1
|
Otaegui J, Sultan D, Heo GS, Liu Y. Positron Emission Tomography Imaging of the Adaptive Immune System in Cardiovascular Diseases. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:209-224. [PMID: 40313531 PMCID: PMC12042138 DOI: 10.1021/cbmi.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 05/03/2025]
Abstract
Cardiovascular diseases are the leading cause of death around the globe. In recent years, a crucial role of the immune system has been acknowledged in cardiac disease progression, opening the door for immunomodulatory therapies. To this ongoing change of paradigm, positron emission tomography (PET) imaging of the immune system has become a remarkable tool to reveal immune cell trafficking and monitor disease progression and treatment response. Currently, PET imaging of the immune system in cardiovascular disease mainly focuses on the innate immune system such as macrophages, while the immune cells of the adaptive immune system including B and T cells are less studied. This can be ascribed to the lack of radiotracers specifically binding to B and T cell biomarkers compatible with PET imaging within the cardiovascular system. In this review, we summarize current knowledge about the role of the adaptive immune system (e.g., B and T cells) in major cardiovascular diseases and introduce key biomarkers for specific targeting of these immune cells and their subpopulations. Finally, we present available radiotracers for these biomarkers and propose a pathway for developing probes or optimizing those already used in other fields (e.g., oncology) to make them compatible with the cardiovascular system.
Collapse
Affiliation(s)
- Jaume
Ramon Otaegui
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Deborah Sultan
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Gyu Seong Heo
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Yongjian Liu
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| |
Collapse
|
2
|
Sadasivam P, Hartimath SV, Khanapur S, Ramasamy B, Cheng P, Feng CZ, Green D, Goggi JL, Robins EG, Yan R. Novel [ 18F]FPG-interleukin-2 conjugate for monitoring immune checkpoint therapy with positron emission tomography. Biomed Pharmacother 2024; 180:117617. [PMID: 39471651 DOI: 10.1016/j.biopha.2024.117617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024] Open
Abstract
18F-interleukin-2 based PET imaging of activated T cells serves as a potential tool for non-invasive response prediction, treatment evaluation, and patient stratification in cancer immune checkpoint therapy. Herein, we report the radiolabelling of interleukin-2 (IL-2) with a novel arginine selective bioconjugation reagent, 4-[18F]fluorophenylglyoxal ([18F]FPG). Good non-decay corrected bioconjugation efficiencies of 29 ± 4 % (n = 5) were obtained for the [18F]FPG-IL-2. [18F]FPG-IL-2 uptake by the phytohemagglutinin-activated Jurkat cells (50.5 ± 1.2 %, n = 3) was significantly higher compared to the non-activated Jurkat cells (12.9 ± 1.1 %, n = 3). The [18F]FPG-IL-2 uptake was blocked by the pre-treatment of activated Jurkat cells with excess native IL-2 (22.3 ± 2.2 %, n = 3). Dynamic PET imaging and ex vivo biodistribution study of [18F]FPG-IL-2 in healthy and CT26 tumour bearing mice demonstrated hepatobiliary and renal clearance with minimal uptake in other organs and CT26 tumours. [18F]FPG-IL-2 PET imaging was applied to non-invasively monitor immune checkpoint therapy in CT26 tumour bearing mice, treated with IgG (control), ⍺PD-1 (monotherapy), and ⍺PD-1+⍺CTLA-4 (combination therapy). Significant uptake was observed in the spleens and tumours of the mice in the combination therapy group, which was associated with increased cytotoxic CD8+ T-cell infiltration and reduced tumour volumes. [18F]FPG-IL-2 based PET imaging has the potential to monitor immune checkpoint therapy.
Collapse
Affiliation(s)
- Pragalath Sadasivam
- School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, King's College London, UK; Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; Clinical Imaging Research Centre, 14 Medical Drive, #B01-01 Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Minerva Imaging ApS, Lyshøjvej 21, Ølstykke 3650, Denmark
| | - Siddesh V Hartimath
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - Shivashankar Khanapur
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - Boominathan Ramasamy
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - Peter Cheng
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - Chin Zan Feng
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore
| | - David Green
- Clinical Imaging Research Centre, 14 Medical Drive, #B01-01 Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Julian L Goggi
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; Minerva Imaging ApS, Lyshøjvej 21, Ølstykke 3650, Denmark
| | - Edward G Robins
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A⁎ STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; Clinical Imaging Research Centre, 14 Medical Drive, #B01-01 Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Molecular Imaging and Therapy Research Unit, South Australian Health, and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace & George Street, Adelaide, SA 5000, Australia
| | - Ran Yan
- School of Biomedical Engineering and Imaging Sciences, Department of Imaging Chemistry and Biology, King's College London, UK.
| |
Collapse
|
3
|
Dierick H, Navarro L, Ceuppens H, Ertveldt T, Pombo Antunes AR, Keyaerts M, Devoogdt N, Breckpot K, D'Huyvetter M, Lahoutte T, Caveliers V, Bridoux J. Generic semi-automated radiofluorination strategy for single domain antibodies: [ 18F]FB-labelled single domain antibodies for PET imaging of fibroblast activation protein-α or folate receptor-α overexpression in cancer. EJNMMI Radiopharm Chem 2024; 9:54. [PMID: 39048805 PMCID: PMC11269545 DOI: 10.1186/s41181-024-00286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Radiofluorination of single domain antibodies (sdAbs) via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) has shown to be a promising strategy in the development of sdAb-based PET tracers. While automation of the prosthetic group (PG) [18F]SFB production, has been successfully reported, no practical method for large scale sdAb labelling has been reported. Therefore, we optimized and automated the PG production, enabling a subsequently efficient manual conjugation reaction to an anti-fibroblast activation protein (FAP)-α sdAb (4AH29) and an anti-folate receptor (FR)-α sdAb (2BD42). Both the alpha isoform of FAP and the FR are established tumour markers. FAP-α is known to be overexpressed mainly by cancer-associated fibroblasts in breast, ovarian, and other cancers, while its expression in normal tissues is low or undetectable. FR-α has an elevated expression in epithelial cancers, such as ovarian, brain and lung cancers. Non-invasive imaging techniques, such as PET-imaging, using tracers targeting specific tumour markers can provide molecular information over both the tumour and its environment, which aides in the diagnosis, therapy selection and assessment of the cancer treatment. RESULTS [18F]SFB was synthesized using a fully automated three-step, one-pot reaction. The total procedure time was 54 min and results in [18F]SFB with a RCP > 90% and a RCY d.c. of 44 ± 4% (n = 13). The manual conjugation reaction after purification produced [18F]FB-sdAbs with a RCP > 95%, an end of synthesis activity > 600 MBq and an apparent molar activity > 10 GBq/µmol. Overall RCY d.c., corrected to the trapping of [18F]F- on the QMA, were 9% (n = 1) and 5 ± 2% (n = 3) for [18F]FB-2BD42 and [18F]FB-4AH29, respectively. CONCLUSION [18F]SFB synthesis was successfully automated and upscaled on a Trasis AllInOne module. The anti-hFAP-α and anti-hFR-α sdAbs were radiofluorinated, yielding similar RCYs d.c. and RCPs, showing the potential of this method as a generic radiofluorination strategy for sdAbs. The radiofluorinated sdAbs showed a favourable biodistribution pattern and are attractive for further characterization as new PET tracers for FAP-α and FR-α imaging.
Collapse
Affiliation(s)
- Herlinde Dierick
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium.
- Nuclear Medicine Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium.
| | - Laurent Navarro
- Precirix NV, Burgemeester Etienne Demunterlaan 3, 1090, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy (LCMT), Department of Biomedical Sciences, Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building E, 1090, Brussels, Belgium
| | - Thomas Ertveldt
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
- Laboratory for Molecular and Cellular Therapy (LCMT), Department of Biomedical Sciences, Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building E, 1090, Brussels, Belgium
| | | | - Marleen Keyaerts
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LCMT), Department of Biomedical Sciences, Translational Oncology Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building E, 1090, Brussels, Belgium
| | - Matthias D'Huyvetter
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
- Precirix NV, Burgemeester Etienne Demunterlaan 3, 1090, Brussels, Belgium
| | - Tony Lahoutte
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
- Nuclear Medicine Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Vicky Caveliers
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
- Nuclear Medicine Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Jessica Bridoux
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103. Building K., 1090, Brussels, Belgium
| |
Collapse
|
4
|
Zhang J, Du B, Wang Y, Cui Y, Wang S, Zhao Y, Li Y, Li X. The role of CD8 PET imaging in guiding cancer immunotherapy. Front Immunol 2024; 15:1428541. [PMID: 39072335 PMCID: PMC11272484 DOI: 10.3389/fimmu.2024.1428541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Currently, immunotherapy is being widely used for treating cancers. However, the significant heterogeneity in patient responses is a major challenge for its successful application. CD8-positive T cells (CD8+ T cells) play a critical role in immunotherapy. Both their infiltration and functional status in tumors contribute to treatment outcomes. Therefore, accurate monitoring of CD8+ T cells, a potential biomarker, may improve therapeutic strategy. Positron emission tomography (PET) is an optimal option which can provide molecular imaging with enhanced specificity. This review summarizes the mechanism of action of CD8+ T cells in immunotherapy, and highlights the recent advancements in PET-based tracers that can visualize CD8+ T cells and discusses their clinical applications to elucidate their potential role in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaming Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Spoelstra GB, Blok SN, Reali Nazario L, Noord L, Fu Y, Simeth NA, IJpma FFA, van Oosten M, van Dijl JM, Feringa BL, Szymanski W, Elsinga PH. Synthesis and preclinical evaluation of novel 18F-vancomycin-based tracers for the detection of bacterial infections using positron emission tomography. Eur J Nucl Med Mol Imaging 2024; 51:2583-2596. [PMID: 38644432 PMCID: PMC11224109 DOI: 10.1007/s00259-024-06717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Bacterial infections are a major problem in medicine, and the rapid and accurate detection of such infections is essential for optimal patient outcome. Bacterial infections can be diagnosed by nuclear imaging, but most currently available modalities are unable to discriminate infection from sterile inflammation. Bacteria-targeted positron emission tomography (PET) tracers have the potential to overcome this hurdle. In the present study, we compared three 18F-labelled PET tracers based on the clinically applied antibiotic vancomycin for targeted imaging of Gram-positive bacteria. METHODS [18F]FB-NHS and [18F]BODIPY-FL-NHS were conjugated to vancomycin. The resulting conjugates, together with our previously developed [18F]PQ-VE1-vancomycin, were tested for stability, lipophilicity, selective binding to Gram-positive bacteria, antimicrobial activity and biodistribution. For the first time, the pharmacokinetic properties of all three tracers were compared in healthy animals to identify potential binding sites. RESULTS [18F]FB-vancomycin, [18F]BODIPY-FL-vancomycin, and [18F]PQ-VE1-vancomycin were successfully synthesized with radiochemical yields of 11.7%, 2.6%, and 0.8%, respectively. [18F]FB-vancomycin exhibited poor in vitro and in vivo stability and, accordingly, no bacterial binding. In contrast, [18F]BODIPY-FL-vancomycin and [18F]PQ-VE1-vancomycin showed strong and specific binding to Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), which was outcompeted by unlabeled vancomycin only at concentrations exceeding clinically relevant vancomycin blood levels. Biodistribution showed renal clearance of [18F]PQ-VE1-vancomycin and [18F]BODIPY-FL-vancomycin with low non-specific accumulation in muscles, fat and bones. CONCLUSION Here we present the synthesis and first evaluation of the vancomycin-based PET tracers [18F]BODIPY-FL-vancomycin and [18F]PQ-VE1-vancomycin for image-guided detection of Gram-positive bacteria. Our study paves the way towards real-time bacteria-targeted diagnosis of soft tissue and implant-associated infections that are oftentimes caused by Gram-positive bacteria, even after prophylactic treatment with vancomycin.
