee
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Graeme J O'Keefe
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Dahna Makris
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Diana Cao
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Sylvia Gong
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Laura C Allan
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Martin W Brechbiel
- Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhanqi Liu
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia
| | - Paul A Ramsland
- School of Science, RMIT University, Bundoora, VIC, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, VIC, Australia.,Department of Surgery Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Ludwig Institute for Cancer Research and Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia. .,Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia. .,Olivia Newton-John Cancer Research Institute, 145-163 Studley Road, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
10
|
Burgess AW, Henis YI, Hynes NE, Jovin T, Levitzki A, Pinkas-Kramarski R, Yarden Y. EGF receptor family: twisting targets for improved cancer therapies. Growth Factors 2014; 32:74-81. [PMID: 24641597 DOI: 10.3109/08977194.2014.896355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) undergoes a conformational change in response to ligand binding. The ligand-induced changes in cell surface aggregation and mobility have a profound effect on the function of all the family members. Ligand also activates the EGFR intracellular kinase, stimulating proliferation and cell survival. The EGFR family are often activated, overexpressed or mutated in cancer cells and therapeutic drugs (including antibodies) can slow the progress of some cancers. This article provides a brief, annotated summary of the presentations and discussion which occurred at the Epidermal Growth Factor Receptor - Future Directions Conference held in Jerusalem in November 2013.
Collapse
Affiliation(s)
- Antony W Burgess
- The Walter & Eliza Hall Institute of Medical Research, Burgess Lab Structural Biology , Parkville , Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Sihver W, Pietzsch J, Krause M, Baumann M, Steinbach J, Pietzsch HJ. Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy. Pharmaceuticals (Basel) 2014; 7:311-38. [PMID: 24603603 PMCID: PMC3978494 DOI: 10.3390/ph7030311] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/11/2014] [Accepted: 02/21/2014] [Indexed: 01/09/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) has evolved over years into a main molecular target for the treatment of different cancer entities. In this regard, the anti-EGFR antibody cetuximab has been approved alone or in combination with: (a) chemotherapy for treatment of colorectal and head and neck squamous cell carcinoma and (b) with external radiotherapy for treatment of head and neck squamous cell carcinoma. The conjugation of radionuclides to cetuximab in combination with the specific targeting properties of this antibody might increase its therapeutic efficiency. This review article gives an overview of the preclinical studies that have been performed with radiolabeled cetuximab for imaging and/or treatment of different tumor models. A particularly promising approach seems to be the treatment with therapeutic radionuclide-labeled cetuximab in combination with external radiotherapy. Present data support an important impact of the tumor micromilieu on treatment response that needs to be further validated in patients. Another important challenge is the reduction of nonspecific uptake of the radioactive substance in metabolic organs like liver and radiosensitive organs like bone marrow and kidneys. Overall, the integration of diagnosis, treatment and monitoring as a theranostic approach appears to be a promising strategy for improvement of individualized cancer treatment.
Collapse
Affiliation(s)
- Wiebke Sihver
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany.
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany.
| | - Mechthild Krause
- Department of Radiation Oncology and OncoRay, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
| | - Michael Baumann
- Department of Radiation Oncology and OncoRay, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany.
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, Dresden 01328, Germany.
| |
Collapse
|
12
|
Gong H, Kovar JL, Cheung L, Rosenthal EL, Olive DM. A comparative study of affibody, panitumumab, and EGF for near-infrared fluorescence imaging of EGFR- and EGFRvIII-expressing tumors. Cancer Biol Ther 2013; 15:185-93. [PMID: 24100437 DOI: 10.4161/cbt.26719] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers. EGFR variant III (EGFRvIII) is a common in-frame deletion mutant, which lacks a large part of the extracellular portion (exons 2-7), including components of the ligand-binding domain. Although EGFR has been extensively studied as a molecular imaging target, information about EGFRvIII-targeted molecular imaging is lacking. In this study, the EGFR-specific affibody, therapeutic antibody panitumumab, and ligand EGF were labeled with IRDye 800CW (Ex/Em: 774/789 nm), yielding Aff800, Pan800, and EGF800, respectively. The binding affinities of the labeled agents were compared in cell-based assays using a rat glioma cell line F98 parental (F98-p) lacking EGFR expression, and 2 F98-derived transgenic cell lines expressing EGFR or EGFRvIII (designated as F98-EGFR and F98-vIII, respectively). Results showed that all agents could bind to F98-EGFR, with Pan800 having the highest binding affinity, followed by Aff800 and EGF800. Pan800 and Aff800, but not EGF800, also bound to F98-vIII. In vivo animal imaging demonstrated that compared with F98-p tumors, F98-EGFR tumors generated higher signals with all three agents. However, in the case of F98-vIII, only Pan800 and Aff800 signals were higher. Analysis of tissue lysates showed that a large portion of Pan800 was degraded into small fragments in F98-EGFR and F98-vIII tumors, possibly due to proteolytic digestion after its specific binding and internalization. In conclusion, Pan800 and Aff800 could be used as imaging agents for both wild-type EGFR and EGFRvIII, whereas EGF800 only targets wild-type EGFR.