Collapse
Affiliation(s)
- G B Spoelstra
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - S N Blok
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - L Reali Nazario
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - L Noord
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - Y Fu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - N A Simeth
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstraβe 2, 37077, Göttingen, Germany
| | - F F A IJpma
- Department of Trauma Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - M van Oosten
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - J M van Dijl
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - B L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - W Szymanski
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - P H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands.
| |
Collapse
|
6
|
Kazim M, Yoo E. Recent Advances in the Development of Non-Invasive Imaging Probes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202310694. [PMID: 37843426 DOI: 10.1002/anie.202310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
The last two decades have witnessed a major revolution in the field of tumor immunology including clinical progress using various immunotherapy strategies. These advances have highlighted the potential for approaches that harness the power of the immune system to fight against cancer. While cancer immunotherapies have shown significant clinical successes, patient responses vary widely due to the complex and heterogeneous nature of tumors and immune responses, calling for reliable biomarkers and therapeutic strategies to maximize the benefits of immunotherapy. Especially, stratifying responding individuals from non-responders during the early stages of treatment could help avoid long-term damage and tailor personalized treatments. In efforts to develop non-invasive means for accurately evaluating and predicting tumor response to immunotherapy, multiple affinity-based agents targeting immune cell markers and checkpoint molecules have been developed and advanced to clinical trials. In addition, researchers have recently turned their attention to substrate and activity-based imaging probes that can provide real-time, functional assessment of immune response to treatment. Here, we highlight some of those recently designed probes that image functional proteases as biomarkers of cancer immunotherapy with a focus on their chemical design and detection modalities and discuss challenges and opportunities for the development of imaging tools utilized in cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Kazim
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
7
|
Cheng X, Shen J, Xu J, Zhu J, Xu P, Wang Y, Gao M. In vivo clinical molecular imaging of T cell activity. Trends Immunol 2023; 44:1031-1045. [PMID: 37932176 DOI: 10.1016/j.it.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Tumor immunotherapy is refashioning traditional treatments in the clinic for certain tumors, especially by relying on the activation of T cells. However, the safety and effectiveness of many antitumor immunotherapeutic agents are suboptimal due to difficulties encountered in assessing T cell responses and adjusting treatment regimens accordingly. Here, we review advances in the clinical visualization of T cell activity in vivo, and focus particularly on molecular imaging probes and biomarkers of T cell activation. Current challenges and prospects are also discussed that aim to achieve a better strategy for real-time monitoring of T cell activity, predicting prognoses and responses to tumor immunotherapy, and assessing disease management.
Collapse
Affiliation(s)
- Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jiahao Shen
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jingwei Xu
- Department of Cardiothoracic Surgery, Suzhou Municipal Hospital Institution, Suzhou 215000, PR China.
| | - Jinfeng Zhu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Pei Xu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yong Wang
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
8
|
Schwenck J, Sonanini D, Cotton JM, Rammensee HG, la Fougère C, Zender L, Pichler BJ. Advances in PET imaging of cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00576-4. [PMID: 37258875 DOI: 10.1038/s41568-023-00576-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET-CT or PET-MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice. Multiparametric in vivo imaging data not only are highly quantitative but also can provide invaluable information about pathophysiology, receptor expression, metabolism, or morphological and functional features of tumours, such as pH, oxygenation or tissue density, as well as pharmacodynamic properties of drugs, to measure drug response with a contrast agent. It can further quantitatively map and spatially resolve the intertumoural and intratumoural heterogeneity, providing insights into tumour vulnerabilities for target-specific therapeutic interventions. Failure to exploit and integrate the full potential of such powerful imaging data may lead to a lost opportunity in which patients do not receive the best possible care. With the desire to implement personalized medicine in the cancer clinic, the full comprehensive diagnostic power of multiplexed imaging should be utilized.
Collapse
Affiliation(s)
- Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonathan M Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Department of Immunology, IFIZ Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany.
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Banka V, Kelleher A, Sehlin D, Hultqvist G, Sigurdsson EM, Syvänen S, Ding YS. Development of brain-penetrable antibody radioligands for in vivo PET imaging of amyloid-β and tau. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1173693. [PMID: 37680310 PMCID: PMC10483511 DOI: 10.3389/fnume.2023.1173693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Introduction Alzheimer's disease (AD) is characterized by the misfolding and aggregation of two major proteins: amyloid-beta (Aβ) and tau. Antibody-based PET radioligands are desirable due to their high specificity and affinity; however, antibody uptake in the brain is limited by the blood-brain barrier (BBB). Previously, we demonstrated that antibody transport across the BBB can be facilitated through interaction with the transferrin receptor (TfR), and the bispecific antibody-based PET ligands were capable of detecting Aβ aggregates via ex vivo imaging. Since tau accumulation in the brain is more closely correlated with neuronal death and cognition, we report here our strategies to prepare four F-18-labeled specifically engineered bispecific antibody probes for the selective detection of tau and Aβ aggregates to evaluate their feasibility and specificity, particularly for in vivo PET imaging. Methods We first created and evaluated (via both in vitro and ex vivo studies) four specifically engineered bispecific antibodies, by fusion of single-chain variable fragments (scFv) of a TfR antibody with either a full-size IgG antibody of Aβ or tau or with their respective scFv. Using [18F]SFB as the prosthetic group, all four 18F-labeled bispecific antibody probes were then prepared by conjugation of antibody and [18F]SFB in acetonitrile/0.1 M borate buffer solution (final pH ~ 8.5) with an incubation of 20 min at room temperature, followed by purification on a PD MiniTrap G-25 size exclusion gravity column. Results Based on both in vitro and ex vivo evaluation, the bispecific antibodies displayed much higher brain concentrations than the unmodified antibody, supporting our subsequent F18-radiolabeling. [18F]SFB was produced in high yields in 60 min (decay-corrected radiochemical yield (RCY) 46.7 ± 5.4) with radiochemical purities of >95%, confirmed by analytical high performance liquid chromatography (HPLC) and radio-TLC. Conjugation of [18F]SFB and bispecific antibodies showed a 65%-83% conversion efficiency with radiochemical purities of 95%-99% by radio-TLC. Conclusions We successfully labeled four novel and specifically engineered bispecific antibodies with [18F]SFB under mild conditions with a high RCY and purities. This study provides strategies to create brain-penetrable F-18 radiolabeled antibody probes for the selective detection of tau and Aβ aggregates in the brain of transgenic AD mice via in vivo PET imaging.
Collapse
Affiliation(s)
- Vinay Banka
- Department of Radiology, New York University School of
Medicine, New York, NY, United States
| | - Andrew Kelleher
- Department of Radiology, New York University School of
Medicine, New York, NY, United States
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala
University, Uppsala, Sweden
| | | | - Einar M. Sigurdsson
- Department of Psychiatry, New York University School of
Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York
University School of Medicine, New York, NY, United States
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala
University, Uppsala, Sweden
| | - Yu-Shin Ding
- Department of Radiology, New York University School of
Medicine, New York, NY, United States
- Department of Psychiatry, New York University School of
Medicine, New York, NY, United States
| |
Collapse
|
10
|
Development and Evaluation of a Novel Radiotracer 125I-rIL-27 to Monitor Allotransplant Rejection by Specifically Targeting IL-27Rα. Mol Imaging 2023. [DOI: 10.1155/2023/4200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Noninvasive monitoring of allograft rejection is beneficial for the prognosis of patients with organ transplantation. Recently, IL-27/IL-27Rα was proved in close relation with inflammatory diseases, and 125I-anti-IL-27Rα mAb our group developed demonstrated high accumulation in the rejection of the allograft. However, antibody imaging has limitations in the imaging background due to its large molecular weight. Therefore, we developed a novel radiotracer (iodine-125-labeled recombinant IL-27) to evaluate the advantage in the targeting and imaging of allograft rejection. In vitro specific binding of 125I-rIL-27 was determined by saturation and competitive assay. Blood clearance, biodistribution, phosphor autoradioimaging, and IL-27Rα expression were studied on day 10 after transplantation (top period of allorejection). Our results indicated that 125I-rIL-27 could bind with IL-27Rα specifically and selectively in vitro. The blood clearance assay demonstrated fast blood clearance with 13.20 μl/h of 125I-rIL-27 staying in the blood after 24 h. The whole-body phosphor autoradiography and biodistribution assay indicated a higher specific uptake of 125I-rIL-27 and a clear radioimage in allograft than in syngraft at 24 h, while a similar result was obtained at 48 h in the group of 125I-anti-IL-27Rα mAb injection. Meanwhile, a higher expression of IL-27Rα was found in the allograft by Western blot. The accumulation of radioactivity of 125I-rIL-27 was highly correlated with the expression of IL-27Rα in the allograft. In conclusion, 125I-rIL-27 could be a promising probe for acutely monitoring allograft rejection with high specific binding towards IL-27Rα on allograft and low imaging background.
Collapse
|
11
|
Sako MO, Larimer BM. Imaging of Activated T Cells. J Nucl Med 2023; 64:30-33. [PMID: 36460341 PMCID: PMC9841244 DOI: 10.2967/jnumed.122.264097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
The adaptive immune response plays a critical role in detecting, eliminating, and creating a memory toward foreign pathogens and malignant cells. Demonstration of the specific and effective target killing of T cells in cancer has reignited interest in the study and therapeutic manipulation of the interaction between tumor and immune system. To both improve therapeutic efficacy and reduce adverse events, accurate monitoring of the activation of T cells is required. Several approaches to monitoring not just the presence, but importantly the activation, of T cells have been developed. Here, we review the recent advances in T-cell activation imaging and future directions for potential implementation into clinical utility.
Collapse
Affiliation(s)
- Mohammad O. Sako
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama;,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; and,Graduate Biomedical Science Program, University of Alabama at Birmingham, Birmingham, Alabama
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama;,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
12
|
Lauri C, Varani M, Bentivoglio V, Capriotti G, Signore A. Present status and future trends in molecular imaging of lymphocytes. Semin Nucl Med 2023; 53:125-134. [PMID: 36150910 PMCID: PMC9489269 DOI: 10.1053/j.semnuclmed.2022.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Immune system is emerging as a crucial protagonist in a huge variety of oncologic and non-oncologic conditions including response to vaccines and viral infections (such as SARS-CoV-2). The increasing knowledge of molecular biology underlying these diseases allowed the identification of specific targets and the possibility to use tailored therapies against them. Immunotherapies and vaccines are, indeed, more and more used nowadays for treating infections, cancer and autoimmune diseases and, therefore, there is the need to identify, quantify and monitor immune cell trafficking before and after treatment. This approach will provide crucial information for therapy decision-making. Imaging of B and T-lymphocytes trafficking by using tailored radiopharmaceuticals proved to be a successful nuclear medicine tool. In this review, we will provide an overview of the state of art and future trends for "in vivo" imaging of lymphocyte trafficking and homing by mean of specific receptor-tailored radiopharmaceuticals.
Collapse
Affiliation(s)
- Chiara Lauri
- Nuclear Medicine Unit Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, "Sapienza" University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
13
|
Betzer O, Gao Y, Shamul A, Motiei M, Sadan T, Yehuda R, Atkins A, Cohen CJ, Shen M, Shi X, Popovtzer R. Multifunctional nanoprobe for real-time in vivo monitoring of T cell activation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102596. [PMID: 36031044 DOI: 10.1016/j.nano.2022.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Genetically engineered T cells are a powerful new modality for cancer immunotherapy. However, their clinical application for solid tumors is challenging, and crucial knowledge on cell functionality in vivo is lacking. Here, we fabricated a nanoprobe composed of dendrimers incorporating a calcium sensor and gold nanoparticles, for dual-modal monitoring of engineered T cells within a solid tumor. T cells engineered to express a melanoma-specific T-cell receptor and loaded with the nanoprobe were longitudinally monitored within melanoma xenografts in mice. Fluorescent imaging of the nanoprobe's calcium sensor revealed increased intra-tumoral activation of the T cells over time, up to 24 h. Computed tomography imaging of the nanoprobe's gold nanoparticles revealed the cells' intra-tumoral distribution pattern. Quantitative analysis revealed the intra-tumoral T cell quantities. Thus, this nanoprobe reveals intra-tumoral persistence, penetration and functional status of genetically engineered T cells, which can advance T cell-based immunotherapy and promote next-generation live cell imaging.
Collapse
Affiliation(s)
- Oshra Betzer
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Astar Shamul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Menachem Motiei
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Sadan
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ronen Yehuda
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Cyrille J Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Rachela Popovtzer
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
14
|
Positron Emission Tomography Probes for Imaging Cytotoxic Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102040. [PMID: 36297474 PMCID: PMC9610635 DOI: 10.3390/pharmaceutics14102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Non-invasive positron emission tomography (PET) imaging of immune cells is a powerful approach for monitoring the dynamics of immune cells in response to immunotherapy. Despite the clinical success of many immunotherapeutic agents, their clinical efficacy is limited to a subgroup of patients. Conventional imaging, as well as analysis of tissue biopsies and blood samples do not reflect the complex interaction between tumour and immune cells. Consequently, PET probes are being developed to capture the dynamics of such interactions, which may improve patient stratification and treatment evaluation. The clinical efficacy of cancer immunotherapy relies on both the infiltration and function of cytotoxic immune cells at the tumour site. Thus, various immune biomarkers have been investigated as potential targets for PET imaging of immune response. Herein, we provide an overview of the most recent developments in PET imaging of immune response, including the radiosynthesis approaches employed in their development.
Collapse
|
15
|
Kelly AL, Nelson RJ, Sara R, Alberto S. Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine. J Clin Med 2022; 11:5227. [PMID: 36079157 PMCID: PMC9456759 DOI: 10.3390/jcm11175227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/18/2022] Open
Abstract
In the last years, new insights into the molecular basis of rheumatic conditions have been described, which have generated particular interest in understanding the pathophysiology of these diseases, in which lies the explanation of the diversity of clinical presentation and the difficulty in diagnostic and therapeutic approaches. In this review, we focus on the new pathophysiological findings for Sjögren syndrome and on the derived new SPECT and PET radiopharmaceuticals to detect inflammation of immunological origin, focusing on their role in diagnosis, prognosis, and the evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Anzola Luz Kelly
- Nuclear Medicine Unit, Clinica Universitaria Colombia, Bogotá 111321, Colombia
- Nuclear Medicine Unit, Clinica Reina Sofia, Bogotá 110121, Colombia
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Rivera Jose Nelson
- Internal Medicine Department Clinica Reina Sofia, Bogotá 110121, Colombia
| | - Ramírez Sara
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University, 00185 Rome, Italy
| |
Collapse
|
16
|
Guarneri A, Perrone E, Bosello SL, D'Agostino MA, Leccisotti L. The role of PET/CT in connective tissue disorders: systemic sclerosis, Sjögren's syndrome and systemic lupus erythematosus. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:194-205. [PMID: 36066111 DOI: 10.23736/s1824-4785.22.03463-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced imaging techniques are needed to help clinicians in the diagnosis, in the choice of the right time for therapeutic interventions or for modifications and monitoring of treatment response in patients with autoimmune connective tissue diseases. Nuclear medicine imaging, especially PET/CT and PET/MRI, may play an important role in detecting disease activity, assessing early treatment response as well as in clarifying the complex mechanisms underlying systemic sclerosis, Sjögren's syndrome or systemic lupus erythematosus. In addition, [18F]FDG PET/CT may help in excluding or detecting coexisting malignancies. Other more specific radiopharmaceuticals are being developed and investigated, targeting specific cells and molecules involved in connective tissue diseases. Further larger studies with standardized imaging protocol and image interpretation are strongly required before including PET/CT in the diagnostic work-up of subsets of patients with autoimmune connective tissue diseases.
Collapse
Affiliation(s)
- Andrea Guarneri
- Unit of Nuclear Medicine, Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Elisabetta Perrone
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia L Bosello
- Unit of Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria A D'Agostino
- Unit of Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Leccisotti
- Unit of Nuclear Medicine, Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy -
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
17
|
Wang S, Liu F, Wang P, Wen L, Wang Z, Guo Q, Zhu H, Yang Z. 124I Radiolabeled Basiliximab for CD25-Targeted Immuno-PET Imaging of Activated T Cells. Mol Pharm 2022; 19:2629-2637. [PMID: 35704773 DOI: 10.1021/acs.molpharmaceut.2c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activated T cells played critical roles in immunotherapy and adoptive T cell therapy, and a non-invasive imaging strategy can provide us useful information concerning the transportation, accumulation, and homing of T cells in vivo. In this paper, by utilizing the long half-life radionuclide iodine-124 (124I) and CD25 specific monoclonal antibody Basiliximab, we have fabricated a novel probe, namely, 124I-Basiliximab, which was highly promising in the immuno-PET imaging of T cells. In vitro, 124I-Basiliximab had superior affinity to CD25 protein (Kd = 5.31 nM) and exhibited much higher accumulation in CD25 high-expression lymphoma cell line Karpas299 than that in CD25-negative cell line Daudi. In vivo, 124I-Basiliximab was excreted slowly from the body of mice, rendering it a relatively high effective dose (0.393 mSv/MBq) when applied in the immuno-PET imaging. In Karpas299 tumor xenograft, 124I-Basiliximab probe was observed to accumulate in the tumor quickly after tracer administration, with the optimal image acquired at 24 h post-injection. More importantly, PHA-activated hPBMC had much higher uptake of 124I-Basiliximab, indicating the potential utility of 124I-Basiliximab to discriminate activated hPBMC from its non-activated status. In summary, 124I-Basiliximab was fabricated for the first time, which can be applied in CD25-targeted immuno-PET imaging of activated T cells in vivo.