Collapse
Affiliation(s)
| | | | | | - Eben L Rosenthal
- Division of Otolaryngology; Head and Neck Surgery; University of Alabama at Birmingham; Birmingham, AL USA
| | | |
Collapse
|
13
|
Molecular imaging in the development of a novel treatment paradigm for glioblastoma (GBM): an integrated multidisciplinary commentary. Drug Discov Today 2013; 18:1052-66. [DOI: 10.1016/j.drudis.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 12/29/2022]
|
14
|
Abstract
In an effort to discover a noninvasive method for predicting which cancer patients will benefit from therapy targeting the EGFR and HER2 proteins, a large body of the research has been conducted toward the development of PET and SPECT imaging agents, which selectively target these receptors. We provide a general overview of the advances made toward imaging EGFR and HER2, detailing the investigation of PET and SPECT imaging agents ranging in size from small molecules to monoclonal antibodies.
Collapse
Affiliation(s)
- Emily B Corcoran
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
| | | |
Collapse
|
15
|
Gan HK, Burgess AW, Clayton AHA, Scott AM. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res 2012; 72:2924-30. [PMID: 22659454 DOI: 10.1158/0008-5472.can-11-3898] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) and its most common extracellular mutant, EGFRvIII, are important therapeutic targets in multiple cancer types. A number of monoclonal antibodies and small-molecule inhibitors against these receptors are now used for anticancer treatments. New insights into the structure and function of these receptors illustrate how they can be targeted in novel ways, with expected improvements in the therapeutic efficacy. Monoclonal antibody 806 (mAb806) is an antibody that targets a conformationally exposed epitope of wild-type EGFR when it is overexpressed on tumor cells or in the presence of oncogenic mutations such as EGFRvIII. The mechanism of action of mAb806, which allows for EGFR inhibition without normal tissue toxicity, creates opportunities for combination therapy and strongly suggests mAb806 will be a superior targeted delivery system for antitumor agents. Targeting of the epitope for mAb806 also appears to be an improved strategy to inhibit tumors that express EGFRvIII. This concept of conformational epitope targeting by antibodies reflects an underlying interplay between the structure and biology of different conformational forms of the EGFR family.
Collapse
Affiliation(s)
- Hui K Gan
- Joint Austin-Ludwig Medical Oncology Unit, Austin Hospital, Australia
| | | | | | | |
Collapse
|
16
|
Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 2011; 21:101-10. [PMID: 21356478 PMCID: PMC3052283 DOI: 10.1016/j.semradonc.2010.10.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dose painting is the prescription of a nonuniform radiation dose distribution to the target volume based on functional or molecular images shown to indicate the local risk of relapse. Two prototypical strategies for implementing this novel paradigm in radiation oncology are reviewed: subvolume boosting and dose painting by numbers. Subvolume boosting involves the selection of a "target within the target," defined by image segmentation on the basis of the quantitative information in the image or morphologically, and this is related to image-based target volume selection and delineation. Dose painting by numbers is a voxel-level prescription of dose based on a mathematical transformation of the image intensity of individual pixels. The quantitative use of images to decide both where and how to delivery radiation therapy in an individual case is also called theragnostic imaging. Dose painting targets are imaging surrogates for cellular or microenvironmental phenotypes associated with poor radioresponsiveness. In this review, the focus is on the following positron emission tomography tracers: FDG and choline as surrogates for tumor burden, fluorothymidine as a surrogate for proliferation (or cellular growth fraction) and hypoxia-sensitive tracers, including [(18)F] fluoromisonidazole, EF3, EF5, and (64)Cu-labeled copper(II) diacetyl-di(N(4)-methylthiosemicarbazone) as surrogates of cellular hypoxia. Research advances supporting the clinicobiological rationale for dose painting are reviewed as are studies of the technical feasibility of optimizing and delivering realistic dose painted radiation therapy plans. Challenges and research priorities in this exciting research field are defined and a possible design for a randomized clinical trial of dose painting is presented.
Collapse
Affiliation(s)
- Søren M Bentzen
- Departments of Human Oncology, Medical Physics, Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53792, USA.
| | | |
Collapse
|
17
|
The pre-requisite of a second-generation glioma PET biomarker. J Neurol Sci 2010; 298:11-6. [PMID: 20739034 DOI: 10.1016/j.jns.2010.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022]
Abstract
UNLABELLED Since the introduction of FDG into the field of molecular imaging with positron emission tomography (PET) more than three decades ago, FDG has been the tracer of choice for oncology PET imaging. Despite the relative disadvantages of FDG and the relative benefits of its challengers, FDG remains the most commonly used glioma tracer nowadays. The present article surveys the expectations of the field and gives a concise summary of recent developments; including the issues pertaining to the continued search for an optimal second-generation PET biomarker for glioma. MINI-ABSTRACT The present article gives a concise summary of recent developments; including the issues pertaining to the continued search for an optimal PET biomarker for glioma.
Collapse
|