Collapse
Affiliation(s)
- Shuailiang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Futao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Pei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Li Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
18
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Lauwerys L, Smits E, Van den Wyngaert T, Elvas F. Radionuclide Imaging of Cytotoxic Immune Cell Responses to Anti-Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10051074. [PMID: 35625811 PMCID: PMC9139020 DOI: 10.3390/biomedicines10051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer immunotherapy is an evolving and promising cancer treatment that takes advantage of the body’s immune system to yield effective tumor elimination. Importantly, immunotherapy has changed the treatment landscape for many cancers, resulting in remarkable tumor responses and improvements in patient survival. However, despite impressive tumor effects and extended patient survival, only a small proportion of patients respond, and others can develop immune-related adverse events associated with these therapies, which are associated with considerable costs. Therefore, strategies to increase the proportion of patients gaining a benefit from these treatments and/or increasing the durability of immune-mediated tumor response are still urgently needed. Currently, measurement of blood or tissue biomarkers has demonstrated sampling limitations, due to intrinsic tumor heterogeneity and the latter being invasive. In addition, the unique response patterns of these therapies are not adequately captured by conventional imaging modalities. Consequently, non-invasive, sensitive, and quantitative molecular imaging techniques, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) using specific radiotracers, have been increasingly used for longitudinal whole-body monitoring of immune responses. Immunotherapies rely on the effector function of CD8+ T cells and natural killer cells (NK) at tumor lesions; therefore, the monitoring of these cytotoxic immune cells is of value for therapy response assessment. Different immune cell targets have been investigated as surrogate markers of response to immunotherapy, which motivated the development of multiple imaging agents. In this review, the targets and radiotracers being investigated for monitoring the functional status of immune effector cells are summarized, and their use for imaging of immune-related responses are reviewed along their limitations and pitfalls, of which multiple have already been translated to the clinic. Finally, emerging effector immune cell imaging strategies and future directions are provided.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Nuclear Medicine, Antwerp University Hospital, Drie Eikenstraat 655, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (L.L.); (T.V.d.W.)
- Correspondence:
| |
Collapse
|
20
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Signore A, Lauri C, Colandrea M, Di Girolamo M, Chiodo E, Grana CM, Campagna G, Aceti A. Lymphopenia in patients affected by SARS-CoV-2 infection is caused by margination of lymphocytes in large bowel: an [ 18F]FDG PET/CT study. Eur J Nucl Med Mol Imaging 2022; 49:3419-3429. [PMID: 35486145 PMCID: PMC9050483 DOI: 10.1007/s00259-022-05801-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND To investigate the cause of lymphopenia in patients with newly diagnosed COVID-19, we measured [18F]FDG uptake in several tissues, including the ileum, right colon, and caecum at diagnosis and after recovery and correlated these measurements with haematological parameters. METHODS We studied, by [18F]FDG PET/CT, 18 newly diagnosed patients with COVID-19. Regions of interest were drawn over major organs and in the terminal ileum, caecum, and right colon, where the bowel wall was evaluable. Five patients were re-examined after recovery, and three of them also performed a white blood cell scan with 99mTc-HMPAO-WBC on both occasions. Complete blood count was performed on both occasions, and peripheral blood lymphocyte subsets were measured at diagnosis. Data were analysed by a statistician. RESULTS Patients had moderate severity COVID-19 syndrome. Basal [18F]FDG PET/CT showed focal lung uptake corresponding to hyperdense areas at CT. We also found high spleen, ileal, caecal, and colonic activity as compared to 18 control subjects. At recovery, hypermetabolic tissues tended to normalize, but activity in the caecum remained higher than in controls. Regression analyses showed an inverse correlation between CD4 + lymphocytes and [18F]FDG uptake in the caecum and colon and a direct correlation between CD8 + lymphocytes and [18F]FDG uptake in lungs and bone marrow. WBC scans showed the presence of leukocytes in the caecum and colon that disappeared at recovery. CONCLUSIONS These findings indicate that lymphopenia in COVID-19 patients is associated with large bowel inflammation supporting the hypothesis that CD4 + lymphocytes migrate to peripheral lymphoid tissues in the bowel.
Collapse
Affiliation(s)
- Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| | - Chiara Lauri
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marzia Colandrea
- Nuclear Medicine Division, European Institute of Oncology - IRCCS, Milan, Italy
| | - Marco Di Girolamo
- Radiology Unit, AOU Sant'Andrea, Sapienza University of Rome, Rome, Italy
| | - Erika Chiodo
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Chiara Maria Grana
- Nuclear Medicine Division, European Institute of Oncology - IRCCS, Milan, Italy
| | - Giuseppe Campagna
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonio Aceti
- Infection Unit, Department NESMOS, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Li XG, Velikyan I, Viitanen R, Roivainen A. PET radiopharmaceuticals for imaging inflammatory diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
van Lith SAM, Raavé R. Targets in nuclear medicine imaging: Past, present and future. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Anzola Fuentes LK. Salivary gland scintigraphy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Lopci E. Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [ 18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer. J Clin Med 2021; 10:jcm10215160. [PMID: 34768681 PMCID: PMC8584484 DOI: 10.3390/jcm10215160] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy with checkpoint inhibitors has prompted a major change not only in cancer treatment but also in medical imaging. In parallel with the implementation of new drugs modulating the immune system, new response criteria have been developed, aiming to overcome clinical drawbacks related to the new, unusual, patterns of response characterizing both solid tumors and lymphoma during the course of immunotherapy. The acknowledgement of pseudo-progression, hyper-progression, immune-dissociated response and so forth, has become mandatory for all imagers dealing with this clinical scenario. A long list of acronyms, i.e., irRC, iRECIST, irRECIST, imRECIST, PECRIT, PERCIMT, imPERCIST, iPERCIST, depicts the enormous effort made by radiology and nuclear medicine physicians in the last decade to optimize imaging parameters for better prediction of clinical benefit in immunotherapy regimens. Quite frequently, a combination of clinical-laboratory data with imaging findings has been tested, proving the ability to stratify patients into various risk groups. The next steps necessarily require a large scale validation of the most robust criteria, as well as the clinical implementation of immune-targeting tracers for immuno-PET or the exploitation of radiomics and artificial intelligence as complementary tools during the course of immunotherapy administration. For the present review article, a summary of PET/CT role for immunotherapy monitoring will be provided. By scrolling into various cancer types and applied response criteria, the reader will obtain necessary information for better understanding the potentials and limitations of the modality in the clinical setting.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy
| |
Collapse
|
26
|
Archibald SJ, Allott L. The aluminium-[ 18F]fluoride revolution: simple radiochemistry with a big impact for radiolabelled biomolecules. EJNMMI Radiopharm Chem 2021; 6:30. [PMID: 34436693 PMCID: PMC8390636 DOI: 10.1186/s41181-021-00141-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
The aluminium-[18F]fluoride ([18F]AlF) radiolabelling method combines the favourable decay characteristics of fluorine-18 with the convenience and familiarity of metal-based radiochemistry and has been used to parallel gallium-68 radiopharmaceutical developments. As such, the [18F]AlF method is popular and widely implemented in the development of radiopharmaceuticals for the clinic. In this review, we capture the current status of [18F]AlF-based technology and reflect upon its impact on nuclear medicine, as well as offering our perspective on what the future holds for this unique radiolabelling method.
Collapse
Affiliation(s)
- Stephen J Archibald
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK
| | - Louis Allott
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK. .,Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, Castle Road, Cottingham, HU16 5JQ, UK.
| |
Collapse
|
27
|
Abstract
PURPOSE Cancer immunotherapy has shown huge potential in the fight against cancer, but only a small proportion of patients respond successfully to treatment. Non-invasive methods to stratify responders from non-responders are critically important as immune therapies are often associated with immune-related side effects. Currently, conventional clinical imaging modalities do not provide a useful measure of immune therapy efficacy. Sensitive imaging biomarkers that provide information about the tumoural microenvironment may provide useful insights allowing for improved patient management. PROCEDURES We have assessed the ability of a number of radiopharmaceuticals to non-invasively measure different aspects of the tumour microenvironment and correlated tumour uptake to immune therapy response in a syngeneic model of colon cancer, CT26-WT. Four radiopharmaceuticals, [18F]FDG (a glucose analogue), [18F]FEPPA (a marker for macrophage activation), [18F]FB-IL2 (a marker for CD25+ cells) and [68Ga] Ga-mNOTA-GZP (a marker for granzyme B, the serine protease downstream effector of cytotoxic T cells), were assessed as potential biomarkers to help stratify response to PD-1 monotherapy or combined anti-PD1 and CLTA4 therapy in vivo correlating tumour uptake with changes in tumour-associated immune cell populations. RESULTS [18F]FDG, [18F]FEPPA and [18F]FB-IL2 (a marker for CD25+ cells) showed limited ability to determine therapy response and showed little correlation to tumour-associated immune cell changes. However, [68Ga] Ga-mNOTA-GZP showed good predictive ability and correlated well with changes in tumour-associated T cells, especially CD8+ T cells. CONCLUSIONS [68Ga]Ga-mNOTA-GZP uptake correlates well with changes in CD8+ T cell populations supporting continued development of granzyme B-based imaging agents for stratification of response to immunotherapy. Early assessment of immunotherapy efficacy with [68Ga]Ga-mNOTA-GZP may allow for the reduction of unnecessary side effects while significantly improving patient management.
Collapse
|
28
|
van de Donk PP, Wind TT, Hooiveld-Noeken JS, van der Veen EL, Glaudemans AWJM, Diepstra A, Jalving M, de Vries EGE, de Vries EFJ, Hospers GAP. Interleukin-2 PET imaging in patients with metastatic melanoma before and during immune checkpoint inhibitor therapy. Eur J Nucl Med Mol Imaging 2021; 48:4369-4376. [PMID: 34076745 PMCID: PMC8566634 DOI: 10.1007/s00259-021-05407-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Immune checkpoint inhibitors can induce a T cell-mediated anti-tumor immune response in patients with melanoma. Visualizing T cell activity using positron emission tomography (PET) might allow early insight into treatment efficacy. Activated tumor-infiltrating T cells express the high-affinity interleukin-2 receptor (IL-2R). Therefore, we performed a pilot study, using fluorine-18-labeled IL-2 ([18F]FB-IL2 PET), to evaluate whether a treatment-induced immune response can be detected. METHODS Patients with metastatic melanoma received ~ 200 MBq [18F]FB-IL2 intravenously, followed by a PET/CT scan before and during immune checkpoint inhibitor therapy. [18F]FB-IL2 uptake was measured as standardized uptake value in healthy tissues (SUVmean) and tumor lesions (SUVmax). Response to therapy was assessed using RECIST v1.1. Archival tumor tissues were used for immunohistochemical analyses of T cell infiltration. RESULTS Baseline [18F]FB-IL2 PET scans were performed in 13 patients. SUVmean at baseline was highest in the kidneys (14.2, IQR: 11.6-18.0) and liver (10.6, IQR: 8.6-13.4). In lymphoid tissues, uptake was highest in spleen (10.9, IQR: 8.8-12.4) and bone marrow (2.5, IQR: 2.1-3.0). SUVmax in tumor lesions (n = 41) at baseline was 1.9 (IQR: 1.7-2.3). In 11 patients, serial imaging was performed, three at week 6, seven at week 2, and one at week 4. Median [18F]FB-IL2 tumor uptake decreased from 1.8 (IQR: 1.7-2.1) at baseline to 1.7 (IQR: 1.4-2.1) during treatment (p = 0.043). Changes in [18F]FB-IL2 tumor uptake did not correlate with response. IL-2R expression in four archival tumor tissues was low and did not correlate with baseline [18F]FB-IL2 uptake. No [18F]FB-IL2-related side effects occurred. CONCLUSION PET imaging of the IL-2R, using [18F]FB-IL2, is safe and feasible. In this small patient group, serial [18F]FB-IL2-PET imaging did not detect a treatment-related immune response. TRIAL REGISTRATION Clinicaltrials.gov : NCT02922283; EudraCT: 2014-003387.20.
Collapse
Affiliation(s)
- Pim P van de Donk
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Thijs T Wind
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Jahlisa S Hooiveld-Noeken
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Elly L van der Veen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
29
|
Allott L, Amgheib A, Barnes C, Braga M, Brickute D, Wang N, Fu R, Ghaem-Maghami S, Aboagye EO. Radiolabelling an 18F biologic via facile IEDDA "click" chemistry on the GE FASTLab™ platform. REACT CHEM ENG 2021; 6:1070-1078. [PMID: 34123410 PMCID: PMC8167423 DOI: 10.1039/d1re00117e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
The use of biologics in positron emission tomography (PET) imaging is an important area of radiopharmaceutical development and new automated methods are required to facilitate their production. We report an automated radiosynthesis method to produce a radiolabelled biologic via facile inverse electron demand Diels-Alder (IEDDA) "click" chemistry on a single GE FASTLab™ cassette. We exemplified the method by producing a fluorine-18 radiolabelled interleukin-2 (IL2) radioconjugate from a trans-cyclooctene (TCO) modified IL2 precursor. The radioconjugate was produced using a fully automated radiosynthesis on a single FASTLab™ cassette in a decay-corrected radiochemical yield (RCY, d.c.) of 19.8 ± 2.6% in 110 min (from start of synthesis); the molar activity was 132.3 ± 14.6 GBq μmol-1. The in vitro uptake of [18F]TTCO-IL2 correlated with the differential receptor expression (CD25, CD122, CD132) in PC3, NK-92 and activated human PBMCs. The automated method may be adapted for the radiosynthesis of any TCO-modified protein via IEDDA chemistry.
Collapse
Affiliation(s)
- Louis Allott
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
- Positron Emission Tomography Research Centre, Faculty of Health Sciences, University of Hull Cottingham Road Kingston upon Hull HU6 7RX UK
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Ala Amgheib
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Chris Barnes
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Marta Braga
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Diana Brickute
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Ning Wang
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Ruisi Fu
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Sadaf Ghaem-Maghami
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Du Cane Road London W12 0NN UK
| |
Collapse
|
30
|
Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, Terreno E, Deandreis D. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Molecules 2021; 26:2201. [PMID: 33920423 PMCID: PMC8069316 DOI: 10.3390/molecules26082201] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is an effective therapeutic option for several cancers. In the last years, the introduction of checkpoint inhibitors (ICIs) has shifted the therapeutic landscape in oncology and improved patient prognosis in a variety of neoplastic diseases. However, to date, the selection of the best patients eligible for these therapies, as well as the response assessment is still challenging. Patients are mainly stratified using an immunohistochemical analysis of the expression of antigens on biopsy specimens, such as PD-L1 and PD-1, on tumor cells, on peritumoral immune cells and/or in the tumor microenvironment (TME). Recently, the use and development of imaging biomarkers able to assess in-vivo cancer-related processes are becoming more important. Today, positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is used routinely to evaluate tumor metabolism, and also to predict and monitor response to immunotherapy. Although highly sensitive, FDG-PET in general is rather unspecific. Novel radiopharmaceuticals (immuno-PET radiotracers), able to identify specific immune system targets, are under investigation in pre-clinical and clinical settings to better highlight all the mechanisms involved in immunotherapy. In this review, we will provide an overview of the main new immuno-PET radiotracers in development. We will also review the main players (immune cells, tumor cells and molecular targets) involved in immunotherapy. Furthermore, we report current applications and the evidence of using [18F]FDG PET in immunotherapy, including the use of artificial intelligence (AI).
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Artificial Intelligence
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Fluorodeoxyglucose F18/administration & dosage
- Fluorodeoxyglucose F18/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/chemistry
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/diagnostic imaging
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Positron-Emission Tomography/methods
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemical synthesis
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
- Department of Nuclear Medicine, Kantonsspital Baden, 5004 Baden, Switzerland
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
31
|
Khanapur S, Yong FF, Hartimath SV, Jiang L, Ramasamy B, Cheng P, Narayanaswamy P, Goggi JL, Robins EG. An Improved Synthesis of N-(4-[ 18F]Fluorobenzoyl)-Interleukin-2 for the Preclinical PET Imaging of Tumour-Infiltrating T-cells in CT26 and MC38 Colon Cancer Models. Molecules 2021; 26:molecules26061728. [PMID: 33808813 PMCID: PMC8003786 DOI: 10.3390/molecules26061728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Positron emission tomography (PET) imaging of activated T-cells with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL-2) may be a promising tool for patient management to aid in the assessment of clinical responses to immune therapeutics. Unfortunately, existing radiosynthetic methods are very low yielding due to complex and time-consuming chemical processes. Herein, we report an improved method for the synthesis of [18F]FB-IL-2, which reduces synthesis time and improves radiochemical yield. With this optimized approach, [18F]FB-IL-2 was prepared with a non-decay-corrected radiochemical yield of 3.8 ± 0.7% from [18F]fluoride, 3.8 times higher than previously reported methods. In vitro experiments showed that the radiotracer was stable with good radiochemical purity (>95%), confirmed its identity and showed preferential binding to activated mouse peripheral blood mononuclear cells. Dynamic PET imaging and ex vivo biodistribution studies in naïve Balb/c mice showed organ distribution and kinetics comparable to earlier published data on [18F]FB-IL-2. Significant improvements in the radiochemical manufacture of [18F]FB-IL-2 facilitates access to this promising PET imaging radiopharmaceutical, which may, in turn, provide useful insights into different tumour phenotypes and a greater understanding of the cellular nature and differential immune microenvironments that are critical to understand and develop new treatments for cancers.
Collapse
Affiliation(s)
- Shivashankar Khanapur
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; (F.F.Y.); (S.V.H.); (L.J.); (B.R.); (P.C.); (J.L.G.)
- Correspondence: (S.K.); (E.G.R.); Tel.: +65-6478-7053 (S.K.); +65-6478-7001 (E.G.R.)
| | - Fui Fong Yong
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; (F.F.Y.); (S.V.H.); (L.J.); (B.R.); (P.C.); (J.L.G.)
| | - Siddesh V. Hartimath
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; (F.F.Y.); (S.V.H.); (L.J.); (B.R.); (P.C.); (J.L.G.)
| | - Lingfan Jiang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; (F.F.Y.); (S.V.H.); (L.J.); (B.R.); (P.C.); (J.L.G.)
| | - Boominathan Ramasamy
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; (F.F.Y.); (S.V.H.); (L.J.); (B.R.); (P.C.); (J.L.G.)
| | - Peter Cheng
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; (F.F.Y.); (S.V.H.); (L.J.); (B.R.); (P.C.); (J.L.G.)
| | - Pradeep Narayanaswamy
- Sciex, R&D, Blk 33, #04-06 Marsiling Industrial Estate Road 3 Woodlands Central Industrial Estate, Singapore 739256, Singapore;
| | - Julian L. Goggi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; (F.F.Y.); (S.V.H.); (L.J.); (B.R.); (P.C.); (J.L.G.)
| | - Edward George Robins
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A* STAR), 11 Biopolis Way, #01-02 Helios, Singapore 138667, Singapore; (F.F.Y.); (S.V.H.); (L.J.); (B.R.); (P.C.); (J.L.G.)
- Clinical Imaging Research Centre, 14 Medical Drive, #B01-01 Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Correspondence: (S.K.); (E.G.R.); Tel.: +65-6478-7053 (S.K.); +65-6478-7001 (E.G.R.)
| |
Collapse
|
32
|
Manfrè V, Giovannini I, Zandonella Callegher S, Lorenzon M, Pegolo E, Tel A, Gandolfo S, Quartuccio L, De Vita S, Zabotti A. Ultrasound and Bioptic Investigation of Patients with Primary Sjögren's Syndrome. J Clin Med 2021; 10:1171. [PMID: 33799655 PMCID: PMC8001290 DOI: 10.3390/jcm10061171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic and heterogeneous disorder characterized by a wide spectrum of glandular and extra-glandular features. The hallmark of pSS is considered to be the immune-mediated involvement of the exocrine glands and B-cell hyperactivation. This leads pSS patients to an increased risk of developing lymphoproliferative diseases, and persistent (>2 months) major salivary gland enlargement is a well-known clinical sign of possible involvement by B cell lymphoma. Better stratification of the patients may improve understanding of the mechanism underlying the risk of lymphoproliferative disorder. Here, we summarize the role of different imaging techniques and a bioptic approach in pSS patients, focusing mainly on the role of salivary gland ultrasonography (SGUS) and a US-guided core needle biopsy (Us-guided CNB) as diagnostic and prognostic tools in pSS patients with persistent parotid swelling.
Collapse
Affiliation(s)
- Valeria Manfrè
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (V.M.); (I.G.); (S.Z.C.); (S.G.); (L.Q.); (A.Z.)
| | - Ivan Giovannini
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (V.M.); (I.G.); (S.Z.C.); (S.G.); (L.Q.); (A.Z.)
| | - Sara Zandonella Callegher
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (V.M.); (I.G.); (S.Z.C.); (S.G.); (L.Q.); (A.Z.)
| | | | - Enrico Pegolo
- Institute of Anatomic Pathology, ASUFC Udine, 33100 Udine, Italy;
| | - Alessandro Tel
- Maxillofacial Surgery, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy;
| | - Saviana Gandolfo
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (V.M.); (I.G.); (S.Z.C.); (S.G.); (L.Q.); (A.Z.)
| | - Luca Quartuccio
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (V.M.); (I.G.); (S.Z.C.); (S.G.); (L.Q.); (A.Z.)
| | - Salvatore De Vita
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (V.M.); (I.G.); (S.Z.C.); (S.G.); (L.Q.); (A.Z.)
| | - Alen Zabotti
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy; (V.M.); (I.G.); (S.Z.C.); (S.G.); (L.Q.); (A.Z.)
| |
Collapse
|
33
|
Simonetta F, Alam IS, Lohmeyer JK, Sahaf B, Good Z, Chen W, Xiao Z, Hirai T, Scheller L, Engels P, Vermesh O, Robinson E, Haywood T, Sathirachinda A, Baker J, Malipatlolla MB, Schultz LM, Spiegel JY, Lee JT, Miklos DB, Mackall CL, Gambhir SS, Negrin RS. Molecular Imaging of Chimeric Antigen Receptor T Cells by ICOS-ImmunoPET. Clin Cancer Res 2021; 27:1058-1068. [PMID: 33087332 PMCID: PMC7887027 DOI: 10.1158/1078-0432.ccr-20-2770] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunomonitoring of chimeric antigen receptor (CAR) T cells relies primarily on their quantification in the peripheral blood, which inadequately quantifies their biodistribution and activation status in the tissues. Noninvasive molecular imaging of CAR T cells by PET is a promising approach with the ability to provide spatial, temporal, and functional information. Reported strategies rely on the incorporation of reporter transgenes or ex vivo biolabeling, significantly limiting the application of CAR T-cell molecular imaging. In this study, we assessed the ability of antibody-based PET (immunoPET) to noninvasively visualize CAR T cells. EXPERIMENTAL DESIGN After analyzing human CAR T cells in vitro and ex vivo from patient samples to identify candidate targets for immunoPET, we employed a syngeneic, orthotopic murine tumor model of lymphoma to assess the feasibility of in vivo tracking of CAR T cells by immunoPET using the 89Zr-DFO-anti-ICOS tracer, which we have previously reported. RESULTS Analysis of human CD19-CAR T cells during activation identified the Inducible T-cell COStimulator (ICOS) as a potential target for immunoPET. In a preclinical tumor model, 89Zr-DFO-ICOS mAb PET-CT imaging detected significantly higher signal in specific bone marrow-containing skeletal sites of CAR T-cell-treated mice compared with controls. Importantly, administration of ICOS-targeting antibodies at tracer doses did not interfere with CAR T-cell persistence and function. CONCLUSIONS This study highlights the potential of ICOS-immunoPET imaging for monitoring of CAR T-cell therapy, a strategy readily applicable to both commercially available and investigational CAR T cells.See related commentary by Volpe et al., p. 911.
Collapse
Affiliation(s)
- Federico Simonetta
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
- Division of Hematology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, University of Geneva, Geneva, Switzerland
| | - Israt S Alam
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Juliane K Lohmeyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Bita Sahaf
- Stanford Cancer Institute, Stanford University, Stanford, California
| | - Zinaida Good
- Stanford Cancer Institute, Stanford University, Stanford, California
- Department of Biomedical Data Science, Stanford University, Stanford, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Weiyu Chen
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Zunyu Xiao
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Toshihito Hirai
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Lukas Scheller
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Pujan Engels
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Ophir Vermesh
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Elise Robinson
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Tom Haywood
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Ataya Sathirachinda
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | | | - Liora M Schultz
- Department of Pediatrics, Stanford University, Stanford, California
| | - Jay Y Spiegel
- Stanford Cancer Institute, Stanford University, Stanford, California
| | - Jason T Lee
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California
- Stanford Cancer Institute, Stanford University, Stanford, California
- Stanford Center for Innovation in In Vivo Imaging (SCi), Stanford University School of Medicine, Stanford, California
| | - David B Miklos
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
| | - Crystal L Mackall
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California
- Stanford Cancer Institute, Stanford University, Stanford, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Department of Pediatrics, Stanford University, Stanford, California
| | - Sanjiv S Gambhir
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California
- Departments of Bioengineering and Materials Science & Engineering, Bio-X, Stanford University, Stanford, California
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California.
| |
Collapse
|
34
|
Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2021; 11:604967. [PMID: 33584676 PMCID: PMC7873485 DOI: 10.3389/fimmu.2020.604967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.
Collapse
Affiliation(s)
| | | | | | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
35
|
Molecular Imaging of Autoimmune Diseases. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Pediatric Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Abstract
Imaging has played a critical role in the management of patients with cancer. Novel therapies are emerging rapidly; however, they are effective only in some patients. With the advent of new targeted therapeutics and immunotherapy, the limitations of conventional imaging methods are becoming more evident. FDG-PET imaging is restricted to the optimal assessment of immune therapies. There is a critical unmet need for pharmacodynamic and prognostic imaging biomarkers. Radiolabeled antibodies or small molecules can allow for specific assessment of targets in expression and concentration. Several such imaging agents have been under preclinical development. Early human studies with radiolabeled monoclonal antibodies or small molecules targeted to the epidermal growth factor receptor pathway have shown potential; targeted imaging of CA19.9 and CA-IX and are being further explored. Immune-directed imaging agents are highly desirable as biomarkers and preliminary studies with radiolabeled antibodies targeting immune mechanisms appear promising. While novel agents are being developed, larger well-designed studies are needed to validate the role of these agents as biomarkers in the clinical management of patients.
Collapse
Affiliation(s)
- Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY.
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
38
|
The Unique Pharmacometrics of Small Molecule Therapeutic Drug Tracer Imaging for Clinical Oncology. Cancers (Basel) 2020; 12:cancers12092712. [PMID: 32971780 PMCID: PMC7563483 DOI: 10.3390/cancers12092712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary New clinical radiology scans using trace amounts of therapeutic cancer drugs labeled with radioisotope injected into patients can provide oncologists with fundamentally unique insights about drug delivery to tumors. This new application of radiology aims to improve how cancer drugs are used, towards improving patient outcomes. The article reviews published clinical research in this important new field. Abstract Translational development of radiolabeled analogues or isotopologues of small molecule therapeutic drugs as clinical imaging biomarkers for optimizing patient outcomes in targeted cancer therapy aims to address an urgent and recurring clinical need in therapeutic cancer drug development: drug- and target-specific biomarker assays that can optimize patient selection, dosing strategy, and response assessment. Imaging the in vivo tumor pharmacokinetics and biomolecular pharmacodynamics of small molecule cancer drugs offers patient- and tumor-specific data which are not available from other pharmacometric modalities. This review article examines clinical research with a growing pharmacopoeia of investigational small molecule cancer drug tracers.
Collapse
|
39
|
Flavell RR, Evans MJ, Villanueva-Meyer JE, Yom SS. Understanding Response to Immunotherapy Using Standard of Care and Experimental Imaging Approaches. Int J Radiat Oncol Biol Phys 2020; 108:242-257. [PMID: 32585333 DOI: 10.1016/j.ijrobp.2020.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/14/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Immunotherapy has emerged as a standard of care in the treatment of a wide variety of malignancies, and it may be used in combination with other treatments including surgery, radiation, and chemotherapy. However, a patient's imaging response to immunotherapy can be confounded by a variety of factors, including the appearance of pseudoprogression or the development of immune-related adverse events. In these situations, the immune response itself can mimic disease progression, potentially causing confusion in assessment and determination of further treatment. To address these challenges, a variety of approaches have been proposed to improve response assessment. First, revised definitions of response criteria, accounting for the appearance of pseudoprogression, can improve specificity of assessment. Second, advanced image processing including radiomics and machine learning analysis can be used to further analyze standard of care imaging data. In addition, new molecular imaging techniques can be used to directly interrogate immune cell activity or study aspects of the tumor microenvironment. These approaches have promise for improving the understanding of the response to immunotherapy and improving patient care.
Collapse
Affiliation(s)
- Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Sue S Yom
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
40
|
Abstract
Antibodies and antibody fragments have found wide application for therapeutic and diagnostic purposes. Single-domain antibody fragments, also known as 'heavy-chain variable domains' or 'nanobodies', are a recent addition to the toolbox. Discovered some 30 years ago, nanobodies are the smallest antibody-derived fragments that retain antigen-binding properties. Their small size, stability, specificity, affinity and ease of manufacture make them appealing for use as imaging agents in the laboratory and the clinic. With the recent surge in immunotherapeutics and the success of cancer immunotherapy, it is important to be able to image immune responses and cancer biomarkers non-invasively to allocate resources and guide the best possible treatment of patients with cancer. This article reviews recent advances in the application of nanobodies as cancer imaging agents. While much work has been done in preclinical models, first-in-human applications are beginning to show the value of nanobodies as imaging agents.
Collapse
Affiliation(s)
- M. Rashidian
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - H. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
41
|
van Ginkel MS, Glaudemans AW, van der Vegt B, Mossel E, Kroese FG, Bootsma H, Vissink A. Imaging in Primary Sjögren's Syndrome. J Clin Med 2020; 9:E2492. [PMID: 32756395 PMCID: PMC7463854 DOI: 10.3390/jcm9082492] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by dysfunction and lymphocytic infiltration of the salivary and lacrimal glands. Besides the characteristic sicca complaints, pSS patients can present a spectrum of signs and symptoms, which challenges the diagnostic process. Various imaging techniques can be used to assist in the diagnostic work-up and follow-up of pSS patients. Developments in imaging techniques provide new opportunities and perspectives. In this descriptive review, we discuss imaging techniques that are used in pSS with a focus on the salivary glands. The emphasis is on the contribution of these techniques to the diagnosis of pSS, their potential in assessing disease activity and disease progression in pSS, and their contribution to diagnosing and staging of pSS-associated lymphomas. Imaging findings of the salivary glands will be linked to histopathological changes in the salivary glands of pSS patients.
Collapse
Affiliation(s)
- Martha S. van Ginkel
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (E.M.); (F.G.K.); (H.B.)
| | - Andor W.J.M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Esther Mossel
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (E.M.); (F.G.K.); (H.B.)
| | - Frans G.M. Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (E.M.); (F.G.K.); (H.B.)
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (E.M.); (F.G.K.); (H.B.)
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
42
|
Dercle L, Henry T, Carré A, Paragios N, Deutsch E, Robert C. Reinventing radiation therapy with machine learning and imaging bio-markers (radiomics): State-of-the-art, challenges and perspectives. Methods 2020; 188:44-60. [PMID: 32697964 DOI: 10.1016/j.ymeth.2020.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is a pivotal cancer treatment that has significantly progressed over the last decade due to numerous technological breakthroughs. Imaging is now playing a critical role on deployment of the clinical workflow, both for treatment planning and treatment delivery. Machine-learning analysis of predefined features extracted from medical images, i.e. radiomics, has emerged as a promising clinical tool for a wide range of clinical problems addressing drug development, clinical diagnosis, treatment selection and implementation as well as prognosis. Radiomics denotes a paradigm shift redefining medical images as a quantitative asset for data-driven precision medicine. The adoption of machine-learning in a clinical setting and in particular of radiomics features requires the selection of robust, representative and clinically interpretable biomarkers that are properly evaluated on a representative clinical data set. To be clinically relevant, radiomics must not only improve patients' management with great accuracy but also be reproducible and generalizable. Hence, this review explores the existing literature and exposes its potential technical caveats, such as the lack of quality control, standardization, sufficient sample size, type of data collection, and external validation. Based upon the analysis of 165 original research studies based on PET, CT-scan, and MRI, this review provides an overview of new concepts, and hypotheses generating findings that should be validated. In particular, it describes evolving research trends to enhance several clinical tasks such as prognostication, treatment planning, response assessment, prediction of recurrence/relapse, and prediction of toxicity. Perspectives regarding the implementation of an AI-based radiotherapy workflow are presented.
Collapse
Affiliation(s)
- Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, USA
| | - Theophraste Henry
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexandre Carré
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Eric Deutsch
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charlotte Robert
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
43
|
Iafrate M, Fruhwirth GO. How Non-invasive in vivo Cell Tracking Supports the Development and Translation of Cancer Immunotherapies. Front Physiol 2020; 11:154. [PMID: 32327996 PMCID: PMC7152671 DOI: 10.3389/fphys.2020.00154] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is a relatively new treatment regimen for cancer, and it is based on the modulation of the immune system to battle cancer. Immunotherapies can be classified as either molecular or cell-based immunotherapies, and both types have demonstrated promising results in a growing number of cancers. Indeed, several immunotherapies representing both classes are already approved for clinical use in oncology. While spectacular treatment successes have been reported, particularly for so-called immune checkpoint inhibitors and certain cell-based immunotherapies, they have also been accompanied by a variety of severe, sometimes life-threatening side effects. Furthermore, not all patients respond to immunotherapy. Hence, there is the need for more research to render these promising therapeutics more efficacious, more widely applicable, and safer to use. Whole-body in vivo imaging technologies that can interrogate cancers and/or immunotherapies are highly beneficial tools for immunotherapy development and translation to the clinic. In this review, we explain how in vivo imaging can aid the development of molecular and cell-based anti-cancer immunotherapies. We describe the principles of imaging host T-cells and adoptively transferred therapeutic T-cells as well as the value of traceable cancer cell models in immunotherapy development. Our emphasis is on in vivo cell tracking methodology, including important aspects and caveats specific to immunotherapies. We discuss a variety of associated experimental design aspects including parameters such as cell type, observation times/intervals, and detection sensitivity. The focus is on non-invasive 3D cell tracking on the whole-body level including aspects relevant for both preclinical experimentation and clinical translatability of the underlying methodologies.
Collapse
Affiliation(s)
| | - Gilbert O. Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
44
|
van der Veen EL, Suurs FV, Cleeren F, Bormans G, Elsinga PH, Hospers GAP, Lub-de Hooge MN, de Vries EGE, de Vries EFJ, Antunes IF. Development and Evaluation of Interleukin-2-Derived Radiotracers for PET Imaging of T Cells in Mice. J Nucl Med 2020; 61:1355-1360. [PMID: 32111688 DOI: 10.2967/jnumed.119.238782] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, N-(4-18F-fluorobenzoyl)-interleukin-2 (18F-FB-IL2) was introduced as a PET tracer for T cell imaging. However, production is complex and time-consuming. Therefore, we developed 2 radiolabeled IL2 variants, namely aluminum 18F-fluoride-(restrained complexing agent)-IL2 (18F-AlF-RESCA-IL2) and 68Ga-gallium-(1,4,7-triazacyclononane-4,7-diacetic acid-1-glutaric acid)-IL2 (68Ga-Ga-NODAGA-IL2), and compared their in vitro and in vivo characteristics with 18F-FB-IL2. Methods: Radiolabeling of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 was optimized, and stability was evaluated in human serum. Receptor binding was studied with activated human peripheral blood mononuclear cells (hPBMCs). Ex vivo tracer biodistribution in immunocompetent BALB/cOlaHsd (BALB/c) mice was performed at 15, 60, and 90 min after tracer injection. In vivo binding characteristics were studied in severe combined immunodeficient (SCID) mice inoculated with activated hPBMCs in Matrigel. Tracer was injected 15 min after hPBMC inoculation, and a 60-min dynamic PET scan was acquired, followed by ex vivo biodistribution studies. Specific uptake was determined by coinjection of tracer with unlabeled IL2 and by evaluating uptake in a control group inoculated with Matrigel only. Results: 68Ga-Ga-NODAGA-IL2 and 18F-AlF-RESCA-IL2 were produced with radiochemical purity of more than 95% and radiochemical yield of 13.1% ± 4.7% and 2.4% ± 1.6% within 60 and 90 min, respectively. Both tracers were stable in serum, with more than 90% being intact tracer after 1 h. In vitro, both tracers displayed preferential binding to activated hPBMCs. Ex vivo biodistribution studies on BALB/c mice showed higher uptake of 18F-AlF-RESCA-IL2 than of 18F-FB-IL2 in liver, kidney, spleen, bone, and bone marrow. 68Ga-Ga-NODAGA-IL2 uptake in liver and kidney was higher than 18F-FB-IL2 uptake. In vivo, all tracers revealed uptake in activated hPBMCs in SCID mice. Low uptake was seen after a blocking dose of IL2 and in the Matrigel control group. In addition, 18F-AlF-RESCA-IL2 yielded the highest-contrast PET images of target lymph nodes. Conclusion: Production of 18F-AlF-RESCA-IL2 and 68Ga-Ga-NODAGA-IL2 is simpler and faster than that of 18F-FB-IL2. Both tracers showed good in vitro and in vivo characteristics, with high uptake in lymphoid tissue and hPBMC xenografts.
Collapse
Affiliation(s)
- Elly L van der Veen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frans V Suurs
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, University of Leuven, Leuven, Belgium
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Inês F Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| |
Collapse
|
45
|
Saeed M, Xu Z, De Geest BG, Xu H, Yu H. Molecular Imaging for Cancer Immunotherapy: Seeing Is Believing. Bioconjug Chem 2020; 31:404-415. [PMID: 31951380 DOI: 10.1021/acs.bioconjchem.9b00851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The importance of the immune system in cancer therapy has been reaffirmed by the success of the immune checkpoint blockade. The complex tumor microenvironment and its interaction with the immune system, however, remain mysteries. Molecular imaging may shed light on fundamental aspects of the immune response to elucidate the mechanism of cancer immunotherapy. In this review, we discuss various imaging approaches that offer in-depth insight into the tumor microenvironment, checkpoint blockade therapy, and T cell-mediated antitumor immune responses. Recent advances in the molecular imaging modalities, including magnetic resonance imaging (MRI), positron electron tomography (PET), and optical imaging (e.g., fluorescence and intravital imaging) for in situ tracking of the immune response, are discussed. It is envisaged that the integration of imaging with immunotherapy may broaden our understanding to predict a particular antitumor immune response.
Collapse
Affiliation(s)
- Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Bruno G De Geest
- Department of Pharmaceutics and Cancer Research Institute Ghent (CRIG) , Ghent University , Ghent 9000 , Belgium
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute , Tongji University School of Medicine, Tongji University Cancer Center , Shanghai 200072 , China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
46
|
Heo GS, Sultan D, Liu Y. Current and novel radiopharmaceuticals for imaging cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:4-20. [PMID: 32077667 DOI: 10.23736/s1824-4785.20.03230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide despite advances in diagnostic technologies and treatment strategies. The underlying cause of most CVD is atherosclerosis, a chronic disease driven by inflammatory reactions. Atherosclerotic plaque rupture could cause arterial occlusion leading to ischemic tissue injuries such as myocardial infarction (MI) and stroke. Clinically, most imaging modalities are based on anatomy and provide limited information about the on-going molecular activities affecting the vulnerability of atherosclerotic lesion for risk stratification of patients. Thus, the ability to differentiate stable plaques from those that are vulnerable is an unmet clinical need. Of various imaging techniques, the radionuclide-based molecular imaging modalities including positron emission tomography and single-photon emission computerized tomography provide superior ability to noninvasively visualize molecular activities in vivo and may serve as a useful tool in tackling this challenge. Moreover, the well-established translational pathway of radiopharmaceuticals may also facilitate the translation of discoveries from benchtop to clinical investigation in contrast to other imaging modalities to fulfill the goal of precision medicine. The relationship between inflammation occurring within the plaque and its proneness to rupture has been well documented. Therefore, an active effort has been significantly devoted to develop radiopharmaceuticals specifically to measure CVD inflammatory status, and potentially elucidate those plaques which are prone to rupture. In the following review, molecular imaging of inflammatory biomarkers will be briefly discussed.
Collapse
Affiliation(s)
- Gyu S Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA -
| |
Collapse
|
47
|
Hyafil F, Vigne J. Imaging inflammation in atherosclerotic plaques: Just make it easy! J Nucl Cardiol 2019; 26:1705-1708. [PMID: 29700689 DOI: 10.1007/s12350-018-1289-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
The presence of inflammatory cells is a hallmark of unstable atherosclerotic plaques. Several imaging approaches have been developed for the noninvasive detection of inflammatory activities in atherosclerotic plaques. Positron emission tomography (PET) imaging with the injection of 18F-fluorodeoxyglucose (FDG) is currently the most widely used imaging technique to evaluate the density of activated macrophages in atherosclerotic plaques. Nevertheless, FDG-PET imaging has logistical and technical constraints that represent an important obstacle to the wider use of this approach for the evaluation of patients with atherosclerosis. In a similar way as in the oncological field, the balance between the benefits and costs of new drugs need to be improved in patients with cardiovascular diseases. PET imaging of plaque inflammation might represent a very useful tool to identify patients who could benefit the most from anti-inflammatory treatments and to exclude patients with other causes of inflammation who are the most likely to develop severe side effects under these drugs. The availability of radiotracers targeting more specifically inflammation in atherosclerotic plaques would greatly facilitate the logistic organization of this imaging and help to expand the use of PET for the evaluation of atherosclerotic patients.
Collapse
Affiliation(s)
- Fabien Hyafil
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Bichat, Assistance Publique - Hôpitaux de Paris, Département Hospitalo-Universitaire FIRE, Inserm 1148, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France.
| | - Jonathan Vigne
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Bichat, Assistance Publique - Hôpitaux de Paris, Département Hospitalo-Universitaire FIRE, Inserm 1148, Université Paris Diderot, 46 rue Henri Huchard, 75018, Paris, France
| |
Collapse
|
48
|
van der Veen EL, Antunes IF, Maarsingh P, Hessels-Scheper J, Zijlma R, Boersma HH, Jorritsma-Smit A, Hospers GAP, de Vries EGE, Lub-de Hooge MN, de Vries EFJ. Clinical-grade N-(4-[ 18F]fluorobenzoyl)-interleukin-2 for PET imaging of activated T-cells in humans. EJNMMI Radiopharm Chem 2019; 4:15. [PMID: 31659562 PMCID: PMC6637160 DOI: 10.1186/s41181-019-0062-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/29/2019] [Indexed: 01/09/2023] Open
Abstract
Background Molecular imaging of immune cells might be a potential tool for response prediction, treatment evaluation and patient selection in inflammatory diseases as well as oncology. Targeting interleukin-2 (IL2) receptors on activated T-cells using positron emission tomography (PET) with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL2) could be such a strategy. This paper describes the challenging translation of the partly manual labeling of [18F]FB-IL2 for preclinical studies into an automated procedure following Good Manufacturing Practices (GMP), resulting in a radiopharmaceutical suitable for clinical use. Methods The preclinical synthesis of [18F]FB-IL2 was the starting point for translation to a clinical production method. To overcome several challenges, major adaptations in the production process were executed. The final analytical methods and production method were validated and documented. All data with regards to the quality and safety of the final drug product were documented in an investigational medicinal product dossier. Results Restrictions in the [18F]FB-IL2 production were imposed by hardware configuration of the automated synthesis equipment and by use of disposable cassettes. Critical steps in the [18F]FB-IL2 production comprised the purification method, stability of recombinant human IL2 and the final formulation. With the GMP compliant production method, [18F]FB-IL2 could reliably be produced with consistent quality complying to all specifications. Conclusions To enable the use of [18F]FB-IL2 in clinical studies, a fully automated GMP compliant production process was developed. [18F]FB-IL2 is now produced consistently for use in clinical studies. Electronic supplementary material The online version of this article (10.1186/s41181-019-0062-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elly L van der Veen
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Inês F Antunes
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Petra Maarsingh
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Janet Hessels-Scheper
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Rolf Zijlma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Hendrikus H Boersma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Annelies Jorritsma-Smit
- Department of Clinical Pharmacy and Pharmacology, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
49
|
Micro-PET imaging of [18F]fluoroacetate combined with [18F]FDG to differentiate chronic Mycobacterium tuberculosis infection from an acute bacterial infection in a mouse model: a preliminary study. Nucl Med Commun 2019; 40:639-644. [PMID: 30932968 DOI: 10.1097/mnm.0000000000001017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (TB) infection is one of the deadliest infectious diseases worldwide and is responsible for 1.7 million deaths per year. The increase in multidrug-resistant TB poses formidable challenges to the global control of tuberculosis. TB infection could easily yield false-positive results in fluorine-18-fluorodeoxyglucose ([F]FDG) PET imaging for cancer detection because of its high [F]FDG uptake. We describe the combined [F]FDG PET with fluorine-18-fluoroacetate ([F]FAC), a promising analog of carbon-11-acetate, for targeting glycolysis and de novo lipogenesis, respectively, to determine the metabolic differences between chronic TB infection and acute infection. MATERIALS AND METHODS Six-month-old BALB/c mice were inoculated with Mycobacterium bovis to induce chronic TB infection, and Escherichia coli as well as Staphylococcus aureus to induce acute infection for an in-vivo imaging study. Eighteen days after inoculation for chronic TB infection and 5 days for acute infection, both [F]FDG and [F]FAC micro-PET were performed on the infected mice. Analysis of variance and the Tukey honest ad-hoc test were carried out to determine differences among treatment with different bacterial infections. RESULTS TB infection showed much lower [F] FAC accumulation than acute infection. However, both TB infection and acute infection exhibited high [F]FAC accumulation. CONCLUSION The marked metabolic differences in de novo lipogenesis and glycolysis in [F]FDG and [F]FAC uptakes in micro-PET imaging, respectively, help to differentiate chronic TB infection from acute infection.
Collapse
|
50
|
Immuno-Imaging to Predict Treatment Response in Infection, Inflammation and Oncology. J Clin Med 2019; 8:jcm8050681. [PMID: 31091813 PMCID: PMC6571748 DOI: 10.3390/jcm8050681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Molecular nuclear medicine plays a pivotal role for diagnosis in a preclinical phase, in genetically susceptible patients, for radio-guided surgery, for disease relapse evaluation, and for therapy decision-making and follow-up. This is possible thanks to the development of new radiopharmaceuticals to target specific biomarkers of infection, inflammation and tumour immunology. Methods: In this review, we describe the use of specific radiopharmaceuticals for infectious and inflammatory diseases with the aim of fast and accurate diagnosis and treatment follow-up. Furthermore, we focus on specific oncological indications with an emphasis on tumour immunology and visualizing the tumour environment. Results: Molecular nuclear medicine imaging techniques get a foothold in the diagnosis of a variety of infectious and inflammatory diseases, such as bacterial and fungal infections, rheumatoid arthritis, and large vessel vasculitis, but also for treatment response in cancer immunotherapy. Conclusion: Several specific radiopharmaceuticals can be used to improve diagnosis and staging, but also for therapy decision-making and follow-up in infectious, inflammatory and oncological diseases where immune cells are involved. The identification of these cell subpopulations by nuclear medicine techniques would provide personalized medicine for these patients, avoiding side effects and improving therapeutic approaches.
Collapse
